
i_,,_ ANL-91/32

iI _,'ii ¸ i̧ _". '

Mathematic_ and Computer ParallelProgrammingwith PCN
Science Division

Mathematics and Computer

Science Division by IanFosterandStevenTueckeMathematics and Computer
Science Division

,j

(_ Argonne NationalLaboratory,Argonne, Illinois 60439
operatedby The University of Chicago
for the UnitedStatesDepartmentof Energyunder ContractW-31-109-Eng-38

..

Argonne National Laboratory, with facilities ill the states of Illinois and Idaho, is
owned by the United States governnlent, and operated by The University of Chicago
under the provisions ot'a contract with the Department ot' Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor

any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or ttset',tlness of any information, apparatus, product, or pro-
tess disclosed, or represents that its use would not infringe priw_tely owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessa,,'ily state or reflect
those of the United States Governmenl or any agency thereof.

I IIII

Reproduced from the best available copy.

Available to DOE and DOE c(,nlltictors fronl the
Office of Scienti!'ic and Technical Information

P.O, Box 62

Oak Ridge, TN 37831
Prices available from (615) 576-8401, I;'TS 026-8401

Avail_lble to the public from the
Nalional Technical Information Service

U.S. Dcparlment of Commerce
5285 Port Royal P,_)ad
Springfield, VA 22161

Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
ANL--9 i/32-Rev, i

9700 South Cass Avenue

Argonne, IL 60439-4801 DE92 006 86 4

ANL-91/32, Rev. 1

Parallel Programming with PCN

, by

Ian Foster and Steve Tuecke

Mathematics and Computer Science Division

December 1991

/

, M STEB
This work was supported in part by the National Science Foundation under Contract NSF CCR-8809615,

by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of

Energy, under Contract W-31-109-Eng-38, by the Air Force Office for Scientific Research under Contract
AFOSR-91-0070, by the Office for Naval Research under Contract ONR-N00014-89-J-3201, and by the

Defense Advanced Research Projects Agency under Contract DARPA-N00014-87-K-0745.

Preface

The PCN system is the product of the effort_ of many people at Argonne National

Laboratory, the California Institute of Technology, and the Aerospace Corporation.
The PCN language was designed by Mani Chandy and Steve Taylor. The PCN

toolkit was designed by Ian Foster and Steve Taylor and implemented by a team
consisting of Sharon Brunett, Ian Foster, Steve Hammond, Carl Kesselman, Tal

Lancaster, Dong Lin, Jan Lindhiem, Robert Olson, Steve Taylor, and Steve Tuecke.
The Gauge performance analysis tool was provided by Carl Kesselman. The Upshot

trace analysis tool was provided by Ewing Lusk. The expanded BNF syntax for

PCN was provided by John Thornley. The two-point boundary value application
was provided by Steve Wright.

Contents

Abstract 1

I A Tutorial Introduction 2

1 Program Composition 2
1.1 Core Programming Notation 2
1.2 Toolkit. 3
1.3 Cross Reference 4

2 Getting Started 5

3 An Example Program 5
3.1 Compiling a Program 6

3.2 Running a Program 6

4 The Shell 7

4.1 Intermodule Calls 8

4.2 Shell Variables 8

4.3 Capabilities 9

4.4 The .pcnrc File 9
4.5 Concurrency and Sequencing 10
4.6 Common Errors 11

5 The PCN Language 13
5.1 Concurrent Programming Concepts 13

5.2 PCN Syntax 15

5.3 Sequential Composition and Mutable Variables 17
¢

5.4 Parallel Composition and Definitional Variables]9

5.5 Choice Composition 21
5.6 Definitional Variables as Communication Channels 23

5.7 Specifying Repetitive Actions 24
5.8 Tuples 26
5.9 Stream Communication 29

5.10 Advanced Stream Handling 32
5.11 Interfacing Parallel and Sequential Code 37
5.12 Review 39

6 Programming Examples 40

6.1 List and Tree Manipulation 40

6.2 Quicksort 42
6.3 Two-Point Boundary Value Problem 45

7 Modules 48

iii

8 The C Preprocessor 48

9 Integrating Foreign Code 50
9.1 PCN/Foreign Interface 50
9.2 Importing Foreign Procedures 51
9.3 pcncc: The PCN Linker 52

10 Using Parallel Computers 53
10.1 Mapping 53
10.2 Using Multiple Processors 54

11 Process Mapping Tools 55
11.1 Annotations 56

11.2 Compiling Programs 56
11.3 Running the Compiled Program 58

12 Higher-Order Programs 58

13 Debugging PCN Progranis 59

II Reference Material 61

14 PDB: A Symbolic Debugger for PCN 61
14.1 The PCN to Core PCN Transformation 61

14.2 Naming Processes 63
14.3 Using the Debugger 64
14.4 Obtaining Transformed Code 65

14.5 Examining the State of a Computation 65

14.6 Debugger Variables 67
14.7 Miscellaneous Commands 68

14.8 Orphan Processes 69

15 The Gauge Execution Profiler 69
15.1 Data Collection 70

15.2 Data Exploration 71
15.3 The Host Database 72

15.4 X Resources 72

16 The Upshot Trace Analyzer 73
16.1 Instrumenting a Program 73
16.2 Collecting a Log 74
16.3 Analyzing a Log 74

iv

17 Standard Libraries 75

17.1 System Utilities 75

17.2 Standard I/O 77
17.3 Examples of Use 79

18 Standard Capabilities 83
18.1 co i 83

18.2 gauge 85

18.3 upshot 86
18.4 vm_co 87

19 Intel iPSC/860 Specifics 88

20 Intel Touchstone DELTA Specifics 89

21 Sequent Symmetry Specifics 90

22 Symult s2010 (Cosmic Environment) Specifics 90

23 Network Specifics 91
23.1 Using tsh 92

23.2 Specifying Nodes on the Command Line 92
23,3 Using a PCN startup file 93

23.4 Starting net-PCN without rsh , 94
23.5 Ending a Computation 94
23.6 Limitations of net-PCN 94

24 Further Reading 95

III Advanced Topics 97

25 Customizing Your Environment 97

26 Run-Time System Debugger Options 97

IV Appendices 100

A Obtaining the PCN Software 100

B Supported Machines 101

C Reserved Words 102

D Incompatibilities with Previous Releases 103

E Common Questions 104

F Known Deficiencies 105

G PCN Syntax 106
G.1 Parser BNF 106
G.2 Expanded BNF 107

Index 112

vi

Parallel Programming with PCN

Ian Foster and Steve Tuecke

Abstract

PCN is a system for developing and executing parallel programs. It comprises

a high-level programming language, tools for developing and debugging programs

in this language, and interfaces to Fortran and C that allow the reuse of existing

code in multilingual parallel programs. Programs developed using PCN are portable
across many different workstations, networks, and parallel computers.

This document provides all the information required to develop parallel programs

with the PCN programmingsystem, lt includes both tutorial and reference material.

lt also presents the basic co'ncepts that underly PCN, particularly where these are
likely to be unfamiliar to the reader, and provides pointers to other documentation

on the PCN language, programming techn!ques, and tools.
PCN is in the public domain. The latest version of both the software and this

manual can be obtained by anonymous FTP from Argonne National Laboratory in

the directory pub/pcn at info.mcs.an:l.gov (c.f. Appendix A).

Part I

A Tutorial Introduction

1 Program Composition

Program Composition Notation (PCN) is both a programming languag_ and a par-
allel programming system. As the name suggests, both the language and the pro-

gramming system center on the notion of program composition.
Most programming languages emphasize techniques used to develop individual

components (blocks, procedures, modules). In PCN, the focus of attention is the
techniques used to put components together (i.e., to compose them). This is illus-
trated in the following figure, which shows a combining form being used to compose
three programs.

II I I I ,
This focus on combining forms is important for several reasons. First, it encour-

ages reuse of parallel code: a single combining form can be used to develop many

different parallel programs. Second, it facilitates reuse of sequential code: parallel

programs can be developed by composing existing modules written in languages such

as Fortran and C. Third, it simplifies development, debugging, and optimization, by
exposing the basic structure of parallel programs.

It appears likely that a large proportion of all parallel programs can be devel-

oped with a relatively small number of combining forms. However, PCN does not
attempt to enumerate potential combining forms. Instead, it provides a core set of

three primitive composition operators -- parallel, sequential, and choice composi-

tion -- in a core programming notation. This is a simple, high-level programming
language. More sophisticated combining forms (providing, for example, divide-and-

conquer, self-scheduling, or domain decomposition st. ategies) can be implemented
as user-defined extensions to this core notation. Such extensions are referred to as

templates or user-defined composition operators. Progra,m development, both with
the core notation and with templates, is supported by a portable toolkit. These three

components of the PCN system are illustrated in Figure 1.

This tutorial focuses on the core programming notation and toolkit. Material
on templates will be added at a later date.

1.1 Core Programming Notation

The core PCN programming notation is a simple, high-level language that pro-
vides three basic composition operators: parallel, sequential, and choice. The lan-

2

Application-specific
compositionoperators

''J
CoreProgrammingNotation

Figure 1: PCN System Structure

guage provides two types of variable: conventional, or mutable variables, arid single-
assignment, or definitional variables. Other distinctive features of the language
include extensive use of recursion, support for both numeric and symbolic comput-

ing, and an interface to sequential languages such as Fortran and C. The syntax is
similar to that of C.

1.2 Toolkit

The PCN toolkit provides support for each stage of the parallel program develop-

ment process. It comprises a compiler, shell, foreign language interface and linker,

standard libraries, process mapping tools, programmable transformation system,

symbolic debugger, execution profiler, and trace analyzer. These facilities are all

machine independent and can run on a wide variety of uniprocessors, multiproces-

sors, and multicomputers. They are supported by a run-time system that provides
basic machine-dependent facilities.

Compiler The compiler translates PCN programs to a machine-independent, low-
level form. An interface to the C preprocessor allows macros, conditional compilation

constructs, and the like, to be used in PCN programs.

Shell The shell supports interactive program development, providing access to

basic services such as I/0 and compilation.

Foreign language interface and linker These permit Fortran and C procedures

to be integrated seamlessly into PCN programs.

Process mapping tools These support process mappirtg on a variety of virtual
machines.

Standard libraries A set of standard libraries provideIL access to Unix facilities

(e.g., I/O) and other capabilities, i
' I

PDB PDB is the PCN symbolic debugger. It includei_ specialized support for

debugging of concurrent programs, i

Gauge Gauge is an execution profiler for programs written in PCN and other
languages; it includes a graphical tool for interactive exploration of profile data.

Upshot Upshot is a trace analysis tool for programs written in PCN and other

languages; it includes a graphical tool for interactive exploration of trace data.

PTN Program Transformation Notation (PTN) is a programmable transformation
system integrated with the PCN compiler. It is used to implement the PCN compiler,

process mapping strategies, and templates.

1.3 Cross Reference

The basic constructs of the PCN language are described in the following sections.

• Syntax: _ 5.2 and Appendix G.

• Sequential composition: § 5.3.

• Mutable Variables" § 5.3.

• Parallel composition: § 5.4.

• Definitional Variables: § 5.4.

• Choice composition: § 5.5.

The components of the PCN toolkit are described in the following sections.

• Compiler: § 3.1, § 8.

• Shell: § 4.

• Foreign interface and tinker: § 9.

• Debugging facilities: § 13. i

• Standard libraries" § 17.

• Process mapping tools" § 11.

• PDB: § 14.

• Gauge: § 15.

• Upshot: § 16.

Machine-specific aspects of the PCN toolkit are described in §§ 19-23. Additional
documentation on the PCN language, toolkit, and applications is cited in § 24.

The PTN transformation system is described in a separate document, as is

host-control, a utility for managing execution of PCN programs on networks.

See § 24 for more information.

2 Getting Started

We assume tha_ PCN is already installed on your computer. (If it isn't, _'ead the

documentation provided with the PCN software release.) You will need to know

where PCN is installed. Normally, this will be/usr/local/pcn, but some systems
may place PCN in a different location.

Before you can use PCN, you must tell your Unix environment where to find the

PCN software. If you are using the standard Unix C-shell (csh), you add one line
to the end of the file . cshrc in your home directory. If PCN has been installed in

/usr/local/pcn,this line is

set path = ($path /usr/local/pcn/bin)

The environment variable path tells the Unix shell where to find the various PCN

programs (compiler, linker, etc.). This shell command adds the directory containing
the various PCN executables to your shell's search path. You may have to log out

and log in again for this to take effect.

3 An Example Program

We are now ready to compile and run our first PCN program. The syntax of PCN
is similar to that of the C programming language in many respects. Hence, it

is appropriate that our first program print "Hello world" (the first C program in

several well-known texts does just this).

I Module programl .pen]

hello(d)

{II stdio:printf("Hello world\n", {}, d) }

, I_i//,_,

A PCN program consists of one or more modules. Each module is contained in

a separate file with a .pcn suffix. Our example program consists of a single module,

programl, contained in a file programl .pcn. (We'll learn more about modules later.)
The example program has one procedure, hello. This procedl, re makes what

is called an intermodule call: it calls the printf procedure in the stdio module
to print "Hello world". The stdio module is distributed with the PCN system; it

provides many of the functions of the Unix "standard I/O" library (§ 17.2).

3.1 Compiling a Program

The command pcncomp is used to compile a PCN module. Because our program is

contained in a file programl.pcn_ we type

pcncomp programl, pcn

We should see something like this (if 7, is the Unix prompt):

7, pcncomp programl.pcn

Compiling: programl.pcn
PCN: Version 1.2; 1 node, 800k heap.

(See the file: /usr/local/pcn/DISCLAIMER)
,

loaded co

7,

This sample session, and all sample sessions in this manual, were run on a NeXT

workstation. The invocation syntax and system messages may differ slightly on some

other computers (cf. §§ 19-23). However, the same PCN programs can be compiled

and run on any computer for which PCN is supported. We adopt the convention that
text typed by the user is presented in italic font, while system output is presented

in typewriter font.

The compiler will produce two files when compiling programi.pcn, namely,

programl.par, and programl.mod. The .pam file contains PCN object code. The
.rood file contains information about the program, to be used by the Gauge execution

profiler (§ 15). Both the .pam and .,nod files are completely machine independent:
a PCN program compiled for one machine will work on any other machine without

recompilation. However, if a PCN program invokes foreign procedures (Fortran or

C), then these foreign procedures must be compiled and linked using the PCN linker,

to generate a separate _'xecutable for each target machine (§ 9).

3.2 Runn;,ng a Program

We are now ready to run our program. We first invoke the PCN shell, pcn. (We exit

this shell by typing exi_:(0); on some computers, a AD(control..D) will also work.)

pcn

PCN: Version 1.2; 1 node, 512k heap.

(See the file: /usr/local/pcn/DISCLAIMER)

exit(O)

In this bcript, we started the shell and immediately exited it using exit(0).

Now, we start up the shell and run our program:

pen

PCN: Version 1.2; I node, 512k heap.

(See the file: /usr/local/pcn/DISCLAIMER)

program I :hello(done)
Hello world

exit(O)

Once the shell is running, we type the command programl:hello(done) to

invoke the hello procedure in our programl module. The shell looks in the current

directory for the object file programl.pam produced by the compiler; if it does not

find the file there, it looks in the PCN inst:fllation directory. (We can also specify

other directories that should be searched; see § 25). If the file is found, the shell loads

the object file and executes the procedure hello. Once our program has completed,

we exit by typing exit (0).

4 The Shell

The preceding section gave you a first taste of the PCN language and the PCN shell.

We now look at the shell in more detail. We return to the language in § 5.

Recall that the shell, when first invoked, displays something like the following
text:

Z pcn

PCN: Version 1.2; 1 node, 512k heap.

(See the file: /usr/local/pcn/DISCLAIMER)

The header provides some useflfl ineormatio.l aoout the version of PCN that i_

running (here, 1.2), the number of processors that are active (here, just 1), and the
amount of memory available to PCN (here, 512 kilowords). The second line invites
you to read a disclaimer file associated with the software. The asterisk on the third

fine means that the shell is running. On a large parallel machine, it may take a little ,

time before this appears. We can now type one or more commands, separated by

commas. A prompt (>) can be obtained on demand by typing a carriage return.
The shell provides three main functions. It maintains special shell variables, lt

accepts requests to execute capabilities and intermeddle calls. Finally, in a parallel

computer, it handles the mapping of procedure call_ to remote processors. We discuss

the first two of these functions here; mapping is discussed in § 10.1.

4.1 Intermeddle Calls

We have already seen an example of an intermeddle call in the preceding section.
The call

programl:hello(done)

requests the shell to load the module programl (if it has not already been loaded)
and to execute the procedure hello with a single argument, done. If either programl

cannot be loaded (i.e., there is no readable file programl, pam in the current directory,

the PCN inst_lation directory, or the PCN directory path), or if programl does not
contain a procedure hello, an error is reported.

4.2 Shell Variables

r he shell maintains a dictionary of variables passed as arguments to intermeddle

calls or capabilities. Hence, the values of these variables persist after au intermeddle

call or capability completes, allowing communication between various procedure
invocations initiated from within the shell.

Shell variables are called single-assignment, or definitional, variables. Defini-

tional variables are a central concept in PCN: they provide an abstract representa-
tion of the communication and synchronization operations that are fundamental to

parallel computing. A definitional variable initially has a special undefined value.

Once defined (written) to a nonvariable term, it cannot subsequently be modified.

An attempt to read an undefined definitional variable causes the reading procedure
to suspend. An attempt to write an already-defined definitional variable results in
an error.

Variables are represented in PCN by character strings formed from the set

{a-z,h-Z,0-9,_} and starting with a letter or an underscore. Case is significant,
and there is no maximum length. Definitional variables are not declared but instead

are simply created when used. We have already seen one example of a definitional

variable. In the call to procedure hello in programl,

programl:hello(done),

the hello procedure's done argument is a definitional variable.

4.3 Capabilities

The shell also pro,,,ides a number of capabilities, procedures that can be invoked
without specifying a module. The following basic capabilities are built into the
shell:

pp(X) "Pretty print" the value of X. (If X is a list, the elements of X are printed.)

forget() Forget the binclings of all shell variables.

exit (X) Shut down the shell and exit, once the variable X is defined.

load(Hl: load(M,L,R)Load a programmodule with name given by the string H,
adding into the environment any capabilities it defines; define the variable R

to be L when loading is complete.

The load capability allows us to extend the range of capabilities available for use

in the shell. For example, the PCN system module co provides a capability compile
that can be used to compile programs from within the shell. This is an alternative to
the use of the pcncomp command. To use this capability, we first load the compiler
module by typing load("co"); this has the effect of adding the capability compile
to the shell. We then type compile("programl!') to compile a file programi .pen:

'/,pcn
PCN: Version 1.2; I node, 512k heap.

(See the file: /usr/local/pcn/DISCLAIMER)

load("co")
loaded co

compile ("program I ")
Written: programl,pam
Y,

Several other system modules providing useful capabilities will be introduced in

subsequent sections; a complete list is given in § 18.

4.4 The .pcarc File

It can become tiresome to have to type load("co") each time the PCN shell is
invoked. Fortunately, you can req_lest that certain shell commands be performed

automatically each time the shell is started. You simply create a .pcnrc file in

either the directory in which PCN is to be invoked or your home directory ('). PCN

looks for this file each time it starts up (it looks in the current directory first, and

then in the home directory) and executes any commands contained in the file. The

following is a typical .pcnrc file; this loads the compiler and the Gauge execution
profiler.

load("co")

]load("gauge")
/

4.5 Concurrency and Sequencing

Unlike the Unix shell, the PCN shell does not wait until one command is finished

before invoking the next. Hence, it is possible to run several commands concurrently
by typing them one after the other. For example, in the following script, we execute

our program twice concurrently.

pcn

PCN: Version 1.2; i node, 512k heap. ,

(See the file: /usr/local/pcn/DISCLAIMER)
$

prog,um l :hello(a l), progvam I :hello(de)
Hello world

Hello world

It is important to be aware that exit will also be executed concurrently: this

can lead to premature termination of other computations. For example, if we type

programl:hello(dl), exit(O)

it is possible for the shell to terminate before program1has completed printing Hello
world.

We can avoidthisproblem by usinga shellvariableto sequenceprintingand

exiting. The following example shows how a shell variable, done, is used to sequence

the calls to programl and exit.

pcn

PCN: Version 1.2; I node, 512k heap.

(See the file: /usr/local/pcn/DISCLAIMER)
$

program l :hello(done), exit(done)
Hello world

Recall the example program:

10

Module programl,pcn[

hello(d)

{[[stdio:printf("Helloworld\n", {}, d) }

The hello proceduretakesone argument,named d. ltpassesthisargument

to the printf procedureas itsthirdargument. The printf proceduredefinesits
third argument when it is finished printing. In PCN, arguments are always passed

by reference, so the d variable in the hello procedure and the done variable in the

call are one and the same. Hence, the programl:hello(done) command defiIles
the shell variable done once printing is complete. Because the exit(done) call will

not execute until its argument has been defined, the exit command shuts down the
shell only after Hello world has appeared on the screen.

