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1. INTRODUCTION

It is widely acknowledged that texture is the prime cause of aniso-
tropy in polycrystalline metals: the nonrandom distribution of the
crystallographic orientations of the graina ('preferred orientation',
'texture’', or 'fabric') transfers some of the anisotropic properties of
single crystals to the aggregate, Whereas some properties show little cr
no anisotropy even in single crystals, many properties are strongly
anisotropic even in materials with a cubic latttice.

A nonrandomness of the orientation distribution is virtunally
everpresent in metals, because all processes involved in producing such
materials (casting, deformation, recrystallization) are locally orient-
ation dependent, Texture studies are, in fact, frequently used by meatal-
lurgists to help identify the crystallographic details of such processes,

Despite this general recognition of the importance of texture for a
description of macroscopic properties, it seems that quantitative evalu-
ations of texture are rarely used in engineering practice or even in
academic physical metallurgy, outside a small community of texture
experts. In general applications, one or two pole figures are given at
bect, or some idealized orientations ('texture components'), with a
qualitative interpretation of the expected effects. This is so even
though sophisticated quantitative descriptions of three-dimensional
orientation distributions have been available for twenty years [1-3],

Why has thare been such inertia in using quantitative texture
descriptions as a general tool of deformation studies? We submit that
this is¢ primarily due to some unfortunate choices that were made by the

pionesars of this development, with respect to the graphic representution

of orientation distributions, Of course, any represantation mesy appear



easy once it has become familier; but some provide a significant
activation barrier upon first contact.

A number of alternative representations have been suggested in the
literature but have, for some reason, not become common, We find a
particular combination of these especially easy to visualize for the
uninitiated, easy to assess qualitatively, and easy to evaluate
quantitatively, These plots use polar rather than Cartesian coordinates
(as proposed by Williams (3] and by Pospiech and Lucke [4,5]), and
equal-area projections (as they are commonly used in geology 16]). W~
will describe these reapresentations in the present paper, and also review
in tutorial form some of the basic concepts of erientation distributions
in uniform terminology.

In addition to graphic representations of orientation distributions,
algebraic ones were introduced right at the beginning of this development;
particularly, the definitisn of a continuous oriantation distribut’on
function (OUF), and its expansion in generslized spherical harmonics.

This provides an elegant and concise description for some applications
(such as tensor properties), but becomes cumbersome when very many terms
are needed. In such cases, a useful graphic representation of the data is
essential for a quantitative analysis.

A complete description of orientation distributions vequires a three-
-dimensional orientation space. On che other hand, two-dimensional pro-
Jections of this space is what {s measured. There are various ways of
inferring a 3}-dimenional distributicn from a number of 2-dimensional pro-
Jections, and it has been a toplc of intensive reacent debata to what

extent, under what circumetances, this can be done unambiguously [7-11],
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This current interest provides a further reason for us to clarify the
descriptions, For the purpose of this paper, we will assume that the
three-dimensicnal orientation distribution is known, by theoretical pre-
diction or by some deconvolution of experimental measurements; we only

concern ourselves with the representation of a known distribution.

We will {llustrate the principles presented wi*h a particular experi-
mental texture: from the surface layer of a copper polycrystal cold-rolled
to 60% reduction in thickness. Four incomplete pole figures (200, 220,
222, and 113) wvere determined by x-ray diffraction in reflection geometry.
The measured pole figures nearly exhibited orthorhomdbic symmetry (as ex-
pected), which was then strictly enforced by averaging the four quadrants
of the pole figure. The orientation distribution function was obtained
using the expansion in spherical harmonics (with only even-order co-
efficients up to £ = 18), Inasmuch as this is only meant to serve as an
example, neither the detailed sample history nor the pole figure deconvo-

lution procedure are of esseuce.

2. DIRECTION SPACE AND ORIENTATION SPACF

While the description of (two-dimensional) directions is relatively
trivial, we will review it in detail, because we find it important to pre-
serve some continuity between the two- und three-dimensional cases -- more
continuity than has generally been made use of.

In scme cases, only the distribution of a single direction iy of
interest: e.g, the distribution of c-axes in a hexagonal materia} with
respect to the normal of a sheet; or the distribution of the tensile axes
in the stereographic triangle characterizing each grain of a cudbic roly-

crystal. Such distributions are easy to treat quantitatively: tha o>int



density on the surface of a unit sphere characterizes the distribution of
directions in a uniform way. It may be represented by various pro-
Jections, and it may be simplified by the application of symmetry
principles--which we shall summarize in Section 3,

A particular symmetry deserves mention: namely when the sign of the
direction is of no concern, Unsigned directions are often called 'poles'
or 'axes'; we shall use pole for the unsigned normal to a crystallographic
plane, as is common usage; and we shall use axis specifi:ally for an

unsigned sample coordinate. The distribution of either uue with respect

to some reference system can be d:scribed by point densities on the
surface of a hemisphere, (Signed directions may be called 'unit vectors';
they are represented on the surface of a whole sphere.)

