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ABSTRACT

The objective is to investigate experimentally and theoretically the effects of neutron

embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement

techniques. Interaction between experiment and modeling should suggest efficient magnetic

measurement procedures for determining neutron embrittlement and biaxial stress. This should

ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines.

In the first six months of this first year study, magneticmeasurements were made on steel

surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously

had been characterized by Charpy tests after specified neutron fluences. Measurements now included:

(1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise

amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good

correlation of magnetic parameters with fluence and embrittlement was found tor specimens from the

Indian Point 2 reactor. The D.C. Cook 2 specimens, however, showed poor correlation. Possible

conCributing factors to this are: (1) metallurgical differences between D.C, Cook 2 and Indian Point 2

specimens; (2) statistical variatic)ns in embrittlement parameters for individual samples away from the

stated mean values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration

in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis m,_del has

begun. The mcxleling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes

appear to be better indicators of embrittlement than the hysteresis loop parameters,

T •
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Fig. 4. Typical Charpy V impact data for irradiated A-3()2B plate 10
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Fig. 5. Transition temperature shift ATNo,r vs. neutron fluence for 15
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Fig. 6. Change in upper shelf energy A(USE) vs. neutron fluence for 16

specimens described in Tables 1 and 2. L, T, A, B, 1, 2,

and 3 are def'med as in Fig. 5.

Fig. 7. Sensor and instrumentation arrangement for magnetic hysteresis, 21

nonlinear harmonics, and Barkhausen noise measurements.

Fig. 8. Photograph of magnetic circuit, sensors, and specimen. A plastic 22
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the coincidence of two open circle points.
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vs. transition temperature shift ATNDa,for Indian Point 2 reactor.
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Fig. 13. Scatter plot for third harmonic signal amplitude (Hm,_,level 2) 33

vs. ATNDv for D.C. Cook 2 reactor.

Fig. 14. Scatter plot for third harmonic signal ,amplitude (Hre,_ level 2) 34

vs. A(USE) for D.C. Cook 2 reactor.

Fig. Al Examples of scatter plots tbr data having various R va!ues.

R is the linear correlation coefficient. A represents the

least square fit line obtained by assuming the parameter of

the Y axis is dependent on lhc parameter of the X axis.

B represents the least square fit line obtained by assuming
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1. INTRODUCTION

!

This research project undertakes to investigate two areas .of nondestructive evaluation
/

, (NDE) relating to safety in the energy industry:
,,

' 1) the problem of nondestructively monitoring neutron embrittlement in nuclear pressure

vessels; and

2) the problem ot"nondestructively detecting large stress lew:ls in gas and oil pipeline,

where both hoop and longitudinal stresses coexist in a biaxial stress condition.

These problems are important because o1' the need to insure that rupture of nuclear pressure vessels or

of oil _md gas pipeline does not occur. In the case of problem (1), the steel nuclear pressure vessel

during operation is exposed to high energy (>IMeV) neutron irradiation, which over a long period of

time eventually makes the steel very brittle and subject to rupture, c_ The need is to monitor the

embrittlement nondestructively so that precautionary action can be taken when the vessel plates get

embrittled enough !.hat they should be taken out of service. In the case of problem (2), ground shifting,

due to settling or due to freezing and thawing as in Alaska, can cause great stress in pipeline, enough

to put it in danger of rupture. C2_Since pipeline is characterized by circumferentiN stress around the pipe

and longitudinal stress along the pipe, the pipeline problem is one involving biaxial stress.

The approach in this project is to evaluate various magnetic NDE techniques as to their

utility in monitoring the two conditions - neutron embrittlement and biaxial stress, qllis involves

experimentally applying the magnetic NDE tectmiques to the conditions ot" interest and evaluating the

detection sensitivity of the techniques, lt also inw)lves physical interpretation of the data based cm
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extension of the magnetomechanical hysteresis model _37_to the NDE techniques and conditions of

interest. Development and use of the model will assist in better design of the techniques and in

understanding how to use the detection methods to best advantage, lt will also help explain why one

technique might be more sensitive than another'

The magnetic NDE techniques C8_°_to be applied in this project are:

,,

(1) magnetic hysteresis loop analysis; (3'1°'__)

(2) nonlinear harmonics, C4'8'_214_i.e. tmalysis of the fundamental anti higher order

harmonics of the hysteresis loop;

(3) Barkhausen noise analysis; _8'_°'_5_9)

(4) magnetically induced velocity change of ultrasonic waves (MIVC); (8'2°'''5}

(5) magabsorption; _''9/

These techniques have ali been used for residual stress measurements, though not necessarily for biaxial

stress situations. Of these techniques, _nly (1), (3), and (5) have been used for studies of neutron

irratliati_n damage. Regarding the latter, chiefly Barkhausen studies have been done. (:62'>_Most of that

work hc_wever has n_t been done on actual neutron-irradiated pressure vessel steel embrittled at

temperatures c_)rresponding to that of pressure vessel walls, viz. 550°F (29()°C). (_'__ Preliminary studies

c_l'magabsorption mcmitoring c_t"cmbrittled pressure vessel steels were completed many years ago at

SwR112'j_,which indicated a c_)rrelation between neutron embrittlement _md magabsorption. Finally,
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' (33)changes in hysteresis loop properties like coercivity C32),initial magnetization curve (32},permeability ,
i

and saturation _c34)remanence , have been studied for cases of neutron-damaged ferromagnetic specimens,

, not necessarily pressure vessel steel. An unreported study on Barkhausen studies of pressure vessel

steel is presently ongoing in Britain, (3_ Nevertheless, there have been few published studies on the

utility of magnetic NDE techniques for monitoring reactor neutron-embrittled pressure vessel, and

certainly none has been as comprehensive as our study will be.

, The present report details work accomplished in the first six months of this research

project. During this time the plan was to focus first on the neutron embrittlement problem. Hence,

almost ali of the work reported will pertain to the neutron embrittlement problem.



II. TECHNICAL DISCUSSION OF CHARPY TEST SPECIMENS USED IN NUCLEAR POWER

PLANT SURVEILLANCE TESTING

r

At Southwest Research Institute, in a hot-cell facilitym there reside, many Charpy test

specimens obtained from neutron-irradiated capsules that had Previously been inserted in wlrious nuclear

reactors around the country.

