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LONG WAVES ":7 PARALLEL FLOW IN HELE-SHAW CELLS

M. Zeybek eald Y.C. Yortsos

1 ABSTRACT

The evolution of ttuid interfaces in parallel flow in Hele-Shaw cells is studied both theoretically

and experimentally in the large capillary number limit. It is shown that such interfaces support

wave motion, the amplitude of which for long waves is governed by t.he KdV equation. Experiments

are conducted in a long Hele-Shaw cell that validate the theory in the synunetric case.

2 INTRODUCTION

During the past several years the flow of iImniscible flow in Hele-Shaw cells and porous media has

been investigated extensively. Of particular interest to most studies has been frontal displacement,

specifically viscous fingering instabilities and finger growth. This can be readily understood in

view of the many interesting theoretical and practical problems associated with such fronts. For

]tele-Shaw cells, we mention the selection problems and the singular perturbation associated with

the high capillary number limit [3, 6], and the relation of viscous fingers to crystal growth [24] and

flame front dyna_fics [34]. In porous media, unstable frontal displacement has been highlighted with

the use of Diffusion- Limited-Aggregation (DLA) [28] and other probabilistic growth models [16].

Issues of capillarity, heterogeneity, randomness and spatial correlation, including fractal statistics

[8, 18, 19, 20], have been extensively explored, although several outstanding questions still remain

unanswered [301f. The practical ramifications regarding oil recovery, as well as many other industrial

processes ip porous media, have served as the primary driving force for most of these investigations.

By contrast, little attention has been paid to the motion of lateral fluid interface, which are

parallel to the main flow direction. Parallel flow is an often encountered, although much overlooked

- regime. In the context of Hele-Shaw displacement, it is the theoretical linfit of fully developed
!
_- fingers (e._. the Saffman-Taylor finger [26]) (see Figure 1). Parallel flow conditions have beenq

" invoked in qualitative support of the scaling properties of unstable, non-capillary displacement in

porous media. Concerning the latter, it has been shown [15, 17] that a.s long a.s the viscosity ratio

M is finite, the initially fractal displacing fluid cluster eventually evolves into a compact Euclidean

object (although its perimeter may still be fractal [27]). In a different context., parallel flow is
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often realized in thin and long reservoirs, typically masked under the assumption of vertical flow

equilibriu m (VFE) [4, 33, 29]. Recent studies on viscous fingering in porous media have made

use of parallel flow to interpret numerical experiments [9, 10]. Fbtally, we mention that parallel

flow is routinely encountered in yet another context, for exa1_ple ii_ the steady-state, con-current

flow processes for relative permeability measurements [5], as well as in processes involving counter-

current imbibition [13]. Although not directly relevant to this work, it must be pointed out that

the pore-level analysis of such flows is very much incomplete at present, despite recent efforts [2]

to model pore-level viscous coupling between phases and to ascribe a viscosity ratio dependence on

relative permeabilities [25].

It is well known, that under the typical low Re number conditions in Hele-Shaw cells and

porous media, single phase (more generally, multi-phase, multi-component flow, but in the absence

of spatial and concentration gradients) is potential flow. Such purely viscous flow regimes exist on

either side of any interface between inmfiscible fluids in a Hele-Shaw cell (Figure 1), and sufficiently

far from the interface region in the case of porous media. We recall that potential flow (although

in the opposite, inviscid limit)also governs tile flow in typical water waves [21]. Theretbre, the

dynamics of the lateral interfaces in parallel flow (such as shown in Figure 1) are likely to be

related to those of shallow water waves [12]. The possibility of solitons for Hele-Shaw cells was

recently examined in our laboratory. In this chapter we present a preliminary theoretical analysis

and related experiments. We should point out that part of the theory was briefly presented in [31],

while key experimental findings and comparisons with the theory are discussed in a manuscript

submitted for publication [35].

