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partiole eguatlions {e presented. Sunerical results are ohtained for
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Lo z2ero in X vovariant vontext generalizes resules previously obtasined
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INTRODUCT [ON
C. EBreak-up Scarrering . . - .+« o . o 0 0. s 0w ... .5
l. Form of Equatidons . . - . - « « « « < < o« o+ .o oo 9 In the studv of three-particle scattering thicory, many subtleties
2. Numericil Results . . L e e e e e e e e 50 of quantum mevchanics require careful atrencion for calculations. Through
the under.tanding of the three-particlie scattering provlem, one can galn
IV, CONCLESTONS .o & - . o o &« v v v v s v v e a v e o e e e 53
ins{phe {nto the foundations of quantum mechanics as a predicrive sclence.
REFERENCES + 4 = + » =« = v s e v m ey e e e e e e e e 54 The three-pate cle problem probes the properties of twe-particle sostems,

as well as <erves as a guide to the understanding of N-particle problems.
A deseri..ton aof cercain physical systems often described as three-
particle bound states {for laf »we barvons, che triton, etc.} could
extend hearetical (nsight Inte some of the fundamental symmetrlea of
natury

The formulat lon of a consistent three-body quantum mechanics was
actiseved (n a nov -reiacivistic concext by Fadduev! with cansiderable
rathematfcal rigor. Faddeev defined o specific channel decomposition of
the svstem through which physical sbrervables could he extracted, within
a4 Hamiltonlan scattering theory. Thus, riven the Faddeev equations,
with specifle two-hodv scattering Input, vne in principle obtaine self
consistent threv=hody scattering amplitudea.

As bumerical and amalvtic rechaiques developed to study the
three-particle problem, the aiffervnces hetween twe and three particle
dynami¢s becime me o apparent.  Through an anafvsisa of the configuration
Apas e .t ons for the wave faactiva, H. P, Noves' aoted that long
range offects occu” fn the three-bodv svstem even if all pairwise inter-

actions are short range. This effect, called by Noyes “the eternal
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triangle," changes che interactien between a given pair, {f a thire
(intaracting) perticle 1s brought into the system anywhere, regardless
of the range of the forces involved. By examining the scal’ag behavior
of the Hamiltonian eigenstates in the cuse of reaonantly interacti<g
particles, Efimovi+" determined that the actual nusmker N of three body
bound state solut{ons can berome large as the magnitude of the scarter—
ing length ]n| for a pair hecomes large relative to the scale of

forcea Toi

8= 1 ey (lalir ) .y

for Ey << llrg. low thkivee-body binding energy. This effec: would
renult in a logarithmic growcth in the number of three-body bound
states as the rvo-body pairwise binding energy decreases to zera.
Efinmov® subsecquently demonstrated that effectively there is a long
range (1/RZ) patential which is responslble fnr the effect. The range
of the bound states {s large compared to L These results are con-
slotent with the erernal triangle effect discussed by Noyes, withir
the contaxc af the kinematics. These ¢ffects appear in the low
energy limita, and thus should be conslsiently reproduced in a
covariant formalism. A rigorcus treatment of this cffect will be
presented within the model to be examined in Section [11-A,

The development of a relativistically covariant formsalism
requires that additlcnal sets of constraints be gatisfied, as well
88 introducing _he complicated analviic structure of relativistic
kinematica inco the theory. An important question Ls the choice of

the covariant propagator vhich reduces carrectly to the non-relativistic

-3-

>itvation. Often ralculatfons i:ave been done using the Blankenbecler-

3 Braynhnu7 uged a propagator which involved a

3wpar prescriprien.
linz2ar difference in the four-momentum varisbles, such thar che form

of the equations satisfy certain cluatering properties. A propagator

sinfiar o that or Brayshaw {s used (n the development of Section If-A.

What will be pre.nted is a general formulacion of a consiscent
retativistic quantum mechanlcs, along with an Investigarion into the
properties of a particular model involving separable, zero-range two-
body Interacrions. The formulation of the relativistic problem in
terms similar to those presented by Faddevv will be the topic of
Se_tions Il1-A and [I-B. Sectlon II1-C will present the particular
development of the model being explored. The nuserical and analvtical

results of the madel will be examined ‘n Section ITI,
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FURMLLAIINa 0F BASTC EQUAIIUNS

Se wmieTdl keve s poent of Govariant Three-Pdrticac Equatioms

. The sy-Ted to be considered =fll constst o1 turee distinguishabie

parti. tes specified b5 momentao variaoles and a mass shell condition,

Iie articles =211 be iapeled bv Latin inIi «- a,b,c,... which will
tad- a values from ] tu 3. hour-vectors widl pe denoted with arrows

and turee-vectors will be underacriited

.
= b
P RN

T «% ean? , wiere B-8=2%"-a-13 (2.1
R Al

1. lovariant States
The non-inceracting elgenstates, which can be represented as a4
dircer product of slngle particle states, will be dencred

Kivgs kalas 5;;3) and will sati=fy the following candiciuas:

3
F ok ; Ye ) s Dk
B ks Koyt ey '(ah_fl‘ﬂ g bei ke

3
; . s y - . T
Chyegs batgr Byrglhyoe 08 Bygfpgh # 4t 30 .Dlt-’(fa““a" LI Y

d3k1d3kad3k]
1= €) £ 5 Pipeqs ke pi ke (Rjegi e e ,i Byesl

where ¢ (k ,m_) 3 = ¢ {6 the mass shell condition.
a~a'’a a

The physical problem will be examinea In terms of boundary states
which satisfy tne asympreotic condltions, Without loss of gemerality in
the formalism, it will be assumed that only une bound state can exist
for eachi of the pairs. The results will be eastly genecralizable to
include tne eatire disc¢rete finite spectrum of =2ach of the subsystems
tn the case this condiction does not hold. The possible asymprotic
situations consist of bouad palrs with a tuaird non-interacting parcicle,
or thr-e non-intevacting partlcles. These boundary state= will be

representec as follows:

P .
ab gk ey ))
a

———
ek, c,
I
- ,
- 55 fogr (kyegi tgegs kyr P
—_———

wherz Ya represents the bound state of che two particles other chan a;

these particles will be labeled a- and a+. The enctgy of the bound
p 2 4’1
state is - = J kP S+ .0, where kp 1& the three-momentum of the
a ~a a ~a

pair state. The total four-womentum in the state “’n) is represented

by F( ) The houndary states sarisfy the following condit ions:
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L]
228 K3tal gt it bagfagh Kagtagds g @ n 8 (o, k)
(o %03 Byeald s kpne i v, 0 .u" o 2.3
e, 67 -k o 83 +k )w {k Puy)
a ~a -ag uau ~a% =a- a‘vat’ -a- a
vhere "‘a(kaa-‘ k im ) is the pair bound-state covariant wave functlon.

The fully interacting scattering states will be representable in

terms of these boundary states. The fully interacring scarea will be

eigenstates of the rtotal four-momentum aperator:

MON R .. 3
B v, 00108 Kagtaet Kaama0) Fiay

- B s
Fates Tt tapgpt Kantant *y0t30F g

(e}, .
as''a 'kaf)lua' a‘kﬂz *a"" (2.4

(), =
FI”a LN (!‘an Ya "= P

3 3
where P Z L and Paﬁ = ("aL + ‘.-a:'!‘au + "'.-;:)'

The differencc between the interacting four-momentum and the non-int.racting

four-momentum will define a quanrity which decermines the nagure nf the
interactions
.

