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PREFACE

In 1986, a series of invited seminars on the theory of proton linacs was given at Los

Alamos National Laboratory, AT Division, and CERN. This report is a presentation of the

material given in these seminars.

The main documentation for the field of linacs includes (1) the 1971 book Linear

Accelerators (North-Holland Publishing), which is now out of print and also out of date

in a few areas, and (2) the proceedings of accelerator conferences. This last source of

material is very detailed and accurate, but is generally in the form of short contributions

that do not give a comprehensive view of the problems involved. The aim of the seminars

and of this report is to present the basic general principles that substantiate the many

developments, which have sometimes been spectacular, presented at conferences devoted

to this type of accelerator.

As was the case twenty years ago when a similar CERN report had been the origin of

the book (mentioned above) on linear accelerators, it is hoped that this report, which does

not go into complex detail, will be followed by a new book. If such a new book appears, it

will have been greatly due to the support received from Los Alamos National Laboratory

and CERN in the preparation of the seminars and to their continuing interest. Such a

book will deal only with proton and ion linacs. It is hoped that the preparation of a new

book on electron linacs by another author will be supported in the future.

ACKNOWLEDGMENT

The technical clarity of this report has greatly benefited from the help of Dr. R. K.

Cooper. The style and editorial clarity has likewise been enhanced by L. H. Schilling. The

author wishes to express his gratitude for their help and patience and heartily acknowledge
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As said in the preface, this report is a step towards the preparation of a new book.

This means that if derivations are missing in the report, the subjects treated and the way

they are presented would be the same in the book.

In order to make this book correct, useful, and profitable for future readers, all com-

ments, criticisms, and suggestions on the content as well as on the presentation would be

greatly welcome; these would help in arriving at a reasonable compromise between a good

book and what the author will be able to achieve.

Please do not hesitate, then, to send me your comments. Thank you in advance.
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PROTON LINEAR ACCELERATORS:
A Theoretical and Historical Introduction

by

Pierre M. Lapostolle

ABSTRACT

From the beginning, the development of linear ac-
celerators has followed a number of different direc-
tions. This report surveys the basic ideas and general
principles of such machines, pointing out the problems
that have led to the various improvements, with the
hope that it may also aid further progress. After a
brief historical survey, the principal aspects of acceler-
ator theory are covered in some detail: phase stability,
focusing, radio-frequency accelerating structures, the
detailed calculation of particle dynamics, and space-
charge effects at high intensities. These developments
apply essentially to proton and ion accelerators, and
only the last chapter deals with a few aspects relative
to electrons.
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CHAPTER 1

HISTORY AND INTRODUCTION TO THE THEORY OF

LINEAR ACCELERATORS

Since 1924, the history of linear accelerators (linacs) has included not only many

obstacles, which were sometimes considered insurmountable, but also breakthroughs that,

though often spectacular, sometimes presented unexpected or even paradoxical results.

Ultimately, theory and practice became more accurate, and sophisticated tools exist today

for designing linacs. New work, however, must still be done in order to understand and to

master all the phenomena taking place.

1. LINAC PRINCIPLE

1.1 Origin of the Principle

In an electrostatic device, the potential difference V must exist between two points of

the system to give particles of charge q an energy equal to q • V. This energy is necessarily

limited by electrical breakdown. Ising, in 1924 [IsingJ, proposed the following device to

avoid this limitation: positive particles, coming out of a discharge tube, cross a succession

of "drift tubes" made of electrodes with a hole for letting the beam go through (Fig. 1).

Pulsed electric voltages, properly synchronized, are applied on each of the drift tubes. If

the pulses are applied between the time the particles enter the hole and the time they exit

(or vice versa), one may achieve additional acceleration. This principle was not tested at

the time it was proposed.

&-

Fig. 1. Ising proposal.
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1.2 First Experiment

In 192S, Wideroe [Wideroe], then in Aachen, German}', proposed a new device. Instead

of pulses, he suggested the use of a radio-frequency (if) voltage, choosing drift tubes whose

length increased with particle velocity, such that particles always find an accelerating

voltage when going from one tube to the next. (It is this description of the linac principle

that led E. 0 . Lawrence to the invention of the cyclotron.)

Wideroe built a machine with a single drift tube to test the validity of his principle:

using a voltage of 25 kV between two grounded electrodes, singly charged Na and K ions

(coming out of a heated filament) were accelerated to an energy of 50 keV (two successive

accelerations).

1.3 A Larger Experiment

In 1931, Sloan and Lawrence at Berkeley [Sloan et al., 1931] proposed to test the

method on a large device. Applying an rf voltage of 42 kV at a frequency of 10 MHz to

a sequence of 30 drift tubes (Fig. 2), they obtained an energy of 1.25 MeV with mercury

ions. A few years later, in 1934, they reached 2.8 MeV using a sequence of 36 drift tubes

with 79 kV [Sloan et al., 1934].

However, such a device remained purely experimental, because the needs of physics,

at least for protons, were better satisfied by cyclotrons as developed by E. O. Lawrence (a

linac would have had to be too long, at that time, to reach similar energies).

A2 B2

7 MHz, 42 kV 30 d.t. —1.25 MeV

Fig. 2. Principle of the Sloan and Lawrence machine.
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2. FIRST PROTON LINAC

In 1945, under the leadership of Luis Alvarez, a team of scientists that included

many individuals who were to become well known in the field of accelerators (such as

W. Panofsky) started the construction of the first true proton linac [Alvarez et al.j.

The structure, the so-called Alvarez structure, can be considered as a section of circu-

lar waveguide excited in a TMo mode and loaded with a succession of drift tubes whose

length and position are chosen to insure synchronism of accelerated particles while keep-

ing the resonant frequency of the cavity constant (Fig. 3). The axial electric field of

the TMn mode is then concentrated in accelerating zaps between drift tubes, the volt-

age between them being proportional to their length and not constant as in previous

devices. It is thus possible to obtain a fast acceleration, even when the velocity increases.

With a frequency of 200 MHz (because of the availability of radar amplifier tubes), the

12-m-long machine accelerated protons from 4 MeV to 32 MeV.

Besides the development of the rf structure, such a linac provided an opportunity to

delve more deeply into the theory of linacs, in particular the beam dynamics, longitudinal

as well as transverse.

Fig. 3. Alvarez-type cavity.

2.1. Phase Stability

The principle of phase stability is illustrated in Fig. 4. The successive lengths of drift

tubes are such that at gap N, exactly one rf period before gap AT + 1, tLe energy gain

must have a given value qV, lower than peak value, qV0, that the sinusoidal voltage could

deliver.



I V M

Letting

Fig. 4. Stable and unstable phases.

qV = qV0 cos

one sees that there exists, per rf period, two phases for which the condition is satis-

fied. Let M and P be the corresponding points in Fig. 4. If particles must cross gap N

exactly with one of these two phases, only a very few will be correctly accelerated.

Let us consider, however, what will result from a late arrival—at Ml5 for instance.

At Mi, the voltage is higher than V. The particle will then receive more energy, and it

will go faster and catch up its delay. At M2, on the opposite side, an early particle will be

slowed down. There is phase stability, and particles are attracted toward the stable point

M. Conversely, around P an instability exists.

There is stability around the phase for which the field is increasing with time. A

detailed analysis of this stability will be given in Chap. 2.

2.2 RF Defocusing

When crossing an accelerating gap where there is phase stability, particles are defo-

cused.

Let us consider the field distribution around the holes of the drift tubes in a gap

(Fig. 5). For an accelerating field, there is a focusing effect at the entrance and a defocusing



effect at the exit. If the field was constant with time, there would be a compensating effect

(at least to the first order). But for phase stability, the field must be rising. Defocusing

then overcomes focusing.

Chapter 3 will show what tricks were invented to circumvent this difficulty, which

results directly from electromagnetic field properties. Only the early milestones will be

indicated here along with the solution of this difficult overall stability problem.

DEFOCUSING

Fig. 5. Radio-frequency defocusing when the field is rising.

2.3 Foil and Grid Focusing

One way to avoid the global defocusing effect is to suppress the defocusing effect

at the gap exit by closing the drift-tube hole with a foil thin enough to be crossed by

fast parti< les (Fig. 6). This foil, to which electric field lines are locally normal, becomes

charged, counteracting the incompatibility condition. There can be, then, longitudinal

stability with transverse focusing.

/v,

777?y,

•z

Y/,

FOIL

FOCUSING

Fig. 6. Foil or grid focusing.
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However, the test of this method turned out to be unsuccessful because electrical break-

downs that usually occur during electric conditioning destroyed the foils.

Grids were then proposed instead of thin foils, the microscopic mesh of which parti-

cles were supposed to penetrate. It is true that no focusing is obtained through aligned

grid holes; particles must oscillate around aligned grid wires (and not run into them)

as they pass through. Several grid configurations were considered, such as shown in

Fig. 7. It is obvious that one can expect a loss of particles with such a system. Until

the final tests, in particular during tests that were unsuccessful for other reasons, doubt

as to the efficiency of grids persisted. In 1947, however, the first beam was accelerated in

the Alvarez machine.

Before being transported to the University of Southern California in 1958, this machine

was used in 1952 to test the alternating gradient (AG) electric focusing [Blewett] concept

that had been recently invented by Blewett.

Fig. 7. Various shapes of grids.

3. CERN LINAC I

After the Alvarez machine, another linac with an energy of 68 MeV was built at

the University of Minnesota in 1953. Apart from the use of three if cavities and a lower

injection energy (500 keV), this machine was very similar to the first one. Another machine.

a 20-MeV linac, was built at Berkeley (the Bevatron injector).

During the second half of the 1950's, linacs were built to use AG focusing in its

magnetic version, only applicable when the particle velocity becomes high. Two machines



were built simultaneously, one at Brookhaven (50-MeV AGS* Injector) and one at. CERN

(PS** Injector I). The CERN linac was made of three cavities, the first one of them beins

designed simultaoueously with the NIMROD injector at Harwell (England).

3.1. First Tests (Grid Focusing)

At the beginning of 1959, the first cavity in its initial Harwell version (with grids)

seemed ready to accelerate protons produced by an rf source through a 500-kV column.

Measurements had been made of the cavity's Q (around 50,000) and of the metallic bead

perturbation of the axial electric field (frequency displacements of a few hundred hertz).

These measurements gave a value of the shunt impedance Zs (see Chap. 4). Eventually, a

measurement of rf power (calorimetric measurement of about one hundred watts, average,

with a peak power close to a magawatt) seemed to show that the electric field, reached by

conditioning, should be enough for acceleration.

After several unsuccessful tests, a very weak current was observed at the output from

a faint quartz plate illumination. The energy, however, was much smaller than the 10 MeV

expected, because the beam was stopped by a very thin copper plate. This surprising and

completely unexpected result was to be explained from an acceleration at half velocity

(previously unexpected) in which the transit time between gaps is two rf periods instead

of one. The eJectric field was too small for normal acceleration but large enough for this

reduced energy.

It remained unexplained, however, how such a phenomenon could take place with

the nominal injection voltage. Acceleration, which was a little more intense at 125 kY

(and zero below), still existed up to 500 kV. One had then to invoke field irregularities

to explain a beam capture at some points along the structure. A more detailed theory

of phase stability, including the "golf club" (Fig. 8, see Chap. 2 for details), which takes

rapid acceleration into account, was not yet known!

Normal operation was obtained two weeks later by better conditioning of the cavity.

* AGS - - Alternating gradient synchrotron.
** PS — Proton synchrotron.



vs ,

Fig. 8. Bucket and golf club.

3.2. Tests with AG Focusing

A few months later, in the Spring of 1959, gridded drift tubes in Cavity I were replaced

by drift tubes containing pulsed qu'idiupoles (technology did not permit high enough dc

fields). Design, made according to the new principle of AG focusing, which was itself de-

rived from Floquet's theory and the Hill and Mathicu equations, had led to the adoption oi

very strict tolerances for quadrupole field adjustments in order to rc?nain inside u relatively

narrow stability region (Fig. 9, see Chap. 3 for details).

From the first tests, a good intensity was obtained from Cavity I. However, beam

observation, accomplished by blackening a quartz plate, revealed a flat, slightly cross-

shaped beam. The focusing system was suspected and, despite the strict tolerances, it was

decided to invert, one after the other, the 44 quadiupoles of the cavity and observe the

effect on the beam shape. Apart from the first quadrupoles, the inversion (or switch off)

of which entailed a noticeable loss of beam, the effect on the others was not at all fatal

and was hardly visible in the intensity. However, from the beam-shape observation (which

still remained partly cross-shaped because of aberrations), two quadrupoles wore found TO

have their polarity reversed (the 34th and thr 43rd).

The concept of instability, which led to the design of the machine (under the influence

of parallel studies made for the CERN PS), still had to be completed by the understanding

of nonperiodic focusing errors in order to deal with practical operation.

Cavities II and III of the CERN linac (with dc magnetic focusing) wore installed

without difficulty, and beam was injected into the PS in September 1959.
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Fig. 9. Mathieu's equation stability- area and linac focusing stability limits.

4. MORE RECENT EXPERIENCE WITH LINACS

4.1. Field Distribution

From the design of the first linacs [Alvarez et al.], the adverse effect of a field

variation (usually regular and monotonic) along a long cavity had been suspected- This

variation was corrected with the help of movable walls or plungers put along the

structure, mainly near the ends. In addition, similar elements were used to correct the

resonant frequency, an essential operation in cavities with Q of the order of 50,000.

The SATURNE 20-MeV linac injector, built in Saclay in the 1960s, made use of a set of

ball tuners that were moved in the cavity volume around neutral points where electric and

magnetic field perturbation effects, which are of opposite sign, become equal (see Chap. 4).

Later the adjustment of the balls was done empirically by studying the injection efficiency

of SATURNE, a relatively loose criterion that is due to the not very stringent injection

requirements.

Near the end of the 1970's, it was decided to accelerate deuterons and a particles, and

then heavier ions. This could only be done in a half-velocity mode

(see Sec. 3.1). The efficiency, however, was found to be relatively low, noticeably lower than

expected (inconsistent with tlv? more detailed knowledge of beam dynamics as it was then

developed — see Chap. 5). This situation became unacceptable when polarized particles

(with very low source intensity) were accelerated.



Empirical cdjustmcnts being unsuccessful, the field distribution was suspected and

various laws were proposed to use in beam dynamics computation (Chamouard et al.]. It

was then possible to conclude that a low-energy ball tuner was producing a dip in the field

distribution and not just a tilt, as had been previously assumed; this dip was responsible for

the unsatisfactory operation. After moving the tuner had corrected the field distribution,

a parallel study of focusing led to a new adjustment, which gave a normal acceleration

efficiency. It will be seen in Chap. 4 that a field tilt can be interpreted from the addition

of two modes, TMoio and TMon, in the cavity. A more complicated distribution can result

from the addition of more modes of higher order.

Another interpretation, introduced later [Dome et al.], refers to the properties of the 0

mode (Fig. 10) for which the phase velocity is infinite, and one cannot speak about forward

and backward waves. The solution of the wave equation

which, in general, has two solutions when k =£ 0, becomes, when k = 0,

Ez = Const. and Ez = z X Const.

The first of these solutions is the normal 0 mode. The second one, for which

z — 0 would be a magnetic boundary (Fig. 11), cannot exist in a perfect cavity; it is

a degenerate mode. A computation of Poynting's vector in this mode shows that there is

a circulation of reactive energy to maintain field and a stored energy inequality along the

z axis of the structure.

If such a mode does not exist in a j^erfect cavity, it can. however, be excited by

perturbed end boundaries; local perturbations, changing the resonant frequency locally,

can also behave like a source or a sink of reactive energy, which then has to flo»v along the

structure to maintain equilibrium, entailing a variation of field level. Ball tuners, if they

are localized and their perturbation is largo, may produce such effects.

10
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Fig. 10. Dispersion curve and cut-off mode (zero mode).
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Fig. 11. Degenerate mode.

4.2. Field Stabilization

Concerns about the difficulty of field adjustments or the avoidance of situations such

as that described above have led to a search for structures that are insensitive to field

perturbations. Chapter 4 will show that this sensitivity can be characterized by a mode

separation in frequency around the operating 0 mode. In the degenerate-mode approach

presented above, the Poynting vector flux for a given slope of the field is larger when

the frequencies are distant and, in particular, if the group velocity is not zero as it is

normally at the 0 mode. The possibility of having a nonzero group velocity at the zero

mode, as shown on the dispersion curve of Fig. 12 (see Chap. 4), can be obtained with the

use of coupled circuits. Another advantage is that this nonzero group velocity makes the

propagation of transients faster, particularly for filling the cavities and for beam-loading

compensation.
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Fig. 12. Dispersion curve at confluence of two coupled modes.

5. HIGH-INTENSITY ACCELERATION

When the intensity is increased in a linac, one perturbing effect is the mutual repulsion

of particles due to their electric charge. This repulsion affects phase stability as well as

focusing. The computation of such effects requires a knowledge of the charge distribution in

the beam. The first theory, presented in 1959 by Kapchinskij and Vladiinirskij [Kapchinskij

et al.], treats the case of a continuous beam and assumes a uniform distribution. This case

is the only one consistent with linear equations. Kapchinskij and Vladimirskij computed

the corresponding four-dimensional phase-space distribution (configuration and transverse

velocity spaces) assuming the same longitudinal velocity for all particles. This distribution

is a surface distribution on a hollow hyperellipsoid. Such a distribution is not physical. Very

often medium intensity beams do not exhibit uniform distributions, but rather distributions

that decrease toward the edges.

More recently, in the early 19S0's, experiments at Berkeley on very intense beam trans-

port showed a practically uniform distribution, falling sharply to zero on the edges [Kim

et al.]. Such a distribution, corresponding, for instance, to a uniform or Gaussian distribu-

tion in phase space, had been derived before 19G9 [Kapchinskij] and also [Lapostolle] but

had been forgotten. For very high intensities, the beam, circulating in a focusing system.

behaves somewhat like a plasma. Its densify becomes such as to cancel out external fields.