At reactor startup time, the encapsulated specimens are positioned inside the pressure

vessel in the space between the pressure vessel wall and the thermal shield which surrounds the core

region. (See Fig. 1).C3_nThe capsules are attached radially to the outer surface of the thermal shield

rather than to the vessel surface, where fast neutron fluence is one-third less than at the shield. The

capsules are immersed in water coolant at high pressure (>2000 psi) and high temperature (550°F, or

equivalently, 290°C). The vertical position ot' the capsules is in the "beltline" regiora o1' the reactor

intermediate between the lop-most and botton,.most core region. (See Fig. 2) (_) A single capsule is

removed during reactor shutdown service periods (spaced about 3 years apart). Specimens in each, ,

capsule are labeled by the number of effective full power years (EFPY) that the capsule was in service.

A considerable number of dosimeters of different types are positioned inside the capsule along the entire

length of capsule. These dosimeters plus the relative geometry of the f'Jel rods and capsule position

allow the computation of average accumulated neutron irradiation per cna2 or neutron fluence (in

neutrons/cm _) for each type of test specimen. Test specimens are typed by whether the specimen roll

axis is parallel (Transverse (T) specimen) or perpendicular (Longitudinal (L) specimen) to the Charpy

notch. (See Fig. 3 bottom right). In some cases, the specimens are also typed by relative position inside

the capsule (i.e. at top, middle, or bottom of capsule, in which case they are labeled wilh different

average fluences). Also, specimens are classified according to plates in the pre,_;sure vessel whether they
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_. X (Type I)

Y (Type LI)

Fig. 1. Arrangement of surveillance capsules m a pressure vessel
(after Ref. 32).



Fig. 2. Diagram of a pressurized water reactor (PWR).The beltline
region is the region halfway down the length of the core
region (after Ref. 31).
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are plate specimens, specimens from welds shnilar to those between plates in the pressure vessel or

whether they are from the heat affected zone surrounding a weld. We have used only plate specimens.
i

Fluences are given only for fast neutrons with energies greater than 1MEV. Thus, neutron damage is

correlated with fast neutron fluence, and not overall fluence including even thermal neutrons.

Ali the irradiated specimens stored at SwRI are destructively tested Charpy test

specimens, which means that they have been broken in two after irradiation. Those under irradiation

in a reactor capsule are unbroken. An unbroken Charpy test specimen is machined carefully according

to ASTM specifications, c36_The unbroken specimens are 100 mm long with a square cross-section 10

mm on a side. The notch at mid-length is V-shaped at 45° and rounded to a ¢).25 mm radius instead of

coming to a point. Fig. 3, bottom right, shows the geometry.

The Charpy test is a standard ASTM test for degradation oi' the fracture toughness of

the steels used. The Charpy specimen is placed in a Charpy rig. This means that the sample is put on

an anvil and a specified weight mg is swung from a specified pendulum height ho into the specimen in

such a way that it hits the specimen when it is exactly vertical, qlae sample fractures, startimz at the V

notch. The energy given to the sample to break it is defined as its fracture toughness. This energy is

measured by the height hr to which the pendulum rises atier it hits the sample, with the energy being

given by mg (h,,- hf). If a steel sample has been irradiated with neutrons, its fracture toughness will

have decreased depending on the amount of cumulative neutron fluence to which it has been exposed.

There are two types of fracture - ductile fracture anti brittle fracture. _'_7_In the case of

ductile fracture, the fracture usually involves necking and then tearing whereas in brittle fracture, the

fracture is a crystallographic type of cleavage. At lower temperature, the fracture tends to be brittle

fracture and at higher temperatures, the fracture is ductile fracture. The energy required for 1()()%
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ductile fracture is called the upper shelf energy, whereas the energy for 100% brittle fracture is the lower

shelf energy. Neutron tluence has the effect of decreasing the upper shelf energy. 11"37)When both

fracture toughness and upper shelf energy are decreased, the clanger is that sudden fast rupture ot' the

reactor pressure vessel is more likely and is a very present danger, particularly since the vessel contains
,,

hot, pressurized water.

Fig. 3 shows typic;_J sets ot"Charpy data for specimens taken from a single capsule. C38)

The data is t'or A-533B plate steel, typical of many reactor pressure vessels. The Charpy impact energy

_r fracture toughness (either in ft. - lb. or kg-m) i,_obtained for each Charpy sample from a specimen

set, but where the temperature on impact for each sample is changed from sample to sample. The result

is a curve which looks like a sloping step, The upper plateau of the curve at high temperatures

corresponds to the upper shelf energy (needed for 100% ductile fracture), The two step-like curves

shown in Fig. 3 are for transverse (T), and longitudinal (L) sample sets. Clearly, at a given temperature,

it takes more energy to break a Charpy sample when the roll axis is perpendicular to the Charpy notch

(L case). Note that ihe transition zone of mixed brittle-ductile fractures is fairly wide in terms of
t

temperature or Charpy impact energy. Note too that is takes less energy t¢_break a brittle specimen.

Fig. 4 shows how a Charpy curve changes after Charpy samples from lhc same batch

_ff steel have been irradiated, in this case t_) 3 x 1()_9n/cm _'of fluence. C3'J)The tendency is for lhc

transition region to shift to higher temperatures (making the samples more brittle at a givcn tempcraturc);

also the upper shelf energy tends to decrease (requiring less energy for ductile fracture). One parameter

that can be used as a measure of neutron embrittlement is lhc tcmpcrature shift of the Charpy curve at

a given energy (taken by ASTM standards to be 60 ft-lb, which is roughly the cnergy for 50% brittle -

5()% ductile fracture). The temperature shift at 60 ft.-lbs is usually designated as ATNt,,r or RTN_,,r.