3 FORMULATION '

We examine the lateral interfaces between two immiscible and incompressible fluids of different

viscosities in the parallel Hele-Shaw flow shown schematically in Figure 1. The cell is horizontal

and has width W. ,Xi and A_ are the normalized interface positions (-1 < A2 < A1 < 1). The basic

governing equations follow the usual Hele-Shaw assumptions. In each fluid, Darcy's luw applies

and the Laplace equation is satisfied for the pressure (velocity potential)

V_pi = 0 _ V2¢i = 0 i = a,b (1)

Parallel flow requires flat interfaces and the absence of pressure graxtients in the transverse (y)



direction. This condition is satisfied by the requirement lth% = p,_q_ = Q. We describe the

interfaces by

_(_,v,t) = u- l_(_,t)= o; i= 1,2 (2)

Oil each interface, the following conditions apply: (i) Fluid velocities normal to the interfaces are

equal; (ii) Fluid velocities normM to tile interface must equal the normal velocity of the interface

normal itself. These are expressed as following for each interface

.... (3)qa. niqb.ni --

J-71t

q_.fli = IV_i ; i= 1,2 (4)

where fli = _, is the normal vector. Use of Darcy's law transforms the above into the equations

Vpb.VT_= M Vpo.VTi (5)

¢o.V71= (6)
Ot

Across each interface, the pressure drop is due to curvature,

Fizz

Api = 7 FV--_i[3; j = a,b ; i= 1,2 (7)

Higher order corrections to pressure drop can be obtained as pointed out by Park and Homsy [23].

However, since the present interest is in long waves, such corrections are of secondary importance.

3.1 Linear Stability Analysis

The linearized stability of flat interfaces parallel to the flow direction is next obtained by fol-

lowing an analysis in terms of normal modes. As a preliminary step, we investigate the stability of

one interface only, which actually corresponds to the symmetric problem (see Figure 1 b, A1 = -A2

and r/= -0). Let r/ and 0 describe the disIlJrbances of the two interfaces. The base state in the

absence of disturbances is readily obtained. We have for pressure

_ It,i
Pi = -qi-_z ; i= a,b (8)

where k is the permeability of the Hele-Shaw cell, and #i is fluid viscosity. The base interface is at

location

F_ = A_ (9)
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Perturbations are next taken for {,he pressure and for the interface in terms of normal modes as

follows

_ #i ;Pi = Pi + P' = -qi -_ z + g i = a, b (10)

= + Bee (11)

By a linear analysis and use of Laplace equation with no flow boundary conditions at y = 1 and

y = 0 the following is obtMned

_'b=klco_h(a(y-1)) ; _ < y < 1

¢Pa= k2 coshay ; 0 < y < A1

Substitution of the expressions for perturbed pressure and interface into the interface conditions

and sllbsequent linearization, gives after some algebra the following result for the rate of growth w

of the perturbation in the x direction

a ,_inha

= -2iQ (#_ + ,b)sinha + (#_ - #b)sinha(1 - 2)_1)

27ka 3sinh( a,_l )sinha(1 - ,_1)

- (#_ +#b)sinha + (#_ - pb)sinha(1 - 2,_) (12)

Itere/li is the ratio of the viscosity of fluid b, #b to the viscosity of fluid a, #_. In the above relation,

capillarity first enters at O(a4). For a sufficiently large capillary number, where N_ = q_#a/7,

capillarity can be neglected, although it must be noted that when the capillary number is too large,

3-D effects become important [22] Equivalently, capillarity is negligible for long waves (small a).

At such conditions, the rate of growth is strictly imaginary and the wave dispersion relation at long

waves is

ic_q, [1 4- --.a2 (M- 1),\1(1-2£1)(,_,- 1) +'" ] (13)
w ,-_ - (1 - A1+ A1M) 3 1 -- ,'_1 "Jr ,'_1_

The above dispersion relation predicts dispersive waves [1] i.e., waves with different wavelength

travel with different velocities. This result is different from the previous relations in frontal dis-

placement which yield either growth or decay (viscous fingering). As expected, the waves become

non-dispersive, when the fluids have equal viscosity (M= 1). Interestingly, non-dispersive waves

are also predicted for the Saffman-Taylor conditions (Al= ½), although they have infinitesimal

velocity when M >> 1.