Whereas the terr 'orientation' is sometimes loosely used in the same
sense as 'direction’' was used above (such as in 'the orientation of the
tensile axis'), we wish tc reserve the term orienta*ion for the relation
between an entire coordinate system (triad) and some reference triad.

This requires the specification of three (perhaps perpendicular) axes or,
more commonly, of two unit vectors and a handedness.

It tuok a long time for an appropriate description of orientatior
distributions to be developed [1,2]: 1,e., an orientation space in which a
uniform point density corresponds to a uniform (e.g. random) distribution
of orientations, analogous to the surface of a sphere in the came of
directions, We will call such spaces 'homochoric'. One easy solution is
aa follows (Fig. 1): describe the first direction (usually called Z or X3
or [001]) just like any direction, and the second (perpendicular)
direct’on (usually called X) by en azimuth around the first., A useful

image is that of a boat at location Z on the surface of the esrth, which
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is heading in direction X, Specification of the first direction requires
tws numbers (the ship's longitude and latitude), that of the second
direction requires one more number (the ship's heading, or azimuth),

There is some arbitrariness in the precise specification of these three
angles and their zeroes, but Euler angles are most commonly used and quite
adequate, We shall apply the term Euler space to any three-dimensional
space in which the coordinates sre determined in some way by these three
angles [5]; it is the precise structure of this space that we shall
discuss, with the aim of msking it homochoric.

There is an aesthetic flaw in this Euler space description of orient-
ations: namely, that one direction (the 'first' direction used above) must
be preterred by the observer, even if no such preference is inherent in
the physics. For example, the roll’ plane normal is commonly preferred
over the rolling direction, although both have equivalent statur., This
artificiality can only be alleviated by preferring various poles or axes
{n succession, perhaps until one is found that is most easily visuvaliz-~d
-=0or by showing two or three of theze reyresentations in parallel,

Two other descriptions of orientation relations are some:imes used,
for specific reasons [5]. One is in terms of a pariicular axis in space
(or a number of symmetrically equivalent ones) around which a single
rotation brings the two triads ‘nte coincidence., This has heen useful,
e.g., in mechanistic discussions of rvacrystallization [12]; it {s quite
different from the description we use (in terms of a direction in one of
the coordinate sys ems and an azimuth around it), which 1is completely
equivalent to the three-rotations scheme cf introducing Euler angles [13].

Fitally, the orientation of one triad with respect to another can

be dascribad by a rocation matrix [5,14]. This Aescription is easiest in



chmputer codes, It does not prefer any one axis; but the three numbers

necessary for a complete specification do not form a homochoric space,

3. REPRESENTATION OF DIRECTIONS

3.1 Equal-area and stereographic projections

The location of a point on a aphere is eassily described in the
familiar geographic terminology of longitude and latitude., Following
Bunge [13], we will use the longitude* f and the co-latitude «a (also
called pole distance).

A point on the sphere is then projected onto a plane by means of some
standard projection, Stereographic and equal-area projections are most
widely used, Projections always distort « true representation, In the
stereographic projection (almost exclusively used in metallurgy) equal
great-circle segments have the same length wh.arever they appear on the
sphere, In equal-area projection (commonly used in geophysics) equal
areas on the sphere have the same size in projection, This is bast
illustrated by projections of the coordinate system, which provides a
Wulff net (Fig. 2a) and a Schmidt net (Fig., 2b) respectively. Either net
i1s easily used for graphic constructions and the determination of angular
relationships, While stereographic projection is most approptriate when
the angles between crystal directions are of prime concern, equal-area
projection would seem more appropriate when population densities are to he
descrited. (An auveatage of the stereographic projection is that circles

remain circles=-but their centers do not remain their centers,)

* B 1s also sometimes called an azimuth, but we reserve this term for the

"hesading" introduced above; see also sec., 4,1,



Figure 3 shows 2 {100} pole figure of a typical copper texture, both
1n stereographic (Fig. 3s) and equal-area projection (Fig. 3b). Pole
densizies are expzrimentally averaged into a continuous distribution and
contours are expressed in multiples of a random distribution (“m,.r.d.").
Note that the (100) pole figure of a cubic matarial displays all three
{100} orientations for each grain--but it does not give direct information
on which {100} 1s in fact the specific (001) pole for a specific (100),
for one grain, It is for this reason that pole figuces are usually
insufficient for a quantitative description of textures; bhut they are the
most quantitative experimental information avatilable.