"I a - 3 - 1 . - 1]
¥ Fop - Py = (BP PR (RN

for eigenstates of three mowmentum. In the three-particle center of mopmentus

pystem (3-CM5), the stater take on the following form.

PO e s e ke, (00 = e e e ke, (MU0

FI''o NS EAR-F o M3 b T g RS SRR o L5 o U
(2.5

o) lE), - )
b EAR TS S (W Y, 1} e, + ey Y,

|4
" v—'a"n" va"—‘a ' ‘un»

In the case of only pairvise interactions tha term H' can be decomposed

into pairwise functions a8 followa:

n'-Zn'- AR

ey Xl

where
(P +dle ik R O L N R A RUNDT

(2.6)
2. Properties of Resolvants

Te study the rvelatlonshi; 5 batween the eipenscates, vye will be

mada of Lhe rasolvants of the four-momentum operactors defined as

follows:

IS RS W -fn]]"] L -w
Ga(ﬁ) : [Q . (fa - B lL‘,""a(l‘ -0 2.1
IR CIEES ) S S

which will be well defined equations for ilm Q° # 6. o the three-

particle CMS, rhese can be expressed:
o -1.3 3
G“(Z.O) - [P!ll - Z] (?;m) R (23" (P

o . ~113 3 .
6,020 = [Fp +0] - 2700 p) k@R (2.8)

o -1,1 R L3
Gp (2,00 = [y, - 2] 1Ry T RAD B




An pfeviousis penl loned, ~{0ce all svstens of covarfant States ary threes

Aometitus cheeis aten . e folloving holds

Using these relations, rhe fully interacting ei1genstaces which satlsfy

the Asyzplalic houndary conditions an be expressed forzally as follaws:

N I LN TC IR SN U
{2.9a)
T RO SR FT A + 1
w a . . A ra
whery
AN S N N N
LR AN A - R (7} [ Hr {2.9b)
a a d ba a

r L=t M .-:(N.Q)/

and momentum arguments §n the sraces have been suppressed.  These

equations can he recexpressed in che form

A0 X )
Py TE Ry s ki ke (MO
= Mml AR - ind it (ks K gc]:}).w.(n‘,
o
C ST MM s s ks Karad (D)
| PERITGT TRty Tuhar Tl gyl
() .
\ s s - . . . P
AP (k‘ﬁﬂ- vn( kﬂLhﬂ)} }l:( !ﬁ)RF(iﬂ *ta in} Tt Kaia’ 'a( ka .a),
-
T PR S P R R P S
ta ta wat= ! at Tata' Yat Gatia

(2.10

-G -

Te 15 wdviaeageons Lo vxamine sume propeceles of che resolvants,

siace these wiil have direce relevance to the properties (f the system.

Suppafe tinl onlv o o« dalr luterdcts, and the chicrd particle 4, acts

wate a4 Yspeetater.” Une's phvsical {ntoitiva would suspect that

this particular three-body system should belave |ust as thougn the

SPOCEALOr werd: nof present, and that in the machematleal axpressions

describing the process the parameters {nvolving Llie Apectator should

not alter the two-particle ob:

resolvancs ig

Ry = R e P, 4k

survables.  The behavior of any of the

a.

agml ool
R S

whare Py 18 the fouy-momentunm operator of the (a +, a -) pair

subsystém,  [n the case belng descrihed (which will he called

“clustering) the mumeacum by wlll remale unchanged.  The cencer

of mamentum systym foT the pair (2, -(M5) will be described by the

four-vector Ql“'_cns with com
.
- cms
and chus the yesolvants com b

2,
G0 gt © 6

where én operates only in the two-particle space. Fxamining this

panent s

= (7 be Lk

a a s,

e denored

@ Y= (9" -2
d ap

AT
L.

(2.11)

(2.12)

(2-13)

cxpresgion Lt appears thar the form of this resolvant |s identical ro

what would appear in a purely twi-particle space,

Since the scatteting
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eigenstates of the full system depend chrough the resvlvent upon the
boundary states, chen 1if tae boundary states sacisfy chese ¢ luscar
conditions 8o will the full scatrering states.

The operators ;Fl and ;N'l are self adjoint if chey are to be
physical observables. This properry reflects itself in the following

properties of tha resplvants (Hilbert's identiry):
Fl(Zl) - R(Zz) (@ - ) RZD R (LY

(2.14)
) - 2383 (@ -
O(2)s Eigy) = G2y Bypyd = {2y - Z B2 DR (267 (B~ Py )

Othar properties alao follow directly from the definitilon:

R*(2) = R(z*) star denotes complex conjugate
Re(Z) = Re(2) ~ Rol2) H'RLLE) = Rg(2) - R (Z) H'Ry(2)
(2.15)

Rp(2) = R (2) - .<,~z)[¥ O u;)]na(z)
R (Z) = Ry(2) - Ro(Z) HIR_(Z)

These relacions will be useful in degermtning amplicudes for the
various physical pracesses.
3. Amplitudes and Channel Decomposition
The covariant probability amplitude for scattering from asymproric
initial to final stites ia given by
@ O @Dy -

(2.16)
4 ({')f p (_) + -
(o, B p 107 (b ppug™ (b log @)

- 11 -
where Greek indiees a, 7, ... will take op vilues yrom - , aml
mMomeatum acguments of the atates have been <. pre 0L wwerd, ':“ refoers
€ the four-momentum of tine parcioalar svstem examioced.  The < agtering
vperater will be related to the transition operitor {n the iollowing wav
St v 120G - B A, ) Con
5 () )

The components of the scattering operdtor between boundary stotes can

be obtained fram fq. (2.18) as
PO L o L PSRN ) BF4
snB(Q) v, (Q)l3 {Q) {2.18)
Frem Fq. (2.15), the Following fdenciries can be shown

11 - R?lz)zbsabul‘:]h * Ra(nzbzahul:‘j -

{2.19)
' '
[1 - R (D) H ][1 + Rn(l)}l] -1
USing thoRa iduntitley with Eqs. (2.9b) ic follows thnt
. - v . _— - T L] . \‘
EAES RS RN nF(z:H;asm’ublo'1 Byt
(2.20)
Ty . . - . - APRVAY
oz, [ERERY; [Retz)) - Re(z )] Ml oo
The averlap amplitude can now be expressed:
L] : =y 17 r N
a Z,) * 711ve.z!/+
(2.21)

Syl - . D . LB
Vo tiRgtz Reli ) lPp, I“ll-.;- L)

where the operator I"n M l"Nl - The phvsical averlap amplitudes are:




o (=) o PR & 2 ¢ .
? o T R Ry e
{z.22)

-] 0 (:]
2-14(1’ - P Pn“PFl - Pﬁlicp. P

o
(n))(' ()

Thus, the c¢avariant probability amplitude Llnto boundary states can be

written as follows:

) (- i r NN G P
('u (|=')|v'3 (o))’ v (Pﬁ) g (P )+

(2.23)
2-98% (P - P(o)) (# (P )lA a8 (P )|O (P(n)))

where the ampiitude (&,|A,pl¢, represests the transicion amplitude,
and is expreaned:

-4 (+ % oy, ° - {+) e _ p% :PO
”(?a’“n"a’l“ua’“‘,’l's' oy " “'s’“"’u ¥lle,: Py

or

(-] 3 el (+) -+ -+
oy By = Bipyd (9, (P )AL (IR ] (2.24)
(4) 2 .|~ . = -
RV EDIE ) - By - Byl G

The scates [':')(;')) will shortly be showm to be covariantly ortho-
normal, and thus the amplitudes involving Ayg Tepresent the phywical
transition amplitudes.