An analysis similar to the above can be followed to obtain tile dispersion relation for the non-

synunetric case. Two interfaces are considered as shown in Figure 1 a. As expected, a substantially

more complicated dispersion relation is obtained. The result is

t anh(a(1-)_l))[-ea_'aA -e-_'aE]- aMea_'A -beC')_'A + be-'_)"Z+ aMe-a_'E = 0 (14)

where

& = e-_X2[(b- d)sinh(a(1 + A2)) - Mdcosh(c_(1 + A2))]

E = e_[(d- b)sinh(a(1 + i_2)) - Mdcosh(a(1 + A2))]

b = iQ(1 - M)

It. is clearly advantageous to consider only the asymptotic expansions at, small wave numbers a

(large wavelength). We take the expansion w =iQ a(_0 + zl a + z2c_ 2 +... ). As expected, two

solutions exist

wk = iQa(zo,k + z2kc_ 2 + ...) ; k = 1,2 (15)

1 2
where a,'0,1 = M _ _0,2 =-- _

• 2,1 "- M _ (2+X2-At)

4 (2+A_-At)• 2,2 "- _ _-_ {A1-X2)(I+X_-X1)[(X_+I)2+(XI-1)2+(X2+I)(XI-'I)]

and wherewehavedenned_X- 2+ (M- 1)(A_- A2).In the generalcase th_ tworoots correspond

to the two different amplitude equations for the two interfaces. The results for either sylmnetric

or non-symmetric case, lead to the conclusion that dispersive waves exist at large capillary number

values. This interesting firming is subject to further investigation below.

3.2 Weakly Non-Linear Analysis

The linear stability anMysis is linfited to describe the onset of the motion and it is unable to

provide further information. The subsequent motion of the waves can be obtained by a non-linear

analysis which includes some higher order effects. In this section, the evolution of such dispersive

waves is investigated.
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Shallow water waves which describe the nlotion of waves on the surtil.ce of ali incotnl)ressil)le

tluid bounded by a rigid horizontal plane have been.studied in detail [1.,1], [1]. Althougll tile

i_hysics of the Hele-Shaw cell is different'from the physics of shallow water waw_s, similarities can

be drawn betwee,.a the two systems. In particlllar, we can follow a perturlmtion analysis val.id for

small amplitude and h, ng wave length sinfilar to that used for shallow water waves. The initial

value problem is solved as explained in [14]. First, dimensionless parameters axe defined as follows:

6 = W/L, where L is the length of the initial disturbance, e = A/W, where A is a measure of the

T P ¢ = ¢ (Note that 5 _._sdisturbance amplitude_ z = X/ L, y = Y/W, t = L--7-_.' p = q.u.L/k , q.,.L/k'

taken to be l in the linear stability analysis). In this notation, the Laplace equation in each region

satisfies

, _2¢_ + ¢ivu = O, i= a,b (16)

In terms of the dimensionless quantities the interface conditions read

_(¢i_- 1)rli_- Cir = _2 M(¢_- 1),li_- MC,, u (17)

b2(rllt- rli_(¢_- 1))= -¢,u (18)

Equations (17)-(18) apply on the disturbed interface positions, y_ = A_+ _?_ i = 1,2. In addition

we have:

Continuity of the velocity potential:

¢_=¢b at Yi=Ai+r/i ; i= 1,2

No flow on tt:e boundaries:

o¢._.._b= 0 at yi = T1Oy

Initial condition:

Cb( ,v,0)= 0

To implement an asymptotic approach, the long waves approximation is taken, _ << 1. Then the

following expansion is assumed

¢i = ¢i,o + _2¢i,1 + _4¢i,2 -t..... (1.9)



Further, assuming small a,mplitudes (c << 1), the two disturbmlces 71and 0 are also expanded

7] --" 5/]0 -_- 527]1 -_ ''' (20)

0 = e00 + c201 -{.... (21.)