3.2 Pcle figures and 'inverse pole figures'

In the last section, the sample axes were chosen as a reference
system, and the crystallographic poles were described in this frawe. A
completely equivalent description is its inverse (or dual): that of sample
axes in terms of crystal axes. Sometimes one 1s more appropriate, some-
times the other, For example, when the sample is a wire, there is n>
natuval ssmple triad, and all pole figures degenerate into circles; but a
description of the wire axis distribution in terms of the crystal axes --

an 'inverse pole ﬁiﬁpre'-- is {llustrative. Conversely, when the most

appropriate sample axes (e.g.,, the most symmet ic ones) are not known
sufficiently accurately beforehaud, a pole figure provides information on
the actual sample symmetry, and thus guidance in selecting 'sample’' axes,
For cubic materials, which wve emphasize in the present paper, the
three <100> directions provide a ready reference frame for inverse pole
figures. Cubic symmetry reduces the area on the sphere that is necessary
for a cormplete description by a factor 24: only 2 of the 48 unit triangles

are needed, even if the plotted axis has no symmetry; if it lies in a

mirror plane of the sample, a single triangle suffices (15].



Figure 4a shows one quadrant of the unit hemisphere, as it is usually
projected: with the preferred pole (001) at the center. This makes the
center a special point, One effect is that the mesh units have very small
area there; if the constant-d lines were drawn such as tc make each mesh
unit encompass equal area, the units near the center would attain a very
anisotropic shape. The unit triangles under cudic symmetry are also
shown: any one of the three triangle-pairs (labelled I, IIa/b, and III)
suffices for the most general case; but the special nature of the origin
would seem to make pair I an especially poor choice,

Figure 4b shows a different scheme: the preferred pole (00l1) has been
moved to the periphery [3]. 1In this case, it is possible to have similar
and equi-axed unit areas everywhere, (Fig, 4b is an equal-area projection,
see Fig, 2b,) The preferred triangles are shown in what appears to us to
be the most convenient way (and rather conventional). For a numerical
description, it would seem easier to use the latitude A (rather than the
co-latitude a'), and a longitude p (for meridian) counted from (100),

Figure 5 demonstrates the case of the particular copper sample whose
measured pole figure was shown in Fig, 3. Use is now made of the expected
orthorhombic symmetry of the rolled sample (which was essentially verified
in Fig. 3), to plot only one quadrant of the {100} pole figure. Also,
this is complemented by a {111} pole figure (also measured and folded into
one quadrant), Finally, two inverse pole figures, for the X® and 2%
axes (rolling direction RD and rolling plane normal ND, respectively),

wera derived from these pole figures and are plotted in Fig. 5.
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4. REPRESENTATION OF ORIENRTATIONS

4,1 Previous representations

In the last figure (Fig. 5c, d), we showed in parallel two inverse
pole figures, one for X8 = RD and one for Z8 = ND. This gives almost
all *nformation about the three-dimensionsl rélation between the axis
system XS, Y8 28 and the crystallographic reference system X¢ =
<100>, Y¢ = <010>, Z€ = <00l>, and such two figures together are ir
fact often sufficient to characterize an orientation distribution. What
is missing is information on the correlation between t¢he XS%-axis c¢f each
particular grain and its Z8-axis.

It is for this reason that a truly three-dimensional representation
is necessary in gcneral. One easy wey to introduce it is to plot, for
example, an inverse pole figure for Z% and perpendicular to it the
amount of rotation around this preferred direction [3,4]. Another good
methed 1s to attach ticks to the points in an inverse pole figure to
indicate the rotation arovnd this point [16] much like in the "boats on
the earth"” pizture introduced above; the disadvantage of the latter is
that it works only for discrete points, not for continuous distributions.
Neither of these procedures is easily applicable to pole figures, if there
18 more than one equivalent pole, Nevertheless, the basic idea, we feel,