The definition operation effected by hello can be observed more closely by

typing commands one at a time, as in the following script. The first call to pp shows

that the variable done is initially undefined (done = _U2f450 where the syntax _Un

represents a variable). The second call to pp shows that the variable done has
been given the value 16 by hello. The value 16 is a return code from the printf
command and is not relevant to the current discussion.

'/,pcn

PCN: Version 1.2; I node, 512k heap.
(See the file: /usr/local/pcn/DISCLAIMER)
$

pp(done)
_UPf450

program I :hello (done)
Hello world

pp(done)
16

exit(done)
'/,

4.6 Common Errors

Illegal Define: Recall that a definitional variable (shell variable) can be defined

only once. An attempt to redefine a shell variable results in an Illegal define

(i_define) error. For example, in the following we make the mistake of passing
the same definitional variable to two invocations of hello. An illegal define error is

signaled.

11

'hpcn

PCN: Version 1.2; 1 node, 512k heap.

(See the file: /usr/local/pcn/DISCLAIMER)

pog 1:h,Uo(ao.)
Hello world

Hello world

(0,6879) Warning: Node O: i_define: left-hand side
of definition already defined in fprintfl.40

We can avoid this error by introducing two different variables:

programl:hello(doneI), programl:hello(done2)

Alternatively, we can forget () the value of all definitions between the two calls to

our program.

program 1:hello(done)
Hello world

forget()
definitions forgotten

program 1:hello (done)
Hello world

Insufficient Memory. The PCN compiler invokes the C preprocessor (CPP) to

process macros, etc. This program is executed as a separate process. Hence, if
your computer has little swap space, it is possible for CPP to fail due to insufficient

l_lemory. If this occurs, you will get an error message indicating that not enough

memory was available. To work around this problem, decrease the size of PCN

internal memory by invoking pcn (or pcncomp) with the argument -k N, where N is
less than the default value of 512, and retry the compile.

12

Getting started with PCN"

• PCN programs are contained in files with a .pcn suffix; compila-

tion produces files with .pcm and .rood suffixes.

• We compile programs by typing either pcncomp f±le.pcn to the

Unix shell or compile("file _') to the PCN shell.

• We invoke the shell as pcn and exit it by typing exit(0) or "D

(control-D).

• The shell provides four built-in capabilities: pp, forget, exit, and
load.

• When using the compiler from the PCN shell, we load the capa-

bility compile by typing load("co").

• Commonly used commands can be executed automatically by plac-

ing them in a .pcnrc file in the directory from which PCN is run,
or in your home directory.

• The shell maintains shell variables that can be used to commu-

nicate information between different commands and to sequence
execution of commands.

5 The PCN Language

The programming language Program Composition Notation (PCN) is an integral

part of the PCN programming system' it is used to express concurrent algorithms
and to compose code written in sequential languages. Like any programming lan-

guage, PCN has a distinct syntax that must be mastered in order to write programs.
However, the key to understanding PCN is understanding the concurrent program-

ming model that it implements. Before presenting the PCN language, we introduce ,
this model and the fundamental concurrent programming concepts on which it is
based.

5.1 Concurrent Programming Concepts

Parallel programming is often considered "hard". However, experience shows that

programming models that adhere to the following principles can significantly reduce

the complexity of parallel programming.

First-Class Concurrency: Concurrent execution should be a first-class citizen in

a programming model, not something appended to a sequential model.

Controlled nondetermlnism: The result computed by a procedure should be

flilly determined by the procedure's inputs, except when explicitly sp_cifi¢_d

13

otherwise by the programmer.

Compositionality: lt should be easy to understand both isolated program con:l-
ponents and larger programs formed by the concurrent composition of these
components.

Mapping independence: The way in which components of a concurrent computa-
tion are mapped to a parallel computer should not change the result computed.

PCN uses four simple ideas to realize a parallel programming model based on
these principles. Definitional variables provide an abstract, machine-independent

model of both communication and synchronization. Concurrent composition is the

fundamental mechanism used to build up complex programs from simpler compo-
nents. Nondeterministic choice is used to specify nondeterministic actions when

required. Encapsulation of state change allows state change to be integrated into

concurrent computations without compromising deterministic execution.

Definitional Variables. A single mechanism is provided for the exchange of in-

formation between concurrently executing program components (processes): the

definitional variable. A definitional variable is initially undefined, can be assigned
at most a single value, and subsequently c._.nnot change. A process that requires the
value of a definitional variable waits until tho variable is defined.

Definitional variables can be used both to communicate values and to synchronize
actions. If two concurrent processes, a producer and a consumer, share a definitional

variable, then a value provided by the producer for this variable is automatically
communicated to the consumer. Execution of the consumer is blocked until the

value is provided.

The definitional variable has several benefits for concurrent programming. First,
it avoids the nondeterminism that is so often associated with concurrency: choices

made within program components on the basis of definitional variables cannot

change. This means that components can be understood in isolation, as errors caused
by time-dependent interactions cannot arise. Second, shared definitional variables

provide a clearly defined and delineated interface between concurrently executing
processes: interaction can only occur if processes share variables. Third, the defini-

tional variable provides for mapping independence: processes sharing a definitional
variable may interact irrespective of their location in a parallel computer.

Concurrent Composition. Complex programs are developed by the concur-rent
composition of simpler components. Hence, an application can be viewed as consist-

ing of a (potentially large) number of lightweight execution threads. These execute

concurrently, communicate via definitional variables, and block when required data
is unavailable.

It is often desirable that the number of threads be larger than the number of

processors, as this can allow the compiler and run-time system to adopt flexible

scheduling strategies that overlap computation and communication, thus masking
latency and improving parallel efficiency.

14

Nondeterministic Choice. The use of definitional variables as a communication

mechanism avoids errors arising from time-dependent interactions: a choice made on
the basis of a definitional variable cannot change. Hence, concurrent computations

are deterministic. This is an important property that greatly simplifies parallel

programming.
Nevertheless, it is sometimes useful to be able to specify nondeterministic exe-

cution, particularly in reactive applications. Nondeterminism is integrated into the

programming model in a tightly controlled way. A form of guarded command is used
to define the conditions under which a process may perform various actions. Only
if the conditions associated with two or more actions are not mutually exclusive is
execution nondeterministic,

Encapsulation of State Change. The familiar concepts of state change and

sequencing that underly sequential languages such as Fortran and C are also im-

portant ill parallel programming: many algorithms are most efficiently specified in
these terms. However, state change must be carefully controlled if we are to avoid

introducing unwanted nondeterminism.

The approach adopted in PCN is to insist that state change be encapsulated

within sequential threads. Data structures that may be subject to state change
cannot be shared by concurrently executing program components. This restriction

prevents concurrent updates to state, which in turn avoids the possibility of time-

dependent behavior.

Programming Model Summary. Execution of a parallel program forms a set
of concurrently executing lightweight ' processes (threads) which communicate and

synchronize by reading and writing shared definitional variables. Individual threads
may apply the usual sequential programming techniques of state change and se-

quencing. Execution is deterministic, unless specialized operators are invoked to
make nondeterministic choices.

Key concurrent programming concepts:

• Definitional variables

• (i',oncurrent composition

• Controlled nondeterministic choice

• Encapsulation of state change

5.2 PCN Syntax

: The syntax of PCN is modeled on that of the C programming language. In addition,

the C preprocessor is applied to programs, so macros, conditional compilation, and
file inclusion constructs can be used as in C (§ 8). In the following, we make frequent

15

!

reference to C when explaining features of PCN. However, these references are for

illustrative purposes 0nly,,and a familiarity with C is not required to understand this
material. A complete BNF grammar for the PCN syntax is provided in Appendix G.

Data Types. PCN's three simple data types -- character, integer, and double-

precision floating-point number (char, inr, and double) -- are as in C,. One-
dimensional arrays of these data types are also supported. Arra)s are indexed from

zero, as in C. There is also a complex data type, the tuple. This is introduced in
§5.8.

Strings. Strings are represented as character arrays, as in C. A character array
A representing a string S of length k contains the ASCII representation of the

characters of S in A[O]..A[k- 1] and the null character (\0) in A[k]. A constant
string is denoted by the characters of the string between quotes; for example, "PCN"

is a string consisting of the three characters: I, C, and N (followed by the null
character). The empty string is denoted by "".

Expressions. Arithmetic expressions are as in C, except that the only operators

are modulus, addition, subtraction, multiplication, and division (%, +, -,., and

/). The length function returns the number of elements in an array or 1 (one) if
applied to a single number or character. The following are all valid expressions.

(1 + x)_,y i * length(g) 29- x/g

The precedence and associativity of the PCN operators is as in C. The following table

summarizes precedence and associativity rules. Operators on the same line have the

same precedence, While rows are in order of decreasing precedence. Parentheses ()

can be used to ovetlride these default rules.
/

Operators Associativity,,,

- (negation of numbers) length right to left
/ % left to right

+ - left to right

Variabl_ Names. Variable names are as in C. A variable name is a character

string formed from the set {a-z,h-Z,0-9,_} and starting with a letter or an under-

score ('_."). Case is significant and there is no maximum length. The following are
all valid variable names.

/

f

/ value _2 Last_Item x

Comments. A comment begins with /* and ends with */, as in C.

)

16

Procedures. A procedure consists of a heading followed by a declaration section

followed by a block. The heading is the procedure name and a list of arguments

(i.e,, formal parameters), as in C. All arguments are passed by reference, unlike

in C where arguments can be passed by value. The declaration section is a set
of declarations for arguments and local variables. The scope of a variable i:; the

procedure in Which it appears', all variables appearing in a procedure are either

arguments or local variables of the procedure. In particular, there is no notion of a

global variable.
The body of a procedure consists of a block. The block is the basic component

from which procedUres are constructed. A b!ock is either a composition, an assign-
ment statement, a definition statement, an implication, or a procedure call. These

constructs will be defined shortly.

Declarations. A declaration consists of a type (char, inr, or double) followed

by one or more variable names, each with an optional suffix to denote an array. An

array suffix has the form [size], size an integer or variable, if a variable is local, and
[] if the variable is an argument. The following are all valid declarations.

inr a[size]; double b[lO], c[], di char c;

We shallseethatdeclarationsarenot providedforal]variables:thedefinitional
variables used in PCN for communication and synchronization are distinguished by
a lack of declaration.

5.3 Sequential Composition and Mutable Variables

We now explore the PCN language proper. We shall view PCN as providing three
related sets of constructs. First, there are the composition operators _ parallel,

sequential, and choice _ which encode three fundamental ways of putting program
components together. Second, there are two types of variables: conventional, or
mutable variables, and single-assignment, or definitional variables. Third, there are

specialized language features introduced to support symbolic processing: tuples and
recursion.

We first introduce the two components that will be most familiar to maI_y readers:

sequential composition and mutable variables.

The sequential composition operator is used to specify that a set of statements

should be executed sequentially, in the order written in the program. In languages
such as Fortran and C, this is of course the normal mode of execution. However, as

PCN also allows for other sorts of composition, we distinguish it by a special syntax.

A sequential composition has the general form

{ ; blocko, ..., blockk },

where ";" is the sequential composition operator and blocko, ..., blockk are other
blocks.

17

A mutable variable in PCN, like a variable in Fortran or C, is declared to have

some type (char, inr, or double), initially has some arbitrary (undefined) value,
and can be modified many tiaras during its lifetime, by means of an assignmeut

statement. An assignment statement is represented as follows,

i

variable := expression

where variable is a mutable variable or an element of a mutable array.

Example. The procedure swap exchanges the values stored at the ith and j th

positions of an integer array. Its three arguments -- array, i, and j -- are declared

to be an integer array _ad single integers, respectively. A loca/variable temp is also
declared. The three assignments are placed in a sequential composition, to ensure
that they execute in the correct order.

The procedure swap'test can be used to execute swap. This procedure declares a
local integer array a[3]; initializes this array to contain the integers 0, 1, 2; calls

a procedure printf to display the contents of a; calls swap to exchange the ith and

j th components; and finally calls printf again to display the modified array. Note

that as procedure arguments are passed by reference, the array a in swaptest is the '

same data structure as array in swap. Note also that in swaptest, the sequential
composition operator ensures that both the assignments to a and the calls to prinl:f
occur in the correct order.

swap(array ,i,j)
inr array[], i, j, temp;
{ ; temp := array[ii,

array[ii := array[i],

array[ii := temp
}

swapt est (i, j)

inr ai3], i, j;
{ ; a[0] := 0, ai1] := 1, ai2] := 2,

stdio:printf("Before: _,d_,d_,d\n",{a[O],a[l],ai2]},_),

swap(a,i,j),
stdio:printf("After: _,d_,d_,dkn",{a[O],a[l],a[2]},_)

}

Role of Sequential Composition. The example illustrates the two primary ap-

plications of sequential composition in PCN: sequencing of updates to mutable vari-
ables and sequencing of I/O operations.

18

5.4 Parallel Composition and Definitional Variables

We now consider two related constructs that may be unfamiliar to some readers"
parallel composition and definitional variables.

The parallel composition operator specifies that a set of statements are to be

! executed concurrently. A parallel composition has the general form

{llblocko, ...,,blockk},

whereI istheparallelcompositionoperatorand block0,...,blockkareotherblocks.
Executionwithina parallelcompositionisfair:thatis,itisguaranteedthatexe-

cutionof each blockwilleventuallyprogress(unlessthatblockhas terminated).
Executionof a parallelcompositionterminateswhen allof itsconstituentblocks
have terminated.

Concurrentcomputationsinitiatedwithina parallelcompositionmust be ableto

exchangedata and synchronizetheiractivities,ltisimportanttounderstandthat

this cannot be achieved by using mutable variables (at least not without the intro-

duction of complex locking mechanisms), as the order of read and write operations

in a parallel composition, and hence the result of s, ch operations, is not in general
well defined.

Concurrent computations communicate and synchronize by means of definitional

or single-assignment variables. We have aiready come across definitional variables in
the introduction to this chapter and in our discussion of the PCN shell (§ 4). Here,
we consider them in more detail.

Definitional variables are represented in the same way as mutable variables,

with one exception: a solitary underscore character ("_") is used to represent an

anonymous definitional variable. Each occurrence of "_" represents a unique variable.
Definitional variables are not declared. Any variable occurring in a procedure

that is not explicitly declared in the procedure's declaration section is a definitional
variable. Definitional variables initially have a special "undefinea_' value. They can

be defined once, by means of a definition statement, and then cannot be modified.

The definition statement is represented as

variable = expression,

where variable is a definitional variable. Note that a definition of the form x =

y is allowed; this establishes y as an alias for x, so that any prior or subsequent
definition for y also applies to x.

Example: Simple Divide and Conquer. The following program implements a

simple divide-and-conquer strategy. As none of the variables in this procedure are

declared, we see that all are definitional. Variables prob and soln are arguments;
the rest are local to the procedure. When executed, procedure di_r_and_conq im-

mediately executes a parallel composition containing four procedure calls. These

execute concurrently, with execution order constrained only by availability of data.

Variable prob is input and soln output. Procedure split consumes prob and hence
will block until an input value is available. Likewise, the solve procedures block

19

until l_prob and r_prob are defined by split. Once the two calls to solve produce

values for l_soln and r_soln, the combine procedure can proceed to produce soln.

div_and_conq(prob,soln)
{II split(prob,l_prob,r_prob),

solve(l_prob,l_soln), '_
solve(r_prob,r_so!n),
combine(l,soln,r_soln,soln)

}

Properties of Definitional Variables

• Have as initial value a special "undefined" value.

• Read operations block until the definitional variable is given a
value.

• Are defined ("written") by the definition operator ("=").

• Once defined, cannot be modified.

• Can be shared by procedures in a parallel composition.

• Are not explicitly declared.

• Can take on values of type char, inr, double, or tuple.

lt is ivstructive to con, pare mutable and definitional variables, as in the following
table.

Definitional Mutable

Initial valueSpecial "undefined" value Arbitrary value

Defined by Definition operator '(=) Assignment operator (:=)

Read operation Blocks if undefined Always succeeds

Canbe written Once iQlany times

Parallel composition Can share Cannot share

Explicitly declared No Yes

Types tuple, int, double, char int, doubie, Char

Role of Parallel Composition. lt is important to understand the distinct roles

of the parallel and sequential composition operators. Parallel composition exposes

opportunities for concurrent execution; sequential composition constrains execution

order so as to sequence I/O operations or assignments to mutable variables. In

general, it is a good idea to expose as much concurrency as possible in au application,
mKthis provides the compiler and run-time system with maximum flexibility when

20

making scheduling decisions. In particular, they can seek to reduce tlle cost of

remote data accesses by overlapping computation and communication.

5.5 Choice Composition

The third and final composition operator that we consider is the choice composition

operator, "?". A choice composition has the general form

{ ? guard0 -> block0, ..., guardk -> blockk}

where each guardi is a sequence of one or more tests. Valid tests include

a < b, a > b, a <= b, a >= b ' arithmetic comparison

a == b, a != b : equality and inequality tests

int(a), char(a), double(a), tuplG(a) ' type tests

data(a) : synchronization test

? = ' tuple match

default ' default action

We refer to a single "guard - > block" as an implication.

Choosing between Alternatives. Choice composition provides a mechanis_ for
choosing between alternatives. In this respect it may be regarded as a parallel if-

then-else or guarded command. Each guard specifies the conditions that must be
satisfied for the associated block to be executed. At most one of these blocks will

be executed; which one depends on the result of guard evaluation.

A choice composition is executed as follows. Each guard is evaluated ft'ore left

to right. A guard succeeds if ali of its tests succeed. If one or more guards succeed,

exactly one of the corresponding blocks is chosen to be executed.

For example, the procedure max executes either z = x or z = y, depending on
the value of x and y, and hence defines z to be the larger of x and y.

[Module max.pcm Version 1]

max(x,y ,z)
{ ? x >= y -> z = x,

x< y-> z"y
}

Synchronization. Choice composition also provides a synchronization mecha-

nism. A test suspends when evaluated if it requires the vMue of an undefined defini-

tional variable. (E.g., x < 3, where x is undefined.) Otherwise, it succeeds or fails

depending on the value of its arguments.

21

A guard is evaluated from left to right. If any test suspends, the guard suspends.

If any test fails, the guard fails. If all tests succeed, the guard succeeds•
If some guards suspend and all other guards fail, execution of the choice com-

position is suspended until more data is available. If all gl]ards fail, execution of

the choice composition terminates without doing anything. Hence, a call to the

procedure max given above will suspend until both x and y have values, and then .
proceed as follows. If both x and y are numbers, the procedure executes either the

first or second implication, depending on the values of x and y. If either x or y is

not a number, the procedure terminates without doing anything.
The guard test default succeeds only if ali other guards in a choice compo-

sition fail. For example, consider the following alternative formulation of the max
procedure.

[Module max.pen: Version 2]

max(x,y ,z)
{ ? x >= y -> z- x,

default -> z = y
• }

The two versions of max give the same behavior if x and y are numbers but behave
differently if either x or y is not a number: in that case, the first program terminates

without executing either implication, while the second program selects the second
implication.

Choice composition rules:

• Evaluate each guard left to right.

• If any test suspends/fails, guard suspends/fails.

• If all tests succeed, guard succeeds.

• If all guards fail, process terminates.

• If no guards succeed and some suspend, process suspends.

• If some guards succeed, execute one implication body.

• Guard test default succeeds if all others fail.

Nondeterministic Choice. Choice composition also provides a mechanism by
which nondeterminism is introduced into PCN programs. Nondeterministic choice

is rarely required in parallel programming. However, it can be important in reactive
applications.

22

We first illustrate the use of nondeterministic choice with a trivial example.

We may rewrite the max procedure given earlier as follows. Note that the two

implications are not mutually exclusive. If x == y, either implication may be taken.
This program is nondeterministic in the sense that the action that it performs is

not determined solely by its input, although of course the answer computed is still

determined precisely by the input.

max(x,y,z)

< ? x >-- y -> z - x,
x <- y -> z - y

Y

We now consider a reactive programming example. A procedure switch has

two definitional inputs corresponding to the outputs of two sensors in a mechanical
device. If either sensor is activated, the corresponding input variable will be given a

value. The switch procedure is to return a result value if either sensor is activated,

with the value specifying which sensor was activated.

switch (sensorl, sensor2, alarm)
{ ? data(sensorl) -> alarm = 1,

data(sensor2) -> alarm = 2

Y

The guard test data succeeds as soon as its argument has a value. Hence, the output
variable alarm takes value 1 if sensorl _is activated and 2 if sensor2 is activated.

lt can take either value if both are activated.