Particles then move freely across the beam in the transverse direction, bring reflected at

the edges.

Studies relative to high-intensity beams, as described in Chap. G, are far from being

complete, even though more and more powerful and accurate simulation codes allow a

12



relatively good representation of experimental observations. Theoretical work remains

to be done for a more complete interpretation of the physical phenomena, even though

important milestones have already been achieved.

13



CHAPTER 2

PHASE STABILITY IN LINACS

The principle of phase stability that governs the longitudinal motion of particles was

invented by E. 0. MacMillan and V. I. Veksler in 1945 [MacMillan] and [Veksler]. It was

applied to linear accelerators by L. Alvarez in 1946 [Alvarez]. This principle, described in

Chap. 1 and recalled in Fig. 1, is closely linked to the concept a of synchronous accelerating

wave. To explain this principle we will first examine the synchrotron case, even though

there will be limitations for the definition of this synchronous wave for the linac case.

In developing phase stability theory, the effects of some necessary approximations

resulting from the previous limitations will be described, as well as methods to counteract

the effects. Pitfalls that were encountered in early research will also be discussed. A more

detailed and more accurate computation, valid for all cases, will be described in Chap. 5.

-ace

Fig. 1. Traditional presentation of phase stability.
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1. SYNCHRONOUS WAVE

1.1 Synchronous Wave in a Synchrotron

One may compare the acceleration in a synchrotron to the operation of a synchronous

motor. In a single-phase synchronous motor, the magnetic field of the stator can be

considered as the sum of two rotating fields, rotating in opposite directions. The rotor is

driven by one of them.

Let us consider a synchrotron with a single accelerating cavity (or two cavities dia-

metrically opposed, see Fig. 2). Taking the circumference as a period, the accelerating

field can be expressed in the form of a Fourier series as a function of the azimuth, a sum

of terms in the harmonic number h. In the special case of infinitesimally short cavities

[6 function), each harmonic has the same amplitude. Two rotating waves of opposite

direction correspond to each harmonic representing a stationary field.

Each rotating wave of different h has a corresponding revolution period, a multiple

h of the rf period, and a revolution velocity. A synchrotron can accelerate on various

harmonics h, i.e., particles of different velocities can be accelerated.

When several cavities are installed around the circumference, Fourier analysis still

gives the possible modes of acceleration. If all the cavities are not in phase or in opposite

phase, there is not necessarily a symmetry between the two senses of rotation.

V+

V-i

Fig. 2. Synchrotron orbit with two accelerating cavities.
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1.2 Transit Time Factor

Accelerating gaps are never infinitely short. Fourier analysis then shows that beyond

some harmonic number, the amplitude drops instead of remaining constant, as for a true

8 function. To this effect, one may add that the accelerating field enters the beam holes

beyond the faces of the electrodes (Fig. 3); the axial field is not the same on the axis as

on the borehole edge.

The usual expression that will be justified in Chap. 5 is [Alvarez et al.]:

I0(krr) sin kg/2
T(k,r) = (1)

Jo(fcr«) kg/2 '

The transit time coefficient T, less than 1, is the reduction factor of the accelerating

synchronous wave amplitude with respect to what it would be for an infinitesimally short

gap with no field penetration effect.

In this relation, g is the gap length,

k = OJ/V

with u being the rf angular frequency and v the velocity of the particles, and

(2)

(3)

b

&//////A
BORE EDGE

Fig. 3. Electric field distribution across a gap.
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The quantity a is the radius of the beam hole and r is the distance to the axis at which

T is computed. The kg term corresponds to the Fourier analysis mentioned above.* The

terms involving 70 Bessel functions correspond to the field penetration effect (one sees that

T — 1 for g = 0, and z = r = 0). The transit time factor reduces acceleration on high

harmonics: for a synchrotron of average radius i?, the quantities g/R and a/R <C 1/h. In

practice, for synchrotrons this reduction is small, but as will be seen, it is not small for

lina.es.

1.3 Synchronous Wave in a Linac

The comparison between a synchrotron and a synchronous motor leads us to consider

a linear induction motor for a linac. Here, however, because the velocity changes, there

is no strict periodicity in space (in a synchrotron, only the frequency changes). On the

contrary, one endeavors, by construction, to maintain the time periodicity by a change in

space periodicity. This is, however, seldom achieved in practice for several reasons:

1. the accelerating lleld may vary along the structure;

2. the absence of exact scaling in the gap geometry, according to the velocity Licrease,

may lead to a change in transit time factor;

3. in the low energy part of the machine, the relative energy increase may be ver}r fast;

and

4. any error in construction or adjustment entails almost inevitably the absence of a

synchronous particle.

Nevertheless, the general theory of stability and phase oscillations gives a simple

and generally valid interpretation of the phenomena, and it remains of current use even

if it may lead to errors in some cases. Detailed methods available today, as described in

Chap. 5, are necessary for checking some results.

* As will be mentioned in Chap. 5, Sec. 1.1, it is possible to take into account the effect
of the chamfer radius pc in the borehole (Fig. 3) by replacing g by a corrected value gc.
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1.4 Higher Order Mode Operation

Alvarez structure [Alvarez, et al.] (Fig. 4) operation is usually at the fi = 1 (or

2 - mode). It can, however, be at the h = 2 (4TT mode) for half-velocity particles (see

Chap. 1, paragraph 3.1). Because the field at the IK mode extends in gaps over a relatively

long length (1/4 rf period), the transit time coefficient is greatly reduced (at least by 30%

to 40%) for operation at the 4n mode, particularly at low energy [I0(kra) term].

The Sloan-Lawrence [Sloan, et al.] and interdigital or H-type structures (Fig. 5)

normally operate at the n mode. The first higher order mode would be 3TT, but T is then

reduced by a factor of about 3 unless the gap geometry has been designed for that case.

Fig. 4. Field orientation in the gaps of an Alvarez structure.

Fig. 5. Field orientation in the gaps of a Sloan-Lawrence interdigital structure.

1.5 Acceleration with Several Harmonic Frequencies (Flat Topping)

In some machines, two sets of accelerating cavities excited at harmonic frequencies

and operating simultaneously are used (this has so far only been done in circular machines).

The Fourier analysis previously described can be made for all the frequencies used.

Wave addition, for a given mode of operation (h for fundamental frequency and kh

for harmonics), gives a nonsinusoidal distribution, the shape of which can be modeled

around the stable phase point.
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It is then possible by adjusting amplitude and phase to obtain a flat (for cyclotrons)

or linear profile (Fig. 6) over almost the full extent of beam bunches. This linearizing effect

is obtained at the cost of some loss of acceleration. The choice of the order and number of

harmonics used for "flat topping" depends on the required extent in phase.

Fig. 6. Linear field variation obtained with two harmonics (h = 1 and 2).

2. PHASE STABILITY DYNAMICS IN FIRST APPROXIMATION

Phase stability results from the capture of accelerated particles in the synchronous

wave. In an induction motor, the locking of the rotor to the rotating or linear wave results

from a force that makes it move, producing a certain work.

In a linac (or a synchrotron), the energy given to the particles causes the velocity to

increase (at least in the nonrelativistic case: protons, heavy ions). Under such conditions,

the space period of the wave also has to increase, changing the depth of the potential well

where particles are captured. As will be seen, this potential is as shown in Fig. 7, where

the change in period has been exaggerated.
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<t>s SYNCHRONOUS
PARTICLE

Fig. 7. Motion of accelerating buckets.

2.1 Hypothesis for a First Approximation

It can be said that the usual classical theory of phase stability is a first approximation

in which velocity change is neglected. Such a model, similar to the induction motor, would

correspond to the case where particles should fight against an external braking force while

receiving acceleration, thus keeping a constant kinetic energy.

2.1.1 Nonrelativistic Case

The motion of one particle (abscissa 2) of mass m with respect to the synchronous

particle (za) of fixed phase 0a, with respect to the wave of velocity v,, can be written with

time t as a variable. Putting

u = z - za (4)

and letting ET be the peak value of the accelerating field in the wave, one has

mu" = eET cos(—-<t>a) -cos <j>a\ ; (5)

by integration after multiplying each member by u', one has, if u' = «(, when u = 0,

m(u'2 - u'A = 2eET — sin (^ - <j>a] - u cos <j)a + — sin <f>A . (6)
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The kinetic energy of the particles in a frame moving at the wave velocity va is shown

on the left-hand side, while the right-hand side shows the potential in which particles are

captured, as shown previously in Fig. 7. In this figure, the variable u can be replaced by

the phase

v.

The potential dip (stability zone) is limited by <f> = — <f>, and <j> « 2</>,, where <j> = 0

is the crest of the accelerating wave (if the potential law around <f> = — <f>a, 0, and 4>a is

replaced by a cubic curve, the upper limit is exactly 2(j>a).

This variable <f> is often preferred to u. Its conjugate momentum is easily obtained

from the derivative of kinetic energy with respect to <j>':

dUmu12) dUmuA
mvau 8W

where 6W is the energy difference between the particle under consideration and the syn-

chronous particle.

Remark. The motion described by Eqs. (5) and (6) is sometimes compared to

that of a forced pendulum (Fig. 8). This analogy is frequently used in the theory of the

synchro cyclotron.

PULLEY

WEIGHT

Fig. 8. Forced pendulum analog.

2.1.2 Relativistic Case

It is easy to introduce relativistic corrections in the previous equations. It is common

practice then to replace the variable t by the abscissa s of the crest of the accelerating wave
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[Smith, L.]. Introducing classical relativity symbols j3 and 7 one gets

SW
(8)

and
moc2 eET

ui ds

d<f> u
ds c

U)
(cos <f> — cos

(9)

ui 67

whence
, d {&.'). dd>\ .

moc — I —— ) = —eET (cos <p — cos <pa) .
as \ CJ ds J

(10)

Supposing /3gj3/u) = const (not a function of s), this equation is easy to integrate,

and a solution similar to the nonrelativistic case is found.

It is also possible to deduce the relation between conjugate variables <j) and 8Wju> or

(j) and £7:

-(sin <f> — 4> cos <pa) = Const. . 0-1)

One recognizes the usual form of the stability diagram (Fig. 9) in phase space (con-

jugate variables) [Brack, Chap. XVI]. Between the limiting points in <f>: ss 2<j>s, — (f>s, the

separatrix shows the limits in 8W/u> or 67. Inside this separatrix, particles, during ac-

celeration, move along quasi-elliptic curves around stable phase <j>a, such curves departing

more and more from ellipses as they come closer to the separatrix.

Sw/u)

Fig. 9. Trajectories in phase space.
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When the stable phase 4>s approaches — TT/2 and the acceleration goes to zero, the

stability limits join; the separatrix takes the shape shown in Fig. 10, symmetrical with

respect to <j>s — —n/2.

The stability area, limited by the separatrix, is currently called a bucket, evoking

the possibility of raising in energy the particles enclosed there (the term "fish," referring

to the shape of the separatrix, is seldom used).

Fig. 10. Nonaccelerating case.

2.2 Hamiltonian of the Motion

It

one has

is worth

, for Eq.

noticing

H --

(9):

that

= —77

if

1OC

<

(h)2

2/?,37s
3

( W
ds

moc
2

eET
ijj

dH
d(S-r)

(6-,)

(uin 4

m0c
2

dH

(12)

(13)

ds d(j>

which means that the motion of particles described by conjugate variables <p and

6W/u) = moc
2
 6-)'/UJ is derived from the Hamiltonian H.
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3. SECOND APPROXIMATION

The hypothesis of constant velocity and energy can only provide a local representa-

tion. If one wants to know the motion of particles in the course of the acceleration, one

needs to introduce a change in energy, and perhaps also changes in other parameters such

as the accelerating field ET and stable phase <f>a. To first order, one may, however, assume

such quantities will change slowly (adiabatically) without ever compromising the existence

of a "synchronous particle."

Because the motion is derived from a Hamiltonian, it satisfies Liouville's theorem

[Becker], [Corben et al.] and [Lichtenberg].

3.1. Liouville's Theorem

According to Liouville's theorem, the area occupied in phase space (space where

coordinates are conjugate variables) by a set of particles is an invariant of the motion.

This set of particles than behaves, in phase space, as an incompressible fluid.

Let q — 8<j> and p = SW/u be these conjugate variables, and let us consider their

evolution between two successive points si and 52 = Si + ds.

Let

A1=JJdq1dp1 (14)

and

A 2 = f f dq2dp2

be the phase-space extensions (area in phase space) of the same set of particles at points

Si and S2-

According to the theorem of the Jacobian;

A2 = I fdq2dp2 = J J Jdq1dpl (15)
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with

dg2 dp2

dpi dpi

(16)

But

then

1

1 +

dq

dP_

d2H

dH
dp'

OH

W

~82H

(17)

opoq

(18)

such that

Phase extension is invariant because even i/ff is a function ofs, since dH/ds does not

appear in the expression of the Jacobian, it does not affect it. On the contrary, Liouville's

theorem does not apply if the system is not conservative. It is the case, for instance, of

friction for which Hamiltonian mechanics does not apply.

3.2. Application

If now one considers a set of particles occupying an area A limited by one of the

curves given by Eq. (11) corresponding to their input into the linac, this set will occupy

at output a surface of equal area (but with the values of j3, 7, ET, and <j>3 corresponding

to output). For example, if one considers small oscillations (elliptic curves in the central
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part of the bucket), one has during acceleration

CXPmax =
eET | sin <f>3 | Ao

(19;

= \ / I V
s i n <f>3 | A o

2TVUJ2

where

Ao = 27rc/w . (20)

One sees that if ET and <f>a remain constant, there is, during acceleration, a bunch com-

pression in phase and an energy spread increase.

In the case that a set of particles would not be "matched" [Bruck, Chap. VIII] in

phase space, i.e., limited by a curve (11), it would "rotate" at a speed corresponding to

"synchrotron oscillations" with a space period given by

( }

Such properties are currently employed, and they offer a usually correct representa-

tion of accelerating beams. However, at very low energies, where changes are not necessarily

adiabatic, it may be safer to make use of more accurate computations. Similarly, in case of

field errors or of any other fast change of parameters, checks are necessary even if previous

considerations are successfully used for "beam gymnastics" operations similar to the ones

used to achieve matching in the transverse direction.

3.3. Adiabatic Changes — Golf Club

One may illustrate some of the effects that parameter changes, of adiabatic type,

may introduce to classical beam dynamics representation and phase stability. It was shown

that the energy increase changed the axis ratio of small amplitude oscillations. If one now

considers the separatrix itself and the area it limits, it is obvious that this area increases

with energy. A consequence of this apparent paradox has already been illustrated in
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Chap. 1: it must be possible, as the energy increases, that particles penetrate into the

separatrix, since Liouville's theorem is not violated.

R. Taylor [Taylor] has studied this mechanism. Computing the motion of particles

with /?S7J nonconstant, one obtains nonclosed curves. Figure 11 shows the type of trajec-

tories obtained in a plane <f>, ui ]/2 8W/(0sj3)
3'2: the choice of these coordinates that are

non-canonical avoids crossing and shows more clearly how the stability area can be filled.

One understands that way how particles can be accelerated in a linac even if their injection

energy is too high (Chap. 1, paragraph 3.1).

Instead of changing only the energy, one may also change E and synchronous phase

<f>a. Provided such changes are slow enough, similar results apply. One may also keep the

area of stability constant. Such methods are currently used to improve the operation at

high intensity. They also allow a better matching of longitudinal emittances at injection

or output of a linac section. They are currently used in radio-frequency quadrupoles (see

Chap. 3, paragraph 5.3). Because of a change of E and <̂ s, the area inside the separatrix

may also shrink along the machine. Instead of Fig. 11, there will be a situation where

there is a "leak" of particles. This leak has been used to produce a reduced energy from a

linac. If experience confirms this phenomenon, the simple theory described here does not

allow an accurate prediction of the results.

Fig. 11. Golf club.
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4. IRREGULARITIES IN THE STRUCTURE

4.1. Nonadiabatic Changes

Instead of a progressive change, it is possible, for instance, to move suddenly the

input phase of particles in a gap by changing either a drift-tube length if this is made

inside a cavity, or a cavity phase if the change is made in between cavities. A particular

application may consist of jumping quickly to the unstable point (Fig. 12). There the

bunch will extend along the separatrix. Coming back to stable phase will then induce a

rotation of the area leading, after a convenient length, cither to very short bunches or to

very small energy spread. Such "beam gymnastics" are not much used in linacs but are

current practice in synchrotrons.

Fig. 12. Example of beam gymnastics — compression in phase or energy

spread.

4.2. Constructional Errors — Field Errors

Various types of errors can occur: an error i:i the longitudinal position of drift tubes

changes slightly not only the phase of particle crossing but also voltage amplitude; in a

long cavity, one may observe a field modulation caused by slight mechanical imperfections

(tilt ...). With errors of the first type, usually a synchronous particle no longer exists.

As will be justified in Chap. 5, however, one may say that a modified g.ip behaves as a
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perturbed "longitudinal lens." This error may, as it requires a higher acceptance, entail a

loss of particles. In most cases, however, the effect is hardly visible. Even the temporary

absence of stability is not necessarily fatal, as can be seen in the beam gymnastics operation

described above. Needless to say, a more detailed computation is necessary to elaborate

on specific considerations.

The case of a field modulation may result from the presence of parasitic modes.

Even though it may be small, it is not certain that such an unwanted modulation does

not prevent the existence of a synchronous particle, with small and slow enough phase

oscillations not to break any adiabaticity criterion.

In some cases, one may also come back to the Fourier analysis to obtain synchronous

waves. A modulation may then appear as the addition to the fundamental wave of satellites

of nearby velocity; their amplitude is, however, usually too small to trap particles. It may,

however, be large enough to affect the stability on the fundamental. In this case, too,

sufficient knowledge requires detailed computation. If the amplitude of the satellites is

large enough to capture particles and if stability areas of the various waves overlap, one

may observe a "chaotic" phenomenon: with only very slight changes in initial conditions

particles may be trapped by one wave or another.