To develop equatioms for the amplitudes, cansider the Lippman—

Schwinger equation for the operator T {p the 3-CMS:

£ - 1) = 0 - W R 0% p - WD (2.2%
g-0

- 13 -

rhe channel decomposition proposed by Faddeev! for a system with only

patrwise interaccions,

3
K -:n'
&= a

fitvolves the definition of T as:

3
T¢,0 = ¥ T (2°.0)
a,bal h

These components sarisfy the sets of equarions
3 > ' ' Oy iy
87 (P - Q) Tab Q)= an“_ - “sRF(Q )"b
which can be reexpressed using Eq. (2.15) as:
3 1 a 3 -
S0 DT, @ =60 - ua @ Y e - o @
3
Operators £, can be defined for the subsystems whici satisfy
3 -+ v [ D,
- @, @ = - W M
) ' o,,3 >
-H - HEROCQ | L (e Qe (@
These equations can be rewritten
' © 3 T r - 0. - 3 -
1+ @16 -1, @ = u)[s,, - 8ycq 24,8 -0r, @)

1 c..3 g 1
11+ 0 R Q157 (F- D (@ = i)

{2.28)

(2.79)

{2.30)

(2.31)
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and the equations for T can be cast into a form dependent enly on the

quancity t,

ac cb

—+ + - + - +
T @ = 6e @ - ¢ o, @ E 8_v @

+ -
T@ - Y, T, @

a,b

Using Eqm, (2.25) and (2.15), the fully interaccing resolvant can

be expressed in terms of the operator T

o, 3 - ]
R0 = By(2%) - B(@”) &7 (7 - 9 TR QD)

(2.13a)
- - 4 -
or GFI(Q) = Gy (@ ~ Gy (@) TCQ) Gyep (@
$imilarly, the “channel" resolvant can be expressed in tert of t
R @«Q° «® °y 87 (p QR (@
Q) = Ry(@7) - R (@) 67 (P - Qe (QIR,(Q
(2.33b)
-+ - - - -
at 6, (Q = G () - Gy (£ Q) B
The relatior:. (2.14) imply rondirions on the operators T‘b through
E4. (2.29). Using the easily verifiable relations (for Q = 0}
o 3 > LI
By (@ )5;5 (- BT, @ = w078
(2.30)

S 1 0
;r,c(o)é ® - @r, Q%) = 0l R ()

the form of the Hilbert ldentity ln relatlon to the nperators TFb

becones

- 15 -

3 3
T, 2,00 - 2 @IT (7,0 @.3%

3 3
A7y - ZI)E Tact (210167 (PIR (Z))IR (Z,)6 (g)z T (25,00 -
et c
Likewise
Sere 2,0 - @ (2,0 Q@.18)
~Ttatte <t .
- - 3 3
(Z - Z))e (2,008 (E)Rt(zl)ﬁu(lz)ﬁ (E)KE(ZZ.Q)
B. Physical Obuervabies
1. Interacting Eigens :ates
Once the sipgularity stTucture of the operators 18 determined, the
relationship of the operators with the physical observables of the system
can be extracted., Examiniug Bg. (2.32) the expressions for Tnb can be
diagramsatically reprecented:

Tah = 6.bt. -§ :taschNIT:h
c

The structure of the fully (three-parcicle} connected plece wili be

examined.
V@ 2T @ - 6 @ (2.3
A formal relationsniy between speracters and observables can be

established using Eq. (2.10) exrt ssed in the form

8 e (M 1) [ 62 - w5 anlis i m (.38}
0 A 4 [u ] oi M
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T N - . g- 0. - s e lis .
¥ "c‘\c Ei“RF(Lc+L~c")[Pc fr_ '-c‘j]€C"c+t~-c.
{2.39)
The resclvant can he erpressed. using Eq. (2.33a):
- - 2:3
er‘l = R:(i,) HL(Z) ! (E)Tab(z'?)RZ(Z) (2.40)

ah
Using hese expressions, the fully (nteracting elgenstate which asvaprori-

cally represents three non-interacting parricles can direetlv be represented

D e oI g
20ty ke ke 000) = [ o Ry i @.an

2 “"(13)755(“ . h._g)]iov: (s_cltl; Katqs 1§3L3).(u'9,;.
ab

To determine formal expressions f.r fully ipteracring eigenstates
vhich asymptotically represent a haund pafr vith a third parcicle, use will

be made of rhe full resolvant expressec in terms ot the "channel" resclvants
1 .
“T(Z) - RD(T.) + E [Ra(I.) - Ru(l)] - RD(Z)E & ff)“ab(z,g)ﬂo(l) 2.42)
a ab

The accions of che resolvants RD and "a on tha hoyndary stetes can he

determiined

i : 0 - ] : =5
;111.: R, +oy m[rc me T nflese v et 2.4

R : ° _¢ - .
'1:_: U S 1-1)[11C I 1n]|¢'c. ot

- 6ac|¢c: .t Eu:>

Use will be made ui the operator Kah formally defined by

W @6 @ =k e, ) €2.45)

Wicth these relatiops, che fully interacting aigensrates are

BN S s ik L 1 A Wi (gt i A ey A ek omes  aimn

17 -
{ . :
B8t oty = [1 - Ha Rydey ey ¢ 0 (2.4%)
' 53(?)&( (0, + 1 o]l ke oy A
Eﬂ Dlaplp ¥ fup * D 1%0 lgytys by (k)

Thus the operaters which rransform the boundary states into fully inter-

acting elgsnssares can be expressed
(x), = - _ o \ ©
U (Pry) =1 Lo Su (Pl ‘“’-’i(o))z TatrlPloy * 2907 (qy)
ab

() P 2.47
Uy ey el k) (2.47)

-1 - P . P,
1 '1::: Cyrley + & 10k + 1) }: I R R )
a

Next, formal expressions vill be developed for operators which direcrly
yield physical amplitudes. These smplltudes wil) be extracted from operators

.Jq dafined by

B
+ R .