(NDT stands for "nii ductility temperature" or the temperature at which ductile fracture is expected to
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no longer dominate; R stands for "reference" anti refers to temperature shil_ at the reference energy
'

corresponding to 60 ft-lb.) Another parameter that can be used as a measure of embrittlement is the

change in the upper shelf energy (A(USE)), which measures ease of ductile fracture at the higher

temperatures. As the upper shelf energy shifts to lower energies after more and more irradiation, it is

seen that the change A(USE) gets larger.
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ili EXPERIMENTAL DESCRIPTION

A. Specimens
,,,

Table 1 shows Charpy data anti average mechanical properties for SwRI Charpy

specimens taken from the Indian Point Unit 2 reactor. Table 2 shows the same type of data for D.C.

Cook Unit 1 and D.C. Cook Unit 2 reactors. The Charpy data in the tables are also plotted in Figs. 5
i

and 6. Points 1, 2, and 3 are data corresponding to, plate specimens 2002-1, 2002-2, and 2002-3 from
i

Indian Point Unit 2; points L and T correspond to longitudinal and transverse specimens from D.C. Cook

Unit 1; points A and B corre;_pond to longitudinal and transverse specimens from D.C. Cook Unit 2.

'Fig. 5 is a plot of ATsDTVS. neutron fluence, using data from the various reactors.

Except for the 2 point from capsule V at Indian Point Unit 2, the data generally shows a monotonic

increase with fluence. Point 2 is obviously an exception since its fluence is small and its eft'cctive full

power years (EFPY) are large, suggesting that perhaps due to its geometric position in the reactor, some

of the faster neutrons may have been screened out, thereby decreasing the neutron damage. In fact point
I

2 was l'ronl a capsule which was designed to get a more screened exposure, corresponding to that seen

by the pressure vessel itsell, It is also noted that whereas data points 3 from Indian Point shows a

roughly linear increase with fluence, the D.C. Cook data tends to level off quite dramatically for points

with the largest fluence, lt was later determined that between the second and third capsule for both

D.C. Cook units, a low leakage core configuration was installed, screening off the nmch faster neutrons

from the capsule, thereby decreasing embrittlement changes for the same amount of total fluence for

neutron energies greater than 1 MeV.

Fig. 6 is a plot of change in upper shell" energy vs. neutron fluence, again using tlat_

from the various reactors. In general, upper shelf energy does not correlate as well with fluence as

transition temperature shift ATNm,, but nevertheless similar trends are seen in this data as were seen in



TABLE 1. Indian Point 2 Reactor Data

on Charpy Specimens

A(USE) AI_DT Tensile Young's
Capsule EFPY Plate Fluence Ft.Lbs °C .2% YS Test Temp. Modulus

T 1.42 2002-1 2.93X1018 15 60 71.1 550 32.0

2002-2 2.93X 1018 11 95 58.6 550 33.5

2002-3 2.55X 1018 22 i20 63.1 550 29.3
J

Y 2.34 2()()2-3 4,72X 1()18 32.5 145 76.4 550 28.7

2002-3 4.72X l0 is w __ 55(i) 35.0

Z 5.17 2002-1 1.2X 1019 25 130 81.6 30(I 22.9

2002-2 1.2X 1019 27 120 69.9 300 24.96

2002-3 9.6X 1018 32 185 74.3 300 22.6

V 8.6 2002-2 4.57X 1018 6 80 65.3 75 25.5

2(X)2-2 4.57X 1018 -- -- 550 18.5
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TABLE 2. D.C. Cook Reactor Data
on Charpy Specimens

A(USE) ATNDT .2% Tensile Young's

Capsule EFPY Plate Fluence Ft.Lbs °C YS Test Temp. Modulus

DC Cook Unit 1

T 1.13 4406-3L 1,8XI018 17 75 72,7 84 33.4

4406-3L I.SX 1018 j J -- 550 37,0

4406-3T I,SX1018 11 75 86.1

X 3.48 4406-3L 7.7X 1()18 28 110

4406-3T 6.2X 1018 17 110 77.7 250 32.8

4406-3T 6.2X1018 _ -- 550 28.3

Y 4.94 4406-3L 1.34X 1019 26 120 72.7 250 34.9

44()6-3L 1.34X1019 -- J 550 25.0

4406-3T 1.06XI019 18 115 73.4

DC Cook Unit 2 (2L _A, 2T---_B)

T 1.08 C5521-2L 2.3X1018 16 55

C5521-2T 2.3X1() 18 12 80 58.7 250 33.3

C5521-2T 2.3Xl1) _ _ J 550 25.7

Y 3.24 5521-2L 7.()lX1018 24 90

5521-2T 7.()IXI() 18 18 10() 72 210 27.5

55O 27.45521-2T 7.0IX1018

X 5.27 5521-2L 1.0XI() 19 42 95

5521-2T 1.0X1019 23 103 76 25() 22.5

550 28.35521-2T 1.0X 1()19
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Fig. 5.

* According to an analysis performed by D.G. Cadena, the experimental accuracy tbr the

data in Table 1 for the Indian Point 2 reactor is estimated to be 5:5 ° in ATNt_,r and 5:4 ft.-lbs in change

in upper shelf energy. The experimental accuracy for the D,C. Cook data is 5:5 ° in ATNDTand 5:5 ft.-

Ibs in change in upper shelf energy. Fluences are known to within 5: 5%, lt should be pointed out

however that the error estimates refer to error in the mean of a group of samples, and not the error in

the value for a specific sample to which the mean value is assigned, Dosimetry analysis is performed

according to a standard dosimetry an_dysis computer calculation. (4°)

Table 3 aad Table 4 show the specimen chemical compositions and heat treatments for

the Indian Point 2 and D,C Cook 2 reactors respectively. Differences in chemi,:al composition occur

chiefly in sultur, silicon, copper and chromium content. The Indian Point 2 plate steel is classified as

a modified SA 302 Grade B steel, whereas D.C. C_)ok 2 steel is also classified as SA533 Grade I3 steel.

