LA-UR -83-1633 ’ - ¥300L85--/

Los Alsmos Nstions! Laboratory I8 operatee by the University of Californe for Me Unied States Depariment of Energy unger contract W-7408.ENG. 3€

LA-UR--83-1633

TITLE PLASMA SIMULATION AND FUSION CALCULAT: N DEG3 014165

E]

AUTHOR(S) B. L. Buzbee

SUBMITTED TO NATO Advanced Research Workshop on High-Speed Computation
Julich, Germany
June 20-22, 1983

DISCLAIMER J)
Thix report was preparcd us an account of work sponsored by an ugency ol the United States "".o ‘ m

Ciovernment. Neither the Unitcd States Government nor any sgency theren(, nor any of their
employees. makes any warranty, cxpress or implied, or wsaumes any legal liability or responsi-
bility for the accuracy, completeness, of usefulneas ol any informution, apparatus, product, o
process dischied, or representa that ita use would not infringe privately owned rights. Refer-
ence herein tu any coecific commercial product, process, or service by trade name, trademark,
nanufacturer, or utherwise doen not necessarlly constitute or imply its endorsement, recom-
mendation, or favoring by the United Siates GGovernment or any agency thereof. The views
and omniuns of authors eapressed herein do not necossarily state or reflect those of the \
United Stater Government or any ugency thereof.) }\ ‘0
« i

Sy acvepianee of this ari'cie 1he pudinhar recognizes tha the cenae e .
U8 Gevernmaeni retaing g nonesci .
e pubighad ftorm of this CONLDUIIOA. ©F to 0'om Others to W0 80 fov US OM"\M|.:U.::::|:"."' el 10 publiah orteproguce

The Los Alsmas Nationa! Laborgtory requents that Ine publishar igently Mis BrIcis a8 work Periermed unde’ the avipieos ot ihe U R Depenimen: ol Ene
1) 1'.

LosA '
LOS AlBIMOS Lezaamos NationalLaborator

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

PLASMA SIMULATION AND FUSION CALCULATION

B. L. Butbeer

Computing Division
Los Alamos Nationsl Laboratory
Los Alamoe, New Mexico

ABSTRACT

Particle-in-cell {P1C) models are widely used in fusion studies associated
with energy research. They are also used in certain fluid dynamical studies.
Paraliel computation is relevant to them because

1. PIC models are not amenable to a lot of vectorization~-about 509 of the
total computation can be vectorized in the average model,

2. the volume of data processed by PIC models typically necessitates use of
secondary storage with an attendant requirement for high-speed 1/0; and

3. PIC models exist todaﬂ whose implementation requires a computer 10 to
100 times faster than the Cray-1.

This paper discusses garnllel formulation of PIC models for master/slave archi-
tectures and ring architectures. Because interprocessor communication can be
a decisive factor in the overall efficiency of a parallel system, we show how to
divide these models into large granules that can be executed in parallel with
relatively little peed for communication. We also report measurements of
8 e;dup obtained from experiments on the UNIVAC 1100/84 and the Denelcor

PARTICLE-IN-CELL MODELS

We discuss particle-in-cell (PIC) models in the context of studying the behavior of plasmas
in the presence of force fields (7. We assume a two-dimensional region that has been diecre
tized with N cells per side for a totai of N° cells in the region. The discretization is illustratcd
in Fig. 1. The approach is to randomly distribute particles over the two-dimensional region
and then study their movement as a function of time and forces scting on them. Typically,
the average number of particles per cell will be 0O(N) and particle information includes position,
velocity, charge, etc. Thus, the tota] particle information will be O(N*). In its simplest form,
the plasma simulation proceeds as {ollows:

1. “Integrate” over particles to obtain a charge distribution at cell centers (a cell center is
denoted by X" in Fig. 1).
9. Solve a Poisson equation for the potential at cell centers.

