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PARTICLE CODE SIMULATIONS WITH INJECTED PARTICLES%

Charlet H. Aldrich
LOO Alamos National Laboratory
Los Alamoe, New Mexico

ABSTRACT. As problems we are intemted in become more complex, we often
find our simulations stretching the limiti of available computer reeourcee. For
example, an inhmsting problem is simulation of dissipation proc~ in nub-critical
collisionlesa shocks. ‘Ib simulate this system our simulation box must contain the
shock and its upstream and downstream regions over the ●ntire length of a run.
If the shock moves with any appreciable speed the box must then be considerably
larger than the shock thicknms making it hard b resolve the shock front itself with
a reasonable number of grid points.

A solution to this problem is to run the simulation in the frame of reference
-f ‘he shock. Particles are injected upetream of the shock and leave the simulation
box downstream. With the shock stationary in the simulation box, we only nued
to contain encugh of the up and downstream regions for the fields, ●tc., to settle
down and separate the ohock from the box boundarb.

In this tutorial we consider some basic ●lgorithms used in a practical particle
injection code, such M the tw dimensional WAVE code used at Los Alamoe, We
will try to present these ideae in ● simple format general enough to be easily
included in any particle code. Topicn covared ue:

● Smoothly h: ,ccting Particke.
● Generating the Distribution Functions.
● Time Dependent Injection Density,
● Boundary Conditions on Fields and Particles.

(Flux and Charge Conservation)



1. Introduction

As we have seen in earlier tutorials, particle simulations codes have been an ex-
tremely uoeful tool used to investigate plasma physics. This is particularly true
when one wants to understand self consistent shock structures. One problem of
interest is how a subcritical shock evolves. The crom-field currents which generate

● the magnetic field for the shock excite micro-instabilities within the shock front,
these instabilities are responsible for the dissipation that allows the shock LOexist
and strongly effect the basic structure of the shock front including the cross-field
currents. In order to resolve both of these processes which are occurring perpen-
dicular to each other (requiring a two dimensional code) we often must make aa
efficient use of the simulation grid as possible.

Early studies often produced shocks with a simple moving piston. Figure I
shows a shock created by a piston moving into the box from the right sidel. Initially
the simulation box is full of particles at rest. As the piston moves into the box
from the right wall the particles in front of it me reflected to form a beam moving
to the left with twice the piston velocity. The front of this beam eventual Iy forms
a shock wave that moves through the box slow]y separating away from the piston.
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Figure 1. An example of the ion phase space of a shock produced by a piston
treveling from the right end wall.

Clearly a way to do this problem making better use of the simulation box
would to be running in the frame of reference of the pimton. This requires injection.
Figure 2 shows a shock where particles are injected on the left hand side of the box.
When the problem was initialized the particles in the box were uniformly mo{ing
to the right. The particles hit the right hand okle of the box and are reflected OHa
stationary pi~ton and forming a shock downstream, As particles near the left hand
side of the box move deeper into the box the space that they vacate is filled with
injected particles.



Figure 2. An example of the ion phaae space of a shock produced by a piston located
at the right wall, with particlea injected on the left.

A major problem with the previous two methods is the presence of the piston
itself, It takea a long time for the shock front to become distinctly separate from
the piston structure. Indeed it maybe nearly impomible to separate effects, such aa
particle heating, occurring at the shock front and the piston from each other. Also,
some structures don’t lend themselves to formation using such a simple system.
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Fi ure 3. An exam Ie of the ion base space for a perpendicular magnetic
f E !he d stationary in t e emulation ox by particle injection,
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Figure 4. An example of the electron phaae space for a perpendicular magnetic
aoliton held stationary in the simulation box by particle injection.

An example of this structure is a magnetic soliton. Figures 3 and 4 show
the phase space for electrons and ions for n perpendicular soliton. The velochy,
density, and field profiles for the soliton can be eaaily calculated from a simple
differential equation 2, When Lhe ~oliton is initialized at the beginning of the run
the known valuea for theee quantities are used and the velocity of the injected
ions and electron~ io choeen so that the soliton is stationary in the center of the
simulation box, with articles injected on the left hand side of the box as before.

iNcte that since the rift velocity for the electrons is smaller than the electron
thermal velocity a population of electrons will be moving right to left *~rough the
soliton structure, requiring an injection of a few electrons from the rig}, hand side
of the box with negatiws velocities (going left). This configuration is particularity
suited for this problem, the doliton is completely stable and will continue to Bit
stationary in the middle of the box if nothing happens, The cross field currents
within the soliton will tend to excite instabilities that in turn cause dissipation.
This in turn will change the mtructure of the soliton evolving the structure towards
a shock. Having the soliton stationary allows the simulation to run to long enough
times for the inmabilitieo to develop and have some viuible effect.