The heat treatments also dift'er slightly, with the D.C. Coc;k 2 steel receiving an extra period at high

temperatures followed by waler quenching. The stress-relief period was also longer t'_r the D.C. Cook

2 steel.

d

lt was decided that test specimen,,, corr,:sponding to points 3 from Indian Point 2 be used

lhr the magnetic measurements, lt was also decided that specimens corresponding to points A

(l_ngitudinal specimens) from D.C. Cook 2 be also used for the magnetic measurements. Again, th_ 'e

are brr)ken Charpy specimens and hence are half the length depicted in Fig. 3.
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TABLE 3. Indian Point Unit No. 2 Pressure Vessel

Plate Metallurgical Data

i

Combustion Engineering, Inc;, t'umished sections from three hot-formed 9-5/8" thick plates (B2(X)2-1, B2002-2, and
B2tX)2-3) of SA 302 Grade B modified steel and a weldment joining two formed plates (B2002-1 _mdB2002-3) used
in the fabrication of the Indian Point Unit No. 2 reactor pressure vessel intermediate shell course, These plates were
produced by the Lukens Steel Company.

a. Chemical Analyses (PercenO

Plate No. Lukens Heat No. C Mn P S Si Ni Mo

B2002-1 B4688-2 0.20 1.28 0.010 0,019 0.25 0.58 0.46

B2(X)2-2 B4701-2 0.22 1.30 0.014 0.020 0.22 0.46 0.50

B2002-3 B4922-1 0.22 1.29 0.011 0.018 0.25 0.57 0.46

b. Heat Treatment

The sections of formed shell plate material were heat treated by Combustion Engineering as follows:

1550° - 1650°F, 4 hoursl Water Quenched ,

1225°` + 25°F, 4 hours, Air Cooled
r

1150° + 25°F, 40 hours, Furnace Cooled to 600°F

The weldment w_s stress-relieved by Westinghouse as follows:

1150" + 25°F, 19-3/4 hours, Furnace Cooled to 60()°F
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TABLE 4. Donald C. Cook Unit No. 2 Reactor
"zssel Surveillance Materials

ii

Heat Treatment History

Shell Plate Material:

Heated to 1700°F for 4-1/2 hours, water quenched.

Heated to 1600°F tbr 5 hours, water quenched.

Tempered at 1250°F for 4.1/2 hours, air cooled.

Stress relieved at 1150°F for 51-I/2 hours, furnace cooled.

Weldment:

Stress relieved at 1140°F ibr 9 hours, furnace cooled.

Chemical Composition (PercenO

Material C Mn P S S 1 N1 Mo Cu ' Cr

Plate C,5521-2 (a) 0.21 1.29 0.013 0.015 0.16 0.58 0.50 0.14 ---

Plate C-5521-2(bl) (i).22 1.28 0.017 0.014 0.27 0.58 ().55 0.11 0.072

Weld Metal (b) 0.11 1.33 0.022 0.012 0.44 0.97 0.545 0.055 ().()68

Weld Metal (c_ 0.08 1.42 0.019 0.016 0.36 0.96 0.05 0.07

(a) Lukens Steel _malysis.
(b) Westinghouse analysis.

(c) Chicago Bridge and Iron _malysis.
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B. Experimental Setup and Instrumentation for Measuring Magnetic Hysteresis, Nonlinear,,! _ "__

Harmonics, and Barkhausen Noise

So far, only techniques (1) - (3) (See Introduction) of the magnetic NDE techniques

have been used for measurements on the Charpy specimens. A magabsorption setup (technique (5)) is

presently being designed for the available specimen size . An MIVC setup (technique (4)) will be

contigured lhr measurements in the early portion of 1992.

Before any measurements were started with radioactive Charpy specimens, a radiation

safety class was held for ali technicians and professionals on the project who would be involved with

measurements on the radioactive specimens. The class was taught by D.G. Cadena, Jr., radiation safety

officer of the Institute. The class dealt with precautions to be taken before and while conducting such

experiments.

Measurements of (1) magnetic hysteresis parameters, (2) nonlinear harmonics, and (3)

Barkhausen noise were made with the appropriate instrumentation using a common magnetization

arrangement and sensors. A block diagram ot' the magnetization and sensor arrangement and the

instrumentation is shown in Figure 7 and a photograph of the actual setup is shown in Figure 8. A
d

magnetizing coil and magnetic circuit were used to magnetize the specimens. The applied magnetic lield

was measured with a Hall - effect sensor placed on the surface of the sp_-cimen; and the magnetic

induction in the specimen, the nonlinear harmonics, and the Barkhausen noise (BN) were measured

using an encircling sensing coil. The sensing cc)il was wound on a plastic coil l_rm which could be

slipped over each specimen, and a plastic fixture was used to position both the sensing coil and the

specimens in the magnetic circuit.
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A signal generator and power amplifier were used to drive the magnetizing coil. A

sinusoidal waveform at a frequency of 1 Hz was used tbr the hysteresis loop and nonlinear harmonics

measurements, and a triangular waveform at a frequency of 0.5 Hz was used for the BN measurements

(the trianguk_r waveform provides a linear change of the applied magnetic t]eld in the region where

Barkhausen noise is generated,) The signal from tt',e sensing coil is amplified and then directed to (1)

a spectrum analyzer for measuring, the harmonics, (2) a Barkhausen noise system which generates a

signal proportional to the envelope of the Barkhausen noise burst and measures the peak amplitude of

the envelope, and (3) a hysteresis loop analyzer which generates the hysteresis loops from the sensing

coil and Hall-effect sensor signals and determines the magnetic parameters from the loop generated.

Using the instrumentation illustrated in Figure 7, eight magnetic parameters listed in

Table 5 were measured from each sample. Except for Barkhausen noise peak amplitude, ali the

parameters were measured at four different levels of H,.,, to evaluate whether the magnetization level

affects the correlations between the magnetic parameters and the fluence, change in upper shell' energy,

anti ATNt_,r. The approximate values of the applied H,,,,_,were, respectively, level 1 - 80e, level 2 - 16

Oe, level 3 - 27 Oe, and level 4 - 48 Oe. All samples showed a magnetic saturation at H,,,_xlevel 4.