3. Interpolate the potential onto particles for a small interval of time A¢; i.e., apply force to
the particles for s small time interval, recomputing their positions, velocities, etc.

oThis work was supported in part by the Applied Mathematical Sciences Program, Oflice
of Basic Energy Sciences of the US Department of Energy and the Air Force Office of
Scientific Resanrch.

Fig. 1. Relationship of region, mesh, and particles.

Step 2 requires O(/N?) operations. Steps 1 and 3 require O(N?) operations and thus dominate the
overall computational process. Generally, the particle information is stored in a large array
and there is no correlation between particle position in that array and particle position in the
rectangle. Thus, Step 1 is a many-to-one mapping of random elements from the list onto a cell
center. Conversely, Step 3 is a one-to-many mapping of information at the cell center onto
random elements of the particle list. These mappings from and to random elements in a list
generally preclude efficient vector implementation. ﬂ eneral, only about 50% of the total
operations in a PIC model are subject to eflicient vector implementation. Of course, to achieve
the highest level of performance from s vector processor, one ne :ds to vectorize 909 or more
of the tutal work in & computation [0). Furthei, some PIC simu!ations used within the fusion
energy research cominunity require a computer that is about 100 times faster than the Cray-1
to successfully model phenomena of interest kai]. This need for higher performance combined
with difficulties in implementing PIC efficiently on vector processors motivates our interest in
asynchrouous parallel (MIMD) formulations of them.

PIC ON A MASTER /SLAVE CONFIGURATION

Assum¢ that we have an MIMD processor with 2 master/slave control schema as illus-
trated in Fig. 2. In practice a single processor may execute the function of both the master
and one of the slaves, but for purposes of discussion we assume that they are distinct. The key
to achieving eflicient parallel implementation of PIC on a master/slave configuration is to
divide the particles equally among the slaves and to keep all particle-related inf>rmation within
the slaves. Assuming that the master has the total charge distribution in its memory, the com-
putational procedure is as follows:

Step 2B. Master solves potential equation and broadcasts potential (O(N?)) to each slave.
Step 3. Each slave applies the potential for At (moves its particless.
Step 1A, Each slave integrates over its particles to obtain thkeir contribrtion to total charge

distribution at cell centers. _
Step 1B. Each sluve ships its charge distribntion (O(N") to the master.
Step 2A. Master sums charge distribution from slaves.

Note that in this approach the ‘“particle pushing™ (0(A*)) portion of the computation is shared
equally among the slaves. The amount of comgutmon one by the mnaster is O(N®) and the
amount of interprocessor communication is O(A?). Further, the polential calculation is amen-
able to parall\] implementation {2], but because the particie pushing dominates the overall cal-
culation, we will not concern ourselves with parallel Broceuing the potential calculation.

The key to efficient parallel implementation of PIC on a master/slave configuration lies in
dividing particles equally among the slaves irrespective of particle position in the region. This
was not our first approach in atternpting to parallel process PIC. Rather, our initiai approachs

considered dividing the region into subregions and having a processor assigned to particles in
each of the subregions. Such an approach produces a number of complications. For example,
at the end of cach time step some particles will migrate to their neighboring subregion. Thus,
there must be an ‘‘exchange’’ of particles between processors at each time step. This exchange
will necessitate garbage collection within the particle list of a given processor and, should the
particles eventually concentrate in a small region, a single processor wi'l do most of the compu-
tation while the others sit idle. To rectify such a situation, the region must be resubdivided,
particles reallocated, etc. The computational cost of such processes 1s significant.

A similar phenomenon seems to occur in the parallel solution of elliptic equations. Again,
the natural approach is to subdivide the region and tc assign a processor to a subregion. It is
extremely difficult to do this in s fashion that will yield a net gain in computational efficiency
[1]. The point is that efficient implementation involves ‘cchniques that are somewhat counter-
intuitive,

Master

Slave Slave Slave Slave

Fig. 2. Master/slave communication geometry for four processors.