18 of compelling simplicity: to represent an orientation by one direction

(that of the arbitrarily preferred axis) and a rotation around it; this
(last) rotation we shall call an azimuth (and count it from the equator).
This description makes open use of the need to prefer one direction; and
it retains continuity with the description of directions when only
directions are important. We shall elaborate on two specific represent-

ations based on this principle below.
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In texture research, another descripticn, introduced by Bunge [1] and
Roe [2], has become commoa, which is entirely equivalent, only differently
phrased and differently represented. Here, three successive rotations are
performed around the coordinate axes of the reference system (in a certain
sequence), by the three Euler angles ¢,, &, ¢, (Fig. 6).* In the sample
reference frame, the first two rotations are exactly equivalent to the
angles B and a used before: they do describe a cirection, and ¢, measures
an azimuth around this direction --just as in the description used above.
However, {¢1,@,o2} are usually treated as three parameters on equal foot-
ing, and plotted in a three-dimensional space. The problem is that this
space was chosen to be Cartesian [17]. This is equivaient to projecting
the hemisphere on which the directions (4;,d) are uniformly distributed
onto a square: the entire advantage of using a homochoric space (the Euler
space) has been lost Iin its rep-esentation. An advantage is that the
periodicity in all three rotations can be seen: the Cartesian Euler space
can in fact be represented by a space lattice with orthorhombic symmetry
(but no inversion center)(18,19].

The graphic representation of orientation distributions in this
Cartesian space of Euler angles can be shown by contour lines in a series
of two-dlmenfonal sections, and this diagram has become so common as to be
virtually identified with the abbreviation ODF., Figure 7 shows such a
plot, for the same copper sample illustrated before, Note that the repre-
sentation is severely distorted: the sinsle orientation, in each section,
"i:_;?;-ataying as close as possible to Bunge's conventions [13]., Most
type fonts contain only the straight or only the curly version of lower-
case phi: they should be treated as completely equivalent. All three rot-
ations increase counterclockwise (looking down on the positive axis) in
the sample frame, clockwise in the crystal frame, In the sample frame, ¢,
measures the angle from -Y5 to +2¢, ¢, from the equator to +X¢., 1Imn

the crysial frame, ¢, counts from +Y¢ to +28 and ¢, from the equator
to +X8, (The asymmetry in thesc relations stems from keeping ® > 0.)
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for which & = 0 is represented by a line.

In the inverse description, an orientation may be specified as that
of the sample triad in the reference frame of the crystal. The preferred
direction 1s usually taken to be 25; {$7,3} become its longitude and
latitude, respectively, and ¢, the azimuthal rotation around 2%, (For
the convential signs, see the last footnote.) Figure 8 sketches one
constant ¢) ~section, This figure is the exact analog to Fig, 4a: it is
evident how the singular point In Fig., 4a has been stretched out into the
line & = 0 in Fig. 8., It is also clear that a symmetry reduction to
region I is an especially unfortunate choice, Region III, on the other
tand, is close to the familiar description in terms of triangles.

4.2 Polar coordinstes: ths COD

Most <f the difficulties of visualizatlion disappear when the angle
pair {4;,P)} 1s represented in polar coordinntes, just as in a pole figure;
the third angle, ¢,, can then be represented in a third dimension, perpen-
dicular to the pular plot [5,20]. We call this a COD (:rystal orientation
distribution). For a two-dimensional image, a set of sections through
this space at constant values of ¢,, with contour lines, is adequate.

A ¢o-section of the COD may be viewed as a '"partial” {001} pole
figure which showe the distribution of only those (00l1) poles that have
corresponding (100) poles rotated ¢, degrees away from the equatur.

Figure 9 displays a set of such partial pole figures for the copper
specimen., These ¢,-section: of the COD contain the same information as
those in Fig. 7, but they are represented in polar rather than Cartesian
coordinates, and in equal-area projection, It appears to us that such a
polar representation of the COD is coasiderably easier to read tharn the
traditional Cartesian way, which represents the ODF as a density function

with three equivalent rotations. Let us list some of these advantages,
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a) Orientations can be readily identified

Firstly, this is trivially true for directions, i.e. when only one axis is
of importance: this is the advantage of having chosen a description {n
which first axis is explicitly given in tte clasgssical way. More generally,
consider the maximum Labelled C at ¢, = 40°, & = 66° in the ¢, = 25°
section. It contains (001) axes of those grains whose (100) axes lie 25°
awvay from the equator. By means of an equal-area net we can construct the
full crystal orientation (Fig. 10a). We see that (121) colncides with ND
and [111] with RD; this is the well-known '"copper" texture component (5],
For another case, consider the maximum labelled B at ¢; = 35°, & = 45° {in
*he ¢, = 0 section. The analysis in Fig. 10b shows that this orientation
has (011) pirallel to ND and [211] parallel to RD: the "brass" texture
component.

t) Angles can be directly measured in the diagram

Agsume we would like to know the relation between the two orientations
that are associated with the C and B maxima discussed above, expressed as
a rotation about a single axis. This is demonstrated in Fig, 10c:
construct the two orientations as in (a), superpose the two diagrams, and
find the two bisectors (dotted): their interrection marks the axis of
rotation (<210>), and the angle o (= 35°) of the rotation around this axis
that brings the two oriantations into coincidence 1s easily read off,
(This is not a unique solution because of the high crystal symmetry [(12]),