For non-trivial results to be obtained, a relation between 6 and c, 6 = s_x/7 is postulated, obtained

by the method of donfinant balance [14]. The above expansions are subsequently used in the

continuity conditions at the interfaces (17)-(18). A large time variable [ = ct is also introduced.

After considerable amount of algebra, two coupled systems of PDE's are obtained. The final result

is a set of decoupled Korteweg-de-Vries (KdV) and Airy equations

u_- 4(M - 1)(2+ _ - _1)uu_ - (M - 1)_2A 2 MA allUaaa = 0 (22)

v_- (M- 1)__' _,/A a22V_ = 0 (23)

These equations have been decoupled by introducing the following linear transformation of the

normMized amplitudes r]0and 00, which describe to leading order, interfaces 1 and 2, respectively

(Figure 1)

_0--_0 V -- (l"Jv,)_2)r]o'_(1--)tl)_0
U - 2-AI-kA2' -- -- 2-'-Al+A2

}Iowever, it should be noted that the equations are not truly decoupled, since the space dependence

is expressed in two different moving coordinates cr and _,

2t _--2_-- to"---x ,- _ , 7i7[

The various parameters in (22)-(23) are functions of the undisturbed interface positions A_, A2, the

mobility ratio/_r aald the i:uitial disturbance

,_M(_-_',)(_+_- _,)[(_+_+(_', -_)_+(_'_+_)(_,-_)1
all = _ " (2+:_7-x,)

a22 =-: M (2+X2-AI)

For the full problem, the solution of both (22)-(23) is required. We may note the following : (i)

Purely translational motion occurs when M = 1, _s expected; (ii) In the particular dimensionless
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notation elnployed, the advective speed (2/A, 1/_4) decreases to zero as the viscosity ratio in-

creases; (iii) As anticipated, the equations contain the leading orders of the linear analysis in (15);

(iv) The dispersive term in the KdV equation vanishes when 1 + A2- A1 = 0 (which, for the synunet-

ric case A1 = -A2, coincides with the Saffm,'m-Taylor finger width A1 = 1/2); (v) Anti-symmetric

disturbances (77= 0) are governed by the Airy equation (23) alone; (vi) Finally, when both initial

and disturbed interfaces are syimnetric (Al = -A2 and r/= -6), the interface evolution is governed

by the KdV equation alone. The latter case is of great interest for the subsequent experiments. In

terms of the original variables, this particular case reads (A - Al)

2 8(M- 4 tc2
'qf + _- r/_ A2 1! r/r}, + e _ _-_(M -1)A(i - 2A)(1 - A),/,_, = 0 .(24)

The KdV equation has many interesting properties, in particular tile possible development of

solitary waves, and has been throughly analyzed by exact techniqaes of the Inverse Scattering

transform 11.

3.3 Numerical Method

Although we shall use general exact results, we shall also rely for illustration purposes on the

numerical pseudospectral technique of Fornberg and Whitham [11]. The method combines the

Fourier transform treatment of the space dependence with a leaPfrog scheme for the time evolution

and it is well suited for non-linear dispersive waves. This method assumes that the function r/(x, t)

is periodic in x outside a basic interval 0 < m < I. The interval is then discretized by N equidistant

points, with spacing A_ = I/N. N is taken to be 128 or 256 in the following simulations. The

function _7(_, t) can then be transformed to discrete Fourier space with respect to x by use of a fast

Fourier transform algorithm. Then equation (24) is discretized as follows

2 7rn.T(r/)] + 2i 8(M - 1) .T._x 2 _r- ,77 = - 2v',t [(W-
4 g2 2_"

+ 2ie -_ _--_(M - 1)A(1 - 2A)(1 - A)At.7"-l[(-_-) 3 n3.T'(r})] (25)

Since the function is assumed to be periodic, 'saves that leave the computational domain through

one boundary, reenter through the opposite boundary. In the simulations, the computational period

is taken to be large enough to avoid any boundary effects. The numerical scheme is tested with an

exact soliton solution (Figure 2). It was also tested and found satisfactory with the Zabusky and