Choice Composition used for three purposes:

• Choosing between alternatives.

• Synchronization.

• Nondeterministic choice.

5.6 Definitional Variables as Communication Channels

Consider two procedure calls (processes), a producer and a consumer, that share a
definitional w_riable, x.

producer(x), consumer(x)

23

The two processes can use the shared variable to communicate data, simply by

performing read and write operations on the variable. For example, assume that the
producer is defined to write the variable, as follows.

producer(x)

{IIx- "h llo"}

The definition x = "hello" has the effect of communicating the message "hello"

to the consumer. The consumer receives this value simply by reading (examining)
the variable. For example, the following consumer procedure checks to see whether

x has the value hello. Note the use of choice composition and the default guard.

consumer(x)

{ ? x == "hello" - > stdio:printf("Hello",{},_),

default - > sZdio:printf("Huh?",{},_)
)

The shared definitional variable x is used here to both communicate a value be-

tween the producer and consumer and to synchronize the actions of these processes.

The shared definitional variable can be thought of as a communication channel.

The use of definitional variables to specify communication has two advantages.

First, it avoids the distinction that is made in many parallel languages between inter-

processor and intraprocessor communication. This means that no special "packing"
or "unpacking" operations need be performed when communicating. This in turn

facilitates the retargetting of programs to different parallel computers. Second, it

provides great flexibility in the communication strategies that can be specified. In

particular, it is possible (as we shall see below) to include variables in data structures
and hence to establish dynamic communication structures.

An apparent difficulty of this formalism is that each definitional variable can be

used only to communicate a single value. Fortunately, this is not the case. We show
in § 5.9 below how a single shared variable can be used to communicate a strea_ of

messages between processes.

5.7 Specifying Repetitive Actions

We have now encountered the constructs used in PCN to express concurrent and
sequential execution, communication between concurrent computations, and state
change within sequential computations. We need one more construct before we can

build large programs, namely, a mechanism for specifying repeated actions.

You are probably familiar with the use of iteration to specify repetition. For

example, in Fortran we may write do i=l,:t0 to specify 10 repetitions of a loop,
with i ranging from 1 to 10. PClX"does not use iteration but rather recursion as its

fundamental repetition construct. You will be familiar with recursion if you have

used C (or Prolog, Strand, or Lisp); it tends to be more verbose than iteration, but

has the advantages of allowing richer repetition structures and of working well with
definitional variables.

24

We introduce the use of recursion in PCN with a simple example. Consider

the following procedure, which computes the sum of the elements with indices in the
range from., to in array. This procedure is defined in terms of a choice composition

with a parallel composition as the body of the first implication and a simple definition
statement as tile body of the second implication.

[Module sumarray.pcn: Version 1[

sum_ array (from, to, array, sum)
{ ? from <= to ->

{ I] sum_array(from+l,to,array,sumrest),
sum = array[from] + sumresZ

},
from > to -> sum = 0_

}

The first implication states that if from <= to, then the sum of elements from., to
is the value of element array[from] plus the sum of elements from+l..to. The

second implication defines the sum to be 0 in the case when from > to.

This procedure uses recursion to repeat the summation over all the elements
of the array. A recursive procedure normally specifies two alternative courses of
;tction: continuation and termination. These are combined in a choice composition

with guards specifying associated continuation and termination conditions.
In the example, the continuation action consists of summing array [index] and

sumrest, and making a recursive call to sum_array to compute sumrest; these
actions are to be performed if from <= to. The termination action consists of

defining sum = 0; this is to be performed if from > to.

Recurs_ve procedure specifies:

• Termination condition and actions.

• Continuation condition and actions.

Parallel algorithms based on divide-and-conquer techniques frequently make mul-

tiple recursive calls to the same procedure. For example, the following program
implements at divide-and-conquer algorithm for summing the elements of an array.

The task of summing an array is recursively decomposed into the tasks of summing

the left and right subarrays.

25

b

IMo ulesu= rraypon: ersion2I
sum_array (from, to, array, sum)
{ ? from < to ->

{ll sum_array(from,(from+to)/2,array,sumleft),

sum_array((from+to)/2+i,to,array,sumright),

sum = sumleft + sumright
},

from == to -> sum = array[from]
}

This exampl e makes apparent the advantages of recursion as a repetition con-

struct in a parallel language: the doubly-recursive formulation of sum_array exposes
concurrency that is not directly available in an iterative solution.

5.8 Tuples

The programs presented thus far have all dealt with simple data structures: charac-

ters, integers, double precision numbers, and arrays of the same. These data struc-

tures will be familiar to most readers from sequential languages such as Fortran and
C. PCN also provides another sort of data structure called the tuple. Similar data
structures are used in symbolic languages such as Prolog, Strand, or Lisp.

A tuple is a definitional data structure used to group together other definitional
data structures. A tuple has the following general form.

{ term0, ..., termk_] } (k >_O)

where term0, ..., termk_l are defmitional data structures. The following are all valid
tuples.

{a,b} {"abc") {} {12,{13,{)}} {5.2,"del"}

Note thattuplescan be nested:in the fourthtupleon the previousline,the tu-

ple{} isnestedinsidethe tuple{13,{}},which isin turnnestedinsidethe tuple
{12,{13,{}}}.Note alsothattuplescan containelementsofdifferenttypes.

ltisusefulto thinkoftuplesas representingtrees.A tuple(t0, ..., tk-1}
representsa treewitha rootand k offspring.

t o . . . tk. 1

The tuples listed above can be drawn as follows.

26

, i / \
a b "abc" 12 {/ , \} 5.2 "def"

/
f \

13 {}

Building Tuples. Tuples cain be written in a program, either as an argument to
a procedure call or as the right-hand side of a definition statement. For example,
the block

{11pro_(1,{x,y,{..}}),x = "abc", y = {123} }

invokes a procedure proc with the tuple {"abc", {123} ,{z} } as its second argument.
Alternatively, the primitive operation maka_tuple can be used to build a tuple

of specified size, with each argument a definitional variable. For example, the call

make_"cuple (3, tup)

defines"cupto be thethree-tuple{_, _, _}.

Accessing Tuples. Tuple elementscan be referencedin the same way as array

e]elnents't[i]iselementiofa tuplet,for0 _<i < length(t).Hence,thestatements

make_tuple(3,"cup),tup[0"l= "abc", tup[l] = {123}, "cup[2]= {z}

producethetuplepassedasan argumenttoproc previously.

The guard test "?=" (match) can be used to decompose a tuple into its con-
stituent components. A match has the general form

"cup?= {"c0, ..., tk__},

wherethe"ciareeitherdefinitionalvariablesornonvaxiableterms.A match succeeds

ii"cuphasarityk and eachofitsargumentsmatchesthecorrespondingii,suspends

if"cupisnotdefinedor ifone ofthematcheswitha "oisuspends,and failsotherwise.

A va.riableti isdefinedto be the corresponding"cupargument. Forexample,the
match

tnp?={,,_b_,,,_,{bl}

succeeds iftup = {"abc",{123},{z}},defining a = {123} andb = z. Itsuspends

iftup = {x,{123},{z}}, as the first element of the matching typle is "abc", but the

first element of"cup is the undefined variable x. It fails if "cup = {"del", {123}, {z} },

as the first element of the right-hand side tuple ("abc") does not match the first

elementof tup ("def").

27

Comparing Tuples. The guard tests ==and != can be use:.dto coral)are tuples as

well as strings, numbers, and arrays. An equality test x == y succeeds if x and y are

tuples with the same arity and corresponding subterms are also equal. Tile equality
test is applied to subterms left to right; if any subterm test fails or suspends, the

overall test also fails or suspends, respectively. The test also fails if x and y have

different arities. An inequality test x != y succeeds if x =-- y would fail, fails if x
== y would succeed, and suspends otherwise.

Syntactic Sugar. PCN provides "syntactic sugar" for several common uses of

tuples. For example, it is common to want to place a string in the first element of a

tuple, as a label. This usage is supported by an alternative notation, which permits

{"string", tl, ..., tk-1)

to be written as

string(ta, ..., tk-1)

It is important not to confuse this syntax with a function call. (The only functions
supported by PCN are the arithmetic operations allowed in expressions and the

length function, so there should never be any cause for confusion.)

List Notation. A list is a two-tuple in which the first element represents the

head of the list and the second element the tail. By convention, the zero-tuple ({))

represents the empty list. For example, the structure {1,{2,{3,{))))is the list
containing the numbers 1, 2, and 3.

This notation is clumsy, so PCN provides an alternative syntax: a list {h,t}

may be written as [h t], the empty list as [], a list such as {1,{2,{3,{}})) as
El, 2, 33, and alist such as {1,{2,{3,tail))) as [1, 2, 3 tail].

Example: List Length. The procedure listlen computes the length len of a

list 1. For example, a call listlen([1,2,3,4] ,len) gives the result len = 4. Note

the use of an auxiliary procedure listlenl, which accumulates the length so far in
acc and then returns the final result as len.

listlen(l,len)

{II listlenl(l,O,lenl)}

listlenl(l,acc,len)

{ ? i ?= [_Iii] -> listlenl(ll,acc+l,len),
default -> len = acc

}

28

Example: Building a List. The procedure buildlist builds a list i of length

ien. For example, acallbuildlist(4,1) gives the result 1 = [4,3,2,1].

buildlist(len,l)
{ ? len > 0 ->

{ii 1 = [lenill],

buildlist(len-i,ll)
},
default -> 1 = []

}

Example: List Transducer. Ttle procedure listadd is an example of what
is called a list transducer. It traverses one list and constructs another containing

the result of applying a simple operation to each element in the first list: irl this
case, the operation is simply to add one to each element. For example, a call

listadd([i,2,3,4J,nl) gives the result nl = [2,3,4,5].

listadd(l,nl)
{ ? I ?: [elliS ->

{II nl : [e+llnll],

listadd(ll,nll)

},
default -> nl = []

}

5.9 Stream Communication

We have seen how two or more concurrent computations that share a definitional

variable can use that variable to exchange data. The producer of the data simply

defines the shared variable to be the data to be communicated (e.g., x = "hello").

The consumer(s) of the data can then use the data in computation.
A shared definitional variable would not be very useful if it could only be used to

exchange a single value. Fortunately, there are simple techniques that allow a single

definitional variable to be used to communicate many values. The most important

of these is the stream. A stream is a data structure that permits communication of

a sequence of messages from a producer to one or more consumers. A stream acts

like a queue: the producer places elements on one end, and the consumer(s) take
them off the other.

By convention, stream communication is implemented in PCN in terms of list

strllctures. Imagine a producer and a consumer sharing a variable x. The producer

29

defines x = [msglxt] and the consumer matches x ?= [msglxt], The effect of these

operations is to both communicate msg to the consumer and create a new shared

variable xt that can be used for further communication. This process c_tn be re-

peated arbitrarily often to communicate a stream of messages ft'mn ttle producer to

the consumer. Hence, a stream is a list structure, incrementally constructed by Jt

producer _nd deconstructed by _ consumer. The empty list ([]) is used to represent
the end of a stream.

Example: Summing Squares. We illustrate the stream communication protocol

in a program that computes the sum of the squares of the integers from 1 to N. We

decompose this problem into two subproblems: constructing a stream of squares

and summing a stream of numbers, The first subproblem is solved by the procedure

squares, which recursively produces a stream (i.e., list) of messages N2, (N-l) 2,

..., 1. The second subproblem is solved by the procedures sum and suml, which

recursively consume rh'is stream (list). The auxiliary procedure suml accumulates
the sum so far in solar and returns the final result as _um.

Note the structure of the producer (squaros) and consumer (suml) procedures in

the following program. Both _re recursively defined. In the producer, the recursive

case incrementally constructs _ list sqs of squares by defining sqs - I'n*nlsqsl]

and calling squares to compute sqsl; the termination case defines sqs = [3. In the

consumer, the recursive case deconstructs a list ints of integers by matching ints

?= [±]intsl] and calling suml to consume the rest of the messages; the termination
case returns a result.

IMo 1,,1o l
sum_squares (N,sum)

{II squares(N,sqs), sum(sqs,sum) }

squares (n,sqs) /* Producer : */

{ ? n > 0 -> {{I sqs = [n*nlsqsl], /* Produce element, */

squares(n-l,sqsl) /* _ recurse */

},
n == 0 -> sqs = [] /* Closo list. */

}

sum(ints, sum)

{ II suml (ints,O,sum)}

suml (ints,solar, sum) /, Consumer : */

{ ?ints ?= [ilintsl] -> /* Consume element, */

suml (intsI,sofar+i, sum), /* _ recurse */

ints ?= [] -> sum = solar /* End of list: stop*/

}

3O

Send/Receive Operations. Some readers may find it useful to think of a stream

as un abstract data type on which four operations are defined: send, close, recv,
_nd closed. The first two are procedure calls used t)y u stream producer, and

the lutter two are guard tests used by a stream consumer. All take a definitional

variable (s) us an argument; send and recv also return a new definitional variable
(s:t) representing a new stream to be used for the next communicution,

send(s,msg,sl) : Send msg on stream s, returning as si a
new streum for subsequent communication.

close(s) : Close stream s.

recv(s,msg,sl) : Succeed if a message is pending on

stream s, defining msg to be the message and sl the
new stream.

closed(s) : Succeed if stream s has been closed.

These operations can be defined by the following macros.

[File sendrecv.h]

#define send(s,msg,sl)s = [msglsl]
#define close(s) s = []

#define recv(s,msg,sl)s ?= [msglsl] /. Guard test */
#define closed(s) s == [] /* Guard test */

These definitions can be placed in u file (e.g., sendrecv.h) and included in your

programs, if you prefer to think in terms of send and rear operations instead of
definition nnd match operations on streams. For exumple, the squares and sum1

procedures presented previously (module sumsquares.pcn) can be rewritten us fol-
lows.

#include "sendrecv.h" /* Include macros ./

squares(n,sqs)
{ ? n > 0 -> {II send(sqs,n*n,sqsl),

squares(n-1,sqsl)
},

n == 0 -> close(sqs)
}

suml(inis,solar,sum)

{ ? rec_'(ints,i,intsl)-> sum1(intsl,sofar+i,sum),
closed(ints) -> sum = solar

}

31

However, it would be a mistake to think of lists as simply a clumsy notation tbr
streams, and to restrict y¢,ur use of streams to the four basic operations provided in
sendrecv.h. Tlle fact that streams are data structures that can be manipulated in

the same way as any other data structure provides enormous flexibility.

Example: Stream Filter. We illustrate this flexibility with a list transducer

that filters a stream x, generating a stream y identical to x but with no consec-

utive duplicates. (For example, a call filter([1,1,4,3,5,5,2] ,y) defines y =

[1,4,3,s,23,)
This is not a complex example. However, it illustrates several stream-processing

strategies. Note in particular the use of the match operator to check for two pend-

ing messages (as follows: x?= [msgl ,msg21xl]), the pushing of unused elements back

onto the stream in the recursive calls (e.g., filter([msg21xl] ,y)), and the defini-

tion of y to be all remaining elements of x in the termination case (y -- x).

filter(x,y)

{ ? x ?= [msgl,msg21xl] ->

{ ? msgl == msg2 -> filter([msg21xl],y),

default -> {II y = [msgllyl],

filter([msg21xi],yl)
}

},
default -> y ffix /* x is [msg] or [] */

}

5.10 Advanced Stream Handling

The stream construct provides direct support for one-to-one comlmlnication: that

is, communication between a single producer and a single consumer. It also supports

broadcast communication: that is, generation of a single stream to he received by
several consumers. For example, in the composition

{11 producer(s), consumer(s), consumer(s) },

both consumers receive any values generated by the producer.

Three other communication patterns are also important in practical applications:

many-to-one, one-to-many, and bidirectional. The first and second are supported

in PCN by specialized primitives. The third is achieved by means of a specialized
programming technique.

32

Mergers: Many-to-One Communication. A mergeris a PCN system program
that allows the construction of an output stream that is the nondeterministic inter-

leaving of a dynanlically varying number of input streams. (The merger is hence

the secon,' source of nondeterminism in PCN, with choice composition being the

first.) The only constraint on message order in the output stream is that the order
of messages from individual input streams be preserved. A merger is created with a
procedure call of ttle form

sys :merger (in, out),

where in is an initial input stream and out is the output stream. An additional

input stream newin is registered with the merger by appending a message of the

form {"merge",newin) to any open input stream. An input stream is closed in
the usual way (s = []); the output stream is closed automatically when all input.
stream: ,_re closed.

The following code fragment illustrates the use of the merger. This organizes

communication between two producer processes and a single consumer, so t_at the
consumer receives on instream an intermingling of the streams generated by the

two producers.

{II producer(sl), producer(s2)

instream = [{"merge",sl},{"merge",s2}],

sys:merger(instream,outstream),
consumer(outstream)

}

Note that the merger must be able to determine whether or not each input

message is a {"merge",_} term. Hence, messages of the form var or {var,term}

(where var is an undefined variable) should not be sent to a merger: these will cause
the merger to delay until var is given a value.

Distributors: One-to-Many Communication. A distributor is a PCN system

program that routes each message received on its input stream to one of several
output streams. A message of the form {N,Msg} cause the distributor to route Msg

to the Nth output stream. A distributor is created with a call of the form

sys:distribute(N,In),

where N is the number of output streams needed and In is the input stream. Messages

can then be sent to the distributor to register output streams. We register a stream

S as the Nth output stream by sending a message with the form

{"attach" ,N,S,Done},

where Done is a definitional variable that is defined by the distributor to signal that

the stream S has been registered.
We request the distributor to route a message Msg to the Nth output stream by

sending the following message.

33

I

{N,Msg}

lt is important to ensure that a stream has been registered before requesting
that a message be routed to that stream. One way of doing this is to register all

streams with the distributor before sending any messages. The following program
achieves this. A call make_distributor(in,ss) creates a distributor with ss as

its output streams. (The number of streams in ss is computed by the procedure

listlen defined previously.) The input stream in is passed to this distributor only

after all output streams have been registered.

make_distributor(in,ss)
ill listlen(ss,len),

sys:distributor(len,tod),

register(O,ss,tod,in)
}

register(i,ss,tod,in)
{ ? ss ?= [slssl] ->

{II rod = [{"attach",i,s,done}Itodl],

data(done) -> register(i+l,ssl,todl,in)
},

ss ?= [] -> rod = in
}

If the input stream to the distributor is closed (In = []), then the distributor
closes all registered output streams and shuts down.

Two-Way Communication. Many parallel algorithms require two-way commu-
nication between concurrently executing processes. In some cases, this can be

achieved by defining two communication streams, one for use in each direction.

However, it is also possible to achieve two way communication with a single defini-

tional variable, by using a technique called an incomplete message.
We introduce the incomplete message technique with a simple example. Con-

sider a program input capable of providing boundary conditions for two different

nt, merical models (e.g., spectral and finite difference). This can be composed with
a procedure implementing a particular numerical model, as follows.

input(xs), model(xs)

The definitional variable xs will be used to implement a stream.

The first thing that input does is to query the program it is composed with, to

determine that program's input requirements. It does this by sending a message of
the form

{"what_input",response},

34

where response is an undefined definitional variable. The other program (which
of course must be ready to accept such a message) defines response to specify the

required input type, allowing the first program to read response and generate the

appropriate input data.

Possible definitions for input and model are as follows. In this example, the
model procedure specifies that it expects input in terms of spectral coefficients by

defining response = "spectral". This cmnmunication causes the input procedure

to execute spectral_input.

input(x)
{II x = [{"what_input",response}Ixs],

{ .7response == "spectral" -> spectral_input(xs),

response == "finite_diff" -> fd_input(xs)
}

}

model(x)

{ .7x .7=[{"what_input",response}Ixs]->

{II response = "spectral",

process_input(xs)
}

}

In this example, a single shared variable, xs, has been used to achieve two-way

communication. This is a simple example of a very powerful programming technique
which can be used to establish a wide variety of communication patterns. The key

idea is for one process to define a shared variable to be a tuple containing "holes"

(undefined variables). Consumer(s) of this tuple can then fill in these holes (define

the variables) to communicate additional values to the original producer or even to
other consumers.

We use a more complex example to strengthen understanding of the incomplete

message technique. Consider the problem of exploring a large search space with a
heuristic search method. Assume that it is possible to define multiple searchers,

e_ch capable of exploring part of the search space, and that individual searchers can

improve their efficiency by exploiting global information about the best-known par-
tial solution. We collect and disseminate global information by defining a controller

process to which each searcher periodically sends information about its current best

partial solution. The controller responds to each such message by updating its view

of the best partial solution and returning the best known partial solution.
A PCN implementation of this search method provides each searcher with ,'t

stream to the controller and uses a merger to combine the multiple searcher streams

into a single controller input stream. For example, the following code links two
searchers and a controller.