Gp @8y = 5 @ w, By o,y (2.48)
Expectation values of_‘ze between boundary slates contain information on
phyrical abservables through Edas. (2.10) and (2.16). The following formal
ref{afitiong will be made:

4 @i, DG, @ = 6y Bk o,
= 6, i, e, D {2.49)
= 6 (v, e, d

t.aing expressfons (2.40) and (2.42), the followlng sers of equations cen be

sh.wn valld
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FrERE) = B2 0w (2105 2, 008 02,

= Rtz {1+ [ﬁ - ao(zz)]e3(g)'nzz,g) - skmyrtz, 0

1
[ i s N1 § 3
[21~zz o€ x’], 042y

- N -
Ro@IRy(2;) + 3[R, (207, (2 = Ry(ZR.(2)] + Ry(zp)
a

Al

1
T, -z, R
2
ab

3 3
- ] SO (2,0 - Sk 2,0

1 1
% |55+ R (2.} (z,)
[z1 -z, B, (2 J} Bt
- RoZR )+ [k, (2R ) - Ry R (2] 4 Y k(7))
a ab

. P Iei
‘{[zl -, Ra<2‘z)]6 (BRy, (25400 = 87(E)K, (2,0

1
* [?_—zz' + RO(ZIJ]} Ry(Zy)

= Ry(Z)R,(Z,) +Z[na(zl)p'n(z2) - Ryt R (7))
a
1 3 1
+ 3 na(zl){[iI_—z; - na(zz)]a B ¥, (2,20 - 5B, (2.0
ab
R S
[z1 ot ‘%‘21’]}%‘22)

(2.50)
With these relations, by cleverly chooaing the 1imits on the parameters

Zl and 22' the amplitudes In Bq. {(2.23) ~r» be dererxined
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(] s . I (+) i . -
(gt Ueyeys kp%ps kyp ) F oy lale (ﬁ(p))“a-*:‘m’w- %20 20° X130 307 P ey

== k N 4 (3 : s
Zb (gtys pops Xyl (P(p))]!‘lnclo' *20%20° %30°30)
- )
vheve

a > -
E ka - P(F) - Z k'bo free dpymptotic acates
a b

@

: : . P (H3 . P
s Katas byt Py I (Fiay) 19, 11 ey v 9,00 o0

- - : . (+
Z C(Ermas dota Xgtalkay (Fegy) 197 Kyotnet #y(iioupo)

Zia-}(ﬂ)'*
a

«
kbo kbc breakup

+.Aere

. . P
(B Baeyi ¥ ke, 2 IALS

s
p . - - %
(Fio) b 08107 Rygt 08 %305 30" F ey
- . . P +
E <.a' !’aca' va“fa""a)m: !
b

.
b ("(c))l'fm‘m‘ L20°20° %30%30)
where

+ s - p
kn + k: - P(C) = Z iho coalescence
b
. P (+)
(da kaeat vallor, YAy (3(2)}|cb:i_(

. 4
bo bo’ Wb(hp'rubﬂ))

. e . + r
(2,0 Kptyi ¥ (Egue, ) sy (3(5))“‘;,‘ 5pChoi ¥pEppreupa))
* P >
where ¥ 4k =¥ =%

=P
0 + kbu elastic and rearrangement scattering

(2.51)

B ad
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2. Primary Singularicies of the Ampiitudes

The singularity structure of thase amplitudes remains to be examined.
Consider first the operartor r-. From expression (2.30), che behavior of

ta in the vicinity of a bound pair can be detesmined

3 .
(Bymys Epegs Ryesl 67O (Z0 Iy g, 0 opeaqi kygtag)

g3 P’ . . e = K'cs P,
- _j‘d3l.d k- <I~‘1‘1' |~‘1':2' Q-]c][li.li_‘- ‘-‘;cn' 'a“-‘a ‘U-))

Eafus ‘; + cl:- -z (2.52a)

. . ke T LA [] . .
(har s v, 0 ) [BLlEyge 05 Tagengs Ksgtag)

+ (term uon-singylar for Z + ¢+ €}

Using the expressions (i.3), this can be wrictten

lim {z - ‘ap T ‘H.D)

. . 3 . .
" (ke Yptgh kyegl8 DI @0 Ky pe 0 pgeags Kypeag )
(2.52%)

3 3
" a0l et g+ by g - R )

legg ¥ g - ey F eyt ew 0k s uente ke G, ¥ o)

- legp ¥ g9 ¥ 39)]

where £, 0™ 2 2 2
Ua l‘,‘.q-n"'_‘.-nl + oy Ik .| +u

Ya ~a0

A normslization condition can be derermined for the bound state usve
functione. By conaidering the expression

e lim

2.+ ¥ Z 4
ag

a0 ; (Zl et :“-)(z2 -

el a0~ Fugw)

* Clyeps Kytpi kyea RSB (2,08 (2))

x “0“2343(!)‘.“1-9)'9(12”'.‘10‘105 K30%20¢ Xa0°30) (2.53a)
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and recalling the relacien (2.36), che following normalization conditiom

can be determined

d:’kl"' l L PR 1 "
T nu‘G (Eﬂ' + El- - Ea-H) - !a-o)*z(&a"&l—; “-)"-('.‘;-r‘.‘.'-‘ “l) -1
{2.530)
whare ':‘.‘a - + uE

To axsmine the singularity structure of "ab' the squaticn estisfied by

W

a1 C43 be decermined using ¥q. (2.32) to be

U@ « Bt @0 De® - Y 8k Doy @V, @ a5k
€

Ar car be eeen by the driving term, the singularities in L md ty will
oceur to akl orders of trerscion of Eq. €2.54). TItese singulari:iss of "nb
which appear in all orders of iteration srs called “primary singularities.'
These singularitiss ara dus cnly to the factors from l:a and L Using

®q. (2.52b) with thy definicions (2.49), expreasions obtained for ths

operators !nb and H.h will be free of primary singularities

1in @-e,

=€)
0 ub0
z-’:bonm 0210

K€% Ko€od Woiq|W, (Z,0) ]k, €05 Koot o5 KooCo
x nfyF Katas %Wy (200 Eigo0i Kagtugs Eagta0) (2.558)
== (B (kegi KoEy i ke ) (P" D)ll(t)(: LN M T NICNIR o 2 SIS
0F (T3 Kpai Ko g} o {Peoy s DJIKGy (op + cupoa D 181 by pey oi vy (okyprenyo
Wbyt Y [0 % €20 % €30 Chg = Cupn)

o
where El"'l:z'.'l:]'P( - :bo+"ub°

o)

gt
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lim

(Z~-v -¢,)
U,
Z-H:ai-cuntlo a 4

*{Raer Ygmps yr W 2Dk 061 05 Rageyi Kapeap)® - Eyp ~ Sup®)
- [cl te ey - ‘u.] ¥alkogk 5w
R ORI S P P2 N (S A P I & NS )
b Zafab PolThgCu ) 1o (55 + Eup @10yt lg 060t ¥ Eno e

= *;(Eb+03h—o; ub)[gl0 + 0 + £30 ~ Spo ~ :ubo] {2.55b)

fo
T :a+cuﬂ-:b+zub

The discrete rpectrun (Hj) of P;'.[ will correspond to poles in the full
resolvant P.P(HJ)A Thus, the solutions to the homogenesus equation will

correspond to the discrete eigeénvalues of P;I

Gy () = -0 Do, @ (2.56)

The projeccor acato thu discrete speccrum of $FI. will ba denotec ’dlscrete'

To ead tha diacusaion of the fully-iutéracting syatem, it ahould be
noted thut the relations (2.47) or (2.50) can be used to axanina om shell
orthogonality and completeness relations. The aperator expreseions obrained

are

NOIWE]

*
5 Tug™ e s g (2.57)

a
where | 15 rhe unit opurator of boundary state |Ou)
o

3

(&), (O
2 LA 1 Fatoccete
a=p

3. Cross Sections
A Elnal connectlou will be made wirh the ampiituics examipnud asd the
standard cross section. The probability flux into a subset of fimsl states

can be written
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A(probabiliey flux) = gag (2.58)
wvhere & 18 the lncoaing probability flux per unic ared, and Ac ia the

apparent cross sactional area, This axprassion can be rewritten

(A LAYLAL
o = z S—’g“—zz—(ﬁ—fs—‘z ] (2.59)
‘zb‘!f 11

VWith the given state normalirsation and covariant flux, the standard co-

varianct differencial cross gection is

3 4

do = ﬁl-—d ks an's (F - B lag, ) (2.60)
19 S . 2 _ .t > . 1/2 °
el e [(‘u)o i(Z)o) (iu\e “u)n)("(z)b i:(z)»)]

+here k(j)n is tha four of the i ing subsystem j.