In Chap. 5 will be described how relatively simple codes can be written to treat all

possible configurations. If such a method is accurate, however, it still may not lead to a

clear understanding of the conditions of stability. These conditions, as described in the

present chapter, remain useful as a general reference guide.
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CHAPTER 3

FOCUSING IN LINACS

Earnshaw's theorem shows that it is impossible to have, for the motion of particles in

the accelerating wave of a linac, both phase stability for the longitudinal motion and focus-

ing for the transverse motion [MacMillan]. The first proposal to overcome this difficulty

used thin foils, which were unsuccessful; subsequently, grids were used.

Since the advent of alternating gradient focusing [Blewett], quadropoles have been

generally used. Other methods discovered to provide focusing for the transverse motion

include alternating phase focusing (APF) and radio-frequency quadrupole (RFQ) focusing;

the latter is now widely used. The principles and limitations of these various types of

focusing will be surveyed in this chapter.

1. IMPOSSIBILITY OF SIMULTANEOUS LONGITUDINAL AND

TRANSVERSE STABILITIES

Phase stability requires that particles cross accelerating gaps when the rf field is rising.

Figure 1 shows a typical electric field line distribution in such a gap: if accelerating, the

field is focusing at input and defocusing at output. If the field level is increasing while

particles cross the gap, the defocusing effect is larger. (One must notice that in a purely

electrostatic system, the overall effect is focusing, but the effect arising from the change in

field level with time strongly overcomes this electrostatic focusing strength.)
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Fig. 1. Focusing and defocusing effects at the input and output of a gap.

This incompatibility property is very general [MacMillan] and cannot be avoided by

a proper shaping of the circular hole entrances of drift tubes. It was shown in Chap. 2

that in order to study phase stability, it was appropriate to select, in the series of waves

representing the field, that wave which propagates at the average particle velocity and

which captures particles. Instead of considering this wave in the laboratory frame, one

may then choose a frame moving at the synchronous velocity; the wave then becomes

electrostatic.

If the effect of the beam charges is neglected, the field in this frame must satisfy the

Laplace equation and the potential has no extremum except on boundaries where charges

lie. If one then has phase stability, the potential must present a saddle, and there is

transverse instability, and vice versa. Because

(1)

then if

one has

5E
dx

dEz

~bT<

dEx

X

0

a/+ d

(phase

> 0

z

stability) ,

(focusing) .

The effect of the beam charges can only worsen the situation; this will be studied in

Chap. 6.
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2. FOIL AND GRID FOCUSING

Foils are put at the entrance of each drift-tube hole to close them (Fig. 2). Defocusing

is then suppressed, leaving the focusing effect at gap entrances.

This method does not contradict the previous incompatibility proof because when

field lines stop on the foil, they develop charges there. On that side of the interval, their

sign produces an attractive potential such that there may be stability in all directions.

(Put at the gap entrance, the foils would have a defocusing effect.)

In practice, the thin foils (thin enough not to degrade the energy nor to cause too

much loss) were very quickly destroyed by electric breakdown (which cannot be avoided

during conditioning) and their use had to be abandoned. Therefore, foils were replaced

by grids, which were a large-scale replica of the foil lattice. To insure good cooling, these

grids were often strips in a cross-shaped arrangement that were parallel to the beam (see

Fig. 7 of Chap. 1). In the case of aligned crosses, the space offered to the beam would be

divided into four parts; each part is unstable by itself and stability requires that particles

from transverse oscillations jump from one hole to another.

Obviously such a device cannot avoid particle loss. Furthermore, one may guess that

such thick grids are not aberration free so beam quality cannot be very good.

i

&//////A

Fig. 2. Foil or grid focusing—the defocusing effect is suppressed.

3. EXTERNAL ALTERNATING GRADIENT FOCUSING [Blewett]

The first tests of AG focusing with electrostatic quadrupoles were made in Berkeley

in 1952. The method became operational, in its magnetic version, in 1959 at CERN and

in 1960 at Brookhaven.

32



3.1 Principle of AG Focusing in Linacs [Teng] - [Smith et al.j

Phase stability results from the choice of synchronous phase <t>a. From Eq. (21) of

Chap. 2, one easily obtains the phase advance of longitudinal oscillations per rf period (27r

mode Alvarez structure),

A

which can also be written

X0/3a J2neET\sin <f>a\\0

'AW. tan

where AWa is the synchronous energy gain per rf period (Alvarez drift tube), and Wa is

the synchronous energy. Usually 4>s ~ 30°, then

(One may notice that if <f>s were raised to 75°, at would be multiplied by 2.5; the energy

gain, however, would be divided by almost 3).

Because at injection AW9/Wa < 0.15 and goes down afterwards, during the first phase

oscillation the average value of ort is

7r . (5)

Stability conditions for an AG system have been derived by several authors [Courant et

al.j and also [Laslett], but we shall use Bruck's results [Biuck, p. 72] and in particular the

"necktie diagram" presented there (Fig. 3). In his derivation, Bruck introduces for each

section, focusing or defocusing, an action term P or Q proportional to the integral of the

force gradient (positive or negative) acting on the particles. In the longitudinal direction

(phase stability), one has

P.. = („/„). - - ^ £ * . (6)
The resulting transverse defocusing in a1 and y is, from the divergence property, assuming

a circular symmetry,

Px = Py = - P . / 2 . (7)
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0.4 O\/2

0.3

P/\/2

Fig . 3 , Necktie diagram. For linac application, it will have to be rotated 45°.

In drift tubes , magnetic quadrupoles will add ±Q (we shall here first assume, to follow

Bruck, tha t the filling factor of these quadrupoles is 100%, as if they were extended to the

gaps, but we shall come back to this point later).

Wi th a gradient B' = dBx/dy or dByj0x and for a sign reversing at each drift tube

(H 1— focusing mode), in an Alvarez structure operated in the 2TT mode (period \ Q 0 S

per drift tube) one has

" • • ( 8 )

(One must notice that for a H—I focusing mode, with sign reversing every other drift

tube only, Q2 would be multiplied by 4 and not 2, Q2 = 4Qi and by n2 for a reversal every

n drift tube only. The same remark applies to P with <Tfn = n&t)-

Through a complete focusing period one has, then, in the transverse direction, the

successive actions

Q-P/2 and - Q - P/2 .

In the necktie diagram, the operating point is therefore never on the diagonal. One

may obtain a diagram in P/\/2 and Q\/2 by a 45° rotation of the classical necktie.

Figure 4, obtained by such a rotation, gives ox = oy as a function of P and Q.
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NECKTIE DIAGRAM

-0.2

Fig. 4. Stability diagram.

For a H 1— focusing in which az —

az = 2

and Fig. 4 gives the values of

Q =

(9)

(10)

It is possible to compute the /? function (form factor of the focusing envelope). As

can be expected, /?max//?min increases for operating points closest to the stability limits.

A similar computation can be performed for the actual filling factor of the quadrupoles

(usually of the order of 1/2). Results remain very similar if one uses for Q the same

gradient integral per quadrupole (equal power lens); there is, however, some increase of

^min- For a + H focusing mode, the previous diagram applies {P? = 4P]). The
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required value of Q?, is then not much higher than Q\, and the required gradients are

smaller. Nevertheless, /?max//?injn increases.

3.2 Discussion

Point A of Fig. 4 is a typical operating point. The gradient required at low energy

is high. Therefore, early machines used + ^ focusing mode, at least at the beginning

of acceleration. In fact, A corresponds to synchronous particles. For non-synchronous

particles, which oscillate in phase, the local value of the defocusing action P is such that

ill)

where <j> is the actual phase value; around A one may then have oscillations between B and

C (separatrix). This phenomenon produces a coupling between longitudinal and transverse

motions; a detailed computation [Hereward et al.j has, however, shown that this effect was

not important except in the case of the resonance

g = ax/az = 0.5 ,

which must be avoided.

In practice, q w 1 (ranging from 0.75 to 1.5 or even more) and <JZ& 7r/3 (one

always takes <rx < TT/2, see Chap. 6).

3.3 Remark

Transverse oscillations are governed by a Hill's equation of Mathieu's type,

y" + (a - 1q cos 2z)y = 0 ,

where a would represent the —P/2 term and 2</ represents Q, with a sinusoidal variation

instead of a square shape.

Stability conditions for Mathieu's equation can be found in mathematics books

[Abramowitz et al., p. 724]. Figure 5 shows the graph from Angot [Angot, p. 471]
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and the central portion is enlarged in Fig. 6. One can recognize, by permuting the axes,

the diagram of Fig. 4.

• - Q

Fig. 5. Mathieu's stability diagram.

Fig. 6. Enlarged Mathieu's diagram rotated by 90°. It is very similar to Fig. 4.

3.4 Conclusions

Magnetic AG focusing, though complicated from a technological point of view, is

extremely efficient for Alvarez-type linacs, the only linac used at medium energies.
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For interdigital or H-ty^e structures at low energy, one often replaces magnetic

quadrupoles with electrostatic ones. Later the possibilities offered by RFQs will be shown.

For high energy, focusing is easier to achieve; it is normally made by separated

quadrupoles, between accelerating cavities.

4. ALTERNATING PHASE FOCUSING

The APF principle, presented for the first time in 1953 by J. H. Adlam [Adlam] in

an AERE* report and by Good [Good], was described again in the USSR by Fainberg

[Fainberg] in 1956, but not tested til the 1970s in the USSR and at Los Alamos in the

PIGMI project [Knapp et al.j. Several studies were devoted to this principle; the study

results were presented at the Chalk River Linac Conference in 1976 by Swenson and also

by Deitinghoff [Swenson] and [Deitinghoff et al.]. A detailed analysis has been made by

[I. M. Kapchinskij].

The idea is to apply to longitudinal and transverse motions the AG focusing that is

so successful for transverse directions. By changing the drift-tube lengths, it is possible to

give to the average phase crossing <f>a of the particles alternatively a positive and a negative

value.

In such a situation, the longitudinal action term P of Sec. 3.1 is no longer constant,

but it may oscillate between — P\ and + P2- Simultaneously, the transverse action will

oscillate between + P\/2 and — P2/2. Using the graph of Fig. 3 from Bruck, one may

then obtain a diagram referring to this case (Fig. 7). The necktie is now unsymmetrical;

and in order to have q = <rx/az « 1, one should choose Pj ^ P%.

According to the diagram, the P values should range from 0.15 to 0.25 (instead of

ss 0.01 for <t>a — 30° with a reversal every drift tube).

* Atomic Energy Research Establishment, Harwell, Great Britain.
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0 1 0 2

Fig. 7. Stability diagram for APF focusing.

One is then led to increase the field and to reverse phase only every 3 or 4 drift tubes,

or at the very least 2, if <f>s is also increased as well as Ez.

Whatever one does, the focusing period is always very much longer than with

quadrupole lenses, perhaps by as much as a factor of 4; the focusing is much weaker

(by a factor of 10 to 20) in the transverse as well as in the longitudinal diiection. With

external focusing lenses, one had Q ~> P\ here P\ and Pi are both limited.

The phase acceptance may nevertheless be reasonable (up to a total of 40° to 60°).

Alternating phase focusing is an extremely simple method, but unfortunately it is not

very efficient. It could not be used for high intensity (a few tens of mA and probably less

in a small emittance).
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5. RADIO-FREQUENCY QUADRUPOLE FOCUSING

5.1 Initial Proposal — Finger Tips

This proposal was made by V. Vladimirskij in 1956 [Vladimirskij]. The idea was to

put on each drift-tube face two diametrically opposed ringer tips with alternate rectangular

directions in order to produce a transverse quadrupolar field (Fig. 8) in the gaps.

This quadrupolar field is rf, but always has the same sign when particles cross the

gap around synchronous phase. Alternating the polarity in successive gaps produces AG

focusing. This device was experimentally studied in detail by D. Boussard in Orsay in 1965

and by Maltsev and Teplyakov, in particular, with a view toward a possible application

for low-energy heavy ions [Boussard], [Maltsev et al.]

The focusing is efficient, but electric fields on the tips can have high levels; in order

to avoid sparking, acceleration must be slow.

Fig. 8. Finger focusing.

5.2 Second Proposal — Match Boxes

The match box shape was proposed in 1963 by I. M. Kapchinskij and P. Lapostolle

[Anisimov et al.] and [Lapostolle et al.]; the idea is to replace the circular shape of drift

tubes, or at least the beam hole, by a rectangular shape of alternate orientation (Fig. 9:

each tube might be like a "match box").

40



As shown in the figure, the transverse divergence of the field takes place only in one

transverse direction x or y at each end of the gap and is inverted from input to output.

There is no longer overcompensation by output as there was with circular holes (Fig. 1),

but there is a quadrupolar effect.

X

1
z

— --

... , \ \ \ \y

..

Fig. 9. Match box focusing.

At the input, for instance, the focusing effect can be approximated from the relations

(12)

where Eg is the accelerating field in the gap at the time of input, supposedly fast. At

output, there is a larger defocusing effect, but in the y direction.

As can be seen, there is an advantage to having a high accelerating field, i.e . for a

given voltage, short gaps. One is again limited by breakdown risks. Computation shows

that this simple device is satisfactory, but. only at very low energy. Of course, the device

can be applied (as the finger tips) not only to Alvarez-type structures (2TT mode), but also

to Wideroe, interdigital, or H-type structures (ir mode).
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5.3 Present RFQ

In the previous structure, when operated in the n mode, one can omit from the boxes

the farther sides and make the closer sides round, in the form of bars; each pair of opposite

bars can then successively be connected to the terminals of an rf voltage source (Fig. 10).

Fig. 10. Bar focusing.

Such a device was developed by H. Klein in Frankfurt, then modified and improved

by R. Miiller in Darmstadt (Germany) [Muller] and [Klein et al.].

Bars of equal potential can still be joined by a conductor further away from the

axis, with an equipotential boundary of quasi-sinusoidal shape, of opposite phase in the

two planes of bars. All these bars can be put in an if cavity divided into four sections

(Fig. 11). This is the most common configuration for RFQ structures. The original

idea of Kapchinskij and Teplyakov in 1970 [Kapchinskij et al.] emerged in 1979 into real

devices tested in Los Alamos and Moscow [Kapchinskij et al.], [Swenson], [Potter et al.],

and [Stokes et al.].

42



Fig. 11. Classical RFQ device.

In the classic RFQ structure there is a superposition of two fields or waves: a standing

accelerating wave of amplitude AV (the sum of two traveling waves with opposite velocity)

and an rf quadrupolar field independent of z of amplitude XV. The total field has the

form

Er = r cos 2v>
-XV

—
a

XV . ni
—r-r sin 2ip
a1

kAV
II(KT)COS kz

Ez —
^ j T i ¥

iQ\kr) sin kz

x sin (ut + (13)

Bar or pole profiles are shaped to fit the boundary conditions of this field.

Such a device has proved to be extremely efficient, even at high intensity for very

low energies. It is used to produce transverse matching of the beam, progressive bunching

(adiabatic), and acceleration. Beam efficiency can be close to 100% for intensities in the

range of 100 mA. This device increasingly is replacing previous electrostatic injectors and

bunching cavities.
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6. REMARK ON THE POSSIBILITY OF SIMULTANEOUS STABILITY IN

LONGITUDINAL AND TRANSVERSE DIRECTIONS

6.1 Alternate Focusing Effect

Looking at a field as given by Eq. (13) in a frame moving at the velocity v of the

synchronous wave, the forward component of the accelerating field becomes electrostatic,

while the quadrupolar field is oscillating (in pddition to the static part of the accelerating

wave).

If the frequency variation of the focusing is very fast, there is obviously hardly any

effect; if it is too slow, the situation may become unstable. There is, however, a range of

frequencies in which the global effect is focusing. This is the basic principle of AG focusing,

which can be presented as resulting from the focusing effect of a two-lens system:

_
J2

(14)

For fi — —fi (equal and opposite focal lengths of the two lenses), thanks to the third

term the global focusing effect can be significant if the distance d between the lenses is

convenient.

It is also possible, considering the shape of a trajectory crossing a succession of focusing

and defocusing lenses (Fig. 12), to notice that the axial distance of the crossing points in

the focusing lenses is, on the average, always larger than in defocusing ones. It is indeed

the same property that appears in the betatron function /?, which is maximal in focusing

sectors and minimal in defocusing ones.

\

Fig. 12. AG focusing effect.

44



6.2 Comparison Between APF and RFQ Principles

AG focusing, if made in two or three directions (the Laplace equation forbids it to be

done in only one), may provide stability in all three directions. In the APF system, there

is AG focusing in z and in r (circular symmetry in x and y). In the RFQ device, there is

AG focusing in x and y and smooth focusing in z.

6.3 Fast Wave Focusing

Instead cf using, as in the RFQ, an accelerating wave and a quadrupole rf field that is

stationary in the laboratory frame or, as in the APF, a stationary phase modulation of the

accelerating wave, one might superimpose two longitudinal waves of different velocities.

One of them, in phase with the beam, is then accelerating; the other, which may have

a different amplitude and which oscillates in phase with respect to the beam because its

phase velocity is different, provides stability both transversely and longitudinally.

Such a device, invented in the USSR [Baev et al.] and named FWF (fast wave

focusing) has not shown yet its real potential.
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CHAPTER 4

RF STRUCTURES FOR LINACS

A good accelerating structure should exhibit a large accelerating field with limited

if power and good stability. This assumes that for a given accelerating field, the electro-

magnetic (EM) field distribution is such that the peak electric field has been minimized to

avoid breakdown risks, and currents in the wall have been minimized to reduce losses. This

also assumes a structure that is not very sensitive to perturbations, both intrinsic (beam

loading, transient phenomena during cavity filling) and extrinsic (mechanical imperfec-

tions, distortions resulting from temperature, etc.). Finally, and somewhat contradictorily

to this last requirement, one may wish for a structure that is flexible enough to be used in

different operating conditions (with other particles, other modes, etc.).