35

{I] searcher(sl), searcher(s2) ,

sys :merger([{"merge" ,sl},{"merge" ,s2}],s),

controller(s)

}

The searcher is defined as follows. A call to first_attempt yields an initial

approximate solution (value), which is passed to the recursively-defined procedure

search. The search procedure sends the approximate locl solution to the con-

troller in a {value,response} tuple, where response is an undefined definitioni
variable used to communicate information back from the controller to the searcher.

Depending on the response received from the controller, the searcher either termi-

nates or calls next_attempt and repeats the process.

The controller receives a stream of approximate solutions from the workers. It

processes each message by calling improve_estimate to improve its own estimate

of the globi best solution, and returning either this estimate or the signal "stop"

(indicating that a solution has been found) to the searcher.

searcher (trials)

{11 first_attempt(value),

search (trials, value)

}

search (trials, value)

{I] trials = [{value,response}Itrialsl],

{ ? response == "stop" -> trialsl = [],
default ->

{ II next_attempt (value,response ,next_value),

search(trialsl ,next_value)

}
}

}

controller (trials ,bound)

trials ?= [{value,response}Itrialsl] ->

{I_ improve_estimate(bound,value,newbound,result),

{ ? result == "solution" -> response = "stop",

default -> response = newbound

},
controller (trials I,newbound)

}

36

Specialized Communication Structures:

• Many-to-one: merger.

• One-to-many: distributor.

• Bidirectional: incomplete message.

5.11 Interfacing Parallel and Sequential Code

The two worlds of parallel and sequential, definitional and mutable, have so far been

regarded as distinct. In practice, the two worlds must interact whenever a sequentiM

wogram component is integrated into a concurrent program. Such interactions
are governed by three simple rules. The first restricts the way in which mutable

variables c_n be used within parallel blocks, while the second and third specify

copying operations performed by the PCN compiler when data is transferred between
the definitional and mutable worlds by defining a definition in terms of a mutable,

or vice versa. This copying avoids aliasing between state maintained in different

sequential threads, and hence ensures that state change within individual threMs
does not lead to time-dependent interactions with concurrently executing processes.

Mutable Variables and Parallel Composition. Mutable variables may occur

in parallel compositions, but only if their usage obeys the following rule.

II Rule 1: A mutable variable can be shared by bl°cks in a parallel c°m- [[position only if no block modifies the variable.

This restriction prevents errors due to time-dependent, nondeterministic updates

to a mutable variable. The restriction is not currently enforced by the compiler, and

so the programmer must be careful to ensure that all programs are valid.
Note that there is no similar restriction on the use of definitional variables within

sequential blocks.

Mutable _ Definition. The following rule states what happens when a defini-
tional variable is defined in terms of a mutable variable.

Rule 2: When a mutable occurs on the right hand side of a definition

statement, the current value of the mutable is snapshotted (copied) and
the definition then proceeds as if a definitional value were involved.

For example, in the following code, c = 5 and d = 4 when computation is com-

plete.

37

proci(c,d)
int,a;

{ ; a := 3,

C =2 + a,

a :=4

d=a

}

Snapshotting a mutable array creates a definitional copy of the array that can be

read but not modified. For example, in the following c is defined to be a copy of the
mutable array a. Subsequent changes to a do not affect the value of the definitional

array c.

proc2(c,d)
inr ai5];

{ ; initialize(a),
C = a,

}

Definition _ Mutable. The following rule states what happens when a mutable

variable is assigned an expression involving a definitional variable.

Rule 3: When a definitional variable occurs on the right-hand side of

an assignment, the assignment suspends until the variable has a value
and then proceeds.

For example, if c is a definition with value 3 in the following program, then a
has value 5 after the assignment.

proc3(a,c)
inr a, b;

{ ; b :=2
a := b + c

}

Note that if the right-hand side of the assignment is not an expression, then the

assignment will copy the definitional value into the mutable variable. For example,

in the following code fragment, the definitional value c is copied into the mutable

array a. The array a can be modified subsequently without alTecting c.

38

inr a[5];
a := C

Example. The following example illustrates the use of copying to avoid aliasing.

The procedure proc has two definitional arguments: it produces as output the result

of applying a transformation solve to input. It calls the procedure solve to effect
the transformation; this is defined to operate on mutable data structures. Hence,

proc declares a local mutable array temp, assigns temp the value input, applies
solve to temp, and then defines output to be the updated value of temp. Two

copying operations take place, from input to temp, and from temp to output.

proc (input,output)

double temp [SIZE];

{ ; temp := input,

solve(temp),
output = temp

}

5.12 Review

PCN encourages a compositional approach to parallel programming, in which com-

plex programs are built up by the parallel composition of simpler components. Pro-

gram components composed in parallel execute concurrently. They communicate

by reading and writing definitional (single-assignment) variables. The use of defini-
tional variables avoids time-dependent interactions, allowing individual components
to be understood in isolation. In addition, read and write operations on definitional

variables can be implemented efficiently on both shared memory and distributed

memory parallel computers. Hence, parallel composition and definitional variables
address three of the concerns listed at the beginning of this chapter: concurrency,

compositionality, and mapping independence.

The choice operator is used to encode conditional execution and synchronization.
It also provides a means of introducing controlled nondeterminism into programs.

(The merger is the other mechanism used to specify nondeterministic actions in PCN
programs.)

The sequential composition operator and mutable variables together provide a
mechanism for integrating state change into definitional programs. This state change

may be performed in PCN or in lower-level sequential languages.

A final aspect of PCN which may be unfamiliar to some readers is its use of tuples
and recursion. These constructs provide support for symbolic processing. They

augment arrays, iteration, and other language constructs provided by languages
such as Fortran and C for numeric processing. An increasing number of applications

have both numeric (regular, floating point) and symbolic (irregular, rule based)

39

components. PCN's symbolic processing capabilities are intended to support such
mixed-mode applications.

6 Programming Examples

We present PCN programs that solve programming problems concerned with list
and tree manipulation, sorting, and a two-point boundary value problem.

6.1 List and Tree Manipulation

Membership in a List. Develop a program member with arguments 1, e and r,
where 1 is a list, and at termination of execution of the program, r = TRUEif and

only if e appears in list 1. Assume that FALSE = 0 and TRUE = l, to be consistent
with C.

#define TRUE 0
#define FALSE 1

member(i,e,r)

{ 7.1 7.=[vlll], v == e -> r = TRUE,
1 .7=[vlll], v != e -> member(ll,e,r),

1 7.=[] -> r = FALSE

}

Membership in a List (Mutables). Now consider a program with the same

specification, except that e and r are now mutables. The mutable r is to be set to

TRUEor FALSE; e (and of course 1) should not be changed.

#define TRUE 0

#define FALSE 1

member(I,e,r)

inr e, r;

{ 7.1 7.=[villi, v == e -> r := TRUE,

1 7.=[vlll], v != e -> member(ll,e,r),

i .7=[] _> r := FALSE
}

The only difference between the two programs is the addition Of the type declarations
and the substitution of the := operator.

40

Reversal of a List. Develop a program reverse with arguments x, b and e,

that defines b to be the list of elements in x, in reverse order, concatenated with

e, For example, if x = ["A","B"] and e = ["C","D"], then b is to be defined as

["B", 'tA", "C", "D"]. (The name b stands for the beginning of the reversed list, and
e stands for the end of the reversed list.)

reverse(x,b,e)

{ ? x 7= [vlxs] -> reverse(xs,b,[vle]),

x 7= []-> b = e
}

i

This program can be used to simply reverse a list by calling it with e = []. For

example, a call reverse([1,2,3] ,b, []) yields b = [3,2,1].
The reverse procedure illustrates an important programming technique called

the difference list. A call to reverse constructs a list b consisting of the values

computed by reverse followed by the values provided as e. This allows lists Con-
structed in several computations to be concatenated without further computation.

For example, the calls

reverse([1,2,3],b,e), reverse([4,5,6] ,e, [])

construct the list [3,2,1,6,5,4].

Height of a Binary Tree. Develop a program height with arguments t and z,

where t is a binary tree, and z is to be defined to be the height of the tree. A tree t

is either the empty tuple, {}, or a 3-tuple {left, val, right }, where loft and

right are the left and right _ubtrees of t.

height(t,z)
{ ? t 7= {left, _, right} ->

{II height(left, i), height(right, r),
{ ? 1 >= r -> z = I+I,

1 < r -> z = r+l

}
},
t 7= {} -> z = o

}

The program can be read as follows. The height of a nonempty tree is 1 plus the

larger of the heights of the left and right subtrees. (The heights of the subtrees are
determined by two recursive calls to height.) The height of an empty tree is 0.

41

Preorder Traversal of a Binary Tree. Develop a program preorder with ar-
guments t, b and e, where t is a binary tree, and b and e are lists. Binary trees are

represented using tuples as in the last example. List b is to be the list consisting of
the va1 of M1nodes of the tree in preorder, concatenated with list e. (A traversal of

a tree in preorder visits the root, then the left subtree, and finally the right subtree.)

preorder(t,b,e)
{ ? t ?= {left,val,right} ->

{ii b = [vallmI],

preorder(left,ml,m2),

preorder(right,m2,e)
},

t 7= {} -> b = e
}

..

The program uses the difference list technique introduced previously in the reverse
example: each call to preorder constructs a list b consisting of the elements in its

subtree t followed by the supplied list e.

6.2 Quicksort

We present an implementation of the well-known quicksort algorithm, qsortD, which
uses lists of definitional variables; later, we provide an in-piace quicksort, qsortM,

that uses mutable arrays. It is instructive to compare the two programs: the deft-

nitionaJ program is significantly shorter and easier to u:nderstand than the mutable

program. However, it makes less efficient use of memory.

Definitional Quicksort. Program qsortD has two input arguments, x and e, and
one output argument, b: x and e are definitional variables that are not defined 1)y

the program, and b is a definitional variable that is defined by the program. All three

are lists of numbers. The output b is specified to be the list x sorted in increasing

order, concatenated with list e. For example if o = [5, 4] and x = [2, 1], then

b = [1, 2, 5, 4]. If e is the empty list, then b is x sorted in increasing order.

42

qsortD(x,b,e)

{ ? x 7= [midlxs] ->

{ll part (mid,xs, left, right),

qsortD(left,b, [midlm]),

qsortD (right ,m,e)

},
x 7= []-> b = e

}

part (mid,xe,left, right)

{ 7 xs 7= [hdltl] ->

{ 7 hd <= mid ->

{II left = [hdlls], part(mid,tl,ls,right) },

hd > mid ->

{II right = [hdlrs], part(mid,tl,left,rs) }

},
XS 7= [] -> {II left = [], right = [] }

}

The qsortD procedure operates as follows. If x is nonempty, let mid be its first

element and let xs be the remaining elements. The call part (mid,xs, left ,right)

defines left to be the list of values of xs that are at most mid, and right to be

the list of values of xs that exceed mid. Call qsortD(right,m,e), thus defining m

to be the sorted list of right appended to e. Call qsortD(left,b, [mid[m]), thus

defining b to be the sorted list of left followed by mid followed by m. Otherwise, if

x is the empty list, then define b to be e.

The part procedure operates as follows. If xs is not empty, then let hd and tl be

the head and tail (respectively) of xs. If hd is at most mid, define ls and right by

part(mid,tl,ls ,right), and define left as hd followed by ls. If hd exceeds mid,

define left and rs by part(mid,tl,left,rs), and define right as hd followed by

rs. If xs is the empty list, define loft and right to be empty lists.

In-Piace Quicksort. Program qsortM has two input parameters, 1, and r, both

of which are definitional variables, and one input-output parameter C, which is a

one-dimensional mutable array of integers. Let Cinit be the initial value of C, and

let C/iT"_l be the value of C on termination of the program. Then Cfinal is to be

a permutation of Ci'_t, where C]inal [1, ..., r] is Cinlt [1, ..., r] in increasing

order, and the other elements of C are to remain unchanged. (If 1 h r then C/i_al

is cinit.)

43

qsortM(l,r,C)

inr C [1; '

1 <r->

{ ; split(l,r,C,mid),

qsortM (i,mid-l,C),

qsortM (mid+l,r,C)

}

split (i,r,C,mid)

inr CII, left, right, temp;
1 <--r ->

{ ; left := i+I, right := r, s = C[ll,J

partl(l,r,C,s,left,right), temp := i,

swap (temp,right,C), mid = right

}

part I(i,r,C,s,left,right)

inr C[1, left, right;

left <= right ->

{ ; left_rightwards(r,C,s,left),

right_leftwards (i+I,C,s,right) "

left <= right ->

{;swap(left,right,C),

left := left + l,

right := right - 1

},
part I(i,r,C,s,left, right)

}

left_rightwards (r,C,s,left)

inr C[1, left;

left <= r, C[leftl <= s ->

{ ; left := left+l, left_rightwards(r,C,s,left) }

right_ Ieftwards (I,C,s,right)

inr C[], right;

right >= i, C[right] > s ->

{ ; right := right-l, right_leftwards(l,C,s,right) }

swap(i,j ,C)

inr i, j, cE], temp;

{ ; temp := cii], Cii] := C[j], C[jl := temp }

44

Execution of split (1, r ,C ,mid) permutes C and assigns _ value to mid such that
1 < mid <_ r, and such that all elements in C[1, ..., mid-l] are at most C[mid],
and all elements in C[mld+l, ..., r] exceed C[mid].

The 1)rogram qsortM operates as follows. If 1 >_ r, then qsortM takes no action,

leaving C unchanged. If 1 < r, then split is called, and after split terminates
execution, C[1, ..., mid-l] andC[mid+l, ..,, r] are sorted independently.

The split progr,_m operators as follows, If 1 > r then split terminates exe-
cution without taking any action, If 1 _< r, then program split(],,r,C,mid) calls "'

part1(l,r,C,s,left,right)aftersettingleft-" I+I,right = rand s = C[l];

program part leaves s unchanged, modifies left ,und right, and permutes elements
of C[I+I, ..., r] st) that, at termination ofpartl, left = right +1, and all ele-

ments in C[l+l, ,.., right] are at most s, and _llelements in C[right+l, ...,
r] exceed s.

After termination of partl, program swap is called to exchange C[1] (which

is s) with C[right]. After the swap, all elements in C[1, ..., right-li are at
most s, :tnd C[right] = s, and all elements in C[right+l, ..., r] exceed s. The

program terminates after mid is defined as right.

Program partl moves left rightwards and right leftwards until they cross (i.e.,
left = right+l).

6.3 Two-Point Boundary Value Problem

Our last programming example is a sob tion to a more substantial numerical prob-

lem. The problem that we consider arises when solving the linear boundary value

problem in ordinary differential equations, namely

y' = M(t)y + q(t), t E la, b], y E R n,

such that Bay(a) + B_y(b) = d.

In most Mgorithms designed to solve this problem, the most computationally inten-
sive task is the construction and solution of a linear algebraic system of equations,

which typically has the form

Ba Bb Yl d "

A1 C1 Y2 fl

A2 C2 Y3 = f2 .

Ak C_ Yk+l fk.

Here each of the blocks has dimension n × n, and k is often substantially larger

than n. Construction of this system is trivially parallelizable. A more substantial

challenge is to solve it in a parallel computing environment. It is important that the

solution process be stable in a numerical se,lse; otherwise, the computed answer may

be hopelessly inaccurate. Simple algorithms such as block elimination are therefore
not appropriate. The algorithm described here uses a "structured orthogonal factor-

ization" technique, in which orthogonal transformations are used to compress each

45

two successive block rows of the linear system into a single block row. This produces

a "reduced" sy_';tem that has the same structure as the original system, but is half

the size. The compression process can be applied recursively until a small system

d

remains.

The PCN code that implements this algorithm creates a set of k processes con-

netted in a tree structure. A wave of computation starts at the k/2 leaves of the tree
and proceeds up the tree to the root. The leaves perform the initial compression

described above, while at the higher.levels of the tree the compression is applied

recursively, and at the root the small system above is solved. Finally, computation

propagates down the tree to recover the remaining elements of the solution vector.

Input to the PCN code is provided at each leaf i (0 <_ i < k/2) as two n x n

blocks (Ai and Ci) and one n vector (li), and at the root as two n x n blocks (Ba
and Bb) and one n vector (d).

The PCN code consists of two main parts. The first part is the code that cre-

ates the process tree. This creates a root process and calls a doubly-recursive tree
procedure to create k/2 leaf processes and k/2- 1 nonleaf processes. Shared defi-

nitional variables (strm, left, right) establish communication channels between
the nodes in the tree.

solve(k,tO,t1)

{II root(strm)_root,

tree(strm,{tO,tl},1,k/2)
}

tree(strm,as,from,to)

{ ? from == to -> leaf(from*2,strm,as),

from<to -> {II mid=from+(to-from)/2,

nonleaf(left,right,strm),
tree(left,as,from,mid),

tree(right,as,mid+1,to)
}

}

The second part of the program defines the actions performed by the leaf,

nonleaf, and root processes. We consider the leaf process first. A single leaf

process initializes two sets of blocks -- al, cl, fl) and (a2, c2, f2 _ and then

calls compress to produce a, c, f. It sends a message to its parent containing the

computed values and slots for return values (ybot, ytop) which will be compllted

by its parent. The recover procedure delays until values are received for ybot and
ytop, and then computes the solution, y.

46

leaf (ld ,parent, as)

doubl e al [MM],cI[MM],fI[M],a2[MM],c2 [MM],f2 [M],

aIMS],cIMS],f lM],y [S],r[MM];

as ?= {tO,tj}->
{ ; init_(id-l,al,cl,fl,tO,tl),

init_ (ld,a2, c2,f2,tO,t i),

co_.press_(al,cl,fI,a2,c2,f2, a,c,f ,r),

parent={a, c,f,ybot, ytop},

recover(al,cl,fl,r,ybot,ytop,y)

}

The nonleaf procedure receives messages from left and right offspring. It calls
compress to compress the al, cl, fl and aO, c2, f2 received from its offspring,

producing a,c,f. These newly compressed values are communicated to the parent

in the process tree. Once values for ytop and ybot are produced by the parent, the

recover operation can proceed, producing ymid; values are then returned to the left

and right offspring by the four definition statements.

nonleaf (left,right ,parent)

double ymid[M], a[MM] ,c[MM] ,flM] ,r[MM] ;

left 7= {al,cl,fl,ybotl,ytopl},

right ?= {a2,c2,f2,ybot2,ytop2}->

{ ; comFress_(al,cl,fl,a2,c2,f2,a,c,f,r),

parent={a,c, f,ybot, ytop},

recover_ (al ,cl ,fl,r,. ot ,ytop,ymid),

ybot l=ymid, ytopl=ytop,

ybot2=ybot, ytop2=ymid

}

The root process receives a single message containing the completely reduced
blocks. It calls comp_root to perform the final computation, producing ybotl and
ytcpl which it returns to its offspring with two definitions.

root(child)

double ybotl [M],ytopl lM],ba[MM] ,bb[MM] ,brhs lM];

child ?= {a,c,f,ybot,ytop} -_.>

{ ; init_root_(m,ba,bb,brhs),

comp_root_ (a,c,f,ba,bb, brhs, ybot I,ytop I),

ytop=ytopl, ybot=ybot 1

}

47

7 Modules

Recall from § 3 that a PCN program consists of one or more modules. Each module

is contained in a separate file with a .pcn suffix. A module contains zero or more
procedures.

Procedures in one module can invoke procedures in other modules by means of
intermodule calls. An intermodule call has the following general form.

module:procedure_name(arg% ..., argr_)

A procedure can be invoked by an intermodule call only if it has been cxported

by the module in which it is defined. By default, all procedures in a module are
exported. However, you can specify that only a subset of the procedures in a module

are to be exported, by providing one or more -exports directives. An exports
directive has the general form

-exports(proc0, ..., prock)

and specifies that the module in which it appears exports procedures named by the

strings proc0, ..., prock. For example, the directive -exports("procA","procB")
names proca and procB as exported.

In general, it is good practice to provide an -exports statement in each module,
and to export only those procedures that are called from other modules.

PCN procedures can also import capabilities provided by the shell (§ 4.3). A
different syntax is used for this purpose. We write the following.

! capability_call

Forexample,the call! pp(x) invokestheprettyprintercapabilityon variab|ex.

A module can also contain -foreign directives, to specify the location of foreign

procedures called by the module. This directive is described in § 9.2.

8 The C Preprocessor

The PCN compiler applies the C language preprocessor (cpp) to each PCN module
before it compiles it. Hence, PCN programs can make use of cpp's capabilities, such

as include files, macros, and conditional compilation. Ali three of these capabilities
are used in the following program.