- HMinimal Three-Parricle Hodel

Given the mmalytic structure of the matrix elements of ths operator t’,
one can 1o principal use Eq. (2.54) to determine a set of equaticne {or the
matrix elements of the operastocrs H-b, from vhich physical crservablas can
be extracted. The aquatious for rnb aad Wnb will be recalled for the
present discussion

Tab(a) - 5nht.(6) - 2 E“tl(ﬁ)tﬁu(aﬁcb(a)
¢ (2.61)

LN G ST W () T ) -Z Byt @0y Bw &

[
The input from ihe two-particle subsystems ism through the scatteriag
nperators Ta which oecur in tho two-particle space, and from which tha

operators T are obtained as follows

.
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(esy7 Bt Kty e @ ke, 03 Xogeaqs Kagtag)

3
llD‘ (E. - E.u’(!ﬂ‘&: -k-l £ |1 (E £ ”..-HJ l+n' kl-ﬂzl-n)

L, 43
€agb (e, = R VT (kTR K s8-8 (2.62)

The operators 1l are the acatrering operators which would occur in a purely
two-particle theory. The resolvant will huve matrix elements

. . 1 . .
{ryegs Katai Byey IO @ Iigae, 05 kyeagi Kgeag) (263

& (ko + + - 3 -
ko * %20 * Ko ﬂ Lk

+c3-Q

Gte

These equations will be exswined in the thres-particle ceater of
momentum system. In the 3-OMS the paramecer 3u111 have the on-shell
behavior indicated

Y g = r 10,00 - 3(0)

The behavior of the matrix elements of the operator H:;) ic the free (non-

interacting) particle basis wich this parametrization is as follows:

"E""-"‘kboyﬁ”okb-o' (M, 0)) - -a‘h

“‘)( K jk

Karrka 1 Xayglagi M = €0 ".‘-n))Tlgﬂ(EM.'fb-l-'fbﬂﬁ-o‘ Al TR )

Ab“a + [ + s.b - ¥ - 10)

4 i d k' (2.6%)
fj ¢! c; E atc s (-|+~l- LN (M-e. —!‘n)) '

g '
. 6(5_“_71-_5 + k)

¢+ L;“_ + ;; - H - {0 ct (..c~s~acikb0‘b+okb-o' n, “))

(+)
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where &12 =k

2

. ]
€, & lh + 52[ + oy etc., for 1, 2, 3 cyclic.

1. Eyquatioms for Separable Two-Body Input
Equation (2.64) represents a genersl integral relationship of the
elements of H.b to the elements of T The equation invelvar an incegration
over three components of momentum, which could preduce nmumerical complica—
tiona. To slmplify the numerical problem, it will be assumed that the two—

body {nput can be written in a separeble form:
B (k ke JgACKL K )
oM, -8

Ine garameter Ga will be written in terms of the two-particle on-shell

(+)(k k Ikl X s a!) -

KLk (2.65)

invariant resC energy
al - 6& ( (@ - E ) (F(ﬂ) - Ia) 2o, (2.66)

From Eq. (2.64) ic direccly follows thet tbe elemsnts of 'nb can be written

in terms of & reduced amplituda G.b

("a~ﬂ~a-lkho'§bro'5h-n‘ (LS, (2.67)

E (-a —a=" 2 !b(!'lﬂ' Eb— }
: —ﬂ%_ B s 0 T HGay

The equaction satisfied by the reduced smplitudes ia

3 B -n+u’kn—o)3b(k'b+ kI:--)
absb(: +Eb+ab-l{-10)

iial:(!:a“_"btl; S
(2.68)
3 138 (ks

[ souh 5t
-E 6."11:‘/.0:'5‘_(5_ +er el M- 100D, (9 ) -clho’ M
a ac "4 af

©
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wvhere e 2
lc

2

- "2
I'¥a+ !el +n.c

It is nov advantageous to parform an angular momentum decompsmition

to reduce the number of iIntegration varigbles. The reduced gaplitudes can

be written in terms of angular momeatum compenents
6lb(ltul!"h\); w - Z 2\"_‘:1 P.I(ia : Ebo)ajb(knlkbo; L) (z.69)
d
Using some of the properties of the funccions PJ(H
‘Llrl.(:)rdmdc el 14

.. 4 A
Py, - k) T D Tk TRy
.

2.30%

The equation for the angular somentim

s of the reduced amplitudes

becosas:

w:h(knlkbn; W =

i I’l or . %m0 Lt Uaripol L Cup) |
ab ab < (5 e, ¥ ey T ‘.b“m

L3 240 i plka iy 0
c _C
E [ -———L—D o .71
T 1 g Sl ol beligokls £,00,00,)
. (€, 0[F, oL ¥ ere(yg) - ¥ - 10]

If the kernels Rﬁb are defined

h’[‘a T ity - N~ 0]

1 R(k £, }g, (k zn(.)
l",,ﬂt.kb:.ﬂ)-] ¢ i B tey ety Egp?Prllay

(2.72a)
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then Eq. (2.71) can be expressed

"Jh(k flygs ¥ = -278_ R ab“" s B+

_z,z “f axy - we atel T

{2.72p)

J
m( LARCATNRY

2. Hodel Assusptians
The spacific wodel for the two-body laput to be explored raduces in

the non-relativistic limit to the case iv vhizb the pair can interacr at
zers raoge only through zero relacive angular momentum (s-waves). The

covariant model can be represented Ly amplitudes T given by
'n"'_le G )s]

atba- -;-h-u- (P(D) :u)) - 2.3
a, ) - of-lg s, + 10[2

The variable (qll represents the palr cester-of-mase momentum md the

(+) (k

parametexr 2, teduces to the inverse scacsering lengch:

s .