These electrical requirements have, of course, an impact on mechanical fabrication

problems: value of tolerances, possibility of adjustments, cooling and temperature control,

etc., and solving these problems /meeting these conditions at minimum cost.

1. QUALITIES OF A STRUCTURE FOR ACCELERATION

1.1 Shunt Impedance Zs

Let us consider an EM resonant cavity with standing waves. The accelerating peak electric

field Ez on the axis is, for instance, as shown in Fig. 1 [Alvarez et al.].

Ez

Fig. 1. Typical axial field distribution.
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One may compute an average field over the cavity length L or an integral number of

periodo,
I rL

Ez = - Ezdz ,
•̂  Jo

or the Fourier component of the synchronous accelerating wave,

Ez T . (T is the transit time factor, see Chaps. 2 and 5.)

The shunt impedance, nominal or effective, is defined as

Za = - p - or Za<e = —r-— , (1)

where P represents the rf power losses in the walls per unit length of the structure. (Such

quantities may, of course, change along a long cavity, and one can define a local and an

overall value.) The "erms Za and Zs,e are usually expressed in megohms per meter.

One may notice that, for a structure of length £., the total shunt impedance

(Z.,e) = L • Za,e (2)

is such that the total power (P) = L • P can offer a total accelerating voltage (V) to the

particles:

• Z3te = L • V , (3)

i.e., L times the voltage per meter.

1.2. Quality Factor Q

By definition, the quality factor Q is 2TT times the ratio of the EM stored energy Ws

in the cavity to the joule losses in the vails during an rf period.

1.3. Field Measurements — Bead Perturbation Method

From previous definitions one has

Q OC T2/WS .



Now one may measure locally the ratio of the square of the electric field (or magnetic

field) to the stored energy. This fact results from Slater's perturbation method [Slater].

At resonance, in an EM cavity, there is a continuous interchange between electric and

magnetic energies such that their peak values must be equal. Any modification in one

of them entails a change in frequency to restore equilibrium (with some analogy to what

happens in an LC circuit where the capacitance or the inductance would be changed). A

metallic ball or bead on the axis of a cavity (where the magnetic field is normally negligible)

modifies the electric energy (by forcing the field out) and changes the frequency. If such a

bead is moved along the axis, one gets a measurement of the field distribution and, by a

proper standardization, Zs/Q. Such a method is currently used for the initial adjustment

of cavities.

Away from the axis, the introduction of metallic (or dielectric) balls can be used as

a way to change the resonant frequency. If the ball is put in a region where the electric

field or magnetic field dominates, the change in frequency will be of a different sign; in a

transition region, there is no net effect.

1.4 Traveling Wave Cavity — Attenuation

At a power [P] circulating along a cavity, there is a corresponding accelerating field

Ez on the axis. Because of wall losses, the circulating power decreases and the amplitude

of the field also decreases exponentially along the cavity:

E~(z) = E7(0)e-** . (4)

Circulating power absorbed in the walls decreases as E^. Then

IP}=WJ2AZ, . (5)
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2. DISPERSION CURVE — CAVITY AND STRUCTURE MODES

2.1 Dispersion Curve

In a lossless waveguide, the field on the axis z of a given mode is given as a function

of z and t by

( " A r ' l ) (C)

with

kz = LO/VJ, , (7)

where v^ is the phase velocity. In a periodic structure used as an accelerating structure,

by corresponding points separated by a multiple of the period, considering periodic points,

it is still possible to define a v^ and hence a kz.

In the frequency band in which a given mode exists, there is a relation between A--

and angular frequency u>. On the dispersion curve (Fig. 2) expressing this relation, the

slope of OM is the phase velocity v$. The slope of the tangent at M is the group velocity

vg, that is, the velocity of a wave packet of frequencies close to u> corresponding to M.

n U)

Fig. 2. Dispersion curve. Phase and group velocities.

Let us consider the sum of two waves around M. One has

S)
cos[(w - Aw) t - (kt - Ak,) z) + cos [(u; + Au;) t - (k, +

= 2 cos [ut - k.z) cos (Aw< - Ak.z) .

In this expression, the first term expresses the propagation at phase velocity vc,

(Eq. 7); the second term represents the amplitude, which moves at group velocity
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g / . (9)

In some way, this velocity can be considered as the velocity of energy propagation and as

the velocity of transients.

2.2 Cavity Mode — Structure Mode

In a resonant cavity, the length L of the structure must be such that

kzL = Nn , (10)

with N = 0 or an integer; N denotes the cavity mode.

In most cases, boundary conditions are made such that N = 0 is possible; then the

field amplitude is constant. For N ^ 0, there are standing waves with a sinusoidal variation

of the field. This configuration can be considered as a non-optimum use of the structure,

in which some portions are not (or are barely) accelerating.

In an Alvarez structure, which is normally used in the zero mode, if the frequency is

increased slightly, modes JV =1, 2, ... are excited.

In a traveling wave operation, the relation in Eq. (10) does not have to be satisfied,

and there is no advantage to having N = 0; in fact, as will be seen later, it is better to

have N £ 0.

In a periodic structure of period p, kzp is the structure mode. For the beam, this mode

can take values

k.p •+• 2hn (h = 0 or integer) ,

or, when the field is reversed in successive gaps,

kzp + 2hir 4- TT .

As was already mentioned in Chap. 2, because of the value of the transit time factor 7\

only one or two such beam modes can be used:

27r or 47r (Alvarez)

7r(or 37r?) (interdigital or H structure).
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3. TRANSIENTS, BEAM LOADING, SENSITIVITY TO PERTURBA-

TIONS OR IMPERFECTIONS

3.1 Transients and Beam Loading

In the pass band of a mode, the dispersion curve is usually as shown in Fig. 3. There,

simply because of the periodicity, the slope is 0 for the zero and ir structure modes. For

the zero mode, which also corresponds to N = 0, one then has vg = 0.

k, P-7T

Fig. 3. Zero and n modes.

In such conditions, cavity filling is slow. A computation based on the telegrapher's

equation (see Sec. 8 of this chapter for more details) shows that the field penetration in a

long structure is proportional to cj\/Q. It is only through the phase shift caused by losses

(as will be seen later) and maybe with the help of higher order modes (particularly in the

case of very low losses) that energy can propagate.

In a similar way, when the beam suddenly absorbs stored energy from the cavity,

refilling will take some time, during which the field distribution is modified in amplitude

and phase.

3.2 Sensitivity to Mechanical Imperfections and Perturbations

Another drawback of structures operated in the zero mode is their great sensitivity to

geometrical errors, which can induce large field perturbations. In order to describe such
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an effect, let us consider the simple case of a circular waveguide cavity where there is a

field modulation resulting from the existence of two modes:

(with a < 1) ;

the two modes having simultaneously the same frequency with, according to usual notation,

N = 0 for the first mode, assumed to be amplitude 1, and TV" = 1 for the second mode of

amplitude a.

At the two ends, the field on the axis will be (Fig. 4):

l±a

Ez

Fig. 4. Field modulation or tilt of a cavity.

The radial field distribution is governed, for these circularly symmetric modes, by the

Bessel function Jo in such a way that, in order that the E- field be 0 on the lateral wall of

the cavity, one must have at each end

Jo(kr0 r) ± a J0(kri r) = 0 , (11)

where A:ro and kri refer to modes 0 and 1 with

(12)

This condition assumes a slightly "conical" cavity. The diameter must be larger (the

local resonant frequency lower) at the end where the field is higher.

The problem treated here would correspond in actuality to a sinusoidal diameter

modulation (and variation of local resonant frequencies). For a linear variation, the result,

however, is similar.
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Then, for a frequency perturbation 8w, there is a field modulation 6E with

SE 1 8(u2) .
~E~-~S~^~ • ( 1 3 )

The quantity S is a sensitivity factor such that

5 ex {UJ\ — u>o)/u;o ' (*^)

where UJQ and u>i refer to 0 and 1 modes of the unperturbed cavity.

Then, for a zero mode cavity,

5 « 2(c/uL)2/en (15)

(e and /i are relative values); outside the zero mode, if vg ^ 0,

Stt2{v9/uL) . (16)

For most cavities, for which UJL ^> c and 0.1c < vg < c, one sees that cavities with the

nonzero 0 mode are much less sensitive to mechanical imperfections.

As observed in Fig. 3, vg is normally maximal near the 7r/2 mode. Unfortunately for

such a mode, every other gap is a node where the field is zero. Acceleration is only half

what it could be in the zero mode. (In fact, in a 0, TT, ... mode, acceleration is r wided

by both forward and backward waves; this explains the factor 2 with the operation in TT/2

mode).

4. VARIOUS TYPES OF STRUCTURES

4.1 Alvarez Structure [Alvarez et al.]

The Alvarez structure is schematically shown in Fig. 5, with its drift tubes of tapered

length in a TMoio circular cavity. Most such structures operate at 200 MHz. The shunt

impedance is high-ZS]e ~ 40 Mfl/m for 0.03 < 0 < 0.5. Zero mode operation makes this

structure not very satisfactory for transients and from "sensitivity" points of view.
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Fig. 5. Alvarez structure.

4.2 Interdigital or H-Type Structures [Sloan et al.][Zeidlitz]

Several different designs follow the same principle (see, for instance, the Sloan and

Lawrence device [Nassibian et al.] mentioned in Chap. 1 (Sec. 1.3)). Figure 6a [Kaspar],

[Moretti et al.] and [Watson et al.] and Fig. 6b [Nolte et al.] and [Fukushima et al.] only-

give a sketch of the main structures.

The cavity, operated in a TE mode, is accelerating because of the drift tubes, which

exhibit a it mode for the beam (sometimes 7r-37r or even 7r~57r, see Fig. 6c). With an open-

end-type boundary, the cavity can be operated in the zero mode. The shunt impedance is

very high for this structure at frequencies ranging from 20 to 100 MHz and for ft < 0.05.

Fig. 6a. Sloan-Lawrence interdigital structures for medium energies.
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Fig. 6b. H-Type Structure.

Fig. 6c. Low-energy interdigital structure.

4.3 Iris-Loaded Waveguide

The iris-loaded waveguide is a TM-excited circular waveguide where the phase velocity

is reduced by iris loading (Fig. 7). This structure is normally used for electron acceleration

with 0 ss 1 in a w/2 or 2TT/3 structure mode, in a traveling wave, at a frequency of the

order of 3 GHz (see Chap. 7).
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Fig. 7. Iris-loaded structure.

4.4 Side-Coupled Cavity Structure [Knapp et al.j

In the side-coupled cavity structure type of iris-loaded waveguide, small drift tubes

in the irises prevent direct coupling from cell to cell. Coupling is then provided laterally

through resonant cavities alternating diametrically (Fig. 8). From a field propagation

point of view, these coupling cavities play a role similar to the accelerating ones. If they

are considered as periods, the structure is operated in the TT/2 mode. For accelerating

cells, however, the phase shift is TT (7r-beam mode, except if through phase reversal in the

geometry of the coupling, it is made 2n).

Fig. 8. Side-coupled cavity structure.
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In standing-wave operation, only the accelerating cells are excited, and the field is

weak in the coupling cells. The shunt impedance is high for 0.5 < /? < 1. The group

velocity is high.

5. FIELD STABILIZATION OR "COMPENSATION"

The aim of this device is to modify zero- or 7r-mode properties in such a way that the

group velocity should not be zero (as in the structure described in Sec. 4.4).

5.1 Alvarez Structure with Post Couplers (Los Alamos) [Swenson et al.]

In an Alvarez structure at zero mode, stored electromagnetic energy oscillates trans-

versely in such a way that coupling is weak between successive gaps. If resonant posts are

placed facing the drift tubes, they will couple with the Alvarez mode, inducing some kind

of lateral coupling between successive gaps (Fig. 9).

POST DRIFT
TUBE

Fig. 9. Post-coupler compensation.

As in the side-coupled cavity structure, the group velocity is no longer 0 (vg ~ 0.1c),

especially if the posts alternate diametrically in position. Contrary to a normal side-

coupled cavity structure, however, the Alvarez mode is still 0 (this could also be achieved

with a side-coupled device). One may also consider that two modes are interacting on the

same 0-mode frequency as will now be seen.
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5.2 Coupled Mode Theory; Mode ^ 0 [Watkins] and [Vassallo]

Let us first consider a structure for which, at a given frequency, two modes may coexist

for which the dispersion curves cross (Fig. 10). Let us assume, in addition, that the field

distribution in these modes allows some coupling. For a frequency wo, the two modes

will then have the same fco (&oP 7̂  0,7r,27r) and will then propagate at the same velocity

and interact, one of them exciting the other or vice versa (we shall here, in contrast with

common practice that makes use of circuit theory, take a mode approach).

Fig. 10. Crossing of two uncoupled modes.

Let us consider each of the two modes independently first. Without coupling, and

neglecting the losses, the amplitude of one of the modes is such that

X10 = with X[o = - ik10X.[o lO-MO (17)

and for the other mode

-^20 = with -^20 (IS)

If the modes are coupled, Eqs. (17) and (18) are perturbed by the presence of the

other mode. In the coupling zone, some amount a of the A'20 mode 2 amplitude will add

to the component Xi0 of the second half of Eq. (17). In a similar way, some fraction 3

of amplitude Xw will be subtracted from X2o of the second half of Eq. (18). (Of course.

a and 0 are equal if modes are properly normalized.) These coupling coefficients a and

/3 are frequency dependent, but in the small bandwidth considered, they may he assumed

constant.
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(19)

One may then write, instead of Eqs. (17) and (18):

( X[ = -1*10*1

\x'2 = -ik20X2 - i/

This set of equations can be solved by considering, for instance, that mode 1 of

amplitude C\ will excite, when propagating, the mode 2, whose amplitude will grow while

C\ diminishes. One may also try to seek couples of C\ and C2 modes for which the

amplitudes remain constant (hybrid modes).

In case such hybrid modes exist, they will propagate at a different velocity with a new

k. For each component of these hybrid modes one will have

X[ = -ikXi , X'2 = -ikX2 .

Hence, from Eq. (19)

{ i(k - *io)*i + iatX2 = 0 , and

i(k - k20)X2 - ipXx = 0 .

In order for the hybrid modes to exist, the system (Eq. 21) must be compatible, i.e.,

(20)

(21)

i(k — k20)
= 0 ,

which gives

k = 20 -a/3 ,

(22)

(23)

where ki0 and Ar20 refer to uncoupled modes, and a and /? are the coupling coefficients

(related, as already mentioned, by reciprocity relations).

It can immediately be seen that when kio = k2o, no wave exists, and there is a

stopband where the hybrid waves arc evanescent (Fig. 11).

WITH .
COUPLING

Fig. 11. Crossing of two coupled modes.
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5.3. Zero-Mode Coupling — Confluence

Let us now consider the case where the dispersion curves join at zero mode. Unlike

the previous case where only two modes were taken into account, now with k « 0, not only

waves with k > 0, but also waves with k < 0 must be considered, because their velocity

difference is very small.

One will then have, instead of Eq. (19),

Aj = — tfcioAi + iaX3 — taXi ,

X'2 = +ik1QX2 — iaX3 + iaXi ,

X3 = -ik2QX3 - i&Xx + i/3X2 , and

-i0X2 .

The condition for hybrid waves is now

k — 0 +a
k + ki0 —a

+0 k-k20

-P 0

—a
+a
0

= 0

which, after development, gives

(k2 - kjo)(k
2 - k2

20) = 0 .

For modes very close to the zero mode, k10, k2o * 0. One may assume

Eq. (26) then becomes
1,

2 ^
K ~

,2 1.2
0^20

Aotp

(24)

(25)

(26)

(27)

(28)

Around the zero mode, each dispersion curve can be represented by an expression of the

form:

*io = y/^-uD/Ki k20 = y]{u>l-u*)IK2 , (29)

where K\ and K2 are proportional to the curvature of the dispersion curves around the

zero mode, i.e., to their bandwidths.
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Letting

= u,'o — Au; , = ^o + Aw , and = UJQ -f bio (30)

with Au>, fo < Wj, one obtains

(31)

and, for an exact "confluence" (Aw = 0) ,

k w ±- ^=6u> . (32)

In such a case, there is no stop band; a confluence entails a nonzero group velocity

(Fig. 12). This group velocity is proportional to the coupling coefficient (\/a]3) and to the

geometric average of the two passbands:

Vg = (33)

(1)

WITH
COUPLING*

NON ZERO
SLOPE

Fig. 12. Confluence.

The posts mentioned in Sec. 5.1 introduce in the cavity a band whose mode is slightly

coupled to the Alvarez mode (the side alternance of the posts provides a favorable disper-

sion curve).

At confluence, vg ~ 0.1c. In order to increase ufl, the coupling should be increased.

5.4 Stem Coupling [Giordano]

Stems supporting drift tubes resonate in a mode whose band does not normally inter-

fere with the Alvarez mode. If, instead of one stem, two or more are used and their angle
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and diameter are adjusted, it is possible to produce a confluence with the Alvarez mode

(Fig. 13). The coupling is obviously larger than with posts that do not touch drift tubes.

Fig. 13. Stem stabilization.

One obtains vg ~ c/3. This device, however, is very inflexible. Posts, on the other

hand, fitted with eccentric tabs at their ends allow, by rotating the posts, an adjustment

of the field distribution along the structure [Swenson et al.] while still providing stability

(but with vg ~ 0.1c only).

5.5 Remark on Zero-Mode Structures

(a) Ordinary Structures. At zero mode, the classical wave equation

^~t + k*Ez = 0 (34)

becomes

which exhibits the general solution

Ez = A + Bz . (35)

In this solution, A represents a mode that, in a circular waveguide, corresponds to the

classical TMoio- The term Bz represents a mode that turns out to be the limit of TMon

mode for an infinitely long cavity, z = 0 being the position of a magnetic wall (open cavity

without radiation). [Dome et al.](See Fig. 14).
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Fig. 14. Degenerate mode.