Similarly, a stationary shock structure could be initialized in the simulati m
box. The velocity, density and field jumpm across the mhock front can be calcu-
lated using the Rankine-Hugoniot (R.H.) equations. The shock epeed calcultited
from the R.H. equations can be used to set the injection speed to make the shock
stationary in the simulation box.

In this tutorial we start off in section 2 by describing two ways to proJuce a
system of simulation particles according to uome given distribution function. In
section 3 we dciermine how many particleo are cromin the simulation boundary
and how to put the particleu into the simulation box. %his includes a discussion
of how to chooee the velocities of the injected particles randomly to produce the
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probability distribution we want in the bulk of the box. We then briefly consider
injecting a beam with a time and/or spatial variation in =tion 4. We finish with
section s with a couple of cautions with respect to the boundary conditions on the
particles and electromagnetic field 1.

.
2. Throwing the Dice - the Probabll!t.y IMatribution Function.

In the next two subsection we will consider the general problem of throwing ran-
dom numbers to obtain a metof particles distributed according to some given distri-
bution ftlllction. We need this to create the particles as they cross the boundary -
as well as when the initial particles are put in the simulation box. The first method
maps a uniform dice into a more complex distribution using an analytic formula.
The second approach considered uses a monte carlo method where throws of the
dice are kept or tossed out according to a rule.

2.1. Analytic.

One important distribution, function used in moat simulations represents a group
of partlcks in thermal equlhbrmm with some thermal velocity uthCrm. In suitable
units this can be written (in two dimemional cartesian coordinates),

or in cylindrical coordinates,

P(V, O) - UeXp(-U2/Uf~crm)~u~e,

(1)

(2)

where u is the particle velocity and 0 is the angular coordinate.
Most computers have a random number function that will throw a pseudo-

random number with uniform probability between the limits 0.0 and 1.0. Lets
denote this function by rand(]. As an example will condruct an analytic formula
to map this uniform distribution into a gaussian distribution.

Consider a variable f bounded in the ran e O < f <1, If we choose values for
r =rq)?( with uniform probability within this range, ( then the probability of

landing in some range of values df wide is simply df an the probability of having
a value less than f is {.

Next, consider another variable u that is bounded in some range O ~ u g um~=,
The two lariablea are related by a single valued function ~ such that each point
in f ia mapped to one and only one point in u and the order of the points are
preserved,

v = f(f), (3)

This is shown nchcmatically in figure 6. By drawing neveral equal width intervals
on the f axis and mapping them onto the v nxis using the raph in figure 5, one can

c!see th~t points equally spaced on the $ axis will be more eneely on the v axis near
u = O. More quantitatively, the probability of any point being between O and v on
the v axiu ,given equation 3, must equal the probability of landing between Oand f
on the f axis. Since the f values are all chosen with equal weight, this probability in
f, or in terms of u, f-l(v), where the -1 denotes the inverse function. The density
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Figure 5. Example of an analytic function used to map a distribution function from
one probability space to another. (see section 2.1).

function P(u) is simply the derivative of this quantity, so the probability of landing
a point in some range du can be written,

(4)

Returning to the gaussian distribution, we can let

v = f(f) = /=GFij, (5)

or
f = f-l(v) = 1- exp(–vz). (6)

The probability of being in some range of valueo dv is then , by equation 4,

p(v) dv = 2uexp(-v2) dv. (7)

Thie equation hae the form of equation 2. The velocity vector can point randomly
in any direction, LOthe angular variable io equally probable in the range O to 2n.
To net up a bet of particlea according to the gaussian distribution we can set,

v= = v sin(d), (8)
VW= Vcoo(e),
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Figure6. Graph used to produce the distribution function ~(u) using numerical
monte-carlo method (section 2.2). -

where,

v = ut~.,~~- log(l - rando), (9)

0 = 27 rando.

For an arbitrary distribution function P(u) we can integrate equation 4 to
obtain f = j-l(u) and then invert to obtain the mapping function. As we have
just seen, the gaumian distribution turns out to be eaey to generate in cylindrical
coordinate. If we try to generate a gaumian in three dirnens!ons, for example,
using these methods directly, the transformation function f-1 will contain error
functions and the like which are hard to invert in order to obtain ~(v). The solution
to this problem is to throw two out of the three coordinates, say s and y with the
cylindrical formula, equation 8. We can then use equation 6 again to throw two
more coordinates, one of which is thrown away while the other is used for z. If one
is simply interested in a one dimensional gaumian, just throw away the coordinate
not needed.

2,2. Nurmxic - Monte Carlo.