48

Module cpp_ex.pcn]

-exports ("go")

#include <stdio.h>

#define ARRAY_SIZE 10

go()
double a[ARRAY_SIZE] ;

{;
#ifdef OLD_VERSION

stdio:printf("Old version\n",{},_),
#else

stdio :printf ("New version\n" ,{},_),
#endif

do_something_with_ array (a)

}

When the PCN compiler applies cpp to a PCN program, it automatically de-

fines the symbol "PCN". This symbol can be used for conditional compilation. For

example, the following header file can be used in both PCN and C components of a

program, hence ensuring that the symbol ARRAY_SIZE is defined in the same manner

everywhere. The #ifndef means that the declaration of my_c_procedure() is used

only in the C compilation.

[File cpp_ex.h]

#define ARRAY_SIZE I0

#ifndef PCN

extern void my_c_procedure();
#endif

We can pass additional arguments to cpp when compiling PCN programs. For

example, suppose we wish 0LD_VERSION to be defined when compiling the program

cpp_ex.pcn shown above. This can be achieved by using the -D flag to cpp. From

the PCN shell we run the following command.

compile ("cpp_ex", "-DOLD_VERS ION")

Several CPP arguments can be combined in a single string. If compiling using

pcncomp, we use the -cpp flag, as follows.

pcncomp cpp_ex.pcn-cpp "-DOLD_VERSION"

49

9 Integrating Foreign Code

Programming examples presented thus far have focused on the use of PCN to com-
pose procedures written in PCN. Exactly tile same syntax and techniques can also

be used to compose procedures written in other ("foreign")languages. Fortran and
C are currently supported.

We deal here with the PCN/foreign interface, the mechanism used to import

foreign procedures, and the mechanism used to link foreign object code with the
PCN run-time system.

9.1 PCN/Foreign Interface

The PCN/foreign interface is defined as follows:

• The actual parameters in a call to a foreign program can be mutables or
definitional variables of type char, inr, or double, or arrays of these types.

• Execution of a foreign procedure delays until all definitional arguments have
values.

• All parameter passing is by reference.

• A foreign procedure cannot modify definitional arguments.

The last restriction is not currently enforced by the compiler, so the programmer

must be careful to ensure that all programs satisfy this constraint.

Note that a consequence of this definition is that all output generated by a
foreign procedure must be returned in mutable arguments. Sufficient storage must

1)e allocated for these mutables prior to calling the foreign procedure.

Two important differences exist between the execution of PCN and foreign pro-

cedures called from PCN' (1) PCN procedures can execute even if not all d_-finitional

arguments do have values. Indeed, they can compute values for definitional argu-
ments. In contrast, foreign procedure calls delay until all definitional arguments

have values, and can modify mutable arguments only. (2) PCN procedures can be
passed tuples as arguments, whereas foreign procedures can be passed simple types
only.

As parameter passing is by reference, arguments to a C procedure called from

PCN must be declared as pointers. That is, the PCN types char, int,and double

correspond to the C language types char *_ inr *_ and double *.

Fortran. The PCN types char, inr, and double correspond to the Fortran types

CHARACTER,INTEGER, and DOUBLE.As Fortran also passes arguments by reference,
no special treatment of arguments is required. It is necessary to apperJd the suffix

'_' to tile name of a Fortran procedure called from PCN.

For example, the following PCN procedure calls a C procedure natural_log(a,b)

to compute b = in(a) and a Fortran procedure power(a,b,c) t(_ coml)ut(_ c = ab.

5O

Note the '2 suffix on the call to pow and the use of a local mutable trap for the result

of the natural_log computation.

Module foreign, pcn

proc(a,b,c)

double a,b,c,tmp;
{ ; natural_log(a,tmp), power_(tmp,b,c)}

The C and Fortran procedures invoked by this program can be written as follows.

[File cfile.c]

#include <math.h>

void natural_log(a,b)
double *a,*b;

•b = log(*a);

[File ffile.f]

SUBROUTINE POWER(A,B,C)

DOUBLE PRECISION A,B,C
C = A**B

RETURN

END

9.2 Importing Foreign Procedures

We specify the files in which foreign procedures are to be found by an -foreign

directive in each PCN module that calls (i.e., imports) foreign procedures. An

-foreign directive specifies zero or more object files, libraries, and archives, either
as file names or as absolute path names. Path names containing " are not supported.

The string $ARCH$in a path name is expanded by the linker (see below) to the type
of the machine on which the linker is being run (for example, delta, ipsc860, sun3,

sun4, symmetry, NEXT; a complete list of machine names is given in Appendix B).

This permits the same PCN object files to be used on different machines.
Assume that the C procedure natural_log and the Fortran procedure power

are contained in the files cfile.c and ffile.f given above. We complete the PCN

program given in the preceding section as follows:

51

I
-foreign("SARCH$/cfile.o","$ARCH$/ffile.o")

proc(a,b,c)
double a,b,c,tmp;

{ ; natural_log(a,tmp), power_(tmp,b,c)}

This example indicates that the linker is to look in the subdirectory with name given

by the type of machine (delta, ±psc860, sun3, sun4, symmetry, NEXT,etc.) for the
object files cfile, o and ffile.o.

9.3 pcncc: The PCN Linker

Before we can execute a PCN program that composes code written in Fortran and

C, we must link the Fortran and C object code with the PCN run-time system (pcn)
to create a custom pcn capable of executing our program. This is achieved by using
the PCN linker, pcncc.

In its most basic application, pcncc is invoked with the names of the PCN mod-

ules (the .para files) comprising the multilingual application. It scans the -foreign

directives of these modules and, if it can locate the named object files and libraries,

links these with the PCN run-time system to produce a custom pcn called pcn. For
example,

pcncc foreign,pam

will generate a custom pcn executable named pcn in the directory in which pcncc
was executed. We may wish to give this custom pcn a special name. This is achieved
with the -o option.

pcncc foreign.pam -o mypcn

A number of optional arguments to pcncc cause ii; to perform more specialized

functions. Some of these are described here; a complete list of pcncc argument can
be obtained by running:

pcncc -h

The following linker options are commonly used:

-o <filename> : Write the custom pcn into the file named <filename>.

-fortran : This indicates that the foreign code includes Fortran procedures, and

requests pcncc to include libraries and initialization code needed by Fortran
programs.

-banner <string> : Add the banner, <string>, to the normal PCN banner, in

order to distinguish this custom pcn from the default pcn run-time system.

52

In addition, pcncc is used in slightly different ways on different machines; machine-

specific aspects are discussed in § 19--23.

10 Using Parallel Computers

There are two aspects to running PCN programs on parallel computers: specifying

how components of a concurrent computation are to be distributed among processors

(mapping), and invoking the PCN run-time system with multiple processors.

10.1 Mapping

An important property of PCN is that, in general, the process mapping strategy

applied in ali application can change performance but cannot change the result

computed. (The only exceptions to this rule are if foreign code uses global variables
e.g., common blocks _ or if PCN code includes nondeterministic procedures.)

For this reason, it is common to develop PCN programs in two stages. First,

program logic is developed and debugged on a workstation, without concern for

process mapping. Second, a process mapping strategy is specified and its efficiency
is evaluated on a parallel computer, typically by using the Gauge execution profiler.

Process mapping strategies are specified by annotating procedure calls ii1parallel

compositions to indicate where they should execute within the parallel computer.
In the rest of this section, we describe a simple set of annotations supported directly

in the PCN compiler. More sophisticated mapping strategies are supported by

specialized compiler tools; these are described in §PMT.
The annotations that we describe here present the programmer with an abstract

view of a parallel computer as a set of N computing sites, or nodes, connected in

a ring and numbered 0 ... N-I. They allow the programmer to specify that a

procedure should execute on the Ith, next, previous, or a randomly selected node

within this ring.
Any c_ll to a PCN procedure (but not to a foreign procedure or PCN prinlitive)

can be annotated with one of the following mapping directives, w_th the specified

meaning. These annotations can also be applied to intermodule calls typed to the
PCN shell.

©I Node number I modulo the number of nodes, N.

©fwd, bwd Next or previous node in the ring.

©random A randomly selected node.

On some multicomputers, such as the Symult s2010 (but not on the Intel iPSC/860,

multiprocessors or networks), it is useful to distinguish the host node on which ter-

minal interaction takes place and compute nodes on which computation takes place,
Orl these machines, the host node is not included in the "virtual ring" addressed

53

by the annotations just listed; instead, we map to this processor using the following
annotation:

_host Host node (in multicomputer).

On machines that do not distinguish between the host node and other compute nodes,

the annotation ©host maps to the highest numbered node, N-1.

We illustrate the use of mapping notations with a simple example.

Printing Nodes. This program prints a simple message from each of n nodes.

It uses the @fwd mapping notation to map each recursive call to printnodes to a

different processor. Note that if n is greater than the number of physical processors,

the printnodes procedure will "wrap around," and more than one printnodes call
may execute on each processor.

lModule parallell.pcn1

printnodes (n)
n>O->

{II stdio:printf("Hellofrom node _,d\n",{n},_),

printnodes(n-I)@fwd
}

It is also possible to annotate procedures with variables that will be defined to

be integers (_I) at run time. In this case, the variable name must be enclosed in
single backward quotes ('var') to distinguish it from other annotations. Hence, the

preceding program could also be written as follows.

I Module parallel2.pcn I

printnodes (n)
n>O->

{II stdio:printf("Hello from node _,d\n",{n},_),
printnodes(n-I)@'n'

}

In this case, the printnod_s procedure is mapped successively to nodes n, n-l,

10.2 Using Multiple Processors

A PCN program annotated with mapping directives will execute correctly on a single

processor. However, in order for the mapping directives to improve (or degrade!)
performance, it is necessary to run the program on multiple processors. You do

this by invoking the PCN shell on multiple processors, then running the application
program in the usual way.

54

The syntax used to start PCN on multiple processors varies according to the

type of parallel computer. On multicomputers, we aze generally required first to
allocate a number of nodes and then to load PCN in these nodes. For example, on

the Intel iPSC/860, we must log into the host computer (System Resource Manager:

SP_M) and type the following commands to allocate 64 nodes, run PCN, and finally
free the allocated nodes.

getcube -t 64
% runpcn pcn.ipsc860
Z killcube

% relcube

On multiprocessors (e.g., Sequent Symmetry and some workstations), we gener-

ally need only to specify the number of processors, with a -n flag. For example, to
run on 24 processors, we type the following.

pcn -n 24

The -n option can also be used to spawn multiple communicating PCN nodes on

a uniprocessor workstation. This is not normMly useful, however, as all nodes will

just multitask on that worksta, tion's simple processor.
When running on a network, we generally need to provide a configuration file,

indicating the names of the computers on which PCN is to run. See § 23 for nore
information about running PCN on networks.

For details about how to use PCN on your computer, turn to the discussion of

machine dependencies in §§ 19-23.

11 Process Mapping Tools

Recall from § 10 that PCN allows process mapping strategies to be specified by anno-
tations attached to procedure calls: ©N,©fwd, Cbwd, and ©random. These particular

annotations are supported directly in the compiler, which makes them particularly

convenient and easy to use.
We describe here an alternative set of process mapping tools, also based on

annotations. These differ from the simple facilities described in § 10 in three respects:

• A richer set of process mapping strategies is supported.

• The implementation is considerably more efficient than that provided in the
compiler. (The overhead associated with a process mapping operation is just

two PCN procedure calls, rather than tens of procedure calls.)

• Special compiler tools must be used to compile the application program.

55

11.1 Annotations

The process mapping tools described in this section allow the programmer to specify
process mapping in terms of five different abstract views of a parallel computer:
array, ring, mesh, torus, or random. Each of these virtual machines has associated

annotations which specify mapping in terms of its abstract topology.

The name of the virtual machine that is to be applied in a particular program
must be specified by means of a directive included in each module of the application.

This directive has the general form:

-directive("virtual_nachine",type)

where typeisone of"array","ring","mesh","torus",or "random".

Ring. In the ringvirtualmachine,the nodesof a parallelcomputer areviewed

as being connected in a ring. Annotations _fwd and @bwdspecify that a procedure
should execute on the next or previous node in the ring, relative to the node on

which the annotated procedure was invoked. (The use of these annotations has
already been illustrated in § 10.)

Array. In the array virtual machine, the nodes of a parallel computer are viewed

as being connected in a linear array. Execution starts in the first node in the array.

Annotations ©fwd and @bud specify that a procedure should execute on the next or
previous node, relative to the node on which the annotated procedure was invoked.

An attempt to map beyond either end of the array is signaled as a run-time error.

Torus. In the torus virtual machine, the nodes of a parallel computer are viewed

as being connected in a 2-dimensional torus. Annotations ©north, ©east, ©south,

and ©west specify where a procedure call should execute, relative to the node on
which it was invoked.

Mesh. In the mesh virtual machine, the nodes of a parallel computer are viewed
as being connected in a 2-dimensional mesh. Execution starts in the southwest

corner of the mesh. Annotations ©north, ©east, ©south, and ©west specify where

a procedure call should execute, relative to the node on which it was invoked. An

attempt to map beyond any edge of the mesh is signaled as _n error.

Random. This virtual machine supports a single annotation: ©random. As its

name suggests, this specifies that a procedure should execute on a randomly-specified
node.

11.2 Compiling Programs

In order for the process mapping tools described in this section to be applied to a
PCN program, both of the following conditions must be satisfied.

56

1. Bach module in tile program must contain the same virtual_machinedirective

(used to specify the name of the virtual machine to be applied). E,g,'.

-directive("virtual.machine","ring")

2. The entry points to the program must be specified in an entrypointsdirective.

E,g.:

-directive("entrypoints","gol","go2")

3. Any modules thatarecalledfrom withina module butthatarenot tobe trans-

formed(i.e.,do notcontainannotatedcalls)must benamed ina dent_transform!

dh'ective. E.g.:

-directive("dont_transform","stdio")

Tile entry points of a parallel program are the procedures which will actually be
invoked from the PCN shell.

The compUation process then proceeds in two stages, First, each module in

the program is compiled with a specialized mapping compiler, invoked with the

capability vm. (This is loaded by typing load("vm_co")). For example, in the

following sequence the files cell ,pcn and grid,pcn are compiled,

load("vm_co ")
loaded vm_co

vm("ceU")
VM: file cell, machine mesh

Written: cell.pam

vm("grid")
VM: file grid, machine mesh

Written: grid,pam

This compilation process applies some specialized transformations to the appli-
cation modules and then invokes the PCN compiler. In addition to the usual .para

and .mod files, a temporary .tem file is written for each module containing informa-

tion about the virtual machine used in the module, annotated calls, and exported

and imported procedures.

Assuming that each application module compiled without error, we now proceed

to the second stage of the compilation process. The various modules of our applica-
tier, are linked by calling the capability link. This first Checks the various modules

for consistency (e.g., it verifies that all use the same virtual machine, and that all
modules used by the application have been transformed). Then, it generates a link
module that we use to actually invoke our application.

A call to the linker specifies the name of the modules included in the application
and the name of the link nlodule. For example'.

57

link(["cell", "grid"], "gridgo")

Opened file cell.C._m

0pened file grid.tem

Consistency check succeeds

Written : gridgo, pcm

11.3 Running the Compiled Program

Any procedure named as an entrypoint can be invoked in the link module. An

additional first argument must be provided that specifies the size of the machine,

as an integer number of nodes in the ring, array, or random machines, or a (ro,n}

tuple in the torus or mesh machines. For example, the following call invokes the

procedure gol on a 16 × 32 mesh.

gridgo :go I({16,32})

12 Higher-Order Programs

PCN provides simple support for higher-order programming. In particular, it allows

module and procedure names in procedure calls to be substituted wth variables,

which can then be defined to be strings at run time. Variables are distinguished

from strings in procedure calls by the use of enclosing back quotes, as follows.

..., 'op'(...), ... /* op is a variable */

..., m:'opC(...), ... /, op is a variable */

...j 'mod':f(...), ... /$ mod is a variable */

..., 'mod':'op'(...), ... /, mod & op are variables */

We illustratethe use of thesehigher-orderfeatureswith a procedure map_list

that appliesa suppliedoperator to each element of a list_collectingthe resultsof

these computations in an output list.The supplied operator is assumed to be a

procedure name (e.g., "f"); the map_list procedure invokes this procedure with

two arguments (e.g., f(e,v)).

58

map_list (op,list, vals)

{ ? list7= [olll]->
{ii 'op'(_,v),

vals= [vlvl],
map_list(op,ii,vl)

},
list ?= [] -> vals = []

}

For example, if the procedure square is defined as follows:

square(e,v) {II v = e*e }

then a tau map_list("square",[i,2,3],vals) willdefinevals to])ethe Hst

[1,4,93,
The map_list procedure willonly work correctlyifthe suppliedoperator(op)Is

1oc,ated inthe same module as map_llst, The followingprogram ismore general:it

allows the supplied operator to be a mod:proc(arg) term, Note the use of quoting

in the match operation.

map_l isr2 (op,iisr,vals)

{ ? list ?= [elll], op ?= 'mod':'proc'(arg) ->

{[I 'mod':'pro c'(arg,e,v),

vals = [v[vl],

map_list2(op,ll,vl)

},
list ?= [] -> vals = []

}

13 Debugging PCN Programs

PCN provides a rich set of facilities for locating syntactic, logical, and performance

errors in programs,

Syutax error's are detected and reported by the compiler. An error message

consists of a line number and a grammar rule. The line number indicates the location

of the error in the program, and the grammar rule indicates the part of the grammar

given in Appendix G in which parsing failed.

WaT"ning messages are also generated by the compiler to indicate type mis-

matches between procedure definitions and c_lls, etc. It is good programming prac

tice to write progr_ms that do not generate wal'nings.

59

Support fo,' detection of logical errors is provided by a special debugging version

of the PCN run-thne system and shell, called pcn,pdb, Typing pcn .pdb at the Unix

prompt invokes ,_shell identical to that invoked by pan, but providing two ,_ddition_l
features'.

1. Bounds checkir_, is performed on all array and tuple accesses.

2. Typing "C (control-C) causes control to pass to the PCN symbolic debugger,

PDB. PDB is described in detail in § 14.

Additional, low-level logical debugging support is provided by command line
arguments that cause the PCN run-time system to print detailed information about

individual procedure calls. These facilities are described in § 26; their use is not
recommended in normal circumstances.

We use the term performance error to refer to programs that compute correct

answers but for some reason do not make efficient use of available computer re-

sources. Two tools are integrated with the PCN system to assist in the detection

of performance errors: Gauge and Upshot. These are described iii § 15 and § 16,
respectively.

Gauge is an execution profiler', it collects information about the amount of time

that each processor spends in different parts of a program. It also collects procedure

call counts, message counts, and idle time information. Two properties of Gauge

make it particularly useful: profiling information is collected automatically, without
any programmer intervention, and the volume of information collected does not

increase with execution time. A powerful data exploration tool permits graphical

exploration of profile data.

Upshot is a more low-level tool that can provide insights into the fine-grained
operation of parallel programs. Upshot requires that the programmer instrument

a program with calls to event logging primitives. These events are recorded and

written to a file when a program runs. A graphical trace analysis tool then allows
the programmer to identify temporal dependencies between events.

6O

Part II

Reference Material

14 PDB: A Symbolic Debugger for PCN

Debuggers play an important role when programming in any language, including
PCN. However, PCN is considerably different from most other programming lan-

guages (e.g., C, Fortran). For example, PCN uses both light-weight processes _nd
dataflow synchronization extensively. Therefore, a PCN debugger must have special

capabilities designed to meet PCN's atypical requirements.

PDB, the PCN debuggel, fits this bill. It incorPorates features found in most de-
burgers , such as the ability to interrupt execution and examine program arguments.
In addition, it incorporates capabilities that support atypical features of PCN, such

as light-weight processes and dataflow synchronization. In particular, PDB allows

you to examiue enabled and suspended processes and to control the order in which
processes are scheduled for execution.

The operation of PDB is complicated by the fact that the PCN run-time system
does not support PCN directly, but rather a simpler language called core PCN,

which lacks sequential compositieu and nested blocks. The PDB debugger operates

on core PCN rather than PCN; hence, some understanding of the transformations

used by the compiler to translate PCN to core PCN is necessary before PDB can be
used effectively.

14.1 The PCN to Core PCN Transformation

Nested Blocks, Nested blocks within PCN programs (except for sequential or

parallel blocks nested in a top-level choice block) are replaced with calls to separate

auxiliary procedures that contain these blocks. An auxiliary procedure is given the
name of the procedure from which it was extracted, followed by an integer uuffix. The

choice of integer suffix is somewhat arbitrary. But in general, suffixes are assigned in

the order in which the corresponding auxiliary procedure c_lls appear in the o '.ginal

procedure.