In such a mode, a purely imaginary flux of the Poynting vector maintains the field

inequality along the structure. Such a flux can be produced at each end of a long cavity by a

frequency perturbation that acts as a sink or a source of reactive power. Such perturbations

then produce a field tilt as explained in Sec. 3.2. The larger the mode separation, the

smaller the tilt (sensitivity factor S).

If A and B are not in phase, there is real power transmission. This is the case of

transients that, because of the phase shift produced by rf joule losses, travel in an infinite

structure at a velocity of the order of c/y/Q.

(b) Compensated Structures. For "compensated structures," the situation is different.

The sensitivity is no longer directly related to the group velocity. Let us consider a nonexact

confluence, where Aw ^ 0. Instead of writing Eq. (28) as we did in Eq. (31), let us consider

the neighborhood of u»i and, with Eq. (29), write

" U>?~"1? , (36)

where vg is the confluence value (Eq. 33).

This expression is of the same type as Eq. (29). It shows that mode separation around

u>i of the accelerating mode is such that the sensitivity factor, instead of S = 2K\j{u>L)2

as in Eq. (29), is now [Knapp et al.][D6me, p. 673]

8 / v \ 2

S~z ; _ _ ( _ J 2 _ ) . (37)

The sensitivity to perturbation not only decreases (S increases) as a result of conflu-

ence, but also goes through zero and changes sign with the zero-mode frequency difference

between accelerating and coupling modes. Equation (36) indeed indicates that the curva-

ture around the u>i frequency of the accelerating mode changes with the sign of u>2 — u>i.

03



The situation is, however, not symmetrical. A closer look at Eq. (26) shows that Eq. (36)

should be written

k2 « (w2 - u>]){u\ - W|)/A'I(4Q/3A'2 + J\ - ul)

in such a way that for u>\ — J\ cs 4a,##2 •> all stabilization vanishes before changing sign

again.

At the confluence, experience shows that the two mode solutions of Eq. (34) are the

zero accelerating mode and the zero coupling mode, both of constant amplitude but with

a different parity (one symmetrical and the other antisymmetrical). [Dome et al.] This

property can be illustrated by comparison with a non-compensated case. Figure 15 shows

the field distribution of the degenerate Alvarez mode and the pure post mode at confluence.

For a similar flux of reactive energy at input (similar field configuration), there is in one

case linear growth of the field and constant field in the other.

Fig. 15. Comparison of the degenerate Alvarez mode with the post mode at confluence.

The transient velocity at the confluence is, of course, still related to vg, but, because

of the complex shape of the dispersion curve, it may take a different value. Slightly away

from the confluence, it decreases .

Further away from the confluence, when the coupling becomes weak, the velocity is

cj>/Q again. As for stabilization, however, the situation is not symmetrical; for u>i > wj,

the transient regime may become extremely bad, particularly when w| — u\ — 4aj3K2.

(c) Sensitivity Factor and Group Velocity. Equation (37), valid for compensated struc-

tures, does not show, as did Eq. (16) for a single structure, a direct relation between S

and vg. In practice, however, the group velocity value vs is not at all irrelevant for field

stabilization. The higher vg is, the lesc important it is to guarantee a perfect confluence
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and the less sensitive one is to possible accidental changes as produced by mechanical de-

formations. However, it is prudent to avoid u>2 > u>i, especially if the coupling mode has

a small bandwidth.

6. OTHER TYPES OF LINACS

6.1 Variable Energy Linacs (Variable Velocity)

Such accelerators are particularly suited for heavy ions for which, according to mass.

velocity may change in a relatively wide range.

(a) Variabie Frequency Linacs [Odera]. RILAC in Japan is of this class. The Sloan-

Lawrence structure (TT — 3TT initially, then n — TT) with a frequency range close to a

factor of 3 can cover a wide range of energy per nucleon. Mechanical fabrication is

delicate and rf losses relatively high.

(b) Operation at Reduced Level Near the End of the Accelerating Cavity. [Swenson et

al.] and [Tanabe et al.] An insufficient field level entails a loss of trapping (inverted

golf club). One may obtain several energy bands, but this operation would require

more detailed studies in order to be practicable.

(c) Additional Independent Cavities. This is the device used in the UNILAC (GST Darm-

stadt )[B6hne]. By a proper phase and amplitude adjustment of short additional reen-

trant cavities, one may reduce or increase the final energy while keeping a satisfactory

longitudinal emittance.

6.2 Independent Cavity Linacs

(a) Classical Reentrant Cavities. Compared to a classical Alvarez structure, the if con-

sumption in such a device is notably higher at low velocity; for /? > 0.3, however, the

difference goes down and even changes sign for large /?s.

(b) Induction Cavities [Smith]; [Fessendenj.

These induction cavities are a type of pulse transformer where the accelerating field is

applied only at the time the beam is crossing them. Independent pulses can be considered

as part of an rf period of arbitrary length (Fig. 1G).
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lEz

A
Fig. 16. Independent pulse operation.

These conditions may be expressed as

Ez — E cos

dEz

and

dt
= —u)E sin <f>

(38)

which specify that acceleration and phase stability conditions may be satisfied by an infinite

set of o>, E and <f> values. A careful shaping of the pulse profile may even allow correction

of some nonlinear effects (Chap. 2, Sec. 1.5).

(c) Linnc Boosters for Electrostatic Accelerators [Schempp et al.] and [Bollinger et al.].

Such cavities, either at room temperature (Heidelberg) or superconducting (Argonne,

Stonybrook, Saclay, etc.), usually have two or three g&ps (spiral or split-ring res-

onators, see Fig. 17); the gaps can even be of a helical type (A/2 or A long) [Ramstein

et al]. These independent cavities, the phase of which is computer controlled, are

potentially extremely flexible.

Fig. 17a. Spiral resonator.
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Fig. 17b. Split-ring resonator.

7. NOTES ON THE FIELD DISTRIBUTION COMPUTATION

[Halbach et al.]

Fields in a cavity satisfy Maxwell's equations, and the potential function <j> must satisfy

- 0 , (39)

where e and fi are the relative permittivity and permeability, respectively.

For circular symmetry, for instance, a mode having an Ez component on the axis will

satisfy

+ -^ i - £ T-^7T L =0 • (4°)dr ' ' dz2 c2 dt2

Computer codes exist for the solution of such partial derivative equations in free space

(e = fx = 1), limited by boundary conditions such that, for instance, the electric field be

normal to the walls.

In practice, this space is sometimes divided into subspaces limited by plane or cylin-

drical (or spherical) boundaries between which the fields can be expressed in the form

of a series of modes with the usual functions [Bell et al.]. Other subspaces, including

boundaries, are treated by finite difference equations applied to an appropriate mesh.

For the case of circular symmetry, instead of Ez and Er, one often introduces the

function

(41)

for which Eq. (40) becomes

dr2

d p 1 d p

r dr + dz2 ~~ c2 dt2 ~
(42)

One has to find the resonant frequency and field distribution simultaneously.
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Usually, one starts computing the field distribution with an estimated value of the

frequency. From this, various criteria lead to a new estimate, based in fact on an estimate

of the difference between electric and magnetic stored energy. After a few iterations, the

frequency and field are obtained.

It is then possible to compute joule losses (and heat deposition), peak electric and

magnetic fields on the walls, frequency corrections as produced by perturbations not in-

cluded in the computation (drift-tube steins, for instance), and various quantities relevant

to beam dynamics computations (T, 51, and their derivatives, see Chap. 5).

8. NOTES ON TRANSIENTS AND BEAM LOADING (Beam-induced Field

Excitation)

Although of increasing importance, today, discussion of transients and beam loading

will be limited here because detailed treatment presents relatively complex aspects.

S.I Short Cavity [McMichael et al.]

When a bunch of charges crosses an rf cavity, it excites EM fields. We shall consider

here a periodic train of bunches, the frequency nf which is close to the resonant frequency

of the cavity (or a harmonic frequency). Let I be the corresponding intensity at that

frequency (harmonic component of the Fourier spectral analysis). The field excited by this

current can be computed from the fraction of the stored energy it absorbs from the cavity

(assumed lossless):

^-=-IVT cos <f> , (43)

where V is the voltage in the cavity gap, T is the transit-time factor (see Chap. 5 for

details), and <j) is the relative phase between V and / .

The stored energy W, can be expressed in terms of the voltage V with the help of an

"impedance" Z, such that

2 . (44)

If, for example, the cavity is a short section of an accelerating structure of shunt impedance

Zs with length L, quality factor Q, and angular frequency U>Q. then

68



Z = ZaL/2Q . (45)

From Eqs. (43) and (44), one obtains

V dV
u>0Z dt

whence

= -IVT (46)

— = -I.ujQZT = -I.-w- . (47)

In these equations, vector notation has been used to show that the voltage derivative

dV/dt is opposite in phase to the current I.

In a cavity with losses, another term must be added:

^ 2- , (48)
at T

where r is the time constant of the empty cavity. A power feed from an external circuit

would introduce an extra term. Without it, one sees that, after a transient period, the

beam would maintain a constant field level equal to

Vb = -Iu0ZTr/2 . (49)

This voltage must be compensated for by a correction of the signal injected by the power

feeder into the cavity. Correction must be made in amplitude and in phase because I

is usually not in phase with the voltage V (V and V\> are not opposite in phase: they

even are in quadrature in a buncher). In the case of high beam loading, Vj may be much

larger than V; phase and amplitude controls become difficult [Boussard] (in bunchers, one

sometimes damps the cavity in order to reduce Vj). Superconducting cavities are obviously

an extreme case; the situation is, however, slightly simpler for electron linacs where the

accelerating phase is very close to the crest of the wave.

In the previous Fourier analysis of the beam bunches only the fundamental frequency

has been considered. In case the cavity can be excited at harmonic frequencies, methods

must be found to damp the corresponding modes.
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8.2 Accelerating Structure

(a) Zero-Mode Alvarez Structure. In a long structure, if one neglects the possible variation

of (j>s with energy, all accelerating gaps are excited in phase. If one assumes the radial

field distribution is unaffected by the beam, neglecting the transient propagation there,

and if one neglects the variation of other parameters with energy, the equation that

governs the axial field distribution may be written according to Eq. (40), taking the

losses into account, as:

d2Ez 2dEz c2 d2Ez 2 _ n

dt2 r dt en oz2

where Ez is the average accelerating field amplitude and u>c = u>$ corresponds to the

zero-mode (cutoff) frequency. Beam excitation would add a term on the right-hand

side of Eq. (50)

as in Eq (47). Here i is the instantaneous value of the beam current, assumed indepen-

dent of 2, and of which one can compute the spectral component in the neighborhood

of the frequency u>o.

It is easily seen that in steady-state conditions, one has

Ez - -IU>0ZSTT/4Q , (51)

and all the remarks pertaining to the case of a short cavity apply here.

However, while the beam absorbs energy in a uniform way along the structure,

feedback from an external circuit is usually done at a single point. In order to study

how the cavity is filled and to understand its transient aspects, one has to solve

Eq. (50), which is a telegraphers type. This analysis will not be developed here

[Hereward et al.j. One may also consider that several modes are excited [Nishikawa].

Let us say that in steady-state conditions, for an uncompensated zero mode, en-

ergy propagation in the cavity (for compensating beam loading as well as rf losses)

entails a small amplitude drop and a progressive phase shift, which may be of a few

degrees. Under transient conditions, propagation is made along the axis of an infinite
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cavity only through losses (no propagation for r ^ ) , and the velocity is of the order of

cj \fQ. Phase shifts can be several tens of degrees in a long cavity. In a short, cavity,

however, due to reflections phenomena are more complex and one cannot speak any

longer even of a propagation velocity, because the initial filling time is approximately

proportional to the square of the length and almost independent of the losses. In the

superconducting case, cavities that are not too long are preferable.

Under such conditions, any feedback control of amplitude and phase of a cavity will

always be imperfect. It is, however, acceptable. It is better to control a point not too

far in the cavity from the feed coupling in order not to complicate the feedback loop.

(b) Nonzero Mode. Nonzero Group Velocity. In Eq. (50), u>c is no longer equal to u>o, the

operation frequency. If there is still a slight phase shift along the cavity because of

losses, it is now very small. Energy propagation from the feed point is at the group

velocity, usually much faster and without any appreciable phase shift.

(c) Compensated Structure. In this case, energy propagation takes place at a velocity of

the order of the confluence group velocity and a little slower if the confluence is not

perfect (see Sec. 5.5.b). There is no phase shif̂  except from structure imperfections

or losses.
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CHAPTER 5

DETAILED PARTICLE DYNAMICS COMPUTATIONS

The general theory described in Chaps. 2 and 3 for longitudinal and transverse mo-

tions assumes the existence of a constant amplitude synchronous wave. We saw that such

an existence is often compromised by changes in parameters, the effect of which has yet to

be analyzed.

The choice of a constant <f>s is not necessarily the best if one considers the rapid

increase of the stability area (while the beam, according to Liouville's theorem, occupies a

constant area). One may also introduce "longitudinal beam gymnastics," either to improve

matching or for any other purpose. Such an operation can, indeed, be adopted easily in

separated cavity linacs, where each of them can be adjusted in amplitude and phase.

It is then necessary to compute such cases with good accuracy. General theory re-

mains, of course, a valuable tool for obtaining a quick overview of the phenomena and

for guiding one to the achievement of special effects, but an accurate computation is still

necessary.

The treatment described here is the computation of each gap or each independent

cavity for longitudinal as well as transverse motion in a "thin lens" formalism, as it is

current practice for beam transport devices.

1. INITIAL METHOD [Panofsky et al.j

1.1 Panofsky Equation

Let us consider an accelerating gap (Fig. 1) across which exists a longitudinal electric

field E r with an rf voltage V cos (ut + <f>) crossed by a particle with charge q. The energy

gain from point A to point B will be

fL/2

= q Ez(z) cos (ut + 4>)dz , (1)
J-L/2

rL/2

-L/2
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and it is always smaller than qV, whatever the phase <f> is. This reduction in energy gain

is what is called the transit time effect.

i

i
B

I + L/,

Fig. 1. Accelerating gap.

Let us assume, for instance, a constant velocity v for the particle (we shall later on

extend the computation). If t — 0 is the time when the particle crosses the center z — 0,

z = vt , (2)

fL/2 fuz \ fL/2

AW = q I Ez(z) cos I \- 4>)dz — q I Ez{z)
J-L/2 \ v / J-L/2

and for a symmetrical gap

rL/2

-L/2

If one writes

and

one gets

cos — c o s <f> dz .
V

fL/2

= I Ez{z)dz
J-L/2

rL/2

VT0 = / Ez

J-L/2

UfZ

(z) cos —dz < V
v

AW --= qVTQ cos cf> ,

(3)

(4)

(5)

sometimes referred to as Panofsky's equation. The term To is the transit time coefficient,

a function of the velocity v; it is very close to 1 for very fast particles, but always <1.

In the commonly considered case of a constant field in a gap of length g (Fig. 2), one

has
c?n a/9

(6)
sin 0/2

To = —~— with 0 =
0/2
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• Ez

- g / 2

Fig. 2. Uniform field in a gap.

Fig. 3 shows the well-known variations of To with u>/v.

Fig. 3. Transit time factor variations with OJ/V.

Ĵ I practice, the beam holes on the faces of the electrodes modify this value. On its

edge is usually a chamfer to avoid breakdowns (radius pc, see Fig. 1). In addition, the field

penetrates into the hole giving a different value for To according to the distance from the

axis. Such effects can be expressed by replacing g by the empirical expression

9c = g + 0.85pc , (7)

and putting (with Sc = u)gc/v)

7 i

o —
sin flc/2 I0(krr)

ec/2 I0(kra)
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where

(9)

In this expression, r is the distance fiom the axis to the particle, and a is the hole radius

(see Sec. 2.2 in this chapter).

In a linac design, v would be the synchronous velocity. As shown in Chap. 2, however,

particles in a bunch oscillate around a synchronous particle with continuous velocity and

phase spectra; v is then not unique but depends on the particles.

1.2 Emittance Nonconservation

In the previous (thin lens) treatment, the phase is not modified when crossing the

median plane of the gap where the energy gain is applied. Let us consider four particles

(Fig. 4) around a central particle; two are of the same energy but displaced in phase by

±A(£ (A and B) and two are of equal phase but displaced in energy by ±AW (C and

D)(displaced in velocity by ±vsAW/2Ws). Look at the position of these four particles

with respect to the central one after crossing the thin lens. With constant phase, A and

B will be displaced in energy by equal but opposite amounts (A<̂  assumed small). A' and

B'. However, C, more energetic than the central particle, will have a larger transit time

coefficient T and will move up to C . On the contrary, D will move down to D'.

Fig. 4. Non-Liouvillian transformation: the dotted parallelogram has an area larger than

the solid one.
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Comparing the areas of parallelograms, ABCD and A'B'C'D', it is clear that there

is a growth in area. Emittance is not conserved. Liouville's theorem is not satisfied as

it must be. One way to avoid this difficulty, as suggested in 1963 at a Linac Conference,

would be to ignore the energy dependence of T. This approach is not very satisfactory.

Another solution [Carne et al.] is to introduce a &(f> change at the thin lens crossing.

2. ACCURATE COMPUTATION OF LONGITUDINAL AND TRANS-

VERSE MOTIONS. FIRST ORDER [Came et al.]

2.1 Description of an Accelerating Gap

In practice, the field distribution in a gap can be measured experimentally (Chap. 4)

or rather, nowadays, can be calculated by using computer codes. The electric field on the

axis can then be expressed in the form of a Fourier series, or integral

Ez(z,r = 0) = — / T(kz) cos k,z dkz , (10)
2 ? r J-oo

with the inverse relation

VT(kz) = Ez(z, 0) cos kzz dz . (11)
J — OO

One recognizes a relation of the type used in Eq. (4) with the notation already used in

Chap. 4,

. (12)

The gap is assumed symmetrical and, for purposes of this study, the only gap.