Often the didribution function we want iu too complex to integrate the equationo
in section 2.1 analytically. In this caae we can resort to a more general method that
will work for almoat any distribution function. In thic method we will be toesing
the dice and either keeping the results aa our amwer or throwing out the tom and
redoing it until the tooa fitscertain rulen that we arrange. Aman example we cm
generate the distribution in equation 2. Thn first step in this procem in to represent
the function graphicrdiy inn box of uome finite size. Thin is done in figure 6, where
the high velocity tail of the di~triblticm is being ignored (V~haF~= 1,0).
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Figure 7. Simulation box with injected particles.

We can split the graph up into many vertical bins, one of that is shown in the
figure 6. If we ~and~ml~ choose a value ?f ~ within the graph (between O and U~.Z
the chance of It being m a particular bm 1s du u~~=. Throwing another number

(representing the vertical position on the graph between O and ~~~=) the fraction
of points that will hit under the curve is ~(u)/~~nZ. Thus by throwing two random
numbers for each point and keeping only points that fall under the curve we fill
each bin with an average of

(lo)

where Nk~P~is the number of points that are saved. The probability o! being
in a bin is then J(u). This means that if we random] y throw points onto the
graph keeping the first one that hits under the curve ~ u) results in generating the

\distribution we want. This method has the advantage o being simple to implement
and have working on a computer in little time.

3. Smoothly Injecting The Particles

In this mction we will discuss how to inject a beam of particles into the left hand
side of the simulation box aa used to create the soliton in figures 3 and 4. This
iu shown diagrammatically in figure 7 to eetablieh the notation for the rest of the
pap Jr. Outeide the box the particlea are amumed to in thermal equilibrium with.
some thermal veloclty Ut~8Pm?nd moving with some drift velocity ub~am. The
distribution function can be written as a gauosian ,offset in velocity,

f(u) - exp(-(v. - ubcarn)a -u; - us)/”~h.rm))o (11)



3.1 How Often?

We can relate the average time between injections to the drift velocity and injection
density. If a particle has velocity u itwill travel wit in one time step. The boundary
will have a rectangle of size Ay by tuft full of particles sweep across in one time
step(see Figure 8).

.

—vdt-

Figure 8. Particles with velocity v= in the shaded area are swept across the boundary
in one time step.

Thus the number of particles in this region is the particle density ~(u) d2u
(assuming a constant injection density along they direction) times the area Ay volt,
Wh:ie f(v) is the distribution function for the injected particles, or,

Ay wit f(V) d2V. (12)

Integrating over the entire velocity space, the total charge crossing the boundary
is then,

Q=pA~dt <v=>. (13)

where,

<v=>=
1

v= f(V) d2v. (14)

For our injected beam < v. > can be calculated analytically, giving,

‘v+wexp(2H)+vboam(’+erf(-)))m’15)



If the charge ?n a single. simulation particle iS qapeciee then we find the number

of simulation partlcks croasmg the boundary per time step,

N=
PAP dt C V= >

(16)
qapecien ‘

.

or eq~ivalently, the average time between injecting two particles,

dt “ qapeciea
snject = -

pAy<vz>”
(17)

3.2 Where?

As far ss the injection algorithm is concerned any particle code can be viewed as
a series of black boxes,

s Calculate Fields and Potentials (Forces on particles).
● Push particles with Forces, Calculate Charges.
● Inject Particles.

These steps are repeated over and over again, once for each time step. Each cycle
steps a time dt, the nth step beginning at time t = (n - l)dt.

To perform particle injection in a smooth manner we wish to decouple the
injection process as much as pomible from the size of the time step. To do this
we inject the particles uniformly in time separated by time dtim .ect. So that we
inject the mth particle at time tin~ee: L= mdtinjeCt. The time etween particle
injections may be a fraction of a time step cft or many time steps. Since these two
characteristic times are not necessarily multiples of each other the time when a
each particle is injected will lie somewhere in ths middle of a time step. We can
mov~ the par,ti~le into the b~ for this t~me period, dt ~OVe = t - tinject. If many
partlclea are mJected m one time step th~ will spread them out evenly in space.

To isolate the simulation problem from effects of the boundary conditions most
calculations will be set up so that very little is happening at the boundaries of the
box, that is no steep density gradients, large fields, etc. are allowed. The time step
is usually small enough so that the particles travel only a small distence iuto the
box. It is vmally a good approximation to ignore forces on the particle for this
fractional part of a time step and simply move them into the box by setting;

~inject= dtmouev, and

$hnject = Ay rando. (18)

This formula could be changed to inject relativistic particles by using the momen-
ium. One could also be completely consistent and move the injected particles with
the same particle pusher used in the second step above.