PARALLEL PROCESSING PIC ON A RING CONFIGURATION

PIC can olso be efliciently implemented on an MIMD machine with a ring
control/communication organization. For purposes of discussion we assume a four-element
ring with communication from left to right as indicated in Fig. 3. The key to success in this
environment is again to divide particles equally among the processors but, in addition, have

rocessors do a significant a . ount of redundant computation. Assuming that each processor
Eas the total charge distributi. o at cell centers in its memory, the computational process is as
follows:

Step 2. Each processor solves the potential equation.

Step 3. Each processor moves its particles.

Step 1A. Each processor inteqrates over its particles to obtain their contribution to the
total charge distribution.

Step 1B. For 1 = 1, 2, 3, 4: pass partial charge distribution to ueighbor; add the one
received to "‘accumulating charge distribution."

’/ P'l\\

- r—cm
P2 P4]

P3

Fig. 3. A four-element ring configuration.

ESTIMATING PERFORMANCE OF THE MASTER /SLAVE IMPLEMENTATION

The key issue in par-Vel processi’.g is speedup as a function of the number of processors
used. We define speedup =

- ezeculion {ime usin, one processor
ezeculion lime using p processors

To estimate performance of the master/slave formulation, we use a model of parallel computa-
tion introduced by Ware [8]. We normalize the execution time using one processor to unity.

Let
p = number of processors,
and
a = percent of parallel processable work.

Assume at any instant that either all p processors are operating or only one processor is operat-
ing; then

S, = pe
l-a)+ —
() p
Also
ds
T.Ll._.—p’—p '

Figure 4 shows the Ware model of speedup as a function of a for a 4-processor, an 8
processor, and a 16-processor system, respectively. The quadratic behavior of the derivative is
dramatic and results in low speedup for a less than 0.9. Consequently to achieve significant
ipeedup, we must have highly parallel algorithms. Therein lies the challenge in research in
parnllerprocasing. In 1970 Minsky Ltﬂ conjectured ihat average speedup in parallel processing
vould go like logp. Indeed, if only 80% or 70 of the total computation is implemented in
pirallel, then he will be correct. However, for the master/slave inplementation of PIC, recall
ttat we are parallel processing the O(N) component of the calculation and sequentially process-
inj the O(N°) component. Thus, we have the possibility of achieving relativay high eﬂ!i)ciency,
at least on systems with a few processors.

+— 16 PROCESSORS

SPEEDUP

L— 3 PROCESSORS

4 PROCESSORS

N UV C

| 1 T T

oe 07 o8 09 !

FRACTION OF WORK IN PARALLEL

Fig. 4. Ware's model of speedup for 4, 8, and 16 processors.

Those who have experience with vector processors will note a striking sim:ilarity between
the Ware curves and models of vector performance where the abscissa is the percent of total
vectorizable computation. This is because the assumption of the Ware model implies a two-
state machine, that is, in one state only one processor works and in the other state all p pro-
cessors work. A vector processor can also be viewed as a two-state machine. In one state it is
a relatively slow general purpose machine, and in the other state it is capable of high perfor-
mance on vector operations. Thus, Fig. 4 also gives the performance of vector processors
where p is the relative performance of the vector and scalar states.

To estimate S, for PIC ia the master/slave environment, let
T w= Total Operation Count

-CIMIOlN + C”M + C.KM
1

Poisson =~ Mesh Particle
Solve Transmissiop “Push”

and

o - particlz push operalions
T

1
+ Ci\logN + Cyp
C,K

= 1 it CllogN + Cap << Coi

where K = average number of particles/cell.

IL 've further assume that each of the processors has performance comparable t: the Cray-1,
then

€, = 0.300 us/cell,
C; m= 0075 us/cell, and
C, = 5.500 us/particle.