Kruskal example [32].
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4 EXPERIMENTS AND COMPARISONS WITH THE THEORY

To test the theoretical predictions, a long and narrow Hele-Shaw cell was constructed consisting

of two plexiglass plates 0.5 in. thick, of dimensions 220 cm x 27 cm and of a rubber gasket spacer

0,u8 cm thick and 10 cm wide. The plates were held together using C-clamps. The experimental

set up consists of the Hele, Shaw cell in horizontal position, two integral variable speed peristaltic

pumps, a video camera, a video recorder and a monitor (Figure 3). The frame of the cell is

constructed such that it can be tilted both with respect to the transverse and longitudinal axes in

order to establish a flat interface.

Although other fluid pairs were also used, the experiments reported below were conducted

with the pair mineral oil and glycerol/water solution, with corresponding viscosities 170cp and

860 cp, respectively. Oil is the wetting fluid in the experiments. The viscosities of fluids are

measured by using both a Cannon'Fenske and a Brookfield spindle viscometer. Since the parallel

flow requires qa#,, = qb_b, the accuracy of the measurements plays an important role in establishing

the flat interface. Relatively high flow rates were used, such that the capillary number was typically

O(0.0i). We must point out that no sustained wave propagation was observed for substantially

lower Nea values. This is consistent with the theory. All experiments were conducted with only one

interface, as shown in Figures 4-9, hence the conditions pertain to the symmetric case ($1 = -$2

and 77= -_), the configuration viewed either as the top (or the bottom) half of the symmetric

problem. It can be easily checked that the solution of (24) is invariant to the change $1 _ 1 + $2,

77_ 8, M _ 1/M, (please note also the rescaling of time), thus without loss we may view the flow

as the top half of a symmetric problem with the "lower" fluid being fluid a. In our experiments,

this was the more viscous fluid, thus M = 0.2.

Conducting the flow experiments consists of two stages. The first stage is to establish a flat

lateral fluid interface and parallel flow conditions for the two fluids. This was accomplished by a

displacement process with the aid of gravity. The cell is filled with one fluid first, by tilting the

cell and subsequently returning to its horizontal position. While it is being tilted on its side, the

lighter fluid is slowly injected at the top. The paran_eter $, which is the dimensionless location of

the interface, is controlled by the amount of fluids injected and produced, until the steady interface

is established. We stress that the parallel flow condition, #bqb = #aq_, was found essential for

the establishment of a parallel interface. When the capillary number is relatively large, the flat

9



lateral ix,,terface was obtained within .-t=1nun accuracy. In the experiments, integral variable speed

peristaltic pumps were used with flow integrators to eliminate pulses.

The second stage is to introduce a disturbance as an initial condition, typic_,lly obtained by

interrupting momentarily the flow of one fluid, and to monitor the motion of' the disturbance. The

wave length and the amplitude of the disturbances were controlled by the speed of the interruption.

Although results were satisfactory with those initial conditio._s, the questions arise on the effect of

flow interruvtion and end effects. This will be discussed ir the next section. The existence of solitons

can be tested by direct comparison with simulation, but primarily by looking for the following key

properties: (i) Arbitrary initial disturbances evolve into one or more solitons and into substantially

smaller amplitude dispersive waves; (ii) The speed of a soliton depends on its amplitude, increasing

with an increase in amplitude; (iii) Solitons regain their identity after interaction with other solitons

(see Figure 4). These were sought in all experiments.

The first experiment to be compared with the simulation is the generation of a single soliton.

