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PARTICLE CODE SIMULATIONS WITH INJECTED PARTICLES

Charles H. Aldrich
Los Alamos Natlonal Laboratory
Los Alamos, New Mexico

ABSTRACT. As problems we are interested in become more complex, we often
find our simulations stretching the limits of available computer resources. For
example, an inleresting problem is simulation of dissipation processes in sub-critical
collisionless shocks. To simulate this system our simulation box must contain the
shock and its upstream and downstream regions over the entire length of a run.
If the shock moves with any appreciable speed the box must then be considerably
larger than the shock thickness making it hard to resolve the shock front itself with
a reasonable number of grid points.

A solution to this problem is to run the simulation in the frame of reference
~f *he shock. Particles are injected upstream of the shock and leave the simulation
box downstream. With the shock stationary in the simulation box, we only need .
to contain encugh of the up and downstream regions for the fields, etc., to settle
down and separate the shock from the box boundaries.

In this tutorial we consider some basic algorithms used in a practical particle
injection code, such as the two dimensional WAVE code used at Los Alamos. We
will try to present these ideas in a simple format general enough to be easily
included in any particle code. Topics covered are:

o Smoothly Ii: .ecting Particles.

o Generating the Distribution Functions.

e Time Dependent Injection Density.

e Boundary Conditions on Fields and Particles.
(Flux and Charge Conservation)



1. Introduct!on

As we have seen in earlier tutorials, particle simulations codes have been an ex-
tremely useful tool used to investigate plasma physics. This is particularly true
when one wants to understand self consistent shock structures. One problem of
interest is how a subcritical shock evolves. The cross-field currents which generate
the magnetic field for the shock excite micro-instabilities within the shock front,
these instabilities are responsible for the dissipation that allows the shock to exist
and strongly effect the basic structure of the shock front including the cross-field
currenis. In order to resolve both of these processes which are occurring perpen-
dicular to each other (requirring a two dimensioral code) we often must make as
efficient use of the simulation grid as possible.

Early studies often produced shocks with a simple moving piston. Figure 1
shows a shock created by a piston moving into the box from the right side’. Initially
the simulation box is full of particles at rest. As the pision moves into the box
from the right wall the particles in front of it are reflected to form a beam moving
to the left with twice the piston velocity. The front of this beam eventually forms
a shock wave that moves through the box slowly separating away from the pizton.
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Figure i. An example of the ion phase space of a shock produced by a piston
treveling from the right end wall.

Clearly a way to do this problem making better use of the simulation box
would to be running in the frame of reference of the piston. This requires injection.
Figure 2 shows a shork where particles are injected on the left hand side of the box.
When the problem was initialized the particles in the box were uniformly moving
to the right. The particles hit the right hand side of the box and are reflected ofl a
stationary piston and forming a shock downstream. As particles necar the left hand

side of the box move deeper into the box the space that they vacate is filled with
injected particles.



Figure 2. An example of the ion phase space of a shock produced by a piston located
at the right wall, with particles injected on the left.

A major problem with the previous two methods is the presence of the piston
itself. It takes a long time for the shock front to become distinctly separate from
the piston structure. Indeed it may be nearly impossible to separate effects, such as
particle heating, occurring at the shock front and the piston from each other. Also,
some structures don't lend themselves to formation using such a simple system.
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Fifure 3. An examﬁle of the ion ghue space for a perpendicular magnetic soliton
held stationary in the simulation box by particle injection.
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Figure 4. An example of the electron phase space for a perpendicular magnetic
soliton held stationary in the simulation box by particle injection.

An example of this structure is a magnetic soliton. Figures 3 and 4 show
the phase space for electrons and ions for » perpendicular soliton. The velocity,
density, and field profiles for the soliton can be easily calculated from a simple
differential equation?. When .he soliton is initialized at the beginning of the run
the known values for these quantities are used and the velocity of the injected
ions and electrons is chosen so that the soliton is stationary in the center of the
simulation box, with particles injected on the left hand side of the box as before.
Note that since the drift velocity for the electrons is smaller than the electron
thermal velocity a population of electrons will be moving right to left t“rough the
soliton structure, requiring an injection of a few electrons from the rigl. hand side
of the box with negative velocities (going left). This configuration is particulariy
suited for this problem, the soliton is compietely stable and will continue to sit
stationary in the middle of the box if nothing happens. The cross field currents
within the soliton will tend to excite instabilities that in turn cause dissipation.
This in turn will change the structure of the soliton evolving the structure towards
a shock. Having the soliton stationary allows the simulation to run to long enough
times for the instabilities to develop and have some visible effect.