¢) The symmatry is clearly displayed

Crystal and sample symmetry cause certain orientations in the COD to be
equivalent, For example, a four-fold symmetry axis in [001] causes ¢, to

Tepeat eve 90°, and there i{s no need to extend f,-sections through a
P Ty ? 8
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full 360° span. In order to be complete, the sector shown in the COD must
contain at least one orientation of each symmetrically equivalent set. A
summary of equivalent orientations for important crystal and sample
symnetries 1s shown in Table 1. In thc case of cubic crystal symmetry and
ortiorhombic specimen symmetry, a range of ¢, from 0° to 180°, of & from
0° to 90°, and of ¢, from 0° to 45° is sufficient. A unit with all three
angles going from 0° to 90° would also suffice, resulting in smaller
sectors but more sections, which is less convenient for printing and also
makes it more awkward to visualize angular relations. Both of these
schemes still contain three equivalent orientations due to the three-fold
axis along <l11>; these are not easily recognized in the COD, Sometimes
it 1s useful to choose to plot more than one irreducible unit to
{llustrate symmetry relationships.

Polar COD's are particularly useful to check how closely an assumed
specimen symmetry is approached, For example, in our rolled copper
apecimens, the firgt-measured pole figures, based on the '"given"
coordinate axes ND and RD ware clearly not close enough to orthorhombic
symmetry, We redefined the sample &xes until the pole figure exhibited
satisfactory orthorhombic symmetry, and only then averaged the four
quadrants as described above., Often it would be preferable to manipulate
actual measurements as little as possible and to compare these ''raw data"
with theoreticul predictions, In this case, variations that are smaller
than the observed deviations from the appropriate sample symmetry should
be treated as meaningless.

d) There is a visible connection to the pole figure

“lewing the COD as a set of partial {001} pole figures, with each

¢o~section containing the subset of (001) poles for a certain (100)
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elevation, implies that the avei.ge of all ¢,-sections constitutes the
complete {001} pole figure. This is the same as a projection along ¢,; 1t
is shown in the last diagram of Fig. 9 and compares favorably with the
measured (002) pole figure (Fig. 3b).

e) The representation is uniform

The space selected for representation and for projection (Euler space in
pnlar equal-area projection) is homochoric with orientation space: equal
densities seen are equal densities present, For this reason, we recommend
equal-area projeciion also for pole figures [21]: it provides a better
representation of the total fraction of crystals that contribute to a
maximum (see Fig., 3a vs Fig, 3b).

The points (a) through (d) made above illustrate that a COD in polar
coordinates i{s indeed easy to visualize and to analyze quantitatively, It
displays all the Inform tion needed to derive full orlentation relations
using simple geometric constructions, If, in addition, one chooses
equal-area plots, the visual impression is representative of the actual
distribution {point e), The concept of viewing the COD as a pole figure
deconvoluted into partial pole figures In orientation space is close in
philosophy to the vector method [22].

4,3 The sample orientation distribution (SOD)

A description of sample axes in terms of crystallographic axes can
make use of the same Euler angles. Now the pair {¢,,d) describes the
direction (typically of the 2B8-axis) in the crystal system, just like
in any inverse pole figure, and ¢, describes the azimuthal rotation around
this directiun, An appropriate space for the SOD is thus an equal-area
projection (or the part of it that is necessary according to the symmetry

of the crystal, as in Fig, 4b) and a perpendicular dimenslon along which
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¢) is plotted. It is seen that ¢; and ¢, have switched their roles as
azimuth and longitude. Again, wWe can represent the three-dimensional SOD
by a series of sections, this time at constant ¢, (Fig. 1l1), A projection
along ¢; gives a Z8-axis figure: an 'inverse pole figure'. 1Ia analogy
to the term 'partial pole figure' which we tentatively introduced above
for a ¢o~section, we may call ¢)-sections 'partial inverse pole figures',

A similar concept was introduced by Williams in 1968 [3]): he repre-
sented three-dimensional orientation distributions by a series of partial
inverse pole figures (which he called "axial pole figures'), and also
showed how these can be derived from pole figures by the "matrix method"
(quite similar to the "vector method" [22])., Williams used a definition
for the azimuthal angle (his B) that differs from the Euler angle ¢,;
while this has some advantages (3], it has the disadvantage that the
duality between ¢; and ¢,, i.e, between the SOD and the COD, gets lost,
More significantly, using B as the third dimension in the SOD would not
make a homochoric space, We therefore do not follow Williams in this
respect.