Sequential Composition. Additional auxiliary procedures may be introduced as

"wrappers" on operations occurring in sequential compositions. A wrapper delays
execution of an operation until previous computations in the sequential composition

have completed.

Wrappers are also generated to encode calls to primitive operations for which

arguments may not be available at run-time. Such wrappers delay computation
until definitional argumer,_s are defined. For example, a wrapper for the assignment

x:=y, where y is a definition, will delay execution until y _as a value.

Wrappers are named in the same manner as other auxiliary procedures: with a

procedure name followed by a number.

61

Sequencing Variables, Every procedure has two additional variables added to
its argumen_ list. These variables are used for sequencing of procedure calls. They
are commonly referred to a_ the Left and Right sequencing variables. A procedure

will suspend until its Left variable is defined. When the procedure and its offspring

have completed execution, Right is defined to be the same as Left,. These variables

often (but not always) occur at the end of the argument list.
Within a sequential block, the Right variable of one procedure call is the same as

the Left variable of the next. This ensures that procedures execute in strict sequence.
For example, the sequential block

[Example of a sequential block]

P()

{ ;q(),
r(),
s()

}

is transformed to a procedure similar to the following.

[Example of a transformed sequential block]

p(L,a)
data(L) ->

{Jl q(L,MI),
r(Ml,M2),

s(S2,R)
}

Within a parallel block, all procedure calls use the parent procedure's Left vail-

able as their own Left, and a temporary variable as their Right. The temporary

Right variables are passed to a barrier procedure which defines the Right variable

for the parallel block when all of the temporary variable have been defined. For
example, the parallel block

[Example of a parallel block]

p()
{11 q(),

r(),
s()

}

is transformed to a procedure similar to the following (where p. 1 is the barrier
procedure)

62

Example of a transformed parallel block]

p(a ,R)
data(L) ->

{II q(m,Ml),
r(L,S2),

s(L,M3),

p.i(MI,M2,M3,R)
}

p.I(MI,M2,M3,R)
d_ta(Ml), data(M2) -> R = M3

Barrier Processes. As demonstrated in the previous example, the PCN compiler

sometimes generates calls to speciM barrier procedures. These are used to organize

synchronization of procedures in a parallel block. These auxiliary programs are
named in the same manner as other auxiliary procedures created by the compiler.

However, they can usually be distinguished by the fact that all but one of their

arguments are the Right synchronization variables of other procedures. Fortunately,
these auxiliary barrier procedures can generally be ignored when debugging.

Wildcards. A procedure name is a mod:procedure pair. Some PDB commands
that take procedure names as arguments allow the use of a limited form of a wildcard

facility to specify a set of procedures. An asterisk (*) placed at the end of a procedure
name designates all procedures that begin with the specified name. For example,

mod:programl, designates all procedures in module rood whose names begin with

programl. The degenerative case of a procedure wildcard is simply a ,. (E.g.,

rood:*.) In this case, ali procedures within the appropriate module are specified.
Module names can also be specified with this limited wildcard facility. For

example, a module wildcard of ehv* designates all modules whose names start with

ehv, and a simple * designates all loaded modules.

14.2 Naming Processes

Execution of _ PCN program can create a large number of lightweight processes.

Each process executes a PCN procedure -- either a procedure named in the original
source, or an auxiliary procedure introduced by the transformation to core PCN.

In order to simplify the task of distinguishing between the many processes that

may be created during execution of a program, PDB associates three distinct labels
with each process.

1. The name of the procedure that the process is executing. (Nonunique)

: 2. An instance number. (Unique)

63

3. The process reduction in which the process was created. (Nonunique)

As we shall see in §14.5, PDB also provides information about the status of a process,

for example, whether it is able to execute or is waiting for data.

14.3 Using the Debugger

pcn.pdb and pcncc.pdb. We assume familiarity with the PCN development

environment. Recall that this is invoked by the command pen and that it provides a

simple command interpreter and other facilities. In applications that include foreign

code, the linker pence is used to link the foreign code into the environment. PDB

is supported by an extended version of this environment called pcn.pdb and an
extended linker, pcncc.pdb.

Recall that the PCN command interpreter allows you to invoke commands (with

the form mod:prog(...)) interactively. These commands may execute both PCN
code contained in a number of modules and foreign code contained in other files.

, PDB allows debugging to be enabled and disabled on a per-module basis. Only
processes executing procedures contained in enabled modules are visible within the
debugger.

Control-C. You enter PDB during program execution by interrupting the pro-
gram with an interrupt signal. This signal is typically invoked by typing Control-C

(-c).
Once control as passed to the debugger, PDB commands can then be used to

enable/disable debugging on modules, examine the state of the computation, or

resume execution of the PCN program. Once resumed, normal PCN execution
continues until you interrupt the program execution again, causing control to revert

back to the debugger. It is also possible to specify that control pass to the debugger

if the active queue becomes empty. This is accomplished by setting the debugger

variable empty_queue_break (§ 14.6).

Abbreviating PDB Commands. PDB commands can be abbreviated to tim

shortest string that uniquely identifies the command. (There are a few exceptions

to this rule. For example, since the show command is typically used extensively, it

can be abbreviated to s, even though s does not uniquely identify this command.)
To find out the shortest abbreviation for PDB commands, use the PDB help

facility by typing help at the PDB command prompt.

.pdbrc When PDB starts up, it searches for a .pdbrc file in the current directory,

and then in your home directory ('). Any PDB commands found in such a file are

executed. This feature allows the state of PDB to be initialized every time PDB is
run.

64

14.4 Obtaining Transformed Code

As described in § 14.1, a PCN program is transformed to core PCN before exe-

cution. When debugging programs with PDB it is sometimes helpful to have this

transformed version of the code available for reference, since that transformed ver-

sion is really the code that is being executed.

Assuming you have the PCN source file prog.pcn, you can create a transformer

output file in two ways. One way is to run the following command from the Unix
shell.

pcncomp -g prog.pcn

Alternatively, you can run the following command from the PCN shell, after loading
the co module.

transform("prog")

In both cases, a file named prog_tfd.pcn will be created that contains a nicely

formatted representation of the core PCN corresponding to the original PCN pro-

gram, prog. pcn.

14.5 Examining the State of a Computation

We _re now ready to describe PDB commands. We first describe commands that

allow us to examine the state of a PCN computation. For you to understand how

these commands work, we need to say a little bit about how the PCN run-time

system manages execution of PCN programs.

Queues. The PCN run-time system manages the execution of processes created

to execute procedure calls in parallel blocks. Like a simple computer operating

system, it selects processes from an active queue and executes them either until
either they block because of a read operation on an undefined definitional variable
or until _ timeslice is exceeded. In the former case, the process is moved to a

variable suspension queue associated with the undefined definitional variable (unless

the process requires two or more wriables, in which case it is moved to a global

suspension queue). In the latter case (a timeslice), the process is moved to the end
of the active queue. PDB Mso maintains a fourth pending queue. This is used to

- hold processes from the active queue that the user has indicated are to be delayed

(i.e., removed from consideration by the PCN scheduler).
In summary, every PCN process is to be found on one of the following four

queues:

active The active queue contains processes that may be scheduled for execution.

pending The pending queue contains processes that the user has tagged to be de-
layed. These cannot be executed until returned to the active queue.

globsusp The global suspension queue contains processes that are suspended on
more th_n one variable.

65

varsusp The variable suspension queue contains processes that are suspended on

just one variable.

When describing commands, we shall use the notation <queue> to represent a

queue selector-- one of active, pending, globsusp, and varsusp; or suspension

(both globsusp and varsusp) and ali (all process queues).
We shall also use the notation <process> to represent a process specification;

this is one of the following:

, n: n is an integer, representing an index into a process queue;

® m - n: m and n are integers, representing a range of indices into a process
queue;

, #n: n is an integer, representing a process instance number;

• "n: n is an integer, representing the reduction during which a process was
created;

• _Uh: h is a hexadecimal number, representing an undefined variable that is

somewhere in a process's argument list;

• modulename:blockname, representing aU processes of a given name;

• all.

As noted in § 14.1, a limited wildcard facility allows a single <process> specifier to
represent several processes.

Examining Queue Contents. The summary, list, and show commands allow

the user to examine the four process queues at increasing levels of detail. These

commands (and the queue-manipulation commands described in the next section)

operate only on processes contained in modules for which debugging is enabled. The

set of enabled modules is initially the empty set (i.e., no modules are enabled); the

set can be modified by using the debug and nodebug PDB commands.
In the following descriptions, all arguments that are listed within square brackets

([]) are optional:

summary [<queue>] [<process>]: prints a summary of the contents of the des-

ignated <process> on the designated <queue>. This includes module and

procedure names (sorted by module and then procedure) and the number of
occurrences of each procedure on each queue.

list [<queue>] [<process>]: prints a short listing of the processes specified by
<process> on the specified <queue>.

show [<qt)eue>] [<process>]: prints a detailed description of the processes specified

by <process> in the specified <queue>. If the process is on the v_riable
suspension queue, the variable that it requires in order to continue execution
is also shown.

66

Modifying Queues. The move and switch commands are used to control how

l)rocesses in the active queue are selected for execution. They can be applied only

to the _ctlve and pending queues.

move <queue> <process> [<where>]: This moves zero or more designated pro-

cesses in a designated queue (active or pending) to immediately before po.
sition where in the same queue. If where is end, then the designated processes

are moved to the end of the queue. By default, <where> is end.

switch <queue> <process> [<where>]'. This moves zero or more designated pro'

cesses from a designated queue (active o1' pending) to the other queue (i.e.,

pending or active, respectively), inserting them immediately before position
where. If where is end, the designated processes are placed at the end of the

queue. By default, <where> is end.

14.6 Debugger Variables

PDB maintains a number of in_ernal variables that can be included in PDB com-

mands and, in some cases, modified by the programmer. PDB variables are distin-

guished in expressions by a prefix $.

Modifiable Variables. The following Variables c_n be used to control aspects of

PDB's behavior. They can be modified within PDB by using the "=" command.

Sprint_array_size : An integer representing the maximum size (i.e., number of
elements) of an array displayed by print.

$print_tuple_depth : An integer representing the maximum depth of a tuple dis-

played by print.

$print_tuple_width : An integer representing the maximum width (i.e., number
of elements) of _ tuple displayed by print.

$emulator_dl : An integer representing the emulator debug level. This turns on

the printing of debugging information in the main emulator loop. It takes an

integer value between 0 and 9, where 0 is no debugging and 9 is the most

debugging.

Sgc_dl : An integer representing the garbage collection debug level. This turns on

the printing of debugging information in the garbage collector. It takes an
integer value between 0 and 9, where 0 is no debugging and 9 is the most

debugging.

$parallel_dl : An integer representing the parallel code debug level. This turns on
the printing of debugging information in the parallel emulator code. It takes

an integer value between 0 and 9, where 0 is no debugging and 9 is the most

debugging.

67

$global_dl : An integer representing the global debug level. This turns on the
printing of debugging information not covered by the Semulator_dl, $gc_dl,

or $parallel_dl debug setting. It takes an integer value between 0 and 9,

where 0 is no debugging and 9 is the most debugging.

$reduction_break : An integer representing the next reduction at which to break
into PDB.

$empty_queue_break : A Boolean value. When this value is set to yes, the system

will break into PDB whenever the process queues are empty, and therefore
there are no schedulable processes. When this value is set to no, the system

will not break into PDB whenever the process queues are empty.

Read-Only Variables. The following variables contain information about various

aspects of the state of the computation. They can be included in expressions but
cannot be modified directly.

$modules : A list naming all of the modules that are being debugged. This list can

be modified through the debug and nodebug commands.

$module : The name of the current module.

$process : The name of the current process.

$args : The arguments of the current process. Note that this variable is defined
only at the entry to a block.

$instance : The instance number of the current process.

$reduction : The reduction during which the current process was created.

$current._veduction : The current reduction number.

14.7 Miscellaneous Commands

This section describes miscellaneous debugger commands that were not described in
other parts of this manual.

In the following, <expr> denotes either a PCN variable name (to be interpreted

in the context of the current process) or a constant.

abort : Abort execution of the PCN run-time system. See also continue, next,
and quit.

continue : Continue with next process (head of the active queue). See also abort,
next and quit.

debug <module> : Enable debugging in the specified module. The <module>

argument can be a module wildcard. See also nodebug.

68

help [<topic>]: Give help for topic. If topic is left off, then general hell) will be
given.

load <filename> : Execute the PDB commands that are in the file filename.

modules : List tile names of the modules that are currently loaded in the system,

indicating for each whether it was compiled in debug mode (in the current

PCN release, this column always says "n") and whether debugging is enabled.

next : Execute the next process (head of the active queue), and then break into the
debugger again when it has completed. See also abort,continue,and quit.

nodebug <module> '. Disable debugging in the specified module. The <module>

argument can be a module wildcard. See also debug.

print <expr>' Print the given expression. An expression is a variable, integer,
real, or string. <expr> is either a single expression or a comma separated list
of expressions that is enclosed in parentheses.

quit : Quit from the debugger; disable debugging on all modules. See also abort,
continue,and next.

vars : List_,henames and valuesofallPDB variables.

14.8 Orphan Processes

An orphan is a process suspended on a variable for which there are no potential

producers. (More precisely, a variable to which no other process possesses a ref-

erence.) Such a process can never be scheduled for execution. A program that
generates orphan processes is not necessarily erroneous. However, it is good pro-

gramming practice to ensure that orphans are not generated, i.e. that all processes

in a program terminate.
Orphan processes can be detected by the garbage collector invoked by the PCN

run-time system to reclaim space occupied by inaccessible data structures. Nor-

mally, the garbage collector destroys these processes silently. However, the debug-

ging version of the PCN system (pcn. pdb) prints a warning message for each orphan
encountered.

15 The Gauge Execution Profiler

Gauge is an execution profiler for PCN programs. It collects profile data which can

subsequently be graphically displayed by using an interactive data exploration tool.

69

15.1 Data Collection

Before Gauge can be used, the Gauge profiler must be loaded by issuing a

load("gauge")

command to the PCN shell. This command can he put into your .pcnrc file (§ 4.4).
No special con ipilation is required to profile a program.

A profile is generated ' by executing the program from a profile command (a

capability provided by the gauge module) rather than the usual module :goal com-
mand. This command has the following general form.

profile(program,modulelist,nodes,filename,done)

For example, the command

profile(foe:bar(I,2),["foe","foeI"],"all","footest25",done)

willrun theprogrambar inmodule foe and collectprofiledatafor,nodulesfoe and

fool from every processor (all). The profile is stored in a file called footest25, cnt
when execution of bar completes.

The following, alternative forms of the profile command are _lso recognized:

profile(program,modulelisr,nodes,filename)

profile(program,modulellst,done)
profile(program,modulelist)

The argumentstotheprofile command areasfollows:

program Specifies the program to execute and its arguments. The program is spec-
ified exactly as if it was being executed directly from the shell.

modulelist A list of strings that are the names of the modules from which profile

data is to be collected. If only one module is needed, a single string can be
specified instead of a one-element fist.

nodes Specifies the nodes from which profile data is collected. This argument can

be a single node number (i.e., 2), a range of node numbers (i.e., 2-20), or
the string all. In the form of the profile command without a node argument,

profile data is collected from all processors.

filename File in which to place the profile data. Profile files have a ". cnt '_ exten-

sion; this is automatically added to the file specified by the filename argument.
In the form of the profile command without a filename argument, the profile

data is stored in a file named profile, cnt.

done A definitional variable that is defined to be the empty list ([]) when the profile
is complete.

Note that the profile command collects profile data only after the application

program has completely terminated. In some cases, it may be preferable for the

application program to signal when a profile should be generated, by binding ,_
definitional variable. Commands that provide this capability are listed in § 18.2, as

are commands for timing execution of PCN programs.

7O

15.2 Data Exploration

Gauge provides a graphical interactive tool for exploring profile data collected using
the profile command, This tool combines three sorts of data to provide detailed

information about execution thne on a per-procedure and per-processor basis, idle

time, number of messages, volume of messages and other program execution statis-
tics. These data are

• instruction counts collected by the compiler (the .rood files),

• profile data collected by the run-time system (the .cnt file), and

• information about the computer on which the program was run (the host file).

The first of these data is generated by the compiler, the second is generated auto-

tactically if the profilo command is used, and the third may need to be specified

by the l_ser (see §15.3 below).
The data exploration tool is invoked by typing the following Unix command'.

xpcn

This creates a top-level window with three parts, The top sectio,: of the window is
a command window. You can click the left mouse button on one of the commands

to obtain help, to oxit, or to invoke gauge.

The middle section indicates the current Xpcn directory.

The bottom window gives a list of .cnt files and directories in the current direc-

tory. Files are selected by pressing the left mouse button while the pointer is over

the file name. If you wish to change selections, just press the left mouse button over
a different file, or no file if you want to eliminate all selections.

The directory window serves two purposes. If you select a .cnt file in the

directory window using the left mouse button and then select the Gauge command
from the top row of buttons, Gauge is invoked on that file.

Gauge can also be invoked on a . cnt file by double-clicking on its name in the

directory window. Double-clicking on a directory name opens that directory, thus

allowing navigation of the directory system.
Xpcn has an online help facility. To use it, select the "help" button on any

window. Either the scroll bar or the page-down (Control-v) and page-up (Meta-v)
commands can be used to position the help text within the help window. When

finished, you can dismiss the help screen using the close button on the bottom of
the screen. If you leave the screen up, it will be reused to display the next help

message.
Occasionally something might go wrong, and xpcn will generate _ Warning Mes-

sage in a popup window. Nothing else can be done until this window is dismissed

by clicking the left mouse button in it.

The only command-line arguments recognized by xpcn are those recognized by
the X Toolkit Intrinsics. This means that X-window arguments such as -icon can
be used.

71

15.3 The Host Database

When you invoke Gn,uge on a ,cnt file, a warning message Inay be displt_yed tn-

dic_ting theft your machine does not appear tn the host dated)ase, (Click on the
warning window to make lt disappear,) This means that you must _d(1 the tna-

chine on which your application was run to the host database that Gauge accesses

to determine various machine characteristics when displaying performance data,

The program pcnhost is provided to simplify the task of adding entries to the
host database, A call to this program has the form

pcnhost machinetype ,,

or

pcnhost,-h hostname machinetype

The machinetype argument specifies an architecture type for machine computer

hostnamo. If a host name is not specified, the name of the machine on which the

pcnhost command is executed is _dded to the database, The following machine
types are currently supported:

• symmetry-b, symmetry: Sequent Symmetry Kev B

• sparcstation-1, ssl: A Sun SPAttCstation 1

• sun3: A Sun 3 workstation

• s2010: A Symult s2010 multicomputer

• rs6000: An IBM RS6000 workstation.

• ipsc860: An lntel iPSC/860 (i860 processing nodes)

• ipscii: An lntel iPSC/II (386 nodes)

Note that updates to the database are not synchronized, If more than one update
is being made simultaneously, information can be lost.

15.4 X Resources

Xpcn requires a resource file to operate properly. This should be in

$(INSTALL_DIR)/1 ib/app- del ault s/Xpcn

where $(INSTALL__DIR) is the directory where xpcn has been installed (typically,
/usr/local/pcn). The line

xrdb -merge $(INSThLL..DIR)/lib/app-defaults/Xpcn

should be added to one's . xinitrc or . xsession file. If a color workstation is being
used,

72

xrdb -merge $(INSTALL_DIK)/lib/app-defaults/Xpcn.server

is also needed, Of course, any customized resource files could be used,

In addition, tile Unix shell variable XFILESEARCHPATHmust be set to tell tile X

Window system where to find some files, For example:

setenv XFILESEARCHPATH = '/usr/local/pcn/lib/_L/'/,T/'/,N'/,S:\
/usr/Iocal/pcn/1ib/_,i/ZT/_,N_,S:/usr/local/pcn/lib/ZT/_,N_,S:\
/usr/Iib/X11/_,n/_,T/_,N_,S:/usr/iib/X11/_,i/_,T/_,N_,S:\
lusrllib/Xl I/ZT/ZN_S'

16 The Upshot Trace Analyzer

Upshot is a tr,_ce collection and analysis teel. You need to know tile following three
procedures in order to use Upshot in PCN,

1, How to instrument a program.

2, How to run _tn instrumented program _nd collect a log.

3, Itow to _nalyze a log.