The :,amber of solitons for a given initial condition for a KdV equation can be predicted by soliton

theory [7]. Equation (24) can be transformed into the standard KdV equation

u_ - 6uu_, 4- ux_,_ =0 (26)

=

The number of solitons is then given by

_o 1)1/2 1
N_< [(_- + 4" - 2] + 1 (27)

A single soliton is predicted with L = 20 cm (wavelength) and amplitude of 1 cm. Figure 5 shows

typical experimental results from still pictures taken from a videotape. A hump-like initial distur-

bance taken to satisfy the small amplitude and long wave conditions (Figure 5a) is imposed on the

parallel interface (,k = 0.69). Upon restoration of the flow rate to the initial level, the disturbance

is first advected by the flow, but also starts developing into a wave of constant shape followed by

a wigly interface of small amplitude and short wavelength behind it. For most conditions, this

constant amplitude wave has taken a permanent form after traveling about 45 cre, and appears to

possess all the characteristics of a soliton (Figure 5b). Its amplitude is clearly different from the ini-

tial and remains constant fnr a substantial distance traveled (Figure 5c), as long as 150 cre, beyond

10



which end effects seem to become appreciable. Its velocity to a fixed observer was calculated to be

0.28 cm/sec, which compares well with the experimental value of 0.26 cm/sec. This velocity is the

sum of that of soliton and the frame of reference velocity, _. Numerical simulations corresponding

to these conditions and for the initial shape of Figure 5a are shown in Figure 6. One can see that

the agreenlen_, ',between theory and experiment is quite satisfactory, despite the ambiguity on the

suitability of the initial condition for the experiment (recall that the disturbance is imposed by flow

interruption). The features that are characteristic of soliton and dispersive waves are suppressed

in Figure 6, due to the particl,lar scales selected to match one-to-one the experimental pictures.

To illustrate this point, the profile of Figure 6a is replotted in the inset with different scales. We

nmst add that motion of dispersive waves was not observed to our satisfaction in the experiments.

Typically, a noisy and wiggly interface of small wave length and amplitude formed soon after the

main wave evolved. However, we suspect that wettability and surface tension played a major role

on its subsequent development.

Figure 7 shows the emergence of two solitons arising from an initial disturbance of longer

wavelength (L ,,_ 45cm). Accoraing to the theoretical predictions, two solitary waves of differ-

ent amplitudes (and speed) should arise, with descending order of amplitudes. This sequence is

illustrated in Figure 7 which shows the splitting of tile initial disturbance, the higher amplitude

traveling ahead. As time progresses, the two solitons are clearly separated, the higher amplitude

soliton moving faster and away from the trailing lower ampStude soliton. Figure 7b shows the lower

amplitude soliton. Since the higher amplitude soliton travels faster, it already reaches the end of

the cell, when the lower speed soliton is at a distance of 150 cre. Comparison with the numerical

simulations is again quite satisfactory (see Figure 8 and the inset with different scales).

Soliton interaction is shown in Figure 9 for the conditions of Figure 6. To create these two

solitary waves_ two disturbances of different amplitude were sequentially introduced. The second

disturbance is of higher initial amplitude and evolves into a faster soliton that eventually takes

over the preceding slower one. After this nonlinear interaction, the tall and short solitons reappear,

but in reverse order and propagate with their original speed (Figure 9b). All these features are

consistent with the theory. Corresponding numerical simulations are shown in Figure 10.

As previously mentioned, a variety of other conditions were also investigated. Short wave dis-

turbances, typically corresponding to 5 > 0.5 were found to dissipate after their onset, as predicted

11



by theory. Figure 11 shows a typical short wave disturbance and a subsequent stage where the aan-

plitude decreased significantly over the short distance. Figure 12 shows the numerical simulation

of Figure 11. The differences between short and long wave disturbances can be readily observed.

For 1//2 < A < 1 and for negative disturbance in the direction opposite to the previous, no solitons

are predicted by the theory• This was also tested in the experiments. It was observed that such

disturbances (whether long or short wave length) dissipated continuously.

For 0 < A < 1//2, and negative initial disturbance, solitons propagate in the negative crdirection,

therefore dispersive waves should proceed them in a fixed frame of reference. Although such effects

were noticed and the velocity agreed with the theory to some degree, solitons were not observed.