In Fig. 11, each ¢;=-section displays the distribution of those
specimen normals 23 = ND which have their X® = RD axis ¢, degrees off
the equator (clockwise rotation, cf, Fig, 6b). As explained in detail
before, a runge of 0° to 90° in each of the three angles would be
sufficient; in fact, there are still three equivalent orientations due to
the three-fold <lll>-axis., They are not easily recognized in the SOD
sections (although they are evident in the projection). For example, the
maxima at {¢;,®,6,) = (0,45°,0}, {0,45°,90°), and (90°,90°,45°) are
equivalent, (For an analytical expression of this symmatry relation, see

e.g. [19].) Because of this, only one unit trisngle in Fig. 1l needs to

be represented (an example is shown emphasized); but again, a larger
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sector is often easier to visualize. In Fig, 11, we have chosen to show
twice the necessary range in ¢, (but 1t is not possible to compensate for
this by reducing the range of ¢ to be from 0° to 45°, as it could be done
for ¢, in Fig. 9).

A special point must be made regarding the center of the polar plots:
the singular point where 2% and Z¢ are parallel, the 'North pole'.,

Here, the meridian is multivalued (¢, in the COD, ¢, in the SOD). This
correspunds to the physical situation (and was one of the reasons for us
to abandon the Cartesian plots of Euler space). However, the heading of
the boat is defined; thus, ¢, has a meaning in the COD, ¢; 1= the SOD,

The trouble is that each is measured along the azimuthal great circle (the
horizon) 'from the equator'; but in the special case & = 0, the horizon
and the equator are the same thing, and thus the value of the azimuth 1s
undefined., It is eagy to overcome this apparent difficulty, when it is
realized that ¢, and ¢, are completely equivalent rotations in this case;
in fact, the sum ¢ +d, is the quantity that retains its meaning at t*:
singular point, Thus, when we plot sections at constant azimucth, the
value of the azimuth at th: center point !{s meant to be that corresponding
to the zero meridian,

Finally, we must emphasize that we have actually stayed with the
conventional and expediant type of polar plot: with the singular point at
the center--not, as suggested in Fig. 4(b), at the periphery. For cubic
materials, the partial inverse pole figures (Fig. 11) could be converted
by merely superimposing on them a net of the kind used in Fig. 4(b); one
would then be able to choose a reduced region with minimal distortion,

For the partial pole figures, one would have to write a new plotting

routine, which would then be incompatible with conventional pole plots.
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5. CONCLUSIONS

In the following, we summarize the points made in the present paper,

1) Ve have emphasized the distinction between directions (2-D
quantities) and (3-D) orientations, but kept some continuity in their
raspective quantative descriptions,

2) We have re-emphasized the need for representations of direction
space and orientation space that do not distort densities (and labelled
such spaces 'homochoric'). The surface of a unit sphere is a homochoric
direction space, Euler space is a homochoric orientation space. Unfortun-
ately, it requires the preference, in the description, of one of the three
coordinate axes defining an orientation--or, equivalently, of one
direc :ion (around which a rotation defines the third parameter)., The
preferred direction should be described like any direction: as a point on
the surface of a unit sphere (e.g., by its longitude and co-latitude).

3) Two-dimensional representations of either the surface of a sphere
or of a three-dimensional orientation space should preserve the homo-
choricity so strenuously achieved, Thus, the surface of a sphere should

be projected in equal-area projection, which 1s just as easy to use as the

stereographic projection, but much easier to visualize in terms of relat-
ive dengities of directions. Similarly, three-dimensional orientation
space should first be projected onto the surface of a sphere (to describe
the preferred direction, e.g. in terms of its longitude and co-latitude);
then, this surface should be projected onto a circle in equal-area pro-
Jection; and finally, the third dimension may be represented by means of
conatant-azimuth sectiona, We find the analog of the positions and

headings of boats on the surface of the earth helpful,
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4) In application of these principles, we propose to use two dual
orientation distribution representations; the COD, which represents the
orientation of a crvstal coordinate system with respect to a sample frame

in terms of a set of partial pole figures (each containing those of the

preferred poles that have a particular azimuth ¢,); and the SOD, which
conversely displays the orientations of sample coordinate axes with

respect to a crystal frame in terms of a set of partial inverse pole

figures (each centaining those preferred axes that have a particular
azimuth ¢1). The final figure represented in each COD is the average
partial pole figure (or ¢o-projection), which is a pole figure; similarly,
the final figure shown in & SOD is the average partial inverse pole figure
(or ¢)-projection): it 1s an 'inverse pole figure'. A summary of these
conventions is given in Table 2, VWe find these polar representations of
the orientation distribution much easier to visualize and evaluate than
the Cartesian ODF representations that have become commen,

5) The net to be used in any of the representatious should, while
consisting of constant-area units, be also equiaxed (rather than having
very anisotropic shapes). This is possible when the least symmetric unit
needed i{s chisen so as not to include the (North) 'pole' of the represent-
ation (see Fig. 4b).