Five repeat-measurements were carried out using an unirradiated SA533B specimen

c_btained from Babcock and Wilcox. In each measurement, the sample was taken c)ut c)l'the plastic

fixture and then repositioned. The measurement error (100% x standard deviation/mean) of the

experimental setup and instrumentation, was then determined based on these measurements and is given

in Table 5. The error values in the table represent those determined at Hi,,_,,level 1. Al higher H,,,,,,
_

level, the error was proporlic_nally smaller; it was reduced tc) approximately 1/3 ¢_t'those given in the

table at level 4. Except for the parameter dB/dH at He, the measurement error was within a few percent
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TABLE 5. Magnetic Parameters and
Their Measurement Error

No. Magnetic Parameter Measurement Error (%)

1 Fo -- Fundaznental Frequency Amplitude + / - 0.9

2 F3 = 3Fo -- Third H_u'monic Amplitude +/. 1.4

3 F5 = 5Fo -- Fifth Harmonic Amplitude + / - 1,5

4 Hc / Hmax + / - 3,1

5 Br/Bmax +/- 1.7

6 Bmax/ Hmax + / - 3.6

7 dB / dH at He + / - 11.4

8 B_u'khausen Noise Peak Amplitude + / - 0.8 ,
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In determining the hysteresis loop parameters, only one loop cycled at I Hz was actually

digitized and ali hysteresis loop parameters such as HJH.,_, BJB,,,.., Bm.JH,..., and dB/dH at Hc w_re

extracted from this one loop for each specimen and Hm._ level. (A better procedure would have been

t() average the parameters from 4 digitized h)ops per specimen and H.,,,x level. This would tend tc)

reduce experimental error by a factor of 2.)

The harmonic amplitudes were read tligit_dly from the spectrum analyzer. The

Barkhausen noise anaplitudes were also read digitally by the Barkhausen noise system.

Ali ot" the digitized int'ormation was tabularized by an internal computer program and

¢)utputted as a ,q'eparate line in the table for each sample aral each H,.,_ level,

C. Experimental Results and Discussion

The digitized data obtained l'r()m hysteresis loops and the corresponding nonlinear

harmonic and Barkhausen n¢)ise (BN) |neasurement was evaluated using statistical tcchnique, s in ¢)rder

. t() determine how well they were related to lluence, change in upper shell' energy, and ATNDT (transition

temperature shift). The R2 value, which is the square of the correlation coefficient (see Appendix 1),

was determined for each parameter as a measure of this relatitmship, and the results are shown in Table

6, The R values ot'+ ()r - 1 indicate perfect correlation with positive and negative slopes of the fit

respectively, and the c¢_rrelati(m decreases as the R values approach (), with a () value indicating no

c()rrclati¢)n. Note that 7 ¢)t"the magnetic parameters were measured at 4 different magnetization levels;

for BN, ()nly ()ne magnetization level was used.

Good correlation was obtained with fluence anti ATNf),rfor several ()t' the magnetic



TABLE 6. Square of Correlation Coefficient (RZ) for
Measured Magnetic Parameters

Indian Point DC Cook Unit 2

Field Level Fluence A(USE) ATNDT Fluence A(USE) ATNDT

Barkhausen Noise 0.89 0.69 i 0.92 0:13 0.09 0.15

Fund. Amp Hmax 1 0,93 0.51 0.93 0.00 0.00 0.00

Hmax 2 0.86 0.58 0.88 0.03 ().03 0.02

Hmax 3 0.74 0.44 0.74 0.15 0,20 0.10

Hmax 4 0.30 0.11 0,29 0.43 0.62 0.24

3rd Har. Amp. Hmax 1 0.94 0.54 0.95 0.02 0.04 0.01

Hmax2 0,95 0.61 0.97 0.00 0,00 0.00

Hmax 3 0,92 0.64 0,94 0,00 0.00 0.00

Hmax4 0.90 0.61 0.92 0.04 0,04 0.03

5lh Har, Amp. Hmax 1 0,86 0.63 0.88 0,03 0,07 0.00

Hmax2 0.99 0.51 0.99 0.00 0.01 0.00

Hmax 3 0,95 0.63 0.87 0.00 (),00 0.00

Hmax4 0.91 0,64 0.93 0.03 0.03 0,02

He / Hmax Hmax 1 0.01 0.21 0.02 0.12 ().15 0,08

Hmax2 (i).13 0.03 9.09 0,16 0.18 0.12

Hmax3 0.00 0.39 0.00 0.37 ().45 0.25

Hmax4 0,36 0.77 0.42 0.41 0.64 0.21

Br / Bmax Hmax 1 (1.81 0.47 0.81 0.00 0,00 0.01

Hmax2 0.72 (),59 0.75 0.00 (),()() 0.0()

Hmax 3 0.59 0.51 0.61 0.()0 ().00 (),01

Hmax 4 0,61 0.69 0.65 0,01 0.01 0.01

Bmax / Hmax Hmax 1 0.65 ().54 0.70 0,01 0,01 0.00

Hmax 2 ().15 ().01 0.11 0.12 ().10 0.12

Hmax 3 0.37 0.(X) 0.31 0,18 0.15 0.17

Hmax 4 0.28 ().01 0.21 0,39 0.47 0.28

d._BBat Hc Hmax 1 0.09 0.06 0.09 0.01 ().00 0.01
dH

Hmax 2 0.04 0.19 0.05 0,56 0.57 0.45

Hmax 3 0. 1.5 ().13 0.15 0.0() 0.02 0.04

Hmax 4 ().50 ().35 ().52 0.16 (),11 ().18
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parameters for the Indian Point specimens, and moderate correlation was obtained for the upper shell'

energy. The best results were obtained t'rom the BN, and 3rd and 5th harmonic amplitudes, ali of which

had R 2values ranging from a minimum of 0.88 to a maximum of 0.99 for ATNr,T and from 0.86 to 0.99

for fluence. The upper shelf energy values for these parameters were lower and ranged from 0.51 to

0.69. No clear trer'._ in the correlation was observed tbr the different applied magnetic field levels (Hm,_)

for these parameters, thus indicating that only one Hm_, value may be needed for future measurements.

Typical results for the Indian Point specimens are illustrated in Figures 9, 10, and 11.

These plots show the 3rd harmonic signal amplitude (l-l,,_xlevel 2) vs. fluence, upper shell' energy, and

ATNr,,r;the corresponding R _ values are 0.95, (.).61 and 0,97 respectively. The 3rd harmonic increases

with increasing fluence and ATN_,r and although some scatter exists in the 3rd harmonic value, there is

good separation between the groups of 3rd harmonic values at each of the 3 values of fluence and ATND,r.