Similarly, a stationary shock structure could be initialized in the simulation
box. The velocity, density and field jumps across the shock front can be calcu-
lated using the Rankine-Hugoniot (R.H.) equations®. The shock speed calculated
from the R.H. equations can be used to set the injection speed to make the shock
stationary in the simulation box.

In this tutorial we start off in section 2 by describing two ways to produce a
system of simulation particles according to some given distribution function. In
section 3 we determine how many particles are crossing the simulation boundary
and how to put the particles into the simulation box. ql‘his includes a discussion
of how to choose the velocities of the injected particles randomly to produce the



probability distribution we want in the bulk of the box. We then briefly consider
injecting a beam with a time and/or spatial variation in section 4. We finish with
section 5 with a couple of cautions with respect to the boundary conditions on the
particles and electromagnetic fields.

2. Throwing the Dice - the Probability Distribution Function.

In the next two subsections we will consider the general problem of throwing ran-
dom numbers to obtein a set of particles distributed according to some given distri-
bution fuuction. We need this to create the particles as they cross the boundary -
as well as when the initial particles are put in the simulation box. The first method
maps a uniform dice into a more complex distribution using an analytic formula.
The second approach considered uses a monte carlo method where throws of the
dice are kept or tossed out according to a rule.

2.1. Analytic.

One important distribution function used in most simulations represents a group
of particles in thermal equilibrium with some thermal velocity viperm. In suitable
units this can be written (in two dimensional cartesian coordinates),

P(vlivv) ~ ezp(—(v: + v:)/vlzherm)dvzde (1)

or in cylindrical coordinates,

P(via) ~ ve"p(—vz/vlzhcrm)dvdo' (2) .

where v is the particle velocity and 6 is the angular coordinate.

Most computers have a random number function that will throw a pseudo-
random number with uniform probability between the limits 0.0 and 1.0. Lets
denote this function by rand(). As an example will construct an analytic formula
to map this uniform distribution into a gaussian distribution.

Consider a variahle ¢ bounded in the range 0 < ¢ < 1. If we choose values for
¢ with uniform probability within this range, (¢ = rand9), then the probability of
landing in some range of values d¢ wide is simply d¢ and the probability of having
a value less than ¢ is ¢.

Next, consider another variable v that is bounded in some range 0 < v < Yynasx.
The two variables are related by a single valued function f such that each point
in ¢ is mapped to cne and only one point in v and the order of the points are

eserved,
Pt v=f(s). (3)

This is shown schematically in figure 5. By drawing several equal width intervals
on the ¢ axis and mapping them onto the v axis using the graph in figure 5, one can
see that points equally spaced on the ¢ axis will be more densely on the v axis near
v = 0. More quantitatively, the probability of any point being between 0 and v on
the v axis ,given equation 3, must equal the probability of landing between 0 and ¢
on the ¢ axis. Since the ¢ values are all chosen with equal weight, this probability is
¢, or in terms of v, f~(v), where the -1 denotes the inverse function. The density
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Figure 5. Example of an analytic function used to map a distribution function from
one prcbability space to another. (see section 2.1).

function P(v) is simply the derivative of this quantity, so the probability of landing
a point in some range dv can be written,

P(v) dv = 9%%("—) dv. (4)

Returning to the gaussian distribution, we can let

v=f(¢) = v-log(1-7¢), (5)

or . .
¢ =f7"(v) =1 - exp(—v7). (6)
The probability of being in some range of values dv is then , by equation 4,

P(v) dv = 2vexp(—v?) dv. (7)

This equation has the form of equation 2. The velocity vector can point randomly
in any direction, to the angular variable is equally probable in the range 0 to 2.
To set up a set of particlee according to the gaussian distribution we can set,

vz = vsin(0), (8)
v, = vcos(),
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Figure 6. Graph used to produce the distribution function f(v) using numerical
monte-carlo method (section 2.2). .

where,

v = UthermV/ — log(1 — rand()), (9)
6 = 27 rand().

For an arbitrary distribution function P(v) we can integrate equation 4 to
obtain ¢ = f~1(v) and then invert to obtain the mapping function. As we have
just seen, the gaussian distribution turns out tc be easy to generate in cylindrical
coordinates. If we try to generate a gaussian in three dimensions, for example,
using these methods directly, the transformation function f~! will contain error
functions and the like which are hard to invert in order to obtain f(v). The solution
to this problem is to throw two out of the three coordinates, say z and y with the
cylindrical formula, equation 8. We can then use equation § again to throw two
more coordinates, one of which is thrown away while the other is used for z. If one

is simply interested in a one dimensional gaussian, just throw away the coordinate
not needed.