Our principal concern has been to find two-dimensional graphic repre-
sentations of three-dimensional orientation distributions that allow one
to "see" something (with minimal distortion), We "like" two sets of
circular sections; each set may be stacked up as a cylinder. Unfortun-
ately, it is difficult to visualize a three-dimensional space through
which the CODR and the SODR are difierent sections. This was easy in the

conventional Cartesian Fuler space,
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In all of our discussion, we have assumed that the three-dimensional
orfentation distributions are kncwn. To illustrate the proposed repre-
sentations of orientation distributions, we have used a sample of a Lubic
metal deformed ip rolling (and an oversimplified pole figure deconvol-
ution). The same concepts have been applied to cases of lower crystal and
sample symmetries, where the advantages are even more striking [23],

We end our discussion by outlining the specific, very minor chs' es
that would have to be made in existing computer codes to implement our
suggertions. The calculation of ODF's from pole figures is unaffected;
but instead of using the contouring routine for a rectangular grid, one
should use, for each ODF section, the pole-figure contouring routine (such
as Vedon's URFPD)., To convert from stereographic to equal-area pro-
jection, one simply must cnange the formula for the projection of the pole

distance a from tan{a/2) to v2esin(a/2).
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Table 1:

Equivealent orientations for some crystal and sample symmetries

6 e ¢2

¢y + 1 =5 ¢ + 1 identity

¢ 3 6o + n/3 6-fold axis in Z¢ (hexagonal)

o 3 ¢y +n/2 4-fold axis in Z€ {cubic, tetrag.)
o) ol 6, + 2n/3 3-fold axis ian Z€ (trigonal)

¢ +n n=0 -¢2 2-fold axis Y©

-0 =3 ¢ + 1 2-fold axis in YS

¢ + o 62 2-fold axis ir Z8

n=b) n=-d 6o + 1 2-fold axis in XS




Table 2: Representations of the three-dimensional orienta’ion
distribution ODF(¢),8,65)

2-D sections* 2=D projections

CoD(d,,2); ¢, = const
"partial pole figures" pole figure (B, a)

SOD(¢5.®); ¢; = const
"partial inv, pole figures" inverse pole figure (a',p")

*For & = 0, ¢; + ¢, = const
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CAPTIONS

A direction Z is represented as a location on the surface of a
sphere: by its longitude ¢, and its pole distance & (perspective
drawing). An orientation g(¢,,3,4,) is represented by Z(¢,,d) and
an azimuth ¢, around it. An orientation distribution corresponds
to a distribution of boats (with specified headings) on the sur-
face of the earth.

Projercion of the coordinate grid on the sphere: (a) stereographic
projectiou {Wulff net), (b) equal-area projection (Schmidt net).

Experimentally determined {200} pole figure of copper rolle: to
50% reduction at room temperature. Transverse (1D) and rolling
(RD) direction are indicated. (a) stereographic projection, (b)
equal area projection.

(a) The qualrant of an inverse pole figure for cubic crystals us
it is conventionally drawn. (b) An equivalent quadrant in equal-
area projection, not in- .uding the special pole (001),

{100] and {111} pole figures (a, b) and inverse pole figure fox
the ND and RD axis (c,d) for copper re¢calculated from the ODF with
the harmonic analrsis, Equal-area prcjection, Contour interv@ls
are 0.5 m.r.,d.; stippled btelow 0.5 m.1.d. !

|

{
lefinition of Euler angles ¢,, &, ¢, using the convention of Bupge
1], based on the sampie coordinate system (a) and the crystal %o-
ordinate system (b).
ODF of rolled copper, represented in conventional Cartesian co-
ordinates, Contour {itervals 9,5 m.r.d., stippled below 0.5
m.r.d. Constant-¢, sections, extending Zirom 0° to 45°, The range
of & 1s from O to 90° (down), that of ¢; is from O to 180° ‘
(right).,

A section of conventional Cartesian Euler space (constant ¢;) for
cubic materials with irreducible regions I, Ila/b, and III, Com-
pare Fig, 4a. Region III is least distorted,

COD of rolled copper represented as partial pole figures in equal-
area projection, corresponding directly to Fig. 7. The last dia-
gram is an average over all partial pole figures and corresponds
to a (001l) pole figure (Fig. 3 and Fig. 5a). The most common
components of the f.c.c. rollinr texture are indicated, by one
representative: C - the 'copper' component {121}<1I1>; 5 - ‘the 'S’
component {132}<643>; B - the 'brass' component {011}<211>- c -
the 'Goss' component {011}<100>; and also the 'a-fibre'.