The plot of the 3rd harmonic vs. upper shelf energy (Figure 11) did not show as good of a relationship

as did the fluence and ATN_9,r;the 3rd harmonic increased with increasing energy and then decreased

s_mewhat. The upper shell" energy change, however, did not consistently increase with increasing

fluence, as did ATND.r. The three groups of specimens had energy values of 22, 32.5, and 32,

corresponding to fluence values of 2.55, 4.72, and 9.6x10 j8 and ATNDvvalues of 12f)", 145°, and 185°

respectively. If the upper shelf energy change had increased with increasing fluence, thus having the

effect of reversing the last 2 energy values in the plot in Figure 11, the 3rd hamaonic would have

increased monotonically with increasing A(USE), lt appears that the inconsistent behavior of the

magnetic techniques with upper shell" energy change may be caused by the inconsistent relationship

between the energy value and the fluence.

The response ot' the magnetic techniques to the specimens t'rom the D.C. Co(_k2 reactor

did not correlate well with the fluence, upper shell" energy, or TN_,v. The Ra values (Table 6) are very
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low (in some cases 0) for ali of the magnetic parameters) Typical data are shown in Figures 12, 13, and

14 which are plots of the third harmonic (magnetization level 2) vs. fluence, upper shell' energy, and

ATNt_T;the R2wdues are 0 for ali 3 parameters. (In contrast, the 3rd h_rmontc amplitude produced the

best results for the Indian Point specimens), In ali three plots, there is no discetnable trend in the data

compared to the degree of scatter in the 3rd harmonic values. Since the scatter in the data was

significantly greater than the experimental measurement error discussed in Section II B, it is believed

that the scatter represents the actual variation in the sample properties, Also, the change in the

remaining magnetic parameters caused by the irradiation appears to be comparable to the measurement

error, thus resulting in a very low R2 value.
i

Possible reasons for the inconsistent behavior for the D.C. Cook 2 data, as compared to

the Indian Point 2 data, include differences in chemical composition and heat treatment, which might

result in lower levels of embrittlement. (Compare points 3 and points L in Figs. 5 and 6.) More

importantly, such differences could also result in reduction of sensitivity of the magnetic parameters to

embrittlement. Thus, for example, magnetic parameters for Indian Point 2 specimens show changes

which are three to four times as large that found for corresponding D.C. Cook 2 specimens. When

experimental error is added into consideration, one might expect D.C. Cook 2 specimens to have

magnetic parameters which show dramatically less correlation with fluence _md embrittlement

parameters.

Another point is that ali the samples from a particular set of samples at a given fluence

are assigned the same value of ATN_,,rand A(USE), even though their individual embrittlements may

actually differ in nature. The result is that the embrittlement factors that are assigned to individual

samples should have a larger error in them than that assigned to the mean for the group. This is

corroborated by the range _)t'values found in the magnetic measurements, particularly in Fig. 12, 13, and
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14, l'or groups of samples that are supposed to have the same _TNI)Tor A(USE).

Another important difference between the two reactor sites is that a low leakage core

configuration was installed at the D.C. Cook 2 site between the second and third capsule samplings.

Since the low leakage core configuration screens out the higher energy neutrons, a given neutron fluence

does not necessarily correspond to the same amount of neutron clamage, thus causing the leveling off

in embrittlement seen in the third sample set L at the D.C. Cook site. The third sample set should

therefore not correlate properly with the first and second sample set, thus offering a possible explanation

for the very poor correlation found in p.heD.C. Cook 2 specimens. This however should more likely
I

account for poor correlation with fluence, but not necessarily with embrittlement parameters.

On a more positive note, we return to the very good correlation tbund for the Indian

Point 2 specimens. This suggests indeed that magnetic property measurement may be a potential way

to monitor embrittlement in situ during down cycles or even possibly on an automated basis while the

reactor is running.

The data so far suggests that techniques such as Barkhausen noise (BN) measurement

or nonlinear harmonics (NLH) seem to offer the most potential for use in embrittlement monitoring.

The physical theory is obviously challenged to explain why BN c_rNLH are better techniques for

monitoring embrittlement than hysteresis loop properties such as coercivity, rem_mence, or permeability

at the coercive point. One pc_ssibility for a purely experimental explanation is that the hysteresis loop

properties were determined from only one digitized loop, whereas the Barkhauscn and nonlinear

harmonic amplitudes represent averages over more than one h)op.
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IV. FUTURE EXPERIMENTAL PLANS

A. Plans for additional study of magnetic NDE techniques for neutron embrittlement

m0nitoring

There are two proposed techniques which have yet to be employed in our studies -

magabsorption anti MIVC. Both techniques require redesign of existing configurations in order to

accommodate the small sample size. This redesign has been started anti should be completed in two or

three months.

Meanwhile, experimental measurements t'or the three techniques used so far will he

expanded in order to possibly answer the several questions that have so far arisen. Am(_ng the possible

paths that we shall take are the t_)llowing:

1) A search will be made anaong our stored specimens to see if three sols of Charpy

specimens exist for another reactor that either didn't have a l()w leakage core

configuration during the time the samples were exposed or did have a low leakage core

configuration at the time of ali three samplings. The latter case is not probable since

low leakage core c_)nfigurations have been in use t'(_ra very sho,,'t time. There may be

other react()rs besides Indian Point 2 which are old enough to have had at least three

capsules pulled before m(_dification to a low leakage core configurati(_n, if we dotl't

have three Charpy sets, it might be possible to obtain a third set ii"we haVe two already

in our possession. If three Charpy sets can be found for another react()r, hysteresis l(_op,

BN, and NLH measurements will be performed on such samples.
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2) A test will be performed to see if digitizing 4 hysteresis loops and averaging the

parameters obtained from them improves the correlation between hysteresis loop

parameters and fluence and/or embrittlement parameters.

3) Instead of using 3 specimens per each fluence, 5 specimens per fluence will be tried,

at least for the Indian Point 2 reactor in order to see if more specimens imprc-,ve or

diminish the correlation found so far.

4) The nonlinear harmonic data was taken at 1 Hz, which is quasi tic data. We will

check to see ii"the excellent correlation for Indian Point 2 specimen remains when two

c_ther higher frequencies are chosen.