2.2. Numeric - Monte Carlo.

Often the distribution function we want is too complex to integrate the equations
in section 2.1 analytically. In this case we can resort to 2 more general method that
will work for almost any distribution function. In thic method we will be lossing
the dice and either keeping the results as our answer or throwing out the toss and
redoing it until the toss fits certaia rules that we arrange. As an example we can
generate the distribution in equation 2. The firat step in this process is to represent
the function graphiceliy in a box of some finite size. This is done in figure 6, where
the high velocity tai! of the distribation is being ignored (v¢nerm = 1.0).
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Figure 7. Simulation box with injected particles.

We can split the graph up into many vertical bins, one of that is shown in the
figure 6. If we randomly choose a value of v within the graph (between 0 and vynq»
the chance of it being in a particular bin is dv/vy,,z. Throwing another number
representing the vertical position on the graph ( between 0 and f,n,:) the fraction
of points that will hit under the curve is f(v)/fmaz. Thus by throwing two random

numbers for each point and keeping only points that fall under the curve we fill -
each bin with an average of

v)dv

Nbl'n(v) = (I(—)') Ninrown = f(”)vakeph (10)
Ymazfmaz

where Nyepe is the number of points that are saved. The probability o’ being

in a bin is then f(v). This means that if we randomly throw points onto the

graph keeping the first one that hits under the curve f(v) results in generating the

distribution we want. This method has the advantage of being simple to implement
and have working on a computer in little time.

3. Smoothly Injecting The Particles

In this section we will discuss how to inject a beam of particles into the left hand
side of the simulation box as used to create the soliton in figures 3 and 4. This
is shown diagrammatically in figure 7 to establish the notation for the rest of the
pap.r. Outside the box the particles ars assumed to in thermal equilibrium with
some thermal velocity viperm 8nd moving with some drift velocity vpeam. The
distribution function can be written as a gaussian ,offset in velocity,

f(v) ~ exp(—(ve — Vbeam)® - ": ~ 03)/Virerm))- (11)



3.1 How Often?

We can relate the average time between injections to the drift velocity and injection
density. If a particle has velocity v it will travel vdt in one tirne step. The boundary
will have a rectangle of size Ay by vdt full of particles sweep across in one time
step(see Figure 8).
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Figure 8. Particles with velocity v; in the shaded area are swept across the boundary
in one time step.

Thus the number of particles in this region is the particle density f(v) d%v
(assuming a constant injection density along the y direction) times the area Ay vdt,
where f(v) is the distribution function for the injected particles, or,

Ay vdt f(v) d?v. (12)
Integrating over the entire velocity space, the total charge crossing the boundary

is ther,
Q=pAydt<vz>. (13)

where,

<ve>= [ ve f(v) d?v. (14)

For our injected beamn < v; > can be calculated analytically, giving,

<vg D= % (u-'—:/‘% exp (:—;f—::’:i) + Ypeam (1 + erf (;‘:”T':'lm))) . (15)



If the charge on a single simulation particle is g,pecics then we find the number
of simulation particles crossing the boundary per time step,

dt <
N=pAyt v,>’ (16)

Qapecies
or eqﬁivalently, the average time between injecting two particles,

Qepecies

dtinin.y = -—22PECIED 17
inject pAy( v > ( )

3.2 Where?

As far as the injection algorithm is concerned any particle code can be viewed as
a series of black boxes,

e Calculate Fields and Potentials (Forcas on particles).

e Push particles with Forces, Calculate Charges.

o Inject Particles.
These steps are repeated over and over again, once for each time step. Each cycle
steps a time dt, the nth step beginning at time ¢t = (n — 1)dt.

To perform particle injection in a smooth manner we wish to decouple the
injection process as much as possible from the size of the time step. To do this
we inject the particles uniformly in time separated by time dt;n;..¢- So that we
inject the mth particle at time t;nject = Mmdtinjece. The time between particle
injections may be a fraction of a time step dt or many time steps. Since these two
characteristic times are not necessarily multiples of each other the time when a
each particle is injected will lie somewhere in the middle of a time step. We can
move the particle into the box for this time period, dtmove = t — tinject- 1f many
particles are injected in one time step this will spread them out evenly in space.

To isolate the simulation problem from effects of the boundary conditions most
calculations will be set up so that very little is happening at the boundaries of the
box, that is no steep density gradients, large fields, etc. are allowed. The time step
is usually small enough so that the particles travel only a small distence into the
box. It is vsually a good approximation to ignore forces on the particle for this
fractional part of a time step and simply move them into the box by setting;

Tinject = dtmouqv, and
Yinject = Ay rand(). (18)

This formula could be changed to inject relativistic particles by using the momen-
ium. One could also be completely consistent and move the injecied particles with
the same particle pusher used in the second step above.