Fig. 10 Derivation of Orientation Relationships.

Fig.

11

(a) Reconstruction of the crystal orientation for the maximum at
¢; = 40°, & = 66°, ¢ = 25° using the COL of Fig. 9 and an
equal-area net (Cu component).

(b) Same as (a) for the orientation ¢, = 35°, ¢ = 45°, ¢, = 0°
(B component).

(¢) Superposition of (a) and (b) to determine the rotation axis
and angle w which brings the two orientations into
coincidence.

SOD of rolled copper represented as partial inverse pole figures,
The test diagram is an average over partial inverse pole figures
from ¢; = 6° to ¢; = 180° and corresponds to an inverse pole
figure for the ND axis (Fig. 5c). The letters indicute f,c.c,
rolling components as in Fig, 9, and the 'B-fibre',



Fig. 1

A direction 2 is represented as a locatinn on the surface of a
sphere: by its longitude ¢; und its pole distance @ (perspective
draving). An orientation g(¢;,d,¢;) is represented by 2(¢;,d) and
an azimuth ¢, around it, An orientation distribution correspouds

to a distridution of boate (with specified headings) on the sur-
face of the earth.



(b)
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Fig. 2 Projection of the coordinate grid on the sphera: (a) stereographic
projection (Wulff net), (b) equal-areaa prujection (Schmidt net).
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(6)

Fig. 3 Experimentally determined {200} pole
507 reduction at Toom temperature.
(RD) direction are fndicated.
equal ares projection.

figure of copper rolled to

Transverse (TD) and rolling
(a) stereographic projection, (v)



(6)y XL
B- &4 (a) The quedraat of an inverse pole figure for cubic crystals as ]

’l
it 1s coaveatiocanally drawn. (b) An equivalent quadrant in equal- ’ /
area projectiom, mot fncludimg the special pole (001),




rig. 3 {100) and {111} pole figures (a, b) and inverse pole figure for
the ND and RD axis (c,d) for copper recalculated from the ODF with
the harsonic analyeis. Equal-area projection. Countour intervals
are 0,5 B.Ted.} .tippl‘d below 0.3 m,.r.d.



X* X “ [m]

L) | (6)

Fig. 6 Definition of Euler angles S
12! based on the sample

ordinate system (d).

®, ¢, using the convention of Bunge
coordinate system (a) and the crystal co-
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Fig. 7 ODF of rolled copper, Tepresented in conventional Cartesian co-
ordisates. Contour intervals 0.5 m,r.d., stippled below 0,5
@, r.d, Constant-¢, sections, extending from 0° to 43°. The range
of & 1s from 0 to 30' (down), that of ¢, 1s from O to 180°
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Fiz. 8 A section of conventional Cartesian Euler space (constant ¢,) for
cubic materials with irreducible regions I, Ila/d, and III. Conm-
pate Fig. 4a. Reglon III is least distorted,
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Fig. 9 COD of rolled copper represented as partial pole figures in equal-
area projection, corresponding directly to Fig. 7. The last dis-
gram 4s an average over all partial pole figures and corresponds
to a (001) pole figure (Fig. 3 and Fig. 5a), The most common
components of the f.c.c. rolling texture are indicated, by one
representative: C - the 'copper' component {121}<111>; S « the 'S’
component {132)<643>; L - the 'brass’ component {011}<2{1>; ¢ -
the 'Goss' component {011}<100>; and also the 'a-fidre'.
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Fig. 10 Derivation of Oriemtation Relationshi s,

(a) Recomstruction of the crystal orientation for the saximom at
¢ = 40°, & = 56°, ¢, = 25° using the COD of Fig. s and an
equal-area met (Cu component).

(b) Same as (a) for the orientationm ¢ =~ 35°
(B compoment).

(c) Seperposition cf (a) and (b) to determine the rotation axis

and sngle w which brings the two orientatioms into
coincidence.

» 6 = 45°, ¢, = 0°



Fig. 11 SOD of rolled copper represented as partial inverse pole figures,
The test diagram 1s an average over partial inverse pole figures
from ¢ = 6° to ¢) = 180° and corresponds to an inverse pole
figure for the ND axis (Fig. 5¢). Tha letters indicate f.c.c,
rolling components as in Fig., 9, and the 'B-fibdre’.



