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i
The swelling of V-base alloys, Type 316 stainless steel, Fe-25Ni-15Cr
alloy, ferritic steels, Cu, Ni, Nb~1% Zr, and Mo on neutron irradiation is
compared with the swelling for these materials on ion irradiation. The .
results of this comparison show that utilization of the ion-irradiation
technique provides for a discriminative assessment of the potential for

swelling of candidate materials for fusion reactors.
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1. Introduction l

Irradiation—-induced microstructural evolution will determine the
dimensional stability (swelling) and the response to applied stress of
structural materials for a magnetic fusion reactor (MFR). In the absence of a
MFR, it is necessary to utilize simulation facilities to evaluate the impactr
on microstructural evolution in materials of parameters that pertain to the
expected MFR environment, viz., irradiation damage rate and helium generation
to damage level ratio. At the present time fission neutron and charged
particle irradiation facilities are used for these evaluations. In this paper
the swelling values reported in the literature for several structural
materials on neutron irradiation are compared with the swelling of these
materials on ion irradiation. It remains to be demonstrated that the swelling

induced in materials by the use of either of these simulation facilities is

equivalent to the swelling of materials in a MFR.

2, Experimental Results

The experimental results on the swelling of V-base alloys, Type 316
stainless steel, Fe-25Ni-15Cr alloy, ferritic steels, Cu, Ni, Nb—1Zr, and Mo
that have been reported by several investigators are presented in the
following figures. The composition of the alloys are expressed in weight

percent. The experimental details that pertain to the irradiations can be

*Work supported by the U. S. Department of Energy, BES-Materials Sciences, and
the Office of Fusion Energy, under Contract W-31-109-Eng-38.



obtained from the appropriate references.

Vanadium and vanadium-base alloys

The swelling of V and several V-base alloys on neutron irradiation is
compared with the swelling for these materials on single- and dual-ion
irradiation in Fig. 1. On the basis of limited irradiation data, the alloying
of V with 1-20 w/o Ti reduces the swelling rate of V from ~0.05%/dpa
(displacement per atom) to < 0.002%/4pa for neutron- and ion~irradiations in
the range of 400 to 800°C. The addition of 10-15 w/o Cr to V causes the
swelling rate of V to increase to ~0.2%/dpa for neutron- and ion-irradiatioas
in the range of 650 to 800°C. However, the presence of chromium in a V-15Cr-
5T1 alloy does not result in significant swelling for radiation damage levels
up to ~250 dpa. On the basis of the present data, the steady-state swelling
rate ﬁgg the V-15Cr-5T1i alloy is < 0.001%/dpa. Ion—-irradiation results for
the V-15Cr-5Ti alloy have also shown thkat the simultaneous production of

radiation damage and implantation of helium does not significantly alter the

swelling of this alloy [16].

Fe—~-25Ni-15Cr and Type 316 stainless steel

The swelling of the Fe~25Ni-15Cr alloy on neutron irradiation in the EBR-
II reactor is compared with the swelling of this material on ion irradiation
in Fig. 2. Also in Fig. 2, the swelling of solution-annealed Type 316
stainless steel on irradiation in the EBR-~II or HFIR reactors is compared with
the swelling of this material on single- or dual—-ion irradiation. The obvious
difference between the neutron- and ion—irradiation data for these materials
is the damage level required before the attainment of a “steady-state"

swelling rate, viz., 10-30 dpa for neutron irradiation and 60~90 dpa for ion



irradiation. The neutron irradiation data for the Fe—25Ni-15Cr alloy are
interpreted to show a "steady-state” swelling rate of 0.8-1.0%/dpa, whereas
the ion—irradiation data suggest a lower rate of 0.2-0.5%/dpa. The neutron
irradiation data for the solution~annealed Type 316 stainless steel are
interpret;d to show a "steady-state” swelling rate of 0.5-0.8%/dpa, and the
ion irradiation data suggest a rate of 0.3-0.5%Z/dpa. On the basisz of limited
data (especially for the HFIR irradiation), there is evidence for the

saturation of swelling at high damage levels in solution—annealed Type 316

stainless steel containing helium.

Ferritic steels

The swelling of several ferritic steels on neutron irradiation is compared
‘with the swelling of these materials on ion irradiation in Fig. 3. The
neutron- and ion-~irradiation data for the terﬁéry ferritic alloys are
interpreted to show a "steady-state” swelling rate of 0.01-0.02%/dpa. A lower
Cr content in the ternary alloy appears to result in a lower swelling rate,
i.e., 0.01%/dpa for EM-12 versus 0.02%/dpa for HT-9. On the basis of the
neutron data, the Fe-9,12Cr ferritic alloys may have swelling rates of
~0.06%/dpa. The limited data for the ferritic steels suggest that tke

swelling values obtained on neutron irradiation or ion irradiation are

essentially in agreement.

