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ABSTRACT 

This report presents some considerations on the radial 
rms emittance of linear accelerator beams. In the first part 
we show that, in case of acceleration, a constant normalized 
mis emittance results if we describe each beam particle by 
the same linear differential equation. The second part shows 
how the rms emittance varies if the beam particles have a 
distribution in betatron frequency of approximately the nom¬ 
inal value. 

I. CONSERVATION OF RMS EMITTANCE 

Let us consider a beam where the particle motion in one direction does not 

couple to other directions. It then follows from Liouville's theorem that the 

normalized total emittance for each degree of freedom is a constant of time. 

In this report we discuss the normalized rms emittance. 

For an on-axis beam, let the rms emittance be defined by 

E = x x - xx' fi) 
rms x x xx , (\) 

where the bar denotes the average over the different particles in one bunch. 

We assume the same equation of motion for all particles in the beam: 

x " + P(s)x' + Q(s)x = 0 (2) 

The quantity s is the axial coordinate. 



If P(s) E 0 we have Hill's equation. In the case of acceleration, we 

assume P(s) to be given by 

where 3 and y are the relativistic factors of the synchronous particle. 

Every solution of Eq. (2) now can be represented by a linear transforma¬ 

tion of the initial values (Appendix A ) : 

X \ / a\ i / uv 3 / i i ^ n i ,^> \ /a(s) b(s) \ / x o \ 

7 = Va'(s) b'(s)Ax'/ ' 0' 

The transformation is the same for all possible s o l u t i o n s . Inserting Eq. (4 

into Eq. ( 1 ) , we qet 

E (s) = A(s) E (0) , (5) 
rms ' mis 

where A(s) = a(s)b'(s) - b(s)a'(s) is the determinant of the transformation 

matrix in Eq. (4). Therefore, the rms emittance change depends only linearly 

on the determinant A(s). 

In case of no acceleration, P(s) = 0, the determinant equals 1 for all s 

(Appendix B ) . Therefore the rms emittance is constant. 

If acceleration is included and P(s) is given by Eq. (3), the determinant 

is a function of s (Appendix B): 

,, , 0) (6) 

The rms emittance then is damped by 1/(3 Y ) . The normalized rms emittance de¬ 

fined by 

C = Vs Erms (7) 



is therefore constant: 

We should remark that, for having constant normalized rms emittance, a 

linear equation of motion is needed. Only the total normalized emittance stays 

constant in nonlinear cases, if the equation of motion could be derived from a 

Hamiltonian function. Generally, the corresponding normalized rms emittance will 

not be constant anymore. 

Therefore, constant normalized rms emittance is a consequence of a linear 

differential equation and not of Liouville's theorem. In other words, Liou-

villa's theorem could apply to the normalized rms emittance only in case of 

linear forces. 

II. RMS EMITTANCE GROWTH CAUSED BY PARTICLES WITH DIFFERENT PHASE ADVANCE 

A. Introduction 

In this section we discuss the influence of particles having different 

phase advance per cell on the rms emittance. We try to understand the contri¬ 

bution this effect makes on the rms emittance growth seen in multiparticle sim¬ 

ulations at the beginning of drift-tube linacs (DTL). 

Our assumptions for the following calculations are 

• only one dimension is considered, no coupling to other directions of 

motion; 

• the particle trajectories are described in smooth approximation with 

linear space charge and constant velocity; 

• the averaged phase advance and phase spread do not change; and 

• the distribution of particles as a function of the phase advance is 

uncorrelated to the particles' initial condition. 

* R. A. Jameson, Los Alamos National Laboratory AT-Division, furnished this 
information. 



B. Def inition 

The rms emittance is defined by 

where the bar denotes the average over different, particles in one buncn. The 

prime denotes the derivative of x with respect to the cell number. Usually 

x is defined by 

where N is the number of particles per bunch. Because we assume now a differ¬ 

ent phase advance for different particles, we replace Eq. (10) by 

where 

(12) 

is the average over all particles with the same phase advance o. Ihn quantity 

n is the number of particles having the phase advance a, and f(o) is the par¬ 

ticles' distribution as a function of phase advance and f(o) is normalized 

to 1. 

/f(~)d- = 1 . (13) 

~he integrals' integration range in Eqs. (11) and (13) depends on the proper¬ 

ties of f(a). Because we have replaced Eq. (10) by Eq. (11), we also have 

tc redefine the rms emittance by 

-2 2 ,2 , n 2 - - • x - (xx ) 



C. Emittance 

The single-particle motion in smooth approximation with linear space 

charge is described by the equation of a simple harmonic oscillator: 

c 2x. = 0 
dn 

'Here n = s/L, where L is the cell length. For an Alvarez (FODO), we have 

L = 26A with the wavelength \ and the axial particle velocity 6-

We express the solution of Eq. (15) by a linear transformation of the 

initial conditions x.~ and x-n': 