—_—

m
Pa- a¥

z ['a - “a-)z][.a Ty .-)z]
= 4a
a

lg‘(nl)!
1/2
71,2
[" eyt w) ]["n “ '-)z]

u'(ua)-sign (l”'l-l_-ll) kvz

[y
— -J.qu scattering length,
Q s, < ]
v, k4 |-.’ - R U(»_}) =

( 1 s, >0 (2.74)
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The wodel has twe-body bound state poles when the fivariaar on-shell patr
Test energy 4 12 equal to the rest mass. of the “ound state uae The
coupling constants 8, are not arbicrary, since restricrions are placed
upon them by Eq. (2.62) through Eq. (2-36), This restrictiop can be

expressed

*
(+) - - (+) -3 _T
'a (3&En-|5n+n!'a-o' F(u) - -an)_ [ta (l-‘n+|fn-l!u+n¥-a-a' l’(a) }fao)]

3 3
d k! d7k'
- l’"_l_:‘ e LB -t J‘(" T 4 _*
2"'[ ‘;*L;_ n(‘-‘n+‘.‘a— l.‘a-l-.k.a—' P(o) kau)‘ k” + ka- ka+n Ka-o)

K : -k 2.7
3 (S kgt Foy - Fag) @
FPor ¢nis m>del, the only integration involved ie the two-particle phase

e la, o0
95'%a
r.— (2.76)

na(sa) = 4

From this, ir is essily derermined chat the functions required for Eq. (2.71}
have the form

ls,|? = a/zn?

{2.77y
/‘;9“’,)

a,lu) - \’—lgn(!‘ + 10)(?

— .
(23]
B (s)

Equations {2.72c. wil) be explored in this model for the case J = 0 in the

next chapter.
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CHAPTER III

RESULTS

To legin the investigation of chis model, the kimamatics of the
equations will be examined. Without sacrificing the forwal generaiity,
the case of three kinemarically and dynamically identical, but distin-
guishable, particles will be considered in whac follows. Wich the

idencification LA ] and v, =¥ for all a, the structure of equarions

(2.74) =implifies:

8
lgae)1? = 7 - o?
(3.1)

"2 2,3
@ (p)y = a(w) = sign(Za~w| - - n°[?

For this system, the dynsmic parameters of the model are y and M, which
represent the bound/virtual srate mass of the two-particle subsystems
and the three-particle center Ol mags energy, respectively, The dynam-
ical reglons are schematically reprzsented in Fig. II3-2, The line

M = 3o indicates the winimal kinemsric situation with which ro have
three asymptotically non-interscrtlug particles. The vertical line

w- _Zm indicates the kinematic threshold below which asymptotic two~
particle bound states way exist. The regions will be explored for which
the particle states m repicsent the lowest energy states, and for which
pair creation will nar occur.

A, Three-Particle Bound States

The first situation to be investigated will invelve the three

particles fuil* bound in a J = O state. The kinemaric region for bound
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§tatcs 1s below thruee-body acacraring threshold (M < Im) and bound
pair + gpecrarer threshold (M = p + m).

1. Form of Bound State Equatiows

The uiscrete sp:ctrum of the fully interacting system will corre-
spond ro eigenstates which satfsfy the humogenvous scattering equations.
The bound atate equations for the amplituda Ui;u for three equal masses
wil] reduce to three Identical equations. The kurnel Ri;o can be cal-

culared from Eq. (2.72a), and after a simple inregration becomes

Jm
ROk ks M) 3 ROk, ks 1) Riky,k 5 M)

s ‘Jz 2
L (kB + k)" O+ «© +

b b

log
Vo,
) +(ka-kb) o;ai»:b-n

3.2y

>

-M

k.

v
k
a

o

Thus, the relation for the reduced amplitudes (2.72b) can be expressed

as 2 tingle variable homogeneous {ntegral equation

an ) _
TPk i W0 F WO Mow)

o

m 2 v,
Wy lhs M) = _m.f 4K ke /u” R(k;k'; )
z
0 "[iJlmz--"k—l—sz-

e Ve 4 n? . s' =Ml . 2uet

where the : represents the nfgn of Zn - u. The analyric form of tais
e¢quation will be examined In the next subsection, and numerical seviu-

tions will he presented In the subsection following.

- TTH I

Bl -
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2. Marhemaricz] Constrainte and Predictions

The svlutions of Eq. (3.3) will censist of o discrere set or nea-

degenerate values -H!; tor a given two-body bound state mass .. wlter-

- natively, ene may ubtain a discrete set of fwo~bogdy bound sci.te masses
hlr} which produce & three-body bound state of wmass M There wiil be a

- maxipum value for the two-body bound stare masg u .. above which there
will be no three-body bound state solutlons (this value will be shown

to be finite). As has been mentioned, the minimum value for the mass

]

'min 1s determined by the threshold for elastic scattering u4m - Wt o,

vhich occurs at M ® v, + =,

Gy, (K)) = ot - m) = § /O - Wm0

(3.4}

- ‘,mz B s(k: 0)

The fcrm of the Egs. (2.3) allow al. parameters to be scaled rela-
tive to the finite mass m. In srudying the analyric form of the equa~
tiong, 1t is convenient to yse this scale freedom, along with the

symmetcy of Lhe equatlon, to define che followiag:

o2
Lk oM P P |
zsL o, RKIDoo, o« =
- afp (M) - lp . (M)
W) : T - “min
R Fa R P ) B

LA Hou) 2 Viz; M)

alu,)

(LT,
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Vn? f Vo -mm+w

hiz; ;1) z - > 0
atu () - u(u o) -

rate B) < Wy - anlel?n
B N g 1 TN )

» Eku dl-ﬁ—z V 0.9
ce' :

+r+7 +d 2 -H

finite for B ¢ 3

With thesc definfcions, Eq. (3.3) con he expressed

N « (M) . - - -
A Vizi M,A) =f dz' U{z,z'; MV(z'; M,A) - hiz; M)V(z; H,x )
T T
o (3.6)
The form (3.6) is pavcicularly useful, since the following relactlion is

seen to be valld

G, - x!)j

0

- x () R N
d2 ¥{(z; H,Xr)v(z; H,\B) =0 3.7}

This conditlon amounts (for non-degenerate sigenvalues) ¢o an orthogo-
nality condition for the functions V{z; I-(,\r). These functions can be

normalized vo satiafy the condition

x (H) . .
f dz V(i B D=3 B ) = 6

a

125 = 1,0..,8(H;  (3.8)

where N{M) 1g the number of three-bady bound rRtates of energy M.
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Since the system generates a depumerable set of orthogonal func—
tions, the parameters «f the equations can be exploted more readily than
might othervise hgve been the case. To ebrain relationships berween the
parameters, Lt 18 sdvantageous ¢~ defina functions which sum uver the
dynamical parameter Ar

)

A(z.z"; H) = E Viz; ﬁ,Ar)V(z': ﬁ.ll__)
=1

=z,

]
alz,z', By = E A (s B ¥ )
=1

- (3.9
o v R vt R
Tlz,2'; W) = - ru— C
r=l T
) - i () k(i) ) N
Tr US(M) = f dzf dz' U (z,z'; M)
0 2

These functions are easiiy related rhrough the Integral equation (3.6).

Using Eq. (3.8) and simple algeora, the following conditionals are

obtained.
N(H)
H(H) s% ™ ) + E xztﬁ)
r=1 “r
NeE)
A s L vid + 11 (3.10)
-l
LICH
Z 2 s e vidD
™1
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Since Tr UZ(W) ie slways finite within the kinematic rcgion bafog
#tudiad, these equaticns set finite bounds on the parameters, axcept
for N(M}. In addftian, for the specific probleu at hand, the following

is true.