Copper

The swelling of Cu on neutron irradiation is ccapared with the swelling of
Cu on ion irradiation in Fig. 4. The extremely limited data on the neutron-
induced swelliug of copper (100-200 appm oxygen) suggest a swelling rate of

~0.4%/dpa. The ion irradiation data show that the swelling rate is strongly



dependent on the oxygen and helium conceatration. The swelling rate for
copper can be reduced to < 0.001%/dpa by reduction of the oxygen concentration
to less than 1 appm for radiation damage levels of < 40 dpa.

;

Ni, Nb~-12Zr, and Mo

The swelling of Ni, ¥b-12Zr, and Mo on neutron and icn irradiation is
shown in Figs. 5, 6, and 7 respectively. These materials may not be used as
structural materials in a MFR because of high induced radioactivity [51], but

the swelling data are included for the purpose of additional comparison.

3. Discussion

The post-transient (steady-state) swelling rates that were obtained from
-the experimental data for the structural materials are listed in Table 1. An
apparent difference between the "steady-state” swelling rates for the
different materials on neutron irradiation and ion irradiation seems to exist
only for the austenitic stainless steels. An additional apparent difference
for the stainless steels is a longer incubation period on ioﬁ irradiation for
the initiation of a "steady-state" swelling rate. On the basis of the data
presented for stainles: steel, the simultaneous production of radiation damage
and implantation of helium has an impact on the swelling in these irradiated
materials. The effect of helium implantation on the microstructural evolution
in the V-base alloys and the ferritic steels is less apparent because of their
intrinsically low swelling.

It may be considered that structural materials in a MFR can be relatively
tolerant of swelling. However, it is possible that high swelling may have an
impact on the physical and mechanical properties of a material, e.g., thermal

conductivity, elastic moduli, and radiation-induced creép. The results of



this comparison of experimental swelling data for neutron— and ion-irradiated
structural materials are taken to show that the lon—-irradiation technique can

be utilized for a discriminative assessment of the potentizl for swelling of

these materials,

4. Conclusions

1. Ion-irradiation of candidate MFR structural materials can provide a
discriminative assessment of the potential for swelling,
2. Ton-irradiation can provide an assessment of the effect of high

trradiation damage f£luence (100~300 dpa) on the evolution of alloy

microstructure.

3. Ion-irradiation can make an assessment of the impact of varying the

helium concentration/dpa ratio on swelling of waterials.

e
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Table 1. Swelling rate for MFR alloys

Material Swelling rate (%/dpa)
Neutron Irradiation Jon Irradiation
V-15Cr ~ 0.2 ~ 002
v-1,5,10,20T1 < 0.002 < 0.002
V-15Cr-ST1L < 0.001 < 0.001
Fe-25N1i-15Cr 0.8-1.0 0.2-0.5
S.A, 316 SS 0.5-0.8 0.3-0.5
EM~12 (Fe-10Cr-2Mo) ~ 0,01 ~ 0,01
HT~9 (Fe-12Cr-1Mo) ~ 0.02 ~ 0.02
Copper (48 appm Oxygen) - 0.1
Copper (< 1 appm Oxygen) - < 0.001
Copper (100-200 appm Oxygen) ~ 0.4 ~ 0.3
Ni 0.1 0.1
Nb~1%Zr 0.1-0.2 0.1-0.2
MO 0-1-0-3 0.1—0-3
¢
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Fig. 1. Comparison of swelling for V and V-base alloys on neutron and ion
irradiation. References for symbols are: < -[1], [2], [3], [4], [5]1,
(61; o -[31, (7], [8]; o -[3], [8],; A -[3]; ®-[9], [10], [11],
[12]; = -[11]; o -[13]; A -[14], [15], [1l6], [17].

Fig. 2. ’Comparison of swelling fcr the Fe-25Ni-15Cr alloy and solution-
annealed 315 stainless steel on neutron and ion irradiation.
References for symbols are: o -[18]; A -[19}; O ~[20]; e -[21],
[22]; A -[23]; W -[24],

Fig. 3. Comparison of swelling for ferritic steels on neutron and ion
irradiation. References for symbols are: & -[25], [26]; © ;27;

A -[28]; e -[29], [30]; o -~[29], [30]; @ -[30]; B -{30];
& -[31]; e -[31]; Ao, ® -[32].

Fig. 4. Comparison of swelling for copper on neutron and ion irradiation.
The references for the symbols are: 4 ~[33]; @ , B , @, ¥ -[34]; A
~[35]); B -[36]; o -[37].

Fig. 5., Comparison of swelling for Ni on neutron and ion irradiation.
References for symbols are: A -[39]; & -[40]; o -[4], [41];

O - [42]); V~[1]; e —[43]; -[44]); A -[45].

Fig. 6, Comparison of swelling for the Nb~1Z%ZZr alloy on neutron and ion

irradiation. References for symbols are: o, A, O -[46];
e, A,B -{47].

Fig. 7. Comparison of swelling for Mo on neutron and ion irradiatiom.

References for symbols are: 0O, z-[48]; A-[49]; @, 4,

B -[50].
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