In circular symmetry, electromagnetic fields can be expressed in the form of modes.*

The term T(ki) can then be considered as the amplitude function with wave number k~

in i,he spectrum of a stationary wave for which

Ez{z,r,t) = — / T(kz)I0{krr) cos k.z cos {ut + <j>)dkt ,
27r J-oo

(13)

* For synchronous waves, only TM or E modes interact with particles, and they are the
only ones that will be considered here.

76



cB&(z,r,t) = — / T(A:Z)—/](fcrr) cos fc,z sin (art + )̂<ffcz , (15)
27r 7 C*V

V f+°° k
EJz,r,t) = — / T(kz)-^-Ii(krr) sin kzz cos (u>t + <f>)dkz , (14)

27T / „ kr

and

with kr as defined by Eq. (9) where v is replaced by v^.

2.2 Energy Gain

With the previous expressions, the energy gain of a particle of velocity v assumed

constant and parallel to the axis is easily computed:

y+oo / \
AW = a EA z,r, - j dz .

J-oc \ V)

With a derivation similar to the one used in Sec. 1, and making use of inverse Fourier

relations (Eqs. 10 and 11), one obtains

AW = q VT(k)I0(krr) cos <f> . (16)

This equation is exactly like Eq. (8), which is then justified as far as the radial variation

of the transit time factor is concerned. (It must be noted that the Bessel function term is

not included in the new definition of T(kz), which relates to the axis.) As explained, T(kz)

is a spectral amplitude, and it is important to notice that the only thing that matters is

the amplitude corresponding to

k = u/v , (17)

which is related to the particle mid-gap velocity.

2.3 Phase Equation

The energy gain computation, assuming a constant velocity and a rectilinear trajec-

tory, can be considered as a first-order approximation of a perturbation method in which,

with a higher order, the velocity will change with energy. Let us consider the way energy

and phase change when a particle crosses an acceleration gap (Fig. 5).

77



w

Fig. 5. Detailed evolution of phase and energy across a gap.

For the energy, the thin lens formalism leads to replacing the curve shown by the

two dotted straight lines, the distance AW between them being given by Eq. (16) (the

mid-gap value is assumed to be known). For the phase, there is a continuous slip, but it

is also possible to extend the straight lines corresponding to the outside portions up to

mid-gap (see dotted lines). The two extensions have no reason to cross at this mid-gap

point. One should then introduce a A<f> jump, which we shall now compute. Between the

true law and the dotted line, the differential phase slip is

= uj T

with

The A4> jump is then given by

/ dz qEz{s,t)ds+
J — oo J — oo

U)

"*vW —
ZvW

f°° f
I dz

JQ JZ
q Ez(s,t)ds

(18)

(19)

(20)

By inverting the order of integration in the domain shown on Fig. 6 and with the help of

Eq. (17), one obtains
+

dz (21)

and

= ZW J
+oc aV
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Because

s cos (ks -\- <f>) = — sin (ks +
OK

with the help of Fourier transform relations, one obtains

wk§k\T{k)h{krV)

(23)

(24)

Fig. 6. Integration domain.

Coming back to the discussion in Sec. 1.1, one may see that points A and B of

Fig. 4 are now moving inwards in A<f> as are C and D moving outwards in AW. This

motion allows phase space conservation, at least to first order (Fig. 7).

Aw

Fig, 7. Liouvillian transformation: the area is conserved.

Putting

H = -qVT(k)I0(krr) sin </> ,
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it is easy to check that Eqs. (16) and (24) are such that

( AW = -dH/d<f> (0R,
\A<f> =dH/dW ; { '

A<f> and AW proceed from a Hamiltonian formalism (see Chap. 2, Sec. 3.1.1) and Liou-

ville's theorem is satisfied to the first order.

2.4 Radial Motion

With the help of Eqs. (14) and (15), one can similarly treat the radial motion and

compute Ar' and Ar jumps in slope and position at the mid-gap plane in a thin lens

formulation similar to the one sketched in Fig. 5. One must be aware that the conjugate

variable of r is mvr and not r' and that transverse fields ET and Bg act on mvr and not

on

r' = ^ . (27)
mvz

One then has
, A(mty) mvr

Ar = '- - - A m u , ,
mv.

and
A(mvr) ,AW

Ar ^~^r~r2w •
It is also possible to take into account the effect of the trajectory slope at the mid-gap

plane by writing

Io[kr(r + r'z)\ » I0(krr) + krr'h{krr)z (29)

and repeating for the r' term a derivation similar to the above. One eventually obtains

d
AW = qVT{k)I0(krr) cos <f> + qV-prr[T(k)krIi(krr)]r' sin <f> ,

k §k[T{k)Io{krr)] sin *" ̂ f&WWMWy cos

' = - | ^ T(k) !f h(krr) sin <j> + | £ | J ^ r ( f c ) S /J(fcpr)j _ T(*)/0(fcrr)}r' cos

(30)
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One may again check that previous relations have Hamiltonian character by putting

H = -qVT(k)I0(krr) sin <f> + qV-^

and that they satisfy Liouville's theorem at least to first order.

r' cos (31)

Remark. The previous relations, in particular those in r and r', present a matrix

character. They can easily be included in a beam-transport program either to express the

effect of rebuncher cavities or the effect of independent accelerating cavities.

2.5 Mid-Gap Plane Coordinates

In the previous relations, k(W), 4>, r', and r relate to mid-gap crossing. Such values

are unknown and may even be outside the range limited by input and output values of

the thin lens (see Fig. 5, the case of the phase). It is possible to compute them in the

following way. The previous derivation referred to a symmetric gap. A similar formalism

can be derived for an antisymmetric case; this would be the case of a two-gap system (see

Sec. 4 in this chapter).

One can then imagine an antisymmetrical system as shown in Fig. 8 for the first part

of which the field would be exactly equal to the gap field; the field would be equal and

opposite for the second half, like an image field. Such a system is not physical but it can

be considered analytically.

Fig. 8. Symmetrical and antisymmetrical fields for mid-gap computations.
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The fields in such a system are no longer expressed with the help of the spectral

amplitude T(kz), but with the help of S(kz) such that

z) = -~ f E(z) sin kzzdz ,
* Jo

(32)

through expressions similar to Eqs. (13), (14), and (15), where cos kzz is replaced by

sin kzz, sin kzz by — cos kzz and, of course, T(kz) by S{kz). With such relations a system

analogous to Eq. (30) can be computed.

But the half sum of T and S fields is equal to the gap field from input, to mid-plane

and zero further on. The thin-lens computation through such a system will then give,

at output, the unknown mid-gap values.* Such values, of course, can be obtained only

by iteration; in practice, a single iteration is often enough. It might even be possible to

compute them with tht i-lens input values. Also, it is possible to neglect the r ' terms for

many beams.

3. SECOND-ORDER COMPUTATION [Lapostolle et al]

In order to increase accuracy, it is possible to go in the perturbation method to higher

order by introducing in the AW computation a 6<f> correction leading to the replacement

of cos {(jjzjv + <j>) by cos (uz/v + <f> + 64>) and computing 8<f> as in Eq. (19) but with an

integration from 0 to z.

It is also possible to compute a second-order correction in A<f> as well as in Ar' and

Ar, including the effects of 8W, 8<f>, and Sr. Such second-order terms appear in the form

of integrals of second-order expressions in T(kz) and its derivatives. Such relations are of

no practical use.

* In real terms, the antisymmetric field considered here has for z = 0 a discontinuity
that cannot fulfill Maxwell's equations. The S(kz) waves do not behave radially like
the T{kz) waves. It is nevertheless acceptable behavior in practice, for usual beams
(kz < l , r ' < 10 mrad) because one only wants to find mid-gap values, the effect of
which is second order in Eq. (30), simply to add, in the equation for Ar', to the term
-qV/2WS{k){krlk)h{krr) cos <f>, the correction -q(Et(0)/2W)(k*/k*)r cos <j>.
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3.1 Fourier Integrals and Series

Instead of integrals, the fields in the accelerating gap, even if given in the form of

a series of period LQ, can be expressed through simple circular relations in the form of a

Fourier scries of period L > LQ. If

kL = 2ri7r , (33)

with n integer (n = 1, for instance, for a short gap), all the computations of Sec. 2 can

be repeated in a similar way. Only one term of the series expression (the term of order n)

acts on the particle. One finds again the set of Eq. (30).

Second-order computation, on the o>,her hand, leads to series instead of integrals.

For instance, one has

n sm 2* T 0T(fc) ^ T{jk/n) _ „ ^ T(jk/n)<J*+ n*)

oo

dk

T(2n-j)k/n)T(jk/n)

u - »)2

j)k/n]T(jk/n) T^k) dT(k)
dk

Such an expression may look complicated, but it can be handled on a computer (much more

easily than ar integral) inasmuch as T(k) decreases quickly with k (see Fig. 9 relating to

a classical gap). The term T(k) is the normal transit time factor, T(2k) would correspond

to 47r or 2,3X mode in the Alvarez structure where at 50 or 100 MeV, T(2k) is small. Tlie

quantity T(3k) is always negligible.
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Fig. 9. Transit time coefficients of harmonic modes.

In the series, only a few terms [in T(0),T(fc), T(2k)..., and the corresponding deriva-

tives] have to be introduced inasmuch as the denominators still reduce the effect of higher

order terms.

Normally, only AWcorr would have to be computed. At most, A<£corr is usually equal

to 0.1°, and radial corrections are of no practical interest—much less than alignment error

effects, which require correcting and adjusting devices. In second-order radial corrections

one, the Ar', term would correspond to the focusing effect of an electrostatic lens—an

effect which, as already mentioned, is usually negligible compared to the defocusing effect

of a linac gap. Such second-order radial corrections, in order to be accurate, should also

include the effect of H or TE modes because, in the second-order approximation, particles

are no longer fixed in the synchronous wave.

3.2 Liouville's Theorem

If only the AW term is used, in order to conseive emittance without the A<# term,

one can give to the T(k) terms the same value for all the particles of a bunch (but not

the same <f>), and the accuracy is normally good. According to the cases treated, one may

add to the first-order terms a correction to satisfy Liouville's theorem to second order in

qV/W, if necessary.
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3.3 Remark on Fourier Coefficients

It is good to notice that all the information concerning the field distribution can

be contained in only a few coefficients and not in a complete function as in the integral

representation.

The AWCOIt computation from Eq. (34) gives the same value even if one changes the

value of n (Eq. 33), that is to say all the terms in Eq. (34). Of course, if n is increased,

more terms may have to be computed [always up to T(2k) or T(3£), for instance]. This is

a very important remark because it is an easy way to check the accuracy of a code.

4. OTHER TYPES OF CAVITIES. INDEPENDENT CAVITIES

[Lapostolle et a].]

In heavy-ion linacs with variable energy and velocity, use is frequently made of inde-

pendent cavities (see Chap. 4), each cavity often including several gaps (Fig. 10) or even

having a different nature like a helix (Fig. 11).

In multigap cavities, each gap can be treated independently (although the zero field

zone in drift tubes is sometimes reduced almost to a point). One may also treat the full

cavity at one time; this is the only possibility in the case of a helix.

2 GAPS 3 GAPS

- V

£"'"""''"'"'"""2
_2v * V

Ei

A A •

Fig. 10. Two- or three-gap cavities.
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Fig. 11 . Helix resonators (A/2 or A).

A two-gap cavity is then antisymmetricai. As seen in Sec. 2.5, the field is then

expressed in terms of S(kz) coefficients. One will, in fact, write

r-f oo

S(k
r-t-oo

:){V] = I E{z) sin kzz dz ,
J — oo

(35)

where [V] is an arbitrary normalizing factor such that S is dimensionless. For example,

for two equal gaps with transit time coefficient T(kz), separated by a distance D (Fig. 12),

one may write

) sin ^ . (36)

V
Then

Fig. 12. Field distribution in a two-gap system.

AW = VS(k)I0(krr) sin <f> ,
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where V is the voltage across each gap. One can write similar expressions for A<̂>, Ar'.

and Ar.

For a two- or three-gap cavity or a /?A/2 or f3\ helix, one gets for S(k) or T(k)

variations of the type shown in Fig. 13.

2 GAPS
X/2 HELIX)

T(k)

3 GAPS
X HELIX)

Fig. 13. Transit time factors for two or three gaps.

4.1 Accelerating Systems Without Symmetry

To compute particle dynamics in a system that is neither symmetrical nor antisym-

metrical, one may add to the principal term (T or S) a contribution of the other parity

(S or T). This correction must also, of course, apply to mid-gap coordinates computation.

Computing time is increased but not doubled (an appreciable time is used for mid-gap

values).

4.2 Fictitious Cavity of Double Length

It is possible to avoid the computation of mid-gap values by making the cavity input

the middle of a fictitious cavity oi aouble length, either symmetrical or antisymmetrical

(Fig. 14), for which the sum would be 0 in the first half and equal to the real cavity in the

second half. In this method, no symmetry is required for the real cavity.*

* Here, the footnote in Sec. 2.5 does not apply because the two fields, symmetrical and
antisymmetrical, both can satisfy Maxwell's equation. Relations in T and S of the type
given in Eq. (30) both apply rigorously.
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> I

- L / 2

Fig. 14. Symmetrical and antisymmetrical fictitious cavities.

Because fictitious cavities may be very long (transit time of more than 107r in some

test cases), it may be necessary to introduce second-order computation. One then has to

add to the term (Eq. 34) an 5 term (but that term is equal to the T term because the

field is the same) and two cross terms T x S and S x T (equal together). For such long

cavities, n must, of course, be taken larger and may be equal to 5 or 6. Computing time

for a bunch of trajectories (100 for example) still remains, however, much shorter than for

a step-by-step integration of a similar accuracy.

Figure 15 shows trajectory coordinates inside a helix cavity of fi\ length optimized

for /? w 0.08; results of first- and second-order accuracies for a slow and a fast particle are

indicated on Fig. 16. Such computations satisfy Liouville's theorem (see Sec. 3.2); from

their increase (or decrease) when computing eiFective or rms emittances (see Chap. 6,

Sec. 4), one sees the effect of nonlinearities (or couplings) that distort the emittance

shape.

5. COMPARISON WITH CLASSICAL THEORY

In first-order expressions (Eq. 30), particle dynamics is the same as in a succession

of steps with constant field, the field amplitude being, however, a function of the velocity

(transit time factor T). Such a variation results from the nonconstant character of the real

field. Let us consider the simple case of a sinusoidal variation (see Sec. G.2, the case of an

RFQ structure) that we shall divide into fl\ periods. Let us take, for instance, a field in
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Fig. 15. Velocity t>, slope r', and radial position r for a slow particle crossing a helix,

cos 2 between — TT and +x. One finds

(38)

and

T(k) = / cos kz cos z
J — r

in (k — l)n sin (k H

fc-1
(39)

For a synchronous particle, k = 1 and

= 7r and (40)
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Fig. 16. Energy gain as a function of input phase for slow and medium velocity particles.

If, on the contrary, one had taken the periods from —7r to +TT with a field in sin 2,

one would have obtained

S(k) = I sin kz sin z dz (41)
J—it

and
_ . , . sin (Ar — 1W sin(& + l)7r
S{k) = £ ^ '— (42)

from where

5(1) = 7T and dS(l)/dk = -TT/2 . (43)

The complete variations of T{k) and S{k) are shown on Fig. 17, which shows also the

results for segments 2/?A long.

There is clearly a difference in beam dynamics computations according to the seg-

mentation used. Such a difference is real because periodic acceleration presents similar
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(b)

S I

Fig. 17. Transit time T and S factors for a sinusoidal field and two types of segmentation.

(a) segments (3\ long and (h) segments 2/9 A long.

properties in phase space to periodic focusing; according to the point of observation, the

matched figure does not present the same shape (2n and 4TT, however, lead for jfc = 1 to

the same values).

First-order relations (Eq. 30) take into account this property of the field, assuming,

however, a thin-lens approximation. In second-order expressions, some terms in T2(k)

correspond to a thick-lens correction while other terms provide a finer analysis of the

effect of field distribution.

Instead of looking for the highest accuracy, one may be satisfied with a smooth

approximation. This is what is obtained by neglecting the second term in Eqs. (39) or

(42). This is the classical theory case. It would then be easy to take into account thick-

lens corrections by taking the ellipses mentioned in Chap. 2, Sec. 2.1 for the trajectory in

phase space.

6. DYNAMICS CODES INCLUDING FOCUSING

6.1 Drift-Tube Linacs

Various expressions given previously concern only gaps; in a drift-tube linac, focusing

is generally provided by quadrupole lenses in drift tubes, i.e., between the gaps. In a way
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similar to beam transport codes, one can compute in succession the effect of gaps and

quads with a formalism of the matrix type (in particular for transverse motion). For

gaps, most codes use expressions of the type found in Eq. (30) using mid-gap coordinates.

This is the case when space charge is to be computed (see Chap. 6) because these codes

require the knowledge of bunch shapes in the gaps. Second-order corrections are always

ignored [Prome et al.]. For zero space-charge computations and in particular for heavy ion

boosters with long cavities, a code exists following the method described in Sec. 6.2 with

second-order corrections (AWcorr a nd Liouville's terms).

6.2 RFQ Linacs

A classical integration is generally used by segmenting the RFQ field (see Chap. 3,

Eq. 13), for instance, in 20 parts per /3X period. This 0\ period is the structure period

for acceleration as well as for quadrupole field properties. Each segment not having any

symmetry (see Sec. 4.1) might require the computation of two factors, T and S, with their

derivatives. Terms in r' giving the effect of the slope of the trajectories are neglected.