B. Plans l'or Second Year

In the second year, it was proposed that the magnetic NDE techniques be applied to the

problem of biaxial stress measurements.

In the original proposal, a biaxial stress rig was to be built using a cruciform-shaped (viz.

cross-shaped) specimen that could be stretched (or compressed) along two mutually perpendicular axes.

Since then, structural engineers have suggested to us that only the central region oi" the cruciform

specimen would be under true biaxial stress and that in order to dc_the study without a large amount of

experimental error, the cruciform specimens (and accompanying rig) would have to be much larger than

we proposed, which would be much more expensive.
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On the other hand, it turns out that an alternative approach is available to us. From

another project we have inherited a rig which allows one to pressurize a pipe (which creates positive

hoop stress) and allows one to put tension or compression on the ends of the pipe. This arrangement

creates a true biaxial stress condition along the pipe, except very near the ends ot' the pipe, thus

providing a large area of uniform stress t'ield. The pipe will have longitudinal (i.e. axial) compressive

or tensile stress and tensile circumferential (i.e. hcJop) stress. This will allow us to study biaxial stress

in the situation ot' immediate energy interest - i.e. in piping itself. At the same time the new procedure

will restrict experimental error and keep the experiment from being more costly than was proposed

originally.

lt is thus planned that we use the above pipe sample and loading arnmgement in applying

the five magnetic NDE techniques to the study of biaxial stress. The phm will be to find a procedure

which allow the determination of both axial and hoop stress separately under stress conditions as close

to the yield point as possible. Thus, the intent is to be able to inspect piping under high stre, s

conditions and be able to make a quantitative statement about how much hoop and how much axial

stress exists in the piping. It is expected that modeling will give guMance as to what procedure might

be used for such a determination.

C. Plans l'or the Third Year

The third year will be one in which experimental and theoretical results will be

consolidated and coordinated s_ as to design the best procedures for detemaining (!) neutron

embrittlement and (2) biaxial stress.
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During this time, procedures anti theoretical predictions will be checked experimentally

in a sequence of steps and stages in order to be able to suggesl, at the end oi" the project, well-tested

procedures for determining neutron embrittlement and biaxial slress.
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V. THEORETICAL RESULTS AND PLANS

Some work was pertbrmed on the basic magnetomechanical hysteresis model in order

to make the expression derived for the magnetostriction consistent with the AE effect, which requires

that the magnetostrain be zero at magnetic saturation so that applied mechanical stress produces only

elastic strain at saturation. This work was also partly supported by _mother sponsor and was presented

in a paper C4_)at the Intemational Conference on Magnetism in Edinburgh, Scotland. A copy of the paper

may be found in Appendix 2.

Also, importantly, work has been perfornaed on another project to determine the

dependence of magnetic properties on the angle between stress axis and magnetic field direction in cases

of noncollinear stress and field. These new results will be used in making predictions about the eft:ects

(_t"stresses along two) perpendicular axes with magnetic field in yet a third direction. Thus the

application ot" these angle-dependent magnetic property predictions in the second year to the case of

biaxial stress is expected to be reaonsably straightforward because of these new results. This will offer

an opportunity to consider the more ditTicult problem of stresses near the yield pc_int and how

magnetomechanical hysteresis modeling can be used to treat magnetic effects associated with stresses

near or possibly even beyond the yield point, which is what would be of most interest in the case of

. pipeline.

Application ()fmagnetomechanical hysteresis modeling to the problem _)t"magnetic

effects due tc) neutron embrittlement has been delayed until so)me experimental data Ims become

available. This was done because it was felt that the experimental data would ¢)tfer some guidance as

tc_what needed explanati¢m and some guid_mce as tc) what types c)t"problems needed to be resolved with

the help of modeling.



41

lt is clear from the experimental results obtained so far that the best magnetic NDE

techniques for monitoring neutron embrittlement so tar seem to be dynamic techniques such as
,,

Barkhausen noise and nonlinear harmonics, These teclmiques involve the transform of time-dependent
i

phenomena into t'requency space out ot' which measurements are taken. At the moment, it is not clear

why such measurements would be better indicators of embrittlement than static properties such as

c¢_ercivity, remanence or pemaeability at the c¢_ercive point. Thus, an important problem woukl be to

resolve this question.

lt was proposed originally that magnetomechanical hysteresis m¢)deling be applied to

Barkhausen noise under this project. A preliminary treatment of that problem was discussed by M.

Sablik alicl H. Kwun ill a paper published earlier lifts year. (4_) Jiles had noted that most Barkhausen

activity occurs close to the coercive t'ield,¢_°_suggesting that Barkhausen noise peaks at applied field

H c¢)inciding with the peak in the permeability. Bozorth ¢43)however presents data where the two peaks

very clearly tic) not coincide. The application from the magnetomechanical hysteresis model is that the

Barkhausen n¢)ise peak should correspond with tlae peak in the irreversible contribution to the

permeability, not the peak in the permeability itself. In the magnetomech_mical hysteresis m¢_del, it is

possible tc)obtain the irreversible permeability and find its peak as a function ot' H. The peak position

of the irreversible permeability was located at higher H than the peak in the pemleability itsell, just as

shown by the data in Bozorth. _4_)This result was fine, but as pointed out by Bertotti {441it did not give

an expression for Barkhausen noise itself.