Assume
N = K = 128,
then
P a Sp
4 000 " 38
8 009 75
16 000 71390

COMPUTATIONAL EXPERIMENTS

Because of the p? behavior in the slope of S, as a approaches 1, the only way to be sure of
how well a parallel implementation will work is to implement it and measure specdup experi-
mentally. In other words, small perturbations in seemin‘i',ly insignificant areas of the computa-
tion may, in fact, lead to large perturbations in overall performance. Thus, to confirm our
analysis, we have implemented variants of the master/slave confizuration of PIC on two paral-
lel processing devices—the UNIVAC 1100/84 and the Denelcor Heterogeneous Element Proces-
sor (HEP).

The)UNTVAC 1100/84 is a commerciall{ available system whose typical use is to process
four independent job streams. With the help of UNIVAC personnel, and a bit of ingenuity,
Los Alamos personnel have devised ways to control all four processors in this machine and use
them to process a single PIC model [5]. Speedup measurements as a function of p are given in
Table 1. These results compare favorably with our estimates and reflect the fact that indeed
we have successfully parallel processed a large percentage of the total computation.

g Master/Slave Implementatjon
Equipment P Speedup
UNIVAC 1100/84 2 1.80
3 2.43
4 3.04

M‘—

Recently, a PIC model was implemented cn HEP. HEP is designed to do task switching
on each instruction. The architecture of a single processor is reminiscent of the CDC-6000
series Peripheral Processor System. There is nn eigEt-slot barrel with a task assigned to each
of the s ots, and the processor examines the slots sequentially, executing a single instruction
fromn eight concurrent processes. Most instructions in the machine require about eight cycles
for execution. Thus, loosely speaking, a single processor is annlogous to sn eight-processor
parallel system. Los Alamos personnel have implemented a PIC model on HE%’, rst as a
single-process and then as a multiple-process calculation. The ratio of the associated execution
time is given in Table 1. Again regecting the fact that a large percentage of the total computa-
tion is being done in parall(ﬁ.

CONCLUSION

High-performance computer systems involving several vector processors that can operate
in para?lol have already been snnounced [3]. Reslizing the highest levels of performance of a
arallel system requires that a large ﬂercentuge of the total computation be done in parallel.
rn the case of PIC models we were able to realize high prrallelization, and thus good perfor-
mance, by partitioning particles among proceasors. Consequently, parallel implementation of
“off the shelf"* PIC models is likely to be easier than their implementation on a vector proces-
sor.

ACKNOWLEDGMENTS

| am endebted to Ingrid Bucher, Paul Frederickson, Robert Hiromoto, and Jim Moore, all
of the Los Alamos National Lahoratory, for the experimental results discuased herein.

[1]

2]

(3]
l4]

[5]

6]
7]

(8]
6]

REFERENCES

D. Boley ‘‘Vectorization of Some Block Relaxation Techniques, Some Numerical Experi-
ments,”” Proccedings of the 1078 LASL Workshop on Vector and Parallel Processors.
Los Alamos National Laboratory report LA-7491-C (1978).

B. L. Buzbee, “A Fast Poisson Solver Amenable to Parallel Implementation.” IEEFE
Trans. on Computers, Vol. C-22, No. 8 pp. 783-796 (August 1973).

Datamation, *'Seymour Leaves Cray,” pp. 52-59 (January 1980).

D. Forslund, ‘‘Large Scale Simulation Requirements for Inertial Fusion,” presented at the
conference on High Speeu Computing, Gleneden Becch, Oregon, 1981.

R. Hiromoto, "“Results of Paraliel Processing a Large Scientific Problem on a Commer-
cially Available Multiple-Processor Computer System,” Los Alamos National Laboratory
report LA-UR-82-862 (1982).

M. Minsky, “Form and Content in Computer Science,” ACM Lecture, JACM 17, pp. 197-
215, 1970.

R. L. Morse, C. W. Nielson, “One-, Two-, and Three-Dimrensional Numerical Simulation
of Two Beam Plasmas,” Phys. Rev. Letters 23, 1087 (1969).

W. Ware, “The Ultimate Computer,”’ [EEE Spect, pp. 88-91 (March, 1973).
W. J. Worlton, “A Philosophy of Supercomputing,” Computerworld, (October 1981).