>0 {3.11)

Th#s implies that the bound state trajecrories .\t(ﬁ) arc monotonically
increasing, anl have one end point aloug the line » = 0, and the other
along the three-body contlnuun threshold ¥ = 3, which are the boundaries
of the kinematic region. To obtain an estimate Eor the number of bound
states, the eguation for W(M) will be exemined. Since A(z,z: B) 1o @

positive semi-definire quantiry, the following inequality holds:

. (M) - £ -
KM} -f dz Alz,z; W) af dz A(z,2; M)

0 0 {3.12)

for any £ < ».(i)

(me of the [oms for the expression A(=z,z; K) can be obtain<4 direcel:

from Eq. (3.6)

. L x (M) . .
Mz,2'; H) = f dz" U(z,z"; H)A(z',z"; H) -~ a(zr,z"; H)
0

n= W)
(3.13)

Az, zs -ﬁ') = .“.SP.L.{Q. — 0
h{z; H) 20
‘(he behavior of thia ¢xpresalon 1s particularly ioterescing uear

tha rest anergy of the three particles. A binding paramerer ¢ will be

defined ro examine rhis case:
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e=3Im-M , ¢z 3-M (J.14)

The bhehavior of “{z,z; M) for small z and ¢ -elatdve to unity (but

atherwise arbitrary) is domipated by the facter n{z; i)

L o [J3
SRRy S T ICE T ) ![\’4
.

For =mall ¢, the factor (M) -~ 4/3. 1{ one se:s the parameter I to be

small vompared to wnity, but arbitrary compared £o &, the cxpressions
(3.12) and (1.13) indicate a sciling behavior of the numbet of bound

states with the paramete: e:

(3.16)

) .
M| g B) log —=

W% x3 H) E+0 “ e

N2 .J{—C/.17; \IT; dx li:l}z-fi—lil . l?{ l
= AL
1]

1f houn: state solutfons exist, them tha function I¢f, %) does not
identically vanish as a functi-n of £ er M. Therefore, these equationd
have at leasr a logarithmic growth in the number o selurions as the

thiea-bedv confinuum threshold is approached

m
N(e) 2 {sloriy varying non-zerc function) = 1ag (E')
(3.1
€
as = —= 0

m
This result is determined by the non-relativistic kinematics, and is
conslatent wich the results obtained by Ef fwov? In Eq. (1.1). if one
relates the scatiering length to the two-bady binding uslng Eq. (2.74)

and ndsociales v as the three-particle bindlng encrgy, The actual

-3 -

numerical solutiens exhibit rhe hehavior discussed, and will be dis-
plaved in the next secricon.

3. HNumerical Bound Statv Soluvtions

The bound srate rrajectories bave been calculared, and are consis-
tent with the condftions {3.10), (3.11) and {3.12). The lutagral equa-
tion (3.3} was reduced to a diserete matrix equation using Gaussian
quatraturer,® wich Jacobi polynominls as weight functions, Stable
sciutions for the lowest Iying states were obtained using relatively
low matrfx order {abaur 8 x 8). The lowest lying scates are exhibited
in Figs. I11+2a and b. Figure T1I-2b is an enlargement of the non-
relatlvistic regicn of Fig. II1-2;,

The binding crergy of all trajectories remains finite in this model,
due to the finite kinematics. The kinematics of all states {s non-
relativistic, except for the lowest lying state. Most of the lowest
lying tratoe-tory ‘1 15 within the relativistic domain ol che vegion,
althsgh it liss very close to the threshold for palr-particle scatter-
ing (y + m ~ y+ m). The {inite binding of all iralectories differs
From various non-relativistic madels (cf. Dodd?), for which che lowest
iying states may becowe bound indefinitely. This behavior is exhlbirved
in Figy. II1-2b by the trajectory ‘1 before the relativistic klpematics
become ms ifest. There is an accumulotion of essentlally non-
relativistic atates 3o the region 3m - ¥ + G, |[2m - pl - 0, conaistenc

with the condltion (3,17) and with non-velativiseic models,

e, Elagtic and Rearrangament Scattefring

The vegion of Fig. ITi-1 below three-body breakup threshold

(M < 3m) for which bound pairs mcarrer with cthe ghird particle, will
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iext be examined. With a giver initial condlefon, there are three
poagible cutcome: for the final state, as indicated in Fig. LI1-J. The
firse situvatfon .2presents ejastic scattering, aud the others represent
reArTangement .

The case of particles with identical kinemativ and dymanical param-

eters wils be examined 1in detail. @ @_)

; 1. Forn of Equatlions @
Below three-body breakup threstold, the kerpels R‘;;o can be ex- - Mo m
pressed in the focrm given in Eq. (3.2)}. The rcarcering equacions for /\\!(.b I.‘..b @
the .apiitude \:’::0 from Eq. (2.72b) can be expressed : —> (_® :
\\__/! (!"
m
i’:;n"'a:"‘bn‘ My = -z«f.ﬂbn(ua,kbn; M) o e Ho- mo-

(5)
2 ©-

Foe  Mp+

Since the masses m and u are the same for all channels, there will only Inital State Availgble Finol Stoles
be two gaplitudes: a direct (or clastic) amplicude, and & cearrangement 6 HE 414704
{or reaction) amplitude:

W00 k. My Wk [k M)

aa a' ao’  "p*altao*

(3.19)
W (k k . - i = = ‘ N
- tata I ao’ ") ua-a(klkan' o uR”':'km;' " FIG. IIT-3

Using theme amplitudes, the integral equatiom (3,)8) ran be discrerized
ints 5 patrix relation and inverted using clementary liqear algcbraic

techniques

AT o s
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Wy = (L - x - D e
We = (1 -k - wH™ yt=?

After foversion, the anplitudes Wy and Wy can be related to physical

D
observables as developed in Sec. II-B. The Following relations pertain

to the specific problem being developed:

. iim {z - Cao ~ :”nn)
T ao’E +io

\“ae
*lkyey i kot ‘h'-;i*a”.'“a(z-‘?)|‘.‘m‘m‘ kyaf20t Kaot30)

slgl’vyal -

3 3
= ey, - an)r‘u: LR W kan? 2
v

8, Cka il ) tev

lim Z-¢_ -1 =
- D_(s) [3
z"'-a"“,, +lo a a a’a u

{3.21)

With these relations, one refers to Eq. (2.52b), (2.5%), and ¢2.51) ta

relate the calculared quanticies to observables.

t
(0,0 koegt ¥ 0 “a‘ua)i"a:)(‘uu+ JEUIEAR WU CHauno?)

% %
R 3 Wl (1.22)
i Aol BRRSUAL L CD Ry

AR G, it o * ¢ o

n

n
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Tn addition, the on-shell urirarity of th.e operator 5 in Eq. (2.17)
and (2.1R) allows the amplituder te be directly relared to ¢ross gections.

Written la terms of Agpe the unitarity condition can be expressed

* + +Y
Ao i) - [Ai?ﬁ(n))] -2 [‘iu (3«-))] anss' (R, - B (Fop) .
M a.23)

By examining the "forvard"” amplitudas and the exprusalen for the total

cross section (Z.60), the "oprical theoren" follows immediately:

(Z'n) "]m\@ 1n1unl.aﬂﬁ_ ]) Initinl)

i g’ Lal B — (3.24)
‘toral F( PIT mo)z (Fespo - "mn)(“mo “Eaye ]m

In 3-CMS, this can explicicly be expresmed:

3
%total ” zm 'ka-H'

- J . s (-
< Im (oh: ‘-Lhotbu; vb(_!'hu"“h”)lkhb('bc * L"b"'g)l.’b' E‘uurhn' "'h( Eho' "h“)t\

.2%)
Consider the angular momentum decomposicion of the amplitudes. The
"partlal wave amplltudes” can be related to the cileculaced quantitics

using

+) ; ! % 241 it .
Aab (Eall_‘hn' “ho * t‘")"'") - E o F k kbu)Aab(Ln[kbo' fugo ¥ th.u)

g . - wo .
T ""q‘ - VMgt g * e 0.26) ..