Some codes add to the phase term (Eq. 24) (but with T and 5 terms) a small correcting

term to satisfy completely Liouville's theorem (and not only to first order). Transverse

motion includes two terms in A and X (see Eq. 13 of Chap. 3) and is computed in a

matrix form.

According to the results found in Sec. 4, it should be possible to treat the dynamics

with much longer segments: one or two per 0X period, or even segments of several j3\

length, inasmuch as space charge (see Chap. 6) that requires relatively long computing

time is usually computed only once or twice per period. Also, one may take only the

smooth approximation (see Sec. 5); however, one would lose the knowledge of periodic

emittance variations.
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CHAPTER 6

HIGH INTENSITIES AND SPACE-CHARGE EFFECTS

Several types of difficulties arise when one tries to increase the beam intensity in a

linac. Some of these difficulties depend on the average intensity while others are peak

intensity dependent. A large average intensity requires a large rf power and, therefore,

efficient cooling of the rf structure. In the case of beam loss, there is also a risk of local

heating and contamination (relative losses increase with intensity). In peak intensity, one

must also distinguish between pulse intensity and bunch intensity (not equal when all the

buckets are not filled).

During a pulse (or even the crossing of a long bunch), the beam takes out a frac-

tion of the stored energy and the structure has to be refilled (as mentioned in Chap. 4,

Sec. 8). For good beam quality, rf tolerances are usually about 1% in amplitude and 1°

in phase (sometimes even less); such an accuracy is not easy to achieve under transient

operation. Even in cw operation, when the beam absorbs several times more power than

the rf losses, and the cavity impedance depends essentially on the beam amplitude and

phase, the feedback loop, as said in Chap. 4, is not easy to adjust (especially if beam

intensity can be changed).

The intensity of a bunch, i.e., its charge, is limited by interparticle repulsion. This

effect is usually referred to as "space charge," and this chapter will be devoted to this

subject.

Charge neutralization to counteract space charge — by electrons for positively charged

ions, for example, — is possible and may occur spontaneously. This neutralization will

occur by gas ionization, for instance, if the vacuum is not high enough. Another neu-

tralization process results from secondary emission from particle collision with diagnostics

devices, grids, or other losses. Much experimental and theoretical work needs to be done

to take advantage of neutralization and guarantee its stability, reproducibility, and com-

patibility with acceleration.
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1. CHARGE DISTRIBUTION IN A LINEAR REGIME

The assembly of charges of the same sign in a continuous beam or a succession of

bunches produces an electric field that adds to the focusing and phase stable fields, acting

against them and hence reducing beam stability. Such a space-charge field distribution

depends on the charge distribution. To start with, it is interesting to consider the case

where such a field would be linear in order to maintain the linear character of the focusing.

Space-charge fields satisfy

(1)

and only a uniform distribution will give linear fields (a necessary but not sufficient condi-

tion; image effects usually introduce nonlinear fields). In free space, one can show that a

continuous uniform beam of circular or elliptic cross section produces a linear field inside

it. This linear character is also true for a uniformly charged ellipsoid.

In a linear motion, a beam that is matched in all directions is defined by quadratic

invariants. For an elliptical or ellipsoidal distribution in configuration space, the phase-

space distribution is hyperellipsoidal in four or six dimensions.

Let us try to find the hyperellipsoidal distribution to which there is a correspond-

ing uniform distribution in the configuration space. Let us consider a hypersphere (for

simplicity) and take

= 7*2 = -^l "I" X2

(2)= rf = x\ + x\ + x\

t4 = ...

corresponding to 2, 3, ... dimensions, and let us call />2(t), />3(t), Pi(t), ••• the corresponding

density distributions. From a classical derivation, if p2 is the projection of p4 [Lapostolle,

1966], one has

d
(3)

at

Similarly, one would have

d2

= -^P2{t) • (4)
ft T
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Through a slightly longer derivation, one finds

/»3(0 = 2TT I p^U)y/t^tldU • (5)

and

These relations show that for a uniform continuous beam, the 4-D phase-space distribu-

tion is a surface distribution on a hyperellipsoid (called Kapchiuskij-Vladimirskij or K-V

distribution) [Kapchinskij et al.]. Such a distribution is not realistic.

For an ellipsoidal bunch, the 6-D distribution would also go to infinity on a 6-D

hyperellipsoid with the addition of a sheath of the other sign. This is totally nonphysical.

For weak space charge, where Es.c. can be neglected with respect to external fields,

the previous relations easily give configuration space densities corresponding to uniform

or Gaussian phase-space distributions.

2. LINEAR ENVELOPE EQUATIONS. K-V EQUATIONS

Let ±k2(s) be the periodic focusing gradient applied and Es.c. the space-charge field.

The transverse equations of motion of the beam particles can be written:

x" ± k2
t(s)x 2 _ E c (x, y,s) = 0 , (7)

with a similar equation in y, the derivatives being taken with respect to s. If the space-

charge field is computed in a frame moving with the beam at velocity v, it is purely

electrostatic (the changes in the beam cross section are assumed sufficiently slow). In the

laboratory system then, there is a magnetic field, the action of which is equal to /?2 times

the electric field and subtracts from it, multiplying its value by 1 — 02 = I/72 . This

explains the j 3 term added to the relativistic correction in the last part of Eq. (7).

In such a general equation, Ex,3.c. (x,y,s) is usually complex. For a uniform density,

however, it is linear in x and independent of y. For a circular beam, the relations are

particularly simple. One has

£r,s.c(r)=g , (S)
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and one can write

where a is the beam radius. For an elliptic beam of semiaxes a and b, one would have

/ x
E

From such relations, using a derivation similar to the one used by Courant [Courant et

ai.j to compute the so-called /? function, one easily gets the K-V envelope equations*

[Kapchinskij et al.]:
,, 2 EMI 2K2

n

where £?MX and EMy are the beam emittances in x and y (the area of elliptic surfaces

uniformly filled in the planes xx' and yy' divided by n).

One has

K2 = f q
 3 3 , (12)

where / is the beam current and q is the particle charge.

In the case of circular symmetry, there is only one equation instead of two, as in

Eq. (11):

This system can be extended to three dimensions (but for a distribution that has been

seen as unphysical), and for a sphere, one has

a" ± k*(s)a _ EMP _ * , = Q ( 1 4 )

For ellipsoidal bunches, the last term can be expressed (in the general case of three

different half-axes a, 6, and c) with the help of elliptic integrals of the second kind. When

* In order to find these equations, one may look in Eq. (7) [with its last term expressed
by Eq. (9)] for a solution of the form x(s) = a(s) cos[̂ »(s) + <f>\. It is easy to obtain the
relation il>'(s) = const/a2(s) and to notice that the constant is simply the emittance.
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a,b, and c are not different by a factor larger than 2 or 3, one may use approximate

expressions (to ±10%) such as:

or(a + b + c)2 ab + bc + ca

with

where Q is the total charge of the bunch. One can also use the more classical but compli-

cated relations with an / factor introduced by Lapostolle [1965] and given by Gluckstern

[1970 page 828].

3. NONUNIFORM DENSITY DISTRIBUTIONS. UNIFORM DENSITY IN

PHASE SPACE (Waterbag) [Kapchinskij, 1966] [Lapostolle, 1969]

It is possible to compute stationary distributions other than K-V. It is interesting,

for instance, to consider a uniform distribution in phase space (waterbag) or a Gaussian

distribution.

The two-dimensional waterbag distribution (4-D in phase space) is particularly simple,

especially for circular symmetry. It can be obtained with the help of the Vlascv and Poisson

equations. Letting (f> be the total potential (external + space charge) in the reference frame

moving with the beam, one finds that it must satisfy

V2<j> = C-<f> (16)

(in the 3-D case, a similar expression holds with slight corrections). The constant C is

proportional to the density in the 4-D phase space, i.e., beam brightness.

For high densities, the charge distribution in the beam takes the form shown in Fig. 1,

governed by the relation:

where R is the external radius of the beam. The density is uniform for most of the beam,

just cancelling the external field by its own space charge with a fast drop at the edges, in
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a thickness equal to the Debye length \Q- Particles then move freely in the beam (as they

do in a neutral plasma) bouncing on the edges of the beam.

-—|X D [ -—

Fig. 1. Radial density distribution in a space-charge-dominated beam.

I. Hofmann [Hofmann, 1987] has shown that for high space charge, if the average tune

depression is cr/ao, one has for a rotationally symmetrical beam

\D/R

with

(18)

(19)

For a spherical bunch, one would have

= 8 = const • I/EM

Such a situation corresponds to a highly nonlinear motion. The emittance shape, in a

projection over xx' or yy' planes, becomes rectangula: with the density decreasing towards

the edges.

A Gaussian-type distribution would give similar results, except for a smoother edge

with a thin tail going to infinity.

Remark, As will be seen later, a tune depression <r/a0 (Eq. IS) or space-charge

coefficient 8 (Eq. 19) may present limits above which any beam transport becomes difficult.

Because a single-valued relation exists between RvC and these two coefficients, one way

to make the transport of a very intense and very low emittance beam easier is to split it

into several minipencil beams of the same brightness C, but with a smaller radius R.
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4. EFFECTIVE (OR RMS) ENVELOPE EQUATIONS [Lapostolle, 1971]

Let us again consider the particle motion of Eq. (7), multiply each term by x, and

take the average over all particles. The result is

For circular symmetry, the averages are easy to compute with the help of the

relations

(20)

- _ _ _ " ' ( 2 1 )

A T x2 = 2xx" + 2x'2 1
as1 '

letting
q(r) = f p(r)2ir r dr (22)

Jo
such that

and

one gets

&- ± k2(s)a _ ±^_ _ l l i = o , (23)
a a

where

5 = 2 V ^ (24)

and

EM = 4y/x2 x'2 - xx'2 . (25)

This last expression is the second-order invariant for a linear motion. The term K2 is given

by Eq. (12), and / is the total current;

Equation (23) is exactly the same as the K-V Eq. (13) provided rms-type dimensions

as expressed by Eqs. (24) and (25) are used. Factors 2 and 4 have been introduced for the

sake of consistency with the usual beam size and emittance values for a uniform beam. In
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order to avoid any confusion, we shall call the effective half axis the quantity (Eq. 24) and

the effective emittance the value (Eq. 25), with similar expressions for the y axis. For an

exactly elliptical distribution, F. Sacherer [Sacherer] has shown that Eq. (11) applies in

the same manner also.

For 3-D bunches, I. Hofmann [Hofmann, 1987] has obtained equations similar to the

ones referred to in Eqs. (14) and (15) with, however, very small correcting terms.

The K-V envelope equations, provided they ars written with the effective beam

dimensions and emittances given from rms values by Eqs. (24) and (25), have a real

physical meaning, which is valid for real beams, and they constitute a very valuable tool

for studying beam evolution and matching problems as long as the effective emittances

EM do not change, as will be seen later. Simulation codes show that envelope oscillations

are accurately represented by such equations, provided the length of the computation is

not too long.

5. ENERGY EQUATIONS [Lapostolle, 1971]

If instead of multiplying each term of Eq. (7) by x, as above, one multiplies by x',

one gets

where one immediately sees that the first two terms represent the derivatives of the average

kinetic energy and potential energy of the particles in the external focusing field. The last

term is then the derivative of the space-charge energy W9.c. (per unit iength of beam or

per bunch). This space-charge energy can be considered either as the electrostatic energy

of the space-charge field or as half the potential energy of the particles in this space-charge

potential (the factor 1/2, which appears usually in energy computations, is the same as

the factor that appears in the energy of a condenser).

The kinetic energy can be written, with the help of Eq. (25),

( 2 7 )
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and one may obtain a new form of K-V equations. New terms appear, however. To

isolate them, it is convenient to subtract Eq. (23), where each term has been multi-

plied by a', from the equation now obtained and then do the same for each coordinate-

Adding the two or three residues (2- or 3-D cases), the result can be written ia the form

[Wangler et al,]

^ 4a2 ds x ds\ Wo ) v '

x,y,z v u /

where Wa.c. is the beam space-charge energy, WfX.iU is the space-charge energy corre-

sponding to a uniform density distribution with the same effective dimensions (this term

corresponds to the last term of Eq. (23) with the K-V form, i.e., uniform density),

and Wo is a normalizing factor. (In the case of a nonelliptic distribution or for three

dimensions, whether they are ellipsoidal or not, small but complicated correcting terms

should be added). The space-charge energy Wa.c. depends on the charge distribution. The

distribution, which gives the minimum energy with the constraint of fixed rms dimensions,

is uniform (see Sec. 11). This energy is higher for both hollow and peaked distributions.

Equation (28) shows that if a mismatched distribution entails density oscillations,

these will produce emittance oscillations. More generally, a charge redistribution will take

place, leading to a new emittance value. According to Eq. (28), one may also expect
- o

emittance transfers, or rather kinetic energy (~ EM fa2) transfers, with the possibility

of thermalization or equlpartition. Eventually, in the case of resonances between den-

sity oscillations and envelope oscillations resulting from a mismatch or periodic focusing

(or through neglected image effect terms), there may be a relatively slovj emittance growth

if the relative phase allows it.

6. DENSITY OSCILLATIONS AND INSTABILITIES

R. Gluckstern [Gluckstern, 1970] has studied the set of oscillation modes for a K-V

circular beam. Apart from the well-known coherent and envelope oscillations (breathing

and quadrupolar modes), there exists a full set of modes defined by an azimuthal and a

radial order similar to EM waves in a circular waveguide. Frequency oscillations depend
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on beam intensity and many of the modes become unstable when space charge is above

some threshold. The first unstable mode appears for a tune depression (see Sec. 3):

(29)

Gluckstern's work was extended to elliptic beams by I. Hofmann. [Hofmann, 1980]

For nonuniform distributions, no similar theory has been derived. It has been shown,

however, that no instability occurs when the density in phase space is monotonicaliy de-

creasing when moving away from the center. Approximate computations and simulations

have confirmed this result, exhibiting oscillations that do not differ very much from the

K-V case except for stability. It is observed, however, that if there are stable situations

in a continuous beam and continuous focusing, unstable bands may appear in periodic

focusing through resonance effects. [Laslett et al.]

7. CURRENT LIMITS. ACCELERATOR DESIGN

It is possible to write envelope equations for a linac in a normalized form to take

into account the energy change, using as emittances the input transverse emittances and

a longitudinal emittance resulting from the bunching process. According to the available

aperture (including some effect from misalignments) and the longitudinal acceptance (tak-

ing into account the slight displacement of stable phase under space-charge conditions),

one may derive maximum current values transportable without loss. For example, one may

compute the influence of focusing strength on this current limit. Figure 2 shows a typical

result. For weak focusing, the beam is wide and only a small increase in intensity is enough

to make the beam hit the aperture. For stronger focusing, the transverse dimension of the

bunches becomes small, also leading to an increased space-charge field in the longitudinal

direction where particles may be lost. Focusing must not be too strong in order to avoid

resonances with periodic focusing. The phase shift per period OQ without space charge

must never be larger than 90° (60° is even a safer limit) to avoid the depressed tune a

coming into any resonance.
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FOCUSING STRENGTH

Fig. 2. Maximum current resulting from transverse and longitudinal limitations.

From these limitations, there is an optimum focusing value (as indeed observed and

used experimentally). The value of this optimum is not, however, obtained exactly without

taking into account a change in emittance values, as will now be explained. This technique

has been successfully used for the design of the CERN Linac 2 [Warner] and [Weiss].

8. EMITTANCE GROWTH. COMPUTER SIMULATION. HALO

FORMATION LOSSES [Wangler et al.]

In the previous paragraph, the emittances were assumed constant. Equation (28) has

shown, however, that there could be emittance growth or exchange. For several effects,

estimates or limits can be computed today. However, details of the process still remain

unclear.

Simulation with Monte Carlo type computations, which are relatively accurate, re-

mains a preferred, tool, and it is possible to estimate emittance increases and to include

them in envelope equations in order to optimize a linac design. Such simulations show that

density oscillations produce wrinkles on 4-D or 6-D phase-space boundaries. Even for a

distribution of limited extent, halos appear around the beam (such an effect is obviously

less clear for Gaussian-type distributions for which there is always a halo).

An empirical law found by R. Chasman and M. Prome [Chasman and Prome] stated

that the sum of initial effective emittances increases (quadratically) through a linac by

an amount proportional to the intensity. Such a property has now found a theoreti-

cal interpretation [Wangler et al.]. Particles going into such halos or tails of distribution
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are at risk of being lost (in such a case, EM goes down, limiting the predicted increase

experimentally).

9. TRANSVERSE MODES. BEAM BLOWUP [Gluckstern, 1984j

The beam blowup (BBU) phenomenon resulting from transverse mode excitation,

which is very dangerous for electron linacs (see Chap. 7, Sec. 4), is not a concern for

Alvarez or drift-tube linacs with present intensities. Transverse mode penetration in the

gaps is very small. R. Gluckstern has derived a theory to evaluate such a risk in any type

of structure.

10. CONCLUSIONS

One may say, in general, that when one tries to accelerate a very bright beam (high

current — low emittances), even if one avoids resonances that occur in particular for
ax,y,z w 60°, charge redistribution often leads to an initial fast emittance growth; this is

followed by a slow growth when velocity distributions tend to equalize. The velocity distri-

butions become of thermal type with some halo formation, leading to particle losses. There

is not yet a theory predicting the exact type of distribution in such halos. Simulation can-

not give an accurate representation, especially if these halos are sparse and widely spread.

In a very high intensity machine, where losses must be limited to 10 ~3 or even 10 ~4 at high

energy, this unknown remains a challenge for designers. Fortunately, experimental results

(as well as simulation) show that losses decrease very fast when energy increases. However,

the values are difficult to use because nonlinearities that are responsible for the halos also

depend on image effects, which are very sensitive themselves to misalignments that are

not well known. Of course, it is known experimentally that an intentional misalignment

changes the beam quality.