3.3 lllstributiom Rmction.

Rom equation 12 w can me that we have to pick the x velocities according
to the probabili@ formula,

f(t)=) - u. acp(-(u= - ukJ/u:kcrm). (19)

This formula is not easy to generate analytically and the techniques of section 2.2 .
are used to produce this distribution. For a full three dimemional velocity space
the other two directions are a simple nondhet gamsian considered in section 2.1.
Thw

v“ = uP@rsin(~],
v, = vp~rcm(e), (20)

where,

# =2X rando,

vp~~ = @ log(l - rando).

4. Nonuniform Densitieo.

(21)

Generalizing this injection scheme to nonuniform density profiles both in space and
time are relatively stl aightforward. We will quick]y consider injecting a mhaped
beam and a puhwd injection.

4.1 A Shaped Beam.

To produce a uniform silmdation across the nide of the simulation box the y position
waa chosen randomly with equal probabili~ of entering anywhere. To change thin
profile we can choose valuae for the coordinate in the y direction with one of the
methods of section 2. For example if we wanted a beam whose density is zero at
the top and bottom edges like,

Let u = Ay u/n and therefore, from equation 4,

u-~ . sin(v)
au ‘2—’

or, integrating,
Conutant - COSJf = f-l(”) =

2 I

(23),

(24),



and

We can then choose y according to,

Ay
ll=~cos “(l - 2rando).

where rar~d[] is the uniform generator mentioned earlier.
The a~erage

timJeCtbecomes

4.2 Pulses.

density p used in equation 17 for the

2
P = ;Pmaz.

(25).

(26)

time between injections

(27)

Time variations in the injection parameters can be accomplished in several
ways. if the time step is small enough and the variations in the injection velocity
or density is slow enough to be resol;eci one can simply change the parameter as a
function of time at each time step and use the new ~~inject in equation 17 to Meet

the next set of particles.
If on the other hand we would like to inject a fast changing density profile, for

instance, we can change the time a particle is injected to a nonlinear function of
time. If we would like to have one pulse of the shape,

p(t) = pmaz sin2(tn/Z’0), (28)

where To is the length o=the pulse, we can let

t“snject = ~(~ ~~injoct)> (29)

where

()
2wt~ sin TO

T-1(t) = ‘-” 2m z ——m (30)

In general for arbitrary Z’(t), the density injected will be

~T(t)
p(t) = p —a~–.

Note for T(t) = t then p(t) = p.

5. Boundary Conditlonn

(31)

Except for the process of injection itself the boundary conditions are not dgnif-
icantly differently from a particle code without injection. There are B couple of
points worth noting in the following two subsections.



5.1 Fields

If we are simulating a shock structure and transforming into the frame of
reference of the shock we have to be careful of the boundm-y conditions on the
fields. In the frame of reference of the upstream particles we have some magnetic
field 13UP,tre~,q. Since the particles have zero velocity in this frame, they feel no.
electromagnetic force. Transforming to the frame of reference of the shock one has
to be aware of how the fields transform with changes of reference frame. That is,
if the shock ~ moving with velocit~ u,h~~k in the upstream frame , an electric field

—~’hock X Bup~~r~~~will be present in the simulation framecomponent Eupstream —

upstream of the shock and at the boundaries, resulting again in zero net force on
the particles. Neglecting this” flux conservation boundary condition will result in
an electromagnetic disturbance moving in from the boundary ir a fairly obvious
way.

5.2 Particles

In figures 3 and 4 we showed the phase space for a subcritical perpendicular mag-
netic solitor., where both electrons and ions are injected simultaneously. The drift
speed of the electrons is less than the el~tron thermal speed but much greater
than the ion thermal speed. The right hand boundary can ~hen be dmcribed as

● Let all ions leave the box.
● Let all electrom leave the box.
● Inject a few electrons moving to the left.

The electrons are injected with equation 19. This process is the same discussed
earlier e~cept that the sign of v is different and we are injecting the backward going
tail.

Statistically the nuinber of electrons crossing the boundary during any partic-
uIar time step will fluctuate betwen time steps causing a corresponding fluctuation
in the charge imbalance at the ‘boundary. This often can create havoc with the
code. To essentially guarantee charge neutrality at the boundary we can move the
ions first, note how many ions leave the eystem, then move the electrons. When
we move the electrom, if an electron crosses the boundary we let it leave if and
only if there is a positive charge imbalance at the boundary. Since the thermal is
much higher for the electrons, many more electrons cross the boundary in each time
step. Once enough electrons leave to aasure charge neutrality at the boundary the
rest are injected according to the distribution, equation 31. This virtually assures
neutrality except in the case of large fluctuations in the number density which will
be rare.
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