Part of the reasons for the discrepancy must be the method for introducing the disturbance (very

near the injection port). Another reason may be wettability. Preliminary experiments with different

pair of fluids in which the solitons propagate in the negative cr direction (equivalent to this case)_

do not show the same behavior. This will hopefully be clarified by running experiments with fluid

pairs of identical viscosities, but with opposite wettabilities. On the other hand, for 0 < .k < 1/2

and positive initial disturbance, no solitons are predicted by the theory. Figure 13 shows one

experimental run, Figure 14 containing the simulation results. It is observed that the decrease in

amplitude is slower than in the case of short waves.

We might add that finite amplitude equations describing breaking waves were also derived.

Such waves have been frequently observed in our experiments, but will not be discussed further

in this report. It has been observed that large amplitude waves_ typically with e > 0.35, break in

all runs (Figure 15). Although not conclusive, our preliminary results support the theory. This

subject will be discussed in a future study.

For M = 1, both the non-linear and the dispersive terms in the KdV equation (24) are zero,

hence we expect constant wave speed and translational motion independent of the wave amplitude.

Experiments were run for nearly equal viscosity fluids. We introduced the same disturbance as

shown in Figure 5. Now, however neither a change in shape nor a wiggly interface were observed.

As a second test, two disturbances with different mnplitudes were also sequentially introduced, in

a way similar to the soliton interaction case. It was observed that the distance between the two

disturbances remained unchanged. The two disturbances propagated with the same velocity, which

also agreed with the theoretical value 2. Furthermore, under this condition, large amplitude waves
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did not break, in contrast to every other case inveetigated. This is also consistent with the theory.

5 CONCLUDING REMARKS

As mentioned above, initial disturbances were introduced by flow interruption in all runs. At

this point, this effect which violates the condition of parallel flow is not clear. To check the effect of

the initial disturbance, the data of 4b is used as an initial condition in the simulations. The result

obtained compared very well with Figure 4c. Although this may suggest that such effect are not

significant, future experiments will be carried out with disturbances introduced far from the ends.

It was pointed out that dispersive waves are associated with solitons as a result of the arbitrary

initial condition. These waves c.:m be identified in the simulations, but only if they are plotted

in larger scales. Due to their small amplitudes, they are suppressed in the scales that match

experiments. Such waves are not observed in the experiments. However, a wiggly shape did

develop at the points where it was supposed to be present (Figure 16). This was observed in both

forward and backward moving solitons. We believe that the motion of dispersive waves initiates

such interface. However, the subsequent motion is largely controlled by surface tension effects which

become important at small wavelengths. No wiggly interface was noted in the experiments for equal

viscosity fluids (M = 1). The observation of such dispersive waves can be rather cumbersome due

to surface tension effects. It should be recalled that even in shallow water waves they are detected

only by special probes.

The results reported above explored a small, although important_ subset of parallel flow in

Hele-Shaw cell. It is important to point out that this is the first time that Hele-Shaw (and,

perhaps, porous media) flows have been reported to contain KdV dynamics_ in addition to their

other .interesting properties cited in the Introduction. Full validation of the theory can be achieved

by extenting the current set up to the non-symmetric case. This can be accomplished by two fluids

(relatively easier) and by three or more fluids, if possible. The experiments with two fluids/two

interfaces are underway. Such will be an interesting experiment not only from an experimental but

also from a theoretical point of view. Of course, our ultimate o])jective involves extension of the

previous findings to porous media.
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Figure 1: Flow geometry for (a) non-symmetric and (b) symmetric case

I_lgur. 2' An exact soliton solution
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Figure 5: Single solitary wave (a) Initial condition (b) and (c) subsequent stages
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Figure 7: Two solitary waves at two different stages
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Figure 9: Two solitary waves (a) before and (b) after interaction
I
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Figure 11: Short wave initial disturbance and subsequent stage
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Figure 13: Experimental run for )_ < 1/2 and positive disturbance
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Figure 15: A Typical breaking wave

Figure 16: A wiggly interface betfind the soliton
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