It has been confirmed experimentally [Kim et al.] that a continuous beam in a

beam transport channel can accept very high intensities with tune depressions down to

<7/<7o = 0.1 (the extreme limit reached in standard linacs does not exceed 0.4). Such a

possibility had been foreseen from simulation work done in the 1970s [Lapostolle, 1978].

104



It might be that very high intensities could be accelerated in induction linacs where the

longitudinal-transverse coupling is weak when there are very long bunches. Simulation

results are not accurate enough for this case. Since the beginning of the 1980s, scientists

at Berkeley have been conducting experiments that should shed light on this important

question [Kim et al.].

11. EXPRESSION OF SPACE-CHARGE ENERGY. NONLINEAR ENERGY.

For the sake of simplicity, we shall discuss only the case of a continuous beam with

circular symmetry. Let us then consider a beam of density p(r) for r < TQ inside a metallic

pipe of radius R(R > r0). The space-charge energy

/

K E2 (r)SC
O

A ; 2nrdr (30)

equals, according to

where q(r) is given by Eq. (22).

Letting

" ti - r2 , (33)

one obtains

which one can use to compute the space-charge energy and its variations with the

distribution p(u) or q(u), such that

q{u) = 7T / p(u)du . (35)
JO

If one then compares distributions with the same total charge Q, the same effective

radius, and u, they will be such that

U = TT up(u)du = UQ- q(u)du
Jo Jo

(36)
Jo
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does not depend on the distribution q(u). The distribution that minimizes Ws.c. will ^lso be

such that Eq. (34) is independent of small changes in q{u) so that, whatever the constant

A is (Lagrange multiplier principle),

Ws.c. + X(Qu - UQ) (37)

is also independent of small changes in q(u). There exists, then, a value of A for which

Eq. (37) is equal to zero. From Eqs. (34) and (36), one has

q(u) = 87reoAu , (38)

and from Eq. (35),

p(u) = const . (39)

A uniform distribution minimizes space-charge energy so that the right-hand side of

Eq. (28), which contains the nonlinear space-charge energy [Wangler et al.], also contains

the difference with a minimum. As was stated earlier, because a bright beam takes a given

uniform distribution, the energy in the right-hand part of Eq. (28) tends to zero, leading

to an emittance growth if the initial distribution was not uniform (charge redistribution

mentioned in Sec. 10).

12. NOTES ON SIMULATION CODES

In Monte Carlo simulation codes, charge distribution is usually represented by a few

thousand macrobeamlets or macroparticles. Two main computational methods are used.

12.1 Partirle-to-Particle Interaction

In this method, the forces between macrobeamlets or macroparticles are computed in a

two- or three-dimensional space, including, if necessary, image charges. One

difficulty results from collision effects, the importance of which comes from the concentra-

tion of relatively big charges in each macroparticle. In a real system, such charges are in

particles that are distributed over a certain volume, and such volumes can interpenetrate
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without collision. A way to avoid collisions is to give a nonzero radius a to the macrobeam-

lets or particles, either giving the repulsive field a law in r/a for r < a and in a/r (2D)

[a2/r2(3Z>)] for r > a or a law in l / ( r + a)(2D)[l/(r2 + a2)(3£>)]. In this last case, space

charge is slightly reduced, but not appreciably. For space-charge energy computation, one

may also assume the charge distributed in volumes of radius a (Eq. 32). The choice of a

is, of course, arbitrary and results from empirical tests.

12.2 Particle in Cell Codes (PIC)

In this method, the charge distribution is defined by the number of particles in each

cell of a mesh. From this distribution, one computes the field (potential), first on each

node and then everywhere using interpolation. Field computation can be made directly

by putting all the charges of each cell in its center or, more rapidly, by a fast Fourier

transform (FFT) routine. It is again possible to take image effects into account or make

a free-space computation with a mesh matched to the beam dimensions. (With the FFT

method, one then computes the potential on the outer mesh boundary from an external

expansion that, in order to converge (radius of convergence), requires a square mesh. A

rectangular mesh may be used for a flat beam in a second, more accurate computation).

Irregular mesh dimensions may sometimes cause a transfer of energy or a heating of the

beam (emittance growth).

There are no more collision effects, but the displacement of all the charges in the

middle of the cells entails a loss of accuracy. It is possible to improve the computation by

distributing the charge of each particle according to its position in three to five neighboring

cells. In any case, however, the mesh size still fixes a limit to the resolution of the field or

potential definition.

12.3 Integration Steps

An integration routine must be chosen that will satisfy Liouville's theorem. This is

not often the case with formulas that are too elaborate. One therefore frequently uses very

simple methods (e.g., leap frog) with relatively short integration steps.
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CHAPTER 7

ELECTRON LINACS COMPARED TO PROTON MACHINES

Electrons are very light particles, and they reach relativistic velocities very quickly.

They travel inside a linac at an almost constant velocity, the velocity of light. No phase

stability exists; on the contrary, energy gain depends on the accelerating field. Accelerating

cavities are usually of a traveling-wave type. They may propagate higher order modes that

are beam excited, which can induce the beam breakup (BBU) phenomenon.

Relatively recent developments have led to an energy increase of 50% without changing

the input power, but by reducing the pulse length. Positron acceleration, currently made

for e+e~ colliders, may eventually offer some surprising effects.

1. PARTICLE DYNAMICS AT A VELOCITY EQUAL OR CLOSE

TO THE VELOCITY OF LIGHT

The classical stability diagram of constant nonrelativistic velocity protons (Fig. 1)

progressively changes when the synchronous velocity approches c (Fig. 2), because more

and more energy is needed to pass this synchronous velocity during phase oscillations.

When the synchronous velocity equals the velocity of light c, the diagram opens up and

no phase oscillation can take place: the phase is fixed.

• v /u

Fig. 1. Phase-space trajectories for constant velocity » C c .
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Fig. 2. Phase-space trajectories for constant velocity v w c.

Integration of the relativistic equation,* instead of using the method in Chap. 2, can

be derived in the following way:

—(mvg) = eEx sin ( u>t )
at \ c /

leads, multiplying both members by «' = du/dt where

and

to

with

u = z — ct

2TTK

1 a (
-2c/u' -1 2TT\cos A^ — cos

a =
eEz\
m0c

2

where A is the rf wavelength

2vX = c/u ,

and the kinetic energy W is related tou ' = du/dt by the relativistic relation

(1)

(2)

(3)

(4)

(5)

(6)

* It is a common practice to use a sine expression for electrons and a cosine expression for
protons; <f> = 0 corresponds here to zero field.
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W + moc
2 -c/u'

- 1
(7)

The relation between W and (f>, which results from Eqs. (4) and (7), is shown in Fig. 3.

According to the value of a [Eq. (5)], the shape of the curves changes slightly in such

a way that for a > ft, very low energy particles may reach relativistic velocities (also see

Fig. 11). For protons, a would always remain very small, and this cannot be. Therefore,

it is necessary to use low-velocity structures in order to accelerate them.

at <TT

Fig. 3. Phase-space trajectories for v = c.

2. BEAM LOADING

A consequence of the type of dynamics described above is that output energy does not

depend on the geometry. It depends on the phase of the particle and on the rf field level.

Because the energy given to the particles comes from the rf field, the field level decreases

for high intensities, and that entails a drop in the final energy. The energy obtained from

an electron linac depends on the accelerated intensity (number of particles per pulse).

3. RF CAVITIES

The rf structures used in electron linacs are usually of the disk-loaded waveguide type

(Fig. 4). Irises reduce the phase velocity, which is larger than c in a smooth waveguide,

to c. The structure mode (see Chap. 4) is usually ?r/2 or rather 2?r/3, which gives a slightly
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better shunt impedance Z,. [For the 2n/Z mode, there are fewer irises per wavelength (three

instead of four). An integral number is essential to ailow exact cell-by-cell adjustment

during fabrication.]

Fig. 4. Disk-loaded waveguide structure.

The group velocity (not much smaller for the 2TT/3 mode than for the 7r/2 mode) is

always very low (between c/50 and c/150) because the bandwidth is very narrow. (The

structure can be considered as a stack of pillbox resonators slightly coupled through the

irises.) The group velocity vg depends on the iris diameter, while Zs is not very sensitive

to it.

The structures axe used in traveling-wave operation (the backward wave is only accel-

erating for 7T, 2TT, ..., nit structure modes). The attenuation A, depends on the iris diameter,

as does vg. The iris diameter can be optimized in order to produce the maximal energy

gain for a given input power. With the Ez field of the form

Ez{z) = Ez(0)e -Az (8)

the energy gain over the length L is

eV = e f Ez(0)e-A*dz = eEz(Q)L
Jo

1 - e -AT..

with

p
V2

AL

(l-e~AL)2

AL

Assuming Z# = const, the optimum value of A is such that

Then

AL ~ 1.25 .

V ~ 0.9(P L Z3)
1/2
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The output power at the end of the structure is only about 10% of input power, so that

the loss is not large. Thus, traveling-wave operation is justified inasmuch as it simplifies,

in a short pulse operation, the coupling between the feeder and the structure itself at very

high power levels (several 10s of MW at 3 GH/.).

As just seen, the drop of rf level along the structure, due to losses, reduces *he energy

gain. It is possible to change the iris diameter along the structure to keep the accelerating

gradient constant. Equation (12), however, remains approximately true as does the total

attenuation and output power.

Electron linacs that require extremely high rf powers usually operate with very short

pulses (a few microseconds at most), not much longer than the filling time of the cavities

with very low group velocity. Thus, the useful time for beam acceleration is very short.

The energy drop due to beam loading, as mentioned before, may be reduced by a proper

adjustment of pulse shapes and, above all, by an accurate timing of the beam pulse inside

the rf pulse.

4. BEAM BREAKUP

4.1 Regenerative Beam Breakup

Apart from the accelerating TMo mode, a disk-loaded waveguide also supports higher

order modes. In particular, a transverse hybrid HEMi mode exists at a frequency of about

4 GHz for classical structures operated around 3 GHz (a hybrid TE-TM mode can deflect

a particle even at the velocity of light)[Montague, p. 574]. For v^ — c, this mode is of the

backward type (Fig. 5), with phase and group velocities being of the opposite sign.
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Fig. 5. Dispersion diagram for a disk-loaded waveguide.

When there is synchronism between a wave and particles, an energy transfer may take

place from the wave to the particles (as in acceleration), but it can also take place the other

way if proper phase conditions exist. This is indeed the mechanism set forth in traveling-

wave tubes (microwave amplifiers). In such traveling-wave tubes (TWT), use is normally

made of a longitudinal TM0 mode, but the mechanism also exists for transverse modes

(and these may be responsible for spurious oscillations). In an accelerating structure, such

a transverse interaction leading to oscillations can take place inasmuch as the backward

character of the mode gives a direct feedback without need of reflection (as in backward

wave oscillators (BWO), sometimes called "carcinotron" oscillators). Above some current

threshold, the structure behaves as a self-oscillator. This phenomenon in accelerators is

called "regenerative beam breakup."

This phenomenon was discovered in the early 1960s, but the way to cure it already

existed in some machines. A progressive change in iris diameter (see Sec. 3), made to keep

the accelerating gradient constant (with a slight corresponding adjustment of cell diameter

to keep v,/, constant), displaces the HEMi passband slightly and destroys the synchronism,

which is now limited to shorter lengths that are too short to lead to oscillations. The

instability threshold is then greatly increased.
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4.2 Cumulative Beam Breakup

Before leading to an oscillation, the interaction between the beam and the HEM mode

produces amplification. In very long machines, such as in the Stanford Linear Accelerator

Center (SLAC) at Stanford, each cavity, with tapered geometry, acts like an amplifier of

relatively wide bandwidth. None of the cavities oscillate, but their gain adds together.

Any transverse noise coming from the electron gun or from any other origin can reach an

amplitude such that the beam hits the edge of the irises when the current (which governs

the gain) exceeds some value. This is cumulative beam, breakup. The theory of cumulative

BBU is complicated because short pulse operation limits BBU to its transient aspects.

Stronger beam focusing can reduce the gain and push up the cumulative BBU threshold.

The risk of BBU, of both types, is greatly increased when the losses are negligible as

is the case in new superconducting linacs. A method developed to move up BBU threshold

is then to damp the HEM modes through proper coupling into an external loss circuit.

5. METHOD TO INCREASE BEAM ENERGY

SLED (Stanford Linac Energy Development) and LIPS (LEP Injector Power Saver).

The Stanford linac was originally designed with the idea that at a later date, its

energy could be increased by increasing the number of klystrons by a factor of 2 or 4,

leading to an energy doubling in the final state (or even more energy with more powerful

klystrons). When such an extension was considered after an initial operation period, energy

and klystron prices dictated that alternatives had to be found.

Recirculation of the beam with a second pass in the structure seemed difficult and

hazardous at that time. The idea proposed was to store the electromagnetic energy of a

klystron pulse and send it back into the structure in a shorter time. This led to the SLED

principle based on transient properties of EM cavities.

Let us consider first the impedance seen from the feeder at the beginning of a square

rf pulse sent into a resonant cavity. In the case of overcoupling, the impedance starts

from 0, crosses the characteristic impedance Zc, and reaches the value corresponding to
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cw operation (see a Smith diagram in Fig. 6 where a case of slight detuning is also shown).

Such a property entails a reflection at the input port, first with one phase (between 0 and

Zc) and then with the opposite phase.

Fig. 6. Transient input impedance of an if cavity (overcoupled) on the Smith diagram.

Let us now consider a system (Fig. 7) where, apart from the klystron and the ac-

celerating structure, there is a high-Q cavity, all three elements being connected through

a three-port circulator. At the beginning of the pulse, the klystron fills the cavity and

the reflected wave goes to the structure. Nothing comes back to the klystron because the

structure in TW mode is matched, and there is no reflection on its input.

KLYSTRON

Fig. 7. Storage scheme in SLED.

Near the end of the pulse, a fast phase shifter reverses the signal by a 180° phase

shift. Such a reversal is equivalent, to the start of a new pulse of opposite sign and double

amplitude that will initially be reflected on the cavity, adding to the remaining signal of

the first pulse (Fig. 8). Forced by a signal of the opposite sign, the cavity is very quickly

emptied before being filled again with the new phase. In practice, the klystron pulse is
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stopped when the cavity is empty at the latest. During a very short period, the reflected

wave going to the structure is almost doubled (tripled at most).

Fig. 8. Pulse diagram in SLED.

Of course, phase reversal is not instantaneous. In addition, the field level in the

structure varies very quickly with time, so that taking into account the long transit time,

particles only partially benefit from that increase. In practice, the energy gain can be

increased by about 50%. With a proper timing between rf and beam pulses and the phase

reversal, one can obtain a relatively flat energy spectrum during the beam pulse. A shaping

of the pulses may even improve it.

In the scheme as shown, the elements added to the initial klystron structure circuit

(phase shifter, cavity, and circulator) must hold very high field levels. In practice, the

phase shifter can be put before the klystron at low level. The high-Q cavity under a short

pulse is not a problem. However, there is no circulator for this high level; therefore, it is

replaced by a 3-dB coupler connected to a double cavity (Fig. 9).

CAVITIES

3 OB
COUPLER

KLYSTRON LINAC

Fig. 9. Actual SLED circuit.

In the 3-dB coupler, the two hybrid waves (see Chap. 4, See. 5.2) must turn, respec-

tively, in phase of ±45° in such a way that their sum reaches the required —3-dB level.
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Figure 10, as a matter of fact, shows these hybrid waves at input and output of the cou-

pling zone. These waves, Hi and H2, add in circuit 1 and subtract in circuit 2. At input

they are in phase and of equal amplitude (E2 = 0). At output they must have rotated

±45°. Then in circuits 1 and 2, Ei and E2 have equal amplitude, each of them equal to

E\ inPut/>/2- They are 90° apart in phase.

A c 1 0

II
ii H ,
II i

n

»2 V

- H 2

Fig. 10. Hybrid wave composition in a 3-dB coupler.

The two cavities are then filled with rf fields in quadrature. This 90° phase shift also

exists in their reflected waves, which after crossing the 3-dB coupler in the other way, will

become 180° in such a way that the reflected waves will enter circuit 2 to the linac whereas

no signal will go back to the klystron.

6. POSITRON ACCELERATION

Positron acceleration is relatively common today. An intense electron beam of a few

hundred MeV or more is directed onto a target where some of the gamma rays that are

produced create e+e~ pairs. A solenoidal lens focuses the secondaries (a few MeV in

energy) into a second linac, properly phased, where they are accelerated. The conversion

efficiency ranges from 1% to a few percent, except when the conversion energy is very

high, such as at SLAC, where the efficiency can be larger than 1 (efficiency is roughly

proportional to energy).

The first tests of positron acceleration led, however, to a surprising observation. To-

gether with positrons an almost equal (if not higher) electron beam was accelerated; a
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phase reversal of the accelerating field did not affect the result appreciably. This some-

what astonishing effect can be understood from Fig. 11, which is similar to the Fig. 3

diagram, but drawn for a value of a close to n, which is the common condition for electron

linacs.

Fig. 11 . Electron and positron acceleration.

Positrons are injected around A (small phase spread but relatively wide energy spec-

trum) simultaneously with the corresponding electrons of the pairs. For accelerating these

electrons, one would, of course, choose the phase corresponding to B. In practice, however,

electrons injected around A are first decelerated until they can slip in phase and be accel-

erated. Their final energy is a little lower, of course, but not much. A change in phase of

1SO° just inverts the relative situation of e+e~.

It is obvious that, in pairs, there is the same number of e + and e~. However, depending

on the thickness of the conversion target, some fraction of the primary electrons could

emerge from it with a smaller emittance than the secondaries. One may then have an e~

beam that is more interfse than the e + beam. In practice, the two species of particles are

separated by deflecting elements that are used for alignment and optimization of the beam,

thereby increasing the e + /e~ ratio. Nevertheless, the possible presence of e~ in e+ linacs

is a concern for machine builders and users, inasmuch as cavity beam loading is produced

by e~ as well as by e+ .
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