The condition {(3.1Y) can be expressed in terms of these sngular momentum

camponents
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A
where

2
o+ ad [ - -
k? . [ _.-J___";L.ZJL___J__J_J
¥ 1

This allows the definfrion of the standard phase shift and absorption

patameter ia the elastic channel by

3
216p M) 1] 2 Sy 3.28)

nkb b

To caleulate these parameters, the singularity structure of the two-

body finput B;l(s ) wust be properly understood. By taking advantage of
the relatlon

E

T ans) (3.29)

vhere the aynbol ¥ repreaents the principal value, the funcrior can be

writcen a8 followa

kanZ-UT )
o2 al- ——mmeua=la(k - K) (3-30)
Da(sa) LA H (HZ + uz)z - iyt a a

vhere

8 aw

The nuaerical solurions far some of the cbservables will be examined for

vartfoue values of | and M.

2. Mumerical Results

The phase shifts and Inelasticity parameters comsistent with Eg. (3.28)

have been .caleulared. The Integral equations were discretized using

- 45 -

Ganssian quadratures, with Legendre polynomials as weight [unctions.

The functions fd’o(u.uh) are placted (as Arpand diagramn) in Fig. IT1-4.
The test energy of the gystem corresponds to M = y + m, so that che relz-
tive kinetic erergy is given by

e " H- (p +m (3.31)

Flguce I{l-% {llustrates the total cross section for t = O in units of

2
o, such that
- J
%rotal Z “tor (3.32)
J

1t can be noted that the lowest resongnce 18 more sharply peaked as the
pedak enecgy approaches the rest caergy af the system (e¢y = 0). In addiclom,
in the reglons where the re¢sonance (x well defined, it follows a path which
i6 a reflection of the lowest energy threa-body bound stare about the 1ine
EK = D. From the diagrams, it is apparent that the resonance structure

far scattering from the wicra-relat:vistic bound patrs is influenced can-
siderably by the inelastic (l.e., v “*rangement) procesSes. Thin Structure

will be extended into the breakup region (M > 3m) in Sectien ITT-C.

C. Break-up Scatteripg

The process of breakup can oceur Lf the available center-of-momentum
encrgy is greater than the sum of the rest masses of the cmmtltuentl
particle (M 2 3m). The [nitial system will be described by o particle b
sritrering from a bound pair. Figure [IT-6 depices the possible asymptotic
STALes.

As viewed from the ulaktic scattering "channel," the possibillty of

breakup will open an additiwnal inelaacic "channel.”
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1. Form of Equatjons

The particular equarions for this process can be obtained in a
straigheforward way as described in Section [1I-B. The amplitudes for
steakup {rom an {micial chonnel b, as well as for three particle-to-three-

particle scattering, arc summarized below.

. . . ) . . .
(293 )i geps kyey) (O A ML ook e o vy Gl o0y

g (k) [ {_"'_"_2] 12
- _ Batiads - . TR .
E {5, et s m) Jauyn 7 vhete My = &+ £u0

: . . [&2] . . .
(2, ey bpps Byegd DA T 0900 eyt Kygengi Kygesg) (1,0))

g (k_k ) gk, k)

a ~ar-u-’ o . Zh wbio-b-o
Zb:‘ 5.y tantalihot W T T (2.30
a .

where the fuaction 8, and Da are described by Egq. (2.77).

Above breakup threrhold, the singularlty scryucture of the pon-
interacrting resclvant must be properly hamdled. The singularity accuta
only for H » 3, and within a limited range of the paramcters ks and kb'
Tnis rapge 35 glven by Eq. (3.34).

7 alued L oF
0k SJ’\H —whod -
A M Amax

{3.34)
khmin £ kb B k‘I:max
where
2 3p? o ZEEM l
k Kk * (M-c¢€,) .
L 2 YV tnl -zen |
The singularity takes the form of Eq. (3.29). Thus the kernel Rf::o in
Eq- {2.72a) Lan he expressed
R TPV T TR
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. 60  ~—r T T T T T T T T
W0 ki W) = A niadk - k 16k, - k )eCk - ) + {o) )
ab “a''b k K amax a pmax b kh Ynin Thim
a'b a0 rEh
szh*r(k +up v, v, [ & 7
+ @ log | 18 2 a — (3.3%) 20 Elashe Breakup _| -
Jm———z ke lac te -y | Threshald
ab Mt a v )
Q 1 1 L + n
The solutiory :f (2,72b) uslng the kernel (3.35) will be examlned for (b h
o <
I=0. a0 pl3m
2. MNuaerical Solucions Bredkup }
» SuAerlcal poluciaony 20 Thresheld I
The numerical treacpent of the equations was similar to that developed (o] [ .
=
in Sectiop TI1-B. The solutions smeothly matched chese balow hreakup, and N° 0
E tc) A
vequired increasing nomurical work as the energy increased. a0 b F.=|_5m
The behavier of the eross sectinng heyond the resonance reglons is L Breukup p
Thresheld
demonstrated in Fig, ITI-?. The Argard diagrams exhibited minor variance 20 ]
VEiosne
beyond the regions coverad in Fig. 1L1-4. F 1
C 1 1} ! 1 ) n L It
For compleraness, the solution for the moderately reiativistically )
bound gracte u * 1.9m is demonstrated in Fig. IIT-B. Ta this figure the -0 Breokup psl.7m
Threshold
tegion abuve and bejow breakup threshold is demonstrated on the single o 4
L Ty
graphs. [4¢ fiosne A
0 LA
o] ad 4 0.6 a.8 .0
o 2g/m on :
FIG. 111-7
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CHAPTER IV

CONCLUSIONS

The ¢quations enplored define a self-comsistent, upitary ser of
scattering equations which 3ive srabie solurions {n this medel. [t should
be noted that the equations in the Form given are most puited numerically
to the relativistic regime, although the non-relativistic limir to the
equations is well Aefiped. 1In the torp explored, the equations correctly
describe results predicted from non-relativiscic models if the parametars
involved are related.

The formalism explored in Chapter II generates eigenstates of a fully
interacting three-body system in terma of boundary atates in a covariant
way. These states sarisfy a type of cluster form invariance if anc of the
particles dees not interact. JInternal angular mcmenrum ca. be incluced in
the formalism in a straightforward way,

Since in the model examined the equatiins reduce to a single param-
eter integral equatfion, the numerical merhods invelved in this exploration
were srralghtrforward. Advanced numerjcal techniques exist in the litera-
ture which allow exploration of the ampli:udes invalved in a mare complex
model. However, ln order to more reasonably repreduce the high energy
phenomenclogy, tha inclusion of particle-antiparticle symmetriws and mulci-

particle procemscs must be examined in the formalism.
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