3.3 Distribution Function.

From equation 12 we can see that we have to pick the x velocities according
to the probability formula,

I("l) ~ Vg exp(—(v, - ”hlm)zlvt’hcrm)' (19)
This formula is not easy to generate analytically and the techniques of section 2.2 .

are used to produce this distribution. For a full three dimensional velocity space

!'.Illxe other two directions are a simple non-offset gauvasian considered in section 2.1.
hus

vy = vparsin(0),
Vs = Vparcos(f), 20)

where,

# = 2x rand(),
Ypar = v/ — log(1 — rand()). (21)

4, Nonuniform Densities.

Generalizing this injection scheme to nonuniform density profiles both in space and

time are relatively stiaightforward. We will quickly consider injecting a shaped
beam and a pulsed injection.

4.1 A Shaped Beam.

To produce a uniform siirmlation across the side of the simulation box the y position
was chosen randomly with equal probability of entering anywhere. To change this
profile we can choose values for the coordinate in the y direction with one of the
methods of section 2. For example if we wanted a beam whose density is zero at
the top and bottom edges like,

P(Y) = Pmazsin(yr/Ay". (22)
Let v = Ay y/7 and therefore, from equation 4,
Q—.M = E_i!_'lg}l (23\
Ay 2 ' ”
or, integrating,

Constant — cos(v)
T (24),

¢=f""v) =



and
1 - cos(Ay y/7)
¢ = ) )

(25).

We can then choose y according to,

y= %—y- cos™}(1 — 2rand()). (26)

where rand() is the uniform generator mentioned earlier.

The average density p used in equation 17 for the time between injections
tinject becomes

2
P = —Pmaz: (27)
n

4.2 Pulses.

Time variations in the injection parameters can be accomplished in several
ways. If the time step is small enough and the variations in the injection velocity
or density is slow enough to be resolved one can simply change the parameter as a
function of time at each tiine step and use the new dt;njcc: in equation 17 to inject
the next set of particles.

If on the other hand we would like to inject a fast changing density profile, for
instance, we can change the time a particle is injected to 2 nonlinear function of
time. If we would like tc have one pulse of the shape,

p(t) = Pmaz sin?(tm/Ty), (28) -
where T is the length of the pulse, we can let
tinject = T'(M dtinject), (29)
where
T-(t) = t—_&;(%t) : (30)
In general for arbitrary T'(t), the density injected will be
o) =0 241, (31)

Note for T'(t) = t then p(t) = p.

5. Boundary Conditlons

Except for the process of injection itself the boundary conditions are not signif-
icantly differently from a particle code without injection. There are a couple of
points worth noting in the following two subsections.



5.1 Fields

If we are simulating a shock structure and transforming into the frame of
reference of the shock we have to be careful of the boundary conditions on the
fields. In the frame of reference of the upstream particles we have some magnetic
field Bupstreara- Since the particles have zero velocity in this frame, they feel no
electromagnetic force. Transforming to the frame of reference of the shock one has
to be aware of how the fields transform with changes of reference frame. That is,
if the shock i_g moving with velocity v,pock in the upstream frame , an electric field

component Eupstream = Vshock X ﬁupm,,m will be present in the simulation frame
upstream of the shock and at the boundaries, resulting again in zero net force on
the particles. Neglecting this "flux conservation boundary condition will result in

an electromagnetic disturbance moving in from the boundary ir a fairly obvious
way.

5.2 Particles

In figures 3 and 4 we showed the phase space for a subcritical perpendicular mag-
netic solitor., where both electrons and ions are injected simultaneously. The drift
speed of the electrons is less than the electron thermal speed but much greater
than the ion thermal speed. The right hand boundary can chen be described as

¢ Let all ions leave the box.
o Let all electrone leave the box.
¢ Inject a few electrons moving to the left.

The electrons are injected with equation 19. This process is the same discussed
earllier ercept that the sign of v is different and we are injecting the backward going
tail.

Statistically the nuinber of electrons crossing the boundary during any partic-
ular time step will fluctuate Letween time steps causing a corresponding fluctuation
in the charge imbalance at the boundary. This often can create havoc with the
code. To essentially guarantee charge neutrality at the boundary we can move the
ions first, note how many ions leave the system, then move the electrons. When
we move the electrons, if an electron crosses the boundary we let it leave if and
only if there is a positive charge imbalance at the boundary. Since the thermal is
much higuer for the electrons, many more electrons cross the boundary in each time
step. Once enough electrons leave to assure charge neutrality at the boundary the
rest are injected according to the distribution, equation 31. This virtually assures

neutrality except in the case of large fluctuations in the number density which will
be rare.
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