16.1 Instrumenting a Program

You instrument your program by adding calls to

, the foreign procedure pcn_log_event in PCN procedure(s), _nd/or

• c,_lls to c_log_event in C procedures, and/or

, ('_lls to log_event in Fortran procedures.

pcn_log_event (event_type,return_coda) This C procedure is used to log events

from within PCN procedures.

event_type is nn input argument and must be ,_ positive integer.

return_code is an output argument (it must 1le _ mutable) and is set to 0 if
the event is logged successfully and to 1 otherwise.

inr c_log_event(event_type) This C function is used to log events from within

C procedures. The function returns 0 if the event is logged successflflly and 1
otherwise.

event_type is _n input argument and must be _ positive integer.

inr log_event(event_type) This C function is used to log events from within

Fortr,_n procedures. The function returns 0 if the event is logged succossf'ully
_nd 1 otherwise.

event_type is an input argument and must be ;_ positive integer.

73

16.2 Collecthlg a Log

To collect a log, we Inust first load the upshot module into tile PCN she,ll by typing

load("upshot"). Then, we run our program, using one of the following forms.

log(rood:call(...),size,nodes,file)

log(mod:call(...),size,nodes,file,done)

log(mod:call(...))

log(rood:call(...),size,done)

Where size is the nlaximum number of events that can be logged in a single node

(default 10,000), nodes is a node specification, as in Gauge (default "all"), file
is the prefix for the log files (default "upshot.log"); and done is a variable to be

bound when loggi_g has conlpleted.

When you run your program, you will see (for example)

tog(,od:fooO)
Initialized logs: size I0000

<program output>

Written logs to upshot.log

r

If a program that includes log statements is executed without a log wrapl)er, a

warning will be printed once on each node in which logging is attempted:

Upshot: Not initialized

A warning is also displayed if the maximum number of events is exceeded on any

node. For example, if the event buffer size is set to 40, and more than 40 events are

logged, you will receive the warning

Upshot: Event buffer overflow (40 events)

16.3 Analyzing a Log

Execution of a program using log produces one log file for each node; these files are

called upshot, log.0, upshot, log. 1, etc. (An alternative prefix can l)e specified il_
the log command.)

These files must be merged by using the Unix command mergelogs to create a

single log file, for example,

mergelogs upshot,log., > log

We can then call Upshot to display a set of time lines, one per processor, with

the various events logged by our program displayed on the appropriate time lines:

upshot -i log

74

Frequently, we are not interested in the events themselves but rather in execution

states defined in terms of starting events and ending events. (E.g., we might define
a "busy" state as starting when we an event is logged indicating that a message has

been received on a stream, and ending when an event is logged indicating that a
response has been sent.) We define states in a states file, specifying each state ill
terms of a unique integer identifier, a starting and an ending event type, a color,

and a label. For example:

' i I0 II blue init_ico
2 12 13 red init_rh

3 14 15 pink init_geo
4 16 17 yellow get_side

Upshot does not support nested states. That is, it is not meaningful for a trace

to include sequences in which two start state events occur without an intervening
end state event.

The name of any state file is specified to Upshot by means of the -s command

line option, as follows.

: ups,,,ot-i log -s my.sis

17 Standard Libraries

The sys and stdio modules are distributed with the PCN system and may be called

from within user programs to invoke a variety of useful functions. They are invoked
via intermodule calls.

In the following discussion, the notations I and 1"on program arguments denote

input and output arguments, respectively.

17.1 Systern Utilities

The sys module provides the foUowing programs. Many of these are provided for

compatibility with the Strand parallel programming system.

merger (I s _, 0s 1) merges messages appearing on input stream I s to produce output

stream 0s. If the input stream Is contains a message of the form morge(S),

then the stream S is also merged with 0s. The output stream 0s is closed

when all merged input streams a_'e closed. (Cf. § 5.10 for more details.)

distribute(l_l, Is l) distributes messages received on input stream Is to N output

streams; output streams are numbered 0 to N-1. (Cf. § 5.10 for more details.)
The distributor may receive two types of message on input stream Is:

= 75

attach(Nil,SI,DI") causes stream S to be attached to output stream nu,n-

bered NI; Dis defined when the action is complete to signify that messages
may subsequently be forwarded to stream S.

{N2_,MI} causes the message Mto be appended to output stream numbered
N2.

, ' ,
'_r,p

When the input stream Is is closed, all output streams are closed.

hash(NI, Isl) creates a ha_h table of size N and receives messages on input stream

Is. Four messages may be sent to a hash table:

add(KI,V$,S_') causes the value V to be added to the hash table under key K;
if there was already an entry for key K, then status S=O, otherwise S=I.

lookup(Kl,VT,Sl) causes a lookup operation on key K. If there is an entry
for key K, then V is the associated value and status S=l, otherwise S=O.

dol (KI ,VT) deletes the entry for key K and returns the value V associated with

the entry if one existed, otherwise returns -1.

dump(Ll",Dl") dumps the contents of the hash table into a list L and defines D
when the operation is complete.

integer_to_list(ll,Lb_,Lo)difference list Lh-Le contains integers providing an
ASCII representation of integer I

intGg_r_to_string(II,ST) S is _ string that represents integer I

roal_to_list(RI,L_) difference lkt L contains integers providing _n ASCII repre-
sentation of real number l_

real_l:o_string(Ft,l ,S T) S is a string that represents real number 1_

string_to.real(S_,R_) R is the real number represented by string S

string_to_list(S_,LbT,Le) difference list Lh-Le contains integers l)roviding an
ASCII representation of string S

list_to_integor(Ll,IT) I is the integer represented by the ASCII values in list L

list_to_string(LI ,S1) S is the string represented by the ASCII values in list L

list_to._roal(L_,l_T) R is the real number represented by the ASCII vah ms in list
L

list_to_tuplo(Ll ,TJ) T is the tuple with elements specified by list L

tuple_to_list (T_ ,Lb I ,Le) difference list Lb-Lo contains the arguments of tuple T

logand(AL,Bl ,el) integer C is the bitwise-and of integers A and B

logor(A_ 'Bl ,Ct) integer C is the bitwise-or of integers h and B

76

logcomp(A[,BI) B is the bitwise complement of integer A

logreal(h! ,B 1) B is the real version of h

logint(A[,BI) B is the integer version of h

logabs(A] ,BI) B is the absolute value of A

str_len(Sl,L]) Lis the length of stringS

arity(TL,t]) Als the number of arguments in tupleT

17.2 Standard I/O

The stdio module provides a set of PCN procedures that are analogous to tlm

(7, language standard input/output (stdio) library, lt is important to realize that
calls to stdio are sequenced only if they occur within a sequential block. Output

generated by parallel calls to printf or other output procedures may be interleaved.

Most of the stdio procedures takes an output argument, status. This argument
should be an undefined variable when the call is made. It will be defined by the

stdio procedure to nn appropriate return code. This argument can be used both

to check the status of the I/O call and to sequence subsequent execution.
The std±o procedures that deal with files rather than the keyboard or screen

require a file descriptor (ld) argument. This argument should be a muta,ble of type

FILE (defined in the C header file stdio.h).
We now summarize the procedures provided by the std±o module. The argu-

ments to all of these procedures follow as closely as possible their correspot_ding (11

procedures. Please refer to a C, programming manual for more complete descriptions.

fopen(filename I ,types ,fd_ ,status T) opens the file named filename. The file is
opened for the given type of I/O operation, where type is a string containing

a.n apI)ropriate combination of "r", "w", "a", and "+". The mutable fd is

assigned to be the file pointer, status is defined to be 0 if the open succeeds;
otherwise it _vill b' set to the error number (C errno).

fdopen (f £1dos,[,typo,l,, fd_, status]') opens the file with the integer file descriptor

fildes.The other arguments are the same as for fopon().

fcloso(fd_,status I) closes the file designated by fd. status is defined to be E0F
if there is an error.

fflush(fd[,status]) flushes all buffered data for the output file designated by fd

to 1)e written to that file. The file remains open. status is defined to be EOF
if there is an error.

putc(c,[,fd[,status]) appends the character c to the designated output stream
ld. status is defined to be the character written, or EOF if there is an error.

fputc(cl,fdl ,status1) is the same as putc().

77

putchar(c_ ,statusT) is the s,_me as putc() to standard output (the screen).

putw(wl,fdl.,statusl) N_pends the word character w (an integer rather than _

character), to the designated output stream fd. status is defined to be the
word written, or EDF if there is an error.

printf (format [, args _, status]') prints formatted output to standard output. The

format string accepts the same format as the C langllage's printf ()proce-
dure, with two additions: it can contain a Zt, which moans to print a grounded

term, and _,lt, which me_ns to print an ungrounded term. The _t and glt
can also take an integer immediately after the _,, which means to only print to

that depth. The args argument is _, tuple of all the arguments to printf, as

required by the format. (Since PCN procedures cannot take a variable num-
ber of arguments, as in C, all of the data arguments must be combined into a

single argument using a PCN tuple.) status is defined to be the number of
characters written, or E0F if there is an error.

fprintf (fd_ ,format_, argsl, status]) is the same as printf (), except that out-

put will go to fd rather than to standard output.

sprintf (buff ,format, l , argsL ,status T) is the same as printf (), except that the
output is placed into the definitional variable buf.

getc(fdl ,el) gets one character from the input stream fd and defines it to c. c is
defined to be EOF on end of file or an error.

fgetc(fdl,c_) is thes_measgetc().

getchar(c_) is the same as g_tc() from standard input (the keyboard).

gotw(fdl.,wl) gets one word (e.g., an integer) from the input stream fd and defines
it to _1. w is defined to be E0F on end of file or an error.

ungetc(c[,fdl,status]) pushes the character c back onto the input stream ld.

status is defined to be the pushed character, or E0F if there is an error.

scanf (format_, argsl ,statusT) is similar to the scanf () procedure in C. lt takes
its input from standard input and places the values that it reds in the (lefilti-

tional variables contained in the tuple args.

fscanf(fdL,formatl,argsl,status]) is the same as scanf(), except that the

input conies from the passed stream, fd.

sscanf (buf,[,format[,argsT,statusT) is the same as scanf (), except that tlao
input comes from the passed buffer, bur.

stdout(fdl) assigns the mutable fd to be the file pointer for stand,Lrd output

(stdout).

stdin(fd[) assigns the mutable 2d to be the file pointer for standard input (stalin).

78

stderr(fdl) assigns the mutable fd to be the file pointer for standard error (stderr).

fseek(fdl,offset I ,whence_,status[) calls the C qfseek function with the ld,

'offset, and whence arguments to set the position for the next input or output
operation on this file. The status argument is defined to be 0 if the operatiol_
completes successfully, or-1 if it fails.

ftell(fd] ,offset[) calls the C ftell function with the fd argument. The offset

argument is defined to be the offset from the beginning of the file to the current
positiou, or -I if there is an error.

rewind(fdl) cMls the C rewind fllnction with the fdargument to set the position

to th_ beginning for the next ii,put or output operation on this file. This is

qlliva.le,,It to fseek(fd,0,0,).

17.3 Examples of Use

Opening and Closing Files. The following examples illustrates the use of the

fopen, fclose, stderr, and fprintf procedures. Note the include statement for
stdio.h, which includes a definition for FILE.

#include <stdio.h>

open_test(fname)
FILE ld, err;

; stdio:fopen(fname, "r", fd, status),
? status == 0 ->

{ ; stdio'printf("File \"Y,s\"opened\n",{fname},_),
/* ... */
stdio'fclose(fd,_)

},
default ->

{ ; stdio:stderr(err),

stdio:fprintf(err,

"Error opening \"Zs\" lo_ reading\n",{fname},_)
}

}
}

Writing to a File. This example opens a. file ptest for writing, writes the char-
acters ABCto this file, and then closes the file.

!

79

#include <stdio.h>

putc_test ()
FILE fd ;

{ ; stdio:fopen("ptest","w"/fd,_),l

/* Use ASCII deci_.!_lfgi'character literals */

stdio:putc(66,fd','.)',,",/,",/* .'B' */
stdio:putc(67,fd,_), /* 'C' */

stdio:fclose(fd,_)

i
.... i

Writing to tile Screen. This example writesthe ch,%ra_tersABC followedby a

newline character to tile screen (standard input).

#include <stdio.h>

putchar_test()

{ ; stdio:putchar(65,_), /* 'A' */

stdio:putchar(66,_), /* 'B' */

stdio:putchar(67,_), /* 'C' ./

stdio:putchar(lO,_) /* '\n' */

}

_rinting to the Screen. The following program uses tile printf ('olllIlla.n(I to

print a v_riety of terms of the screeu. Note the use of the Zt fornlat (:onl_ua, nd i,_)

print a,rl)itra, ry terms. When executed, the program acts as follows.

> p_t¢:st:printf_test 0

Str: A string
heal : -1.230000

List: ["A string" ,-I.230000, {"a", 1,2,3}]

Tup: {"a",1,2,3}

The 1)rogram can be lnodified to write the same text to a file 1)y adding a,n f(open

i

call, substituting fprintf for printf throughout, a,nd finally (:losiJlg th_, fil_,.

8O

I Module p-teSt .pcn I

#include <stdio. h>

printf_te_ ()
{ ; str = "A string",

r = 0 - 1.23, /* No unary minus in PCN */

tup = a(I,2,3),
is = [str,r,tup],

stdio:printf("Str: _,s\nReal:_,fkn",{str_r},_),

stdio:printf("List: Y,t\nTup:_,tkn",{is,tup},_)
}

Creating Strings. We illustrate tile use of tile sprintf command to create a

string. When executed, the sprintf_test procedure prints the string file_5.

#include <stdio.h>

sprintf_test()
{;i=5,

stdio:sprintf(mystring,"file__,d",{i},_),

stdio:printf("mystring = _,skn",{mystring},_)
}

Reading Characters. This example shows the use of the stdin and getc proce-
dures to read a series of characters from the keyboard (standard input). The 1)l'o-

cedure getc_test prints a prompt, reads characters until an end of line is reached,
and then prints the result.

> r_test:getc_tcst()
Enter li.no: my line

Line entered: my line

The program can also be written using the getchar procedure (which reads directly
from standard input), avoiding the need for the call to stdin.

81

Module r_test .pcn]

#include <stdio.h>

getc_test ()

FILE fd ;

{ ; stdio:stdin(fd),

Stdio:printf("Enter line: ",{},_),

getc_test I(fd,ls),

sys :list_to_string (ls,str),

stdio :printf("\nLine entered: _,s\n",{str},_)

}

get c_test I(ld,is)

FILE fd ;

{ ; stdio:getc(fd,ch),

{ ? ch == lO-> Is = [],

del ault ->

{ ; Is = [chllsl],

getc_t est i(ld,Is I)
}

}
}

Reading Terms. The following program uses the scanf procedure to read ar-

bitary terms from the keyboard (standard input).

#include <stdio. h>

scanf_t_st ()

{ _ stdio:printf("Enter term (or [] to stop): ",{},_),

stdio :scanf ("Zt",{Ls}, status),

{ ? status != [], status != EOF->

{ ; stdio:printf("Term: _,t\n",{Ls},_),

scanf_test ()

},
default -> sZdio :printf ("Done\n" ,{},_)

}
}

Reading Terms from a File. The following program uses fscanf to read terms

ft'ore a file and print them on the screen, associating a term with each term. For

82

example, if _ file input contains

["a", "b", {-3,-4}]

{-2.5, Oxa, le4, 1.5e-3, 010},

then executionof theprogram proceedsas follows.Note]lowtheliststructureill

the first term is printed as a nested tuple.

> f_tcst:f_canf_tc,_t("im,")
(_) ' {"_",{"b", {{-3,-4}, [] }}}'
(2) '{-2.500000,10,10000.000000,0.001500,8}'

Module f_test .pcn

#include <stdio.h>

f scanf_t est (input)
FILE fd ;

{ ; stdio:fopon(input,i'r",fd,_),
show(fd,I),

stdio:fcloso(fd,_)

}

show(ld,index)

FILE fd;
{ ; stdio:fscanf(fd,"Y,t\n",{term},stat),

star != EDF, star != 0 ->

< ; stdio:printf("(Y,d)'_it'\n",{index,term},_),
show(ld,index+I)

}
}

18 Standard Capabilities

PCN shell capabilities are described in § 4.3. This section contains a summary of

the standard capabilities that are distributed with the PCN system.

In the following discussion, the notations .Land 1 on program arguments denote

input and output arguments, respectively.

18.1 co

The compiler ca.pal)ilities are loaded from the PCN shell by running load("co").

These calml_ilities support full or partial compiles of PCN and PTN programs, the

83

application of PTN transformations to PCN programs, and the running of lint, the

PCN program checker,

compile(file l) Invoke the lint program checker and the PCN compiler oll tile
source file.

compile(filel,L_,R _) Check and compile the PCN source file. Wait for L to be

defined before running the compile, and define R to be the same as L when the

compile has completed.

compile(file_,CPP.21agsi) Check and compile the PCN source file. Pass the
CPP_flags string to the C preprocessor.

compile(file_ ,CpP_lags_ ,L_,Rr) Check and compile the PCN source file. Pass

the CPP_flags string to the C preprocessor. Wait for L to be defined before

running the compile, and define R to be the same as L when the compile has
completed.

fcompile(file_) Fast compile the PCN source file. That is, don't invoke the lint

program checker.

fcompile(file_,LI,R_) Fast compile the PCN source file. Wait for a to be

defined before running the compile, gnd define R to be the same as a when the
compile has completed.

fcompile(file_ ,CPP_21ags$) Fast compile the PCN source file. Pass the CPp_flags

string to the C preprocessor.

fcompile(file,_ ,CpP.:flags_ ,LI, ,R1) Fast compile the PCN source file. Pass the

CPP_flags string to the C preprocessor. Wait for L to be defined before running
the compile, and define R to be the same as L when the coml)ile has completed.

transform(file]) Transform the PCN source file. The transformed version of

the program is written to the file file_tld.pen.

tcomp(file_) Compile the PTN source file.

tcomp(file.l ,tracelevel_) Compile the PTN source file. Iftracelevel is "pen"
or pen (level), then only the transformation stage is done, and the transformed

version of the program is written to the file file_tld.pen. If tracelevel is

"none" then all output is suppressed. Otherwise, tracelevel (or level) should
be an integer which indicates the debugging trace level to be used during the
compile.

tcomp(file_ ,tracelevel_ ,L_ ,R) Compile the PTN source file. The trace±evel
is the same as with tcomp(file,tracelevel). Wait for L to be defined beibre

running the compile, and define R to be the same as L when the co,nl)ile has
completed.

84

form(file[,operatorl) Apply thePTN operator tothePCN sourcefile,file
m_y a]sobe a listoffilesto which theoperatorisapplied,

form(file_,operatorJ.,traceleveli) ApplytilePTN operatortothePCN source

file, file may alsobe _ listoffilesto which theopera,torisal)plied,The
tracelevel llagisthesame as intcomp(file,tracelgvel)above,

form(fileI,operatorI,tracelevell,L$,KT) Apply thePTN operator tothePCN

SOllrce file, file may also be a Ust of flies to which the operator is api)lied,
Tiletracelevelflagisthesame asintcomp(file,tracelevel)above,Wait

for L to be defined before running the transformation, and define R to be the
same as L when the transformation has completed.

trun(operator.[) Execute the PTN operator, without any loading, storing, or
COml)iling of programs ,_nd directives.

trun(operatorL,tracelevoll) Execute the PTN operator, without any loading,

storing, or compiling of programs and directives. The tracelevol argument
is the same as in tile form capability described above.

trun(operatorl ,tracelevoll,Ll,1%l") Execute the PTN operator, without any
loading, storing, or compiling of programs and directives. The tracelevel, L,

and g arguments are the same as in the form capability described above.

18.2 gauge

We type load("gauge") to load tile Gauge profiler capabilities into the PCN shell.
These capabilities suppor_ the collecting of profiles and the timing of runs. More

information about Gauge;},_ _'_rovided in § 15.

profile (program_ ,modulelistl ,nodesi ,filei, donel') Collect a profile for a PCN

program run. program is the PCN program to run, including arguments.
module!isr is a list of module names for which profiles will be collected.

nodes is the nodes on which the profile is to run, and is either an integer (e.g.,

5), ali integer range (e.g., 4-11), or the string "all". file is the file into which

the profile will be written. A ".cnt" extension will automaticMly be added to
this file name. done is a definitional variable that is defined to be the empty

list ([]) when the profile is complete.

profile(program.L,modulelist._,nodes.L,file_) Collecta profilefora PCN l)ro-
gr_m run.The arguments,%rethesame asfortheprofile command described
cd)eve.

profile(program_ ,modulolist_ ,donel') Collect a profile for a PCN program run.
The arguments are the same as for the profile command described above.

The profile will l)e run on all nodes and the profile will be written into the tile

"profile.tnt".