What will be needed for the questions that confront us concerning neutron embrittlement

is a complete derivation and expression for Barkhausen noise amplitudes, Twc_features will have to be

explicit in the expression - (!) dependence _ta permeability, so that Barkhausen nc)ise will peak near the

peak in permeability and (2) proportionality tc"some power of the dcmmin wall pinning site density, since
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the Barkhausen amplitude will be greater when more domain walls are unpinned per unit field,

t

Alessandro et al(45'46)develop an expression for the Barkhausen noise power spectrum

as

FI_N(03)4SM A co2- , (1)
(_G)2 (co2 + -_-2)(co2+ "_,72)

Here M is the rate ot' change of magnetization with lime near the coercive point, (where /f/ = ft/:/), la

is the permeability, S is an average domain wall surface area, _ is the electrical conductivity, G =

().1356, A is an undefined constant, 't=c_GSIa, z_ = C/SM, _ is a magnetic correlation length, _mti co is

angular frequency. This expression has the general requirements of proportionality to permeability but

folded into a more complex dependence on permeability so that the peak in BN does not occur at the

same H as pem3eability. In addition, dependence on cr2 is equiwdent to dependence on p2, where P

is lhc electrical resistivity. The resistivity ought to depend at least in part on pinning site density th¢)ugh

its impurity or defect scattering contribution to the resistivity. So, potentially, the expression in eq. (1)

might indeed be usable for interpreting Barkhausen noise data. The expression might need to be

averaged over a hysteresis loop with the hysteretic expression for permeability substituted for _._instead

()t" permeability at the coercive point. S()me approximations h()wevt;r were made in deriving the

expressi()n in eq. (1), and its is felt that the theory for a Barkhausen noise expression may need

additional attention.

An alternative expression for Barkhausen n¢_iseis given by J. Kameda anti R. Ranjan _47_
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as

t

y(
-"dH 8 dH _ _ )dH dt

q

liMAXwhere -_N refers to lhe maxinmnl w#.tage associated with the Barkhausen burst, _/is a numerical

coefficient related to the atomic magnetic moment, 13,is the coefficient related to i.he spike shape ot'

nucleated domains. N, is the density of nucleated domain walls, N_ is the density of jumping domain

walls. L is the average displacement of growing domains, 8 is the domain wall thickness, anti A is the

effective surface skin area. which varies with dH/dt because of eddy current loss. Further study will be

needed to see it' eq. (2) cim be related io eq. (1) and to see whether part of what multiplies dH/dt in eq.

(2) can be represented as permeability _md pinning site density.

In the coming month,;, lm cffort will be made to rclate ali of these equations to the

macroscopic magnetomechnical hysteresis model and so obtain a result for Barkhausen noise fllat relates

the microscopic mechanism and macroscopic modeling.

In addition, the nonlinear harmonics results will be studied theoretically using our

previous techniques for treating I Hz harmonics,/4_ but relating the results to a more microscopic

interpretation so that embrittlement effects could be understood. Since the nonlinear harmonics will also

be studied at higher frequencies, magnetic relaxation el't'ects_4x5_)and eddy current losses/5>sa_wil_ ;,iso

be added to the theoretical development in the second year.

Finally, the MIVC measurement technique and magabsorpti_m technique will be studied
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in such a way as to relate the detected results to microstructural effects connected with enlbrittlement.

As part of the tleveh_pment, the eq. t_l' motion technique, used to solve tbr MIVC results at high

l'ields, ('_7'58_will be extended tr) low fields taking polycrystalltnity into account, its proposed in our

t_riginal proposal. Thus, field-dependent velocity changes seen at low field for the two shear wave

polarizations/_c_'2t) and for longitudinal waves (22)will be deriwtble. Work is already starting on this

tlevel_pment, but is not expected to be completed until the second year. The c_riginal hysteretic

magnetomechanical model t'c_rmagabsorption (6'7)will also be expanded so that microstructural el'l'ects

t'rc_mneutron embrittlement c_u_be ccmsidered.

In the second year, its mentioned carlier, work done elsewhere on noncollinear stress anti

field will be applied to the pr_blem of biaxial stress. Also, in the second year, magnetic effects due tc_

stresses near the yield p_int and beyond will be considered.

In the third year, consolidation will occur between experiment and theory. Theoretical

results will be tested experimentally. The ihec)ry will als_ be used tc) suggest procedures that will most

advlmtageously use the magnetic NDE techniques, particularly in the case of biaxial stress. These

procedures will be tested. In the metmtime final adjustments will be made in the m_tleling, and

whatever problems are still _utstantling will be addressed.
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Appendix I ,,

Linear Correlation Coefficient

Consider n number of s_unples lhr the two parameters X and Y which ,are (X1, Yl), (X2, Y2)...... and ()Cn,

¢

Y,,). The linear correlation coefficient R between the two p_u'ameters is defined by

,S, x, y,
R =

(,Si xi _,S, Yi 2)j/2 (1)

where Z/is the summation over i = l to n, and xi and .vi represent the deviations of the ith sample (X i, Ft) from the

sample mean of the two par_uneters ('X', F), i.e.

- Z, X, , andx, = X, - X, where X = n

- 2_, Y, (2)
y, = Y,- Y", where Y = n "

The linear correlation coefficient R varies between -1 and +1, depending on the closeness of the relationship

between the s,'unples. Positive wdues of R indicate a tendency to have a linear relationship with positive slope. Con-

versely, negative values of R indicate a tendency to have a linear relationship with a negative slope. When IRI = 1,

the two p_muneters are said to be perfectly related. In this case, any change in one par,'uneter is _dways accompanied

by a proportional change in the other. When R = 0, two parameters are said to be unrelated. In this case, two parame-

ters vary r_mdomly.

Figure A 1 shows ex_unples of scatter diagr_uns of two partuneters with a range ot"linear correlation coefficients.

lt can be seen that the higher IRl, the smaller the degree of scatter from the lines drawn in the figure. The two lines in

each diagram represent a least square fit of the linear relationship between the two p_mlmeters. One of the lines (indi-

cated by A) is obtained by assuming the parameter on the Y axis is dependent on the parameter on the X axis, and the

other line (indicated by B) by assuming the parameter on the X axis is dependent on the parameter on the leaxis.



Equation (1) can be rewritten as:

r

I/2

R = (Z, .r_Z, y, 2)

(b.v ,t/2= #y,)

,_, x, y,

where h_y = Z, y, _ atm

Z, X_y,
- (3)

b. Z, x, 2 '

Note that bxy is tile sh)pe of tile least square fitted line obttfined by assuming parameter X is a ftmction of

parameter K Similarly, bxy is the slope oi' the least square fitted line obtained by _tssuming ptu'ameter Y is a func-

lion of pm'ameter X, In statistics, this slope is usually c;dled the line,u" regression coefficient. Therelbre, equation

(3) states that the correlation coefficient, R, is the geometric mean of the sh)pe ot"the two least squm'e fitted lines.
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