/x, \ / cos an sin an \ /x, n 

. x-'/ \-asin an cos an/ \x i Q' 

Inserting Eq. (16) into Eq. (14) we could express the rms emittance as a^tunc-

ifln of the initial beam parameters. Therefore we calculate x , x ' , and 
—S / ^ 
(xx1) by using Eqs. (11), (12), and (16). For example, we have for x : 

2/1 r 2 2 
x = / — I x.n(a) cos an f(a) da ?<» 

/

n 

1 r° 

a 1 = 1 

2 I 7T .1. xi0^°^ xi0(a) J-sin an cos an f(cr)da (17) 

/I r° f , , .12 1 . 2 -. . , + I rT A. lxi0(a)J T Sln an f(a)da • / a 1=1 L J a 



Because we assumed no correlation between the initial conditions and f(o), 

we have for each a: 

; .=] 

n .^, 
a i-i 

x ( o ) x ' (•-) = xo*o 
18) 

2 1 I? ,2 T 
" N >, xi0 " XO 

Therefore, we get for x 

Similarly, we calculate for x 1' and xx' 

x = x T - ? x x Q i 4 ^ 

(19) 

(20) 

xx' 

The integrals I •, 

,2 , , _ 

. ,Ig are listed in Table I. For the rms emittance we get 

B x' ) + f x • x' 
B\xo / L xo xo 

(22) 

2E xox' + 2F x-



-j( n) = J cos an f (a)da 

LIST 

TABLE I 

OF INTEGRALS 

n = 

l 

0 
Values at 

n = 

1 
7 

cosan s inan f( o)da 

p 

1 ->( n) = Ji s i n on f ( o ) d o 
a 

I<i(n) = Jcr s i n an f ( a ) d a 

I c ( n ) = Jo s i n a n c o s a n f ( a ) d a 

I 6 ( n ) = J s i n an f ( o ) d o 

0 

0 

7a-2 

= hh - h 

2l2lb 

D = 4 I 2 I 5 + i / + I6 

= I 2 I 4 - I 5 I 6 

F = 

1 

0 

0 

0 

0 

0 

a is defined: a = Janf(a)da 



The factors A,...,F are combinations of the integrals I,,...,I,. They are 

listed in Table I. Properties of the integrals are discussed in Appendix C. 

Before we go into a detailed study of Eq. (22), we show some simple properties. 

(a) If f(a) is a 6-function, f(o) = <S( o - a ) . 

In that case, we get 

> • ( 2 3 ; 

If the particles all have the same tune a and their motion 

is described by Eq. (15), the rms emittance is constant. This result 

agrees with the results discussed in Sec. I. 

(b) The behavior of E at n equals infinity. 

If we assume f(o) to be nonzero and integrable on the inter¬ 

val a <_ o <_ b with a,b > 0, we cculd apply the theorem of Riemann-

Lebesgue to the integrals I,,...,I,- (see also Appendix C ) . 

We then get for the emittance at infinity, 

rW 

-T -? (24) 

x Q x^ 

where a are moments defined by 

b 

o n f(a)da . (25) 

The result does not depend on terms including XQXQ'. Therefore t (°°) 

does not depend on the initial correlation of x Q and x Q'. 



We now study the rms emittance change for 0 <_ n < °°. The initial particle 

distribution in x, x' phase space is assumed to be elliptic ana symmetric in 

x and x'. The initial emittance should be described by an upright ellipse 

(x x ' = 0) and should be matched to the averaged value o" of the phase advance-

We then have 

V 
;26) 

and 

(27) 

For the distribution f(o) we assume a step function: 

b-a , 0 < a < a < b 
(28) 

0 elsewhere 

Mean value a and variance s then are given by 

a ~-{a f(o) da = ^ , :29a! 

= f(a-o)Zf(a) da = ^j-^ (29b) 

With these assumptions, it is possible to calculate the integrals analytically. 

The integrals are listed in Appendix C. 

If n. tends to infinity, we get 

7 -
a -3s' • ) • 

(30) 



? — 
or if 3s << a 

"rms' 
E 

1 + I ̂  
rms(O) 

(31! 
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Fiq. 1. rms-emittance growth 

0:" multiparticle simulations 

•:= analytic calculations with f(a) given 

S = 5" in all case; 

• J 7 in 

- 50" 

= 3b" 

'63 nA 

For several cases we calculated the rms-emittance growth, using f as given by 

Eq. (28). 

Figure 1 shows the re¬ 

sults compared to multiparti-

cle simulations (see footnote, 

page 3 ) . In Fig. 1b and lc, 

comparison is possible only 

up to cell 10 because the 

average phase advance "a 

strongly changes after cell 

10. The oscillatory behavior 

is reproduced by the analytic 

calculations. A different 

distribution f(o) might 

change only slightly the 

analytic values. The strong 

increase of the multiparticle 

simulations' normalized rms 

emittance has its source in 

the equipartitioning. The 

initial longitudinal rms 

emittance was chosen a factor 

5 larger than the initial 

transverse rms emittance. 

The equipartitioning could 

not be described within our 

one-dimensional description. 

Therefore the analytic calcu¬ 

lated rms emittance does not 

increase so strongly. 

(c) 

= 301 

= 16° 

by Eq. (28). 
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APPENDIX A 

SOLUTIONS OF SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS IN MATRIX FORMULATION 

We prove that every solution of a second-order linear differential equa¬ 

tion could be represented by 

(x\ /a(s) b[s)Wxo\ 

Vx7 -\a'(s) b'(s)AxA/ ' 

where x and x ' are the initial values. 

Let us assume that we have two linear independent solutions y, and y?. 

The initial values are given by y 1 Q, y ^ 1 , y 2 Q, y2Q'. 

Define two new solutions a(s), b(s) by 

(A-2) 
• i • 

^ 2 0 

11 



where A is given by 

4 = y10 y20 ' y20 y10 • 

The initial values of a and b are then 

a(0) = 1 , a' (0) = 0 , 
(A-4) 

b(0) = 0 , b'(0) = 1 . 

Therefore we can express every solution x by 

x = xQa(s) + x^b(s) . (A-5) 

Eq. (A-'i) then follows. 

The uniqueness of the transfer matrix, Eq. (A-l), follows for all solu¬ 

tions because the initial conditions, Eq. (A-4), determine unique solutions 

a( s) and b(s). 

APPENDIX B 

PROPERTIES OF THE TRANSFER MATRIX 

We now discuss the s dependence of the transformation matrix's determinant 

in Eq. (A-l). 

A(s) = a(s)b'(s) - b(s)a'(s) . 

12 



The quantities a,b are solutions of the corresponding second-order differential 

equation: 

x1' + P(s)x' + Q(s)x = 0 . (B-2) 

It therefore follows for the derivative dA(s)/ds, 

A'(s) = -P(s)A(s) , (S-3) 

Integration gives 

A(s) = C-e' J^ b ; u b , (B-4) 

with the initial value following from Eq. (B-l), 

MO) = 1 . (B-5) 

If P(s) = 0, then A(s) does not depend on s and we have A(s) = 1. 

For P(s) given by Eq. (3), it follows 

6 S ( S ) Y S ( S ) . (B-6) 

13 



APPENDIX C 

PROPERTIES AND EVALUATION OF THE INTEGRALS I p . . . , ^ 

In this appendix we discuss some properties of the integrals and related 

expressions given in Table I. 

Applyinq addition theorems, one gets 

, _ 1 . 

l2 = 2 f\ sin 

I 3 = 1 :<_2 - \ f \ cos(2ar,)f(o)dc , 

I4 = \ a2 - \ J"
2 cos(2m)f(c)do , 

I = I [z sin(2r-,)f(a)da , 

J6 = \ ' \ /'cos(2cr')f(o)do , 

where a,,a ~ are explained in Eq. (25). 

Some relations between the integrals: 

- 1 d_ T 
" " 2 dn 1 

2 a2 + 4 T T 
dn 

14 



Values at n = 0 and n = °°: 

For n = 0, results are shown in Table I . 

For n = °°, we apply the theorem of Riemann-Lebesgue. ' 

If f(a) is integrable in the finite interval [a,b], a,b > 0, then 

b 

sin atdt = 0 . 
1 im / 

a 

Applying this theorem, we get 

I2(») = I5(») = o , 

I 3 H = a_2 , 

L e t f ( o ) , a and cr2 be d e f i n e d by E q s . ( 2 8 ) and ( 2 9 a , b ) . We t hen c a l c u l a t e 

The resulting expressions for A,...,F are shown in Table I. 

Let f (a), "a a 

for the integrals: 

I, 
/T7 s 

— (S1(2bn) - ST(2an)) 
2/T7-S ; 

where the lower and upper bound a,b are given by 

a = a -— s 

b = a + - s — s 

15 



The quantity Si(x) is the sine-integral: 

Si(x) =j ^ - ± dt . 

0 

_j n cos (2an) - r- cos(2bn) 

/T7-s 
Si(2bn) - Si(2an)) 

where n o is given by 

x-2 -2 , 2 0 -3s 

I. = -5- a9 + —^ • s ^ cos(2an) 
^ ^ ^ 4n /T7-s 

{-- U { - cos(/T7 sn) cos(2an) 
4n \ 

sin{/T? sn)-sin(2on) j 

J_ 
4n 

i [ /T7 s + -^—J 
2 \ v/T7s/ 

sin(/T7 sr>) cos(2on) 

2a cos(/T? sn) sin(2an) 

16 



where a? is given by: 

- 2 . 2 
= o + s 

4 n /rcr s 
cos(2-n) 

+ j- I - cos(/T7 sn) cos(2an) sin(/T7 sn) sin(2an) 

1 L 
6 2 ( 

>/T? sn) cos(2~n) 
A Z sn 
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