85

profile(program[,modulelist_)Collect a profile for a PCN progr_un run. The

arguments are the same _s for the profile command (lescrtbed _bt,ve, 'l'ht,
profile will be run on ali nodes and the profile wtll be written into the file

"pr ofile, cn t",

tprofile(program_,rundone_,modulelistI,nodesI,file_,donef) Collect a pro-

filefora PCN program run, This isthesame as theprofile capabllityde-
scribedabove exceptthattheprofileistakenwhen therundone argumet|1,is

definedinsteadofwhen theprogram con,pletes,

tprofile(programl,rundone[,modulelistI,nc_desl,filel)Collecta profilefor

a PCN program run, This is the s&me as the profile capability described

above except that the profile is taken when the rundone argument is defined

instead of when the program completes.

tprofile(program_,rundone_,modulelistl,done_)Collect a profile for a PCN

program run. This is the same as the profile capability described above

except that the profile is taken when the rundone argument is defined instead

of when the program completes.

tprofile (programi ,rundonel,modulelistl) Collect a profile for a PCN program
run. This is the same as the profile capability described above except that

the profile is taken when the r,undone argument is defined instead of when the

program completes.

time(programl) Time the execution of the program run, program. The time is

printed when the run completes.

time(program_ ,statsT,done T) Time the execution of the program run, program.

When the run completes done is defined and statistics from the run are defined
to stats and can be printed using the print_statistics capability.

ttime(program.[,rundonel) Time the execution of the progr_m_ run, program. The

time is printed when the run completes. The program is considered completed
when rundone is defined.

tt ime (program_, rundone _, statsl", dons T) Time the execution of the program run,

program. When the run completes done is defined and statistics from the run
are defined to stats and can be printed using the print_statistics capabil-

ity. The program is considered completed when rundone is defined.

print_statistics(statsl) Print the statistics in the stats argument that was
created by a previous use of the time or ttime capability.

18.3 upshot

The Upshot trace collector capabilities are loaded into the PCN shell by running

load("upshot"). These capabilities support the collecting of traces from program
runs. More information _bout Upshot can be found in § 16.

86

log(program[,size|.,nodesl,,filel,donel)Collecta traceof a PC,N program
,'t,n, program is the PCN program to run, hlcludlng arguments, size Is

the maximum munber of events that can be logged on a single node, nodes

is thenodes on which the trac, e is'to vun, and is either an integer ((_,g,, 5), an

integer range (e,g,, 4-I1), or tile string "MI", file is the file Itlto which the
trace will be written, done is a definitional variable that is defined to be the

empty list, ([]) when the trace is complete.

log(programl,size[,nodes_,fiaej.) Collect a trace of a PCN program run. The
_rgulnents are tlle same as for the log command described above.

log(programl,size[,done_') Collect a trace of a PCN program run. The _rgu-

ments are the same _s for the log command described above. The trace will
be run on ;Lllnodes _nd the trace will be written into the file "upshot.log".

: og(program]) Collect a trace of a PCN program run. The arguments are the sa,me

ns for the ;log command described above. The trace will be run on all nodes,
the trace will be written into the file "upshot.log", and the m_xinnlm number

of events that can be logged on a single node is 10000.

t;log(programj ,rundone_ ,size_ ,nodes_ ,f±;lo_ ,done" l) Collect _ trace of a PCN

program run. This is the same as the log capability described above except
that the completed when the rundone argument is defined instead of when the

program completes.

t;log(programJ,rundono_,size_,nodos_,filo_) Collect a trace of a PCN pro-
gram run. This is the same as the log capability described above except that

the coml)leted when the rundono argument is defined instead of when the

program completes.

tlog(programl,rundone_,size_,dono_) Collect a trace of a PCN program run.
This is the same as the log capability described above except that the com-

pleted when the rundone argument is defined instead of when the program

completes.

tlog(program I ,rundone 1) Collect a trace of a PCN program run. This is the same

ns the log capability described above except that the process is completed

when the rundone argument is defined instezd of when the program completes.

18.4 vm_co

We type load("vm_co") to load compiler :apabilities for process mapping into the

PCN shell. These capabilities support the compilation of programs that use special-
ized process mapping facilities described in §PMT.

vm(<files> l) Compile <:files> (_ single file name or a list of file names),

vm(<files>[, tracolevel.L) Compile <files>, displaying debug information as

specified by the integer tracolovel.(0 means no trace inform_ttion', 4 is a lot.)

o 87

vm(<filos>_, tracolevel_, LI, RI) As above, and in addition wait for L to be
defined before running the compile, and define R to be the same as L when tile

compile |,;_s completed.

link(<files>J, "outfilG"]) Link the specified file or files, creating a link mod-
ule named outfile.pam,

link(<files>]., "0utfile"l, tracelevel_) Ditto, displaying d(,bug lnform_-

tion a.s specttied by tile integer tracelevel.

link(<files>I, "outfile'*l, tracelowll, L.L, R]) Ditto, and in addition wait

for L to be defined before running the link, and define R to be the same as L
when tile link has completed.

19 Intel iPSC/860 Specifics

The PCN linker for the iPSC/860 is called pcr_cc, ipsc860. This works in the same
way as other versions of pcncc (§ 9) but requires that you compile on a machine

with i860 crosscompilers installed (typicMly a Sun SPAl_Cstation). The following

example uses the i860 crosscompiler icc to compile a C file my_c. c and a Fortran
file my_f. f and then links the resulting object files with foo. para using the -fortran

flag on the PCN linker:

7

Y, icc -c my_c.c -node

_,if77 -c my.f,f -node

Y,pcncc.ipsc860 -fortran foo.pam

The "custom pcn" that is generated by the linker is named pcn. ipsc860 by

default. This name can be overridden by using the -o flag on pcncc.ipsc860.

The custom pen is run by logging into the iPSC/860 host (SRM), Mloc,_ting the
appropriately sized cube, and invoking the custom pcn. Once PCN termin,_tes, we

free the cube. In the example, we assume that the host is ca]led gamma:

Z rlogin gamma

X getcube -t 4
_,runpcn
_,killcube

_,relcube

88

r

Notice that the custom pen, pcn.ipsc860, is actually invoked by just running

runpcn. The runpcn program is a small wrapper that locates a PCN executable

by searching the current directory followed by the installation directory for a file

called pen. ipsc860 If this search is successful, it loads and executes this file on the
iPSC/860 nodes.

The runpcn can also be called with a -t flag as a command line argument. In
this case, it also handles allocation and release of an appropriate sized cube on the

iPSC/860. For example, the following command will allocate a cube with 4 nodes,

run pen. ipsc860, and release the cube:

runpcn -t 4

As mentioned above, pence, ipsc860 can be asked to prod,ce a custom pen with

a name other than pcn.ipsc860. The name of this custom pen can be given as an

argument to runpcn. The following commands illustrate this.

X pcncc.ipsc860 -fortran foo.pam -o mypcn

rlogin gamma
X runpcn -t 4 mypcn -k 512

This example also shows how to pass command line arguments (in this case, -k
512) to the PCN executable. In general, all runpcn arguments are passed to the

executable except for the -t argument (which must be first) and the custom pen

name (which must be second).

20 Intel Touchstone DELTA Specifics

Creating a custom pen for the Intel Touchstone DELTA is identical to creating one
for the iPSC/860, except that you should use pence, delta rather than pence, ipsc860.
However, you must be careful that you use the DELTA versions of ice and if77, in-

stead of the iPSC/860 versions. This is best achieved by changing your Unix search

path.

Running the custom PCN on the DELTA is significantly different from on the
iPSC/a60, however, because the DELTA does not use an SRM (the front-end, i3_6-

based Unix PC on the iPSC/860). Instead, all .para files (including the system files)

and the custom pen need to be copied onto the DELTA's CFS filesystem using either

ftp or rcp.
The PCN_PATHenvironment variable can be used to tell the custom pcn where to

find the .pam flies, in case the installation directory on CFS is different from that
on the crosscompilation machine.

89

Once all relevant files have been copied onto CFS, the custom pen can be run

using the mexec command. This command specifies the height and width of the

submesh to allocate, and the executable to load on the nodes in the submesh. For

example, the following command would load the custom pen called pen. delta onto
a 4 by 8 node mesh:

Y,mezec "-t(4,8)" -f pcn.delta

If you wish to supply arguments to the custom pcn, those arguments must be

part of the -f flag:

_.mexec "-t(4,8)" -f "pen.delta -k 700"

21 Sequent Symmetry Specifics

Running PCN on the Sequent Symmetry is similar to running PCN on a workstation.
The pcncc command is identical to that on workstations. The -n flag is used to
run PCN with several nodes. For example, the following command starts a 10-node
PCN run-time system:

7,pcn -n 10

The Symmetry has two different C compilers which can be used to compile (',

foreign code. They are cc and atscc, al;see should be used if it is available, as

it supposedly produces better code than the standard cc compiler. Fortran code

should be compiled using the fort, ran compiler.

22 Symult s2010 (Cosmic Environment) Specifics

The Symult s2010 multicomputer uses the Cosmic Environment (CE) as its operating
system. Hence, much of the following also applies to other CE systems.

The PCN linker for the CE is called pence, ce. This can be used for sun3 and

sun4 host and ghost nodes, and the Symult s20!0 nodes. The following examl)le

shows how one would make a custom pen, called mypcn, for the sun4 host, using the
PCN files filel,paraand file2.pam.

9O

% pcncc.ce -cehost -o mypcn filel.pamfile2.pam

This assulnos that file1 .pcn and/or file2.pcn contain reference(s) to file(s) con-
taining foreign functions.

We create a custom pen called mypcn, s2010 for the s2010 nodes as follows:

,

Z pcncc.ce -cenode s2010 -o mypcn filel.pam file2.pam

To run the custom pen mypcn (i.e., mypcn.ce and mypcn.s2010) on 4 s2010 nodes,
allocating a heap size of 240K on each node, we type

getmc s2010 4 mem=4 /, allocate 4Meg nodes */

mypcn -nk 240
freecube

As a final example, we show how to create a custom pcn _r ghost nodes, with

the _reign code written in Fortran:

pcncc.ce -cenode gh -fortran -o mypcn filel.pam

23 Network Specifics

The network version of PCN (net-PCN) uses Berkeley stream interprocess commu-

nication (TCP sockets) to communicate between nodes. A node can run on any
machine that supports TCP. Hence, a single PCN computation can run on several

workstations of a particular type, several workstations of differing types, several

processors of a multiprocessor, or a mix of workstations and multiprocessor nodes.

Current restrictions are listed in § 23.6.

Net-PCN currently operates on the NEXT, Sun, DECstation, HP9000, IBM

RS6000, and SGI Iris.

Using net-PCN is the same as using PCN on other platforms except that the user
must specify on which machines PCN nodes are to run and may also be required to

specify where on those machines PCN is to be found and the commands necessary

for running net-PCN nodes on the given machines.

91

J

There are several different ways of starting net-PCN, each appropria.te for dif-
ferent types of network. We shall consider each of these in turn, starting with the

easiest. First, we provide some background information on the Unix remote shell
co,uJnand rsh, which is used to start net-PCN nodes.

..... 23.1 Using rsh

The Unix remote shell command rsh is a mechanisnl by which a process on one

machine (e.g., my-host) can start a process on another machine (e.g., my-node). A

remote shell command can only proceed if my-host has been given permission to
start processes on my-node. There are two ways in which this permission can be
granted.

• The file/etc/hosts, equiv exists on my-node and contains an entry for my-host.
This file must be created by the system administrator.

• The file .rhosl:s exists in the home directory of the user running the remote
shell on my-node and contains a line of the form

my-host username

whereussrname isthename oftheuserIoginon my-host. Thisfileiscreated

by the user.

Some sites dis_llow the usage of. rhosts files. If. rhosts usage is disallowed and the
host machine is not in /etc/hosts.equiv, remote shells cannot be used to create

remote processes. Alternative mechanisms must 'be used, as described below.
The flfll syntax of the rsh command is as follows:

rsh hostname -1 username command arguments

The username here is the login to be used on the remote machine. If ussrname is not

specified, it defaults to the login name of the user on the local machine. Furthermore,

if the login name used on the local machine is different than the login name on the
remote machine, the . rhosts file for the account on the remote machine must h_tve

an entry allowing access for that account on the host machine.

23.2 Specifying Nodes on the Command Line

The simplest way to start PCN on a network of machines is to use the-,o(los < nodc li,_'t>

argument to pen, where nodelist is a colon separate list of machine n_un(,s on wh:ch
PCN nodes are to run. For example,

pcn -nodes pelican : raven: plover

will start a four-node PCN, with one node on the machine from which this command

is run (the host) and one node on each of the machines named in the nodelist:
pe/ican, raven, and plover.

This startup method only works if:

92

1. rsh (§ 23.1) works from the host to each machine in node:list.

2. Each of the nodes shares a common filesystem with the host. The reason for

this is that the host runs each node in the directory in which pen is i_voked.
If the host and a node have different filesystems, tile rsh used to start up thatr,

node is likely to fail.

If any of these conditions does not hold, then net-PCN must be started by using
one of the alternative methods described below.

Note that we can always create multiple nodes on a single processor by using the

-n command line flag. Tile command

' pcn 'n nnodes

forks nnodes - 1 nodes on the local machine (resulting in a total of nnodes 1)1'o-

cesses) which communicate using sockets. This can be useful for debugging purposes.

23.3 Using a PCN star*up file

The second net-PCN startup method that we consider can be used if nodes do not

share a common file system with the host. However, it still requires that tsh work
from the host to each node.

This method uses a startup file to define the locations of remote PCN node

proc(,sses. Lines in this file identify the machines on which nodes are to be started.

Star*up File Syntax. A line of the form

fork n-nodes

causes 7_-nodes node processes to be started on the local machine. These nodes

communicate with the other nodes via sockets, even though they are oii the same
machine as the host.

A line of the form

exec n-nodes: command SARGS$

causes command to be executed, command is the command that invokes PC'N on

the appropriate machine. The host process replaces SARGS'$ at run-time with the
necessary arguments to PCN to cause it to start n.nodes node processes.

Blank lines in startup files and lines starting with whitespace, Z, or # are ignored.

Examples of Startup Files. A startup file containing the lines

fork I

exec I: rsh fulmar pcn SARGS$

starts one node on the local machine (in addition to the host ,lode) and one node

on the host fulmar, using the PCN executable called pcn.

A startup file containing the line

93

exec 1: rsh fulmar -] bob pcn $ARGS$

starts one node cMled pcn on host fulmar using the PCN executable pcn and the
account for username bob. If we assume the PCN host is being run by user olson

on host host-machine, then the .rhosts file iii the home directory of user bob on

fulmar must contain the entry

host-machine olson

A startup file containing the line

exec 3: rsh fulmar "cd /home/olson/pcn; ./custom-pcn $ARGS$"

runs three nodes oil fulmar PCN executable custom-pcn after changing to the di-

rectory /home/olson/pcn.

A startup file containing the line

exec 2: sh -c 'echo "pcn $ARGS$ a" I rsh fulmar /bin/sh'

is a more complex example that starts up two nodes on fulmar. This example has the

desirable side effect that the tsh process exits after starting the PCN node, whereas
in the other examples the rsh will not complete until the node process completes.

Using a Startup File. We execute net-PCN with a startup file pcn-startup by
using the -s flag on the PCN command line.

pcn -s pcn-startup

23.4 Starting net-PCN without tsh

If your computer system does not support the use of rsh, you will need to start

remote nodes by hand or by using a utility called host-control. See the sepa-
rate manual: R. Olson, Using host-control, Argonne National Laboratory Technical

Memo ANL/MCS-TM-154.

23.5 Ending a Computation

Normally ali nodes of a net-PCN computation will exit upon completion of the

computation or upon al)normal termination of PCN. If for some reason this is not
the case, you must log on to each machine that was executing a net-PCN node and

manuMly kill the PCN process.

23.6 Limitations of net-PCN

PCN_PATH. You must be careful when using net-PCN on remote machines to ensure

theft the PCN nodes can find the .pax files they need. The nodes will execute with
the PeN_PATHenvironment of your account on the host machine. If this environment

variable is not set on the remote machine, the PCN installation directory will be

used. If the needed .pax files are not in the path, the startup file must change to
the correct dire(_ory.

94

Number of Nodes. The number of nodes available in a net-PCN computation is

limited by the number of file descriptors available to a process (an operating system-

imposr_d limit). On modern versions of Unix, there are general]y more than sixty file

descriptors available. Hence, in practice, this is not likely to be a major problem.

Heterogeneous Networks. Currently, no support exists for executing net-PCN
between machines with different byte orders. We know that net-PCN does execute

correctly between different machines if they use the same byte-ordering connection

(we have run net-PCN successfully between Sun-3, Sun-4, and NeXT computers).
However, you must be careful when using foreign code in this case, because, for

example, structure p_cking in C may differ between different compilers.

24 Further Reading

PCN Language The basic text for the PCN language, which provides both an
introduction to the language and a discussion of techniques used to reason about

PCN programs, is

M. ('.handy and S. Taylor, An Introduction to Parallel Programming,
Jones and Bartlett, 1991.

Programming and Proof Techniques The following book provides a particu-

larly readable and entertaining presentation of many of the basic parallel program-

ruing techniques used in PCN:

I. l_bster and S. Taylor, Strand: New Concepts in Parallel Program-

ruing, Prentice Hall, Englewood Cliffs, N.J., 1989.

The proot theory for PCN is based in part on that for Unity, which is described in
detail in

M. Chandy and J. Misra, Parallel Program Design: A Foundation,

Addison-Wesley, 1988.

PCN Toolkit The PTN program transformation tool is described in

I. Foster, Program Transformation Notation: A tutorial, Technical

Report ANL-91/38, Argonne National Laboratory

The host-con'crol program used to manage network implementations of PCN is
described in

R. Olson, Using host-control, Technical Memo ANL/MC, S-TM-154,

Argonne NationM Laboratory.

95

PCN Implementation The techniques used to compile PCN for parallel com-

puters are described in

I. Foster and S. Taylor, A compiler approach to concurrent program

refinement (in preparation).

A detailed description of the PCN run-time system can be found in

I. Foster, S. Tuecke, and S. Taylor, A portable run-time system for

PCN, Technical Memo ANL/MCS-TM-137, Argonne National Labora-
tory, 1991.

The design, implementation, and use of the Gauge performance analysis system is
described in

C. Kesselman, Integrating Performance Analysis with Performance
Improvement in Parallel Programs, PhD thesis, UCLA, 1991.

Applications Papers describing PCN applications include

I. Chem and I. Foster, Design and parallel implementation of two

methods for solving PDEs on the sphere, Proc. Co1¢ on Parallel Com-

putational Fluid Dynamics, Stuttgart, Germany, Elsevier Science Pub-
lishers B.V., 1991.

D. Harrar, H. Keller, D. Lin, and S. Taylor, Parallel computation

of Taylor-vortex flows, Proc. Conf. on Parallel Computational Fluid

Dynamics, Stuttgart, Germany, Elsevier Science Publishers B.V., 1991.

96

Part III

Advanced Topics

25 Customizing Your Environment

Your PCN operating environment can be customized in several ways through the
use of Unix environment variables. For example, recall than when you execute an

intermodule call or issue a load command, PCN searches first the current directory

followed by the PCN installation directory, for the necessary module (.para file).

However, we can change this module search path through the use of the PeN_PATH
environment variable.

The following table shows the environment variables that can be used to cus-

tomize PCN operations, along with brief descriptions and default values for each.
The term INSTALL in a default value represents the directory in which PCN installed:

normally,/usr/local/pcn. The defaults will be used if the environment variables

is not set. That is, the environment variables override the default values.

Variable name _ Description Default value

PCN_PATH Module search path .:INSTALL/paros

PTN_OPERATORS_PATH PTN operator search path INSTALL/ptn/operators

PTN_LIB_PATH PTN library search path INSTALL/ptn/lib

PCN_LIB PCN library directory INSTALL/lib

Each of PCN_PATH,PTN_OPERATORS_PATH,and PTN_LIB_PATHis a colon-separated
list of directories. Directories in a these lists cannot be relative to your home direc-

tory. That is, you cannot have "'" in the path. (For example, setting the PCN.2ATH
to "'/mypams" will not work.)

For example, to add your own paros directory to the PCN module search path,

you would use the following command to set the PCN_PATH.

setenv PCN_PAT':".:/usr/local/pcn/pams:/home/me/mypams"

26 Run-Time System Debugger Options

The PDB version oi"the run-time system incorporates a variety of low-level ext,, Lion

tracing facilities. These facilities are controlled through the following four debug-

level variables. The value of each variable can range from 0 to 9, with 0 meaning no
trace output and 9 maximum trace output.

Emulator Debug Level : This controls debugging information in the main pro-
(:ess scheduling loop. For example, level 2 causes all intermodule calls to 1)e

97

printed, level 3 additionally prints the entry and exit of foreign procedures,

and level 9 prints a complete trace of the PCN Abstract Machine instruction
being executed.

Garbage Collector Debug Level : This controls debugging information in the

garbage collector. For example, level 2 causes a short summary to be printed
each time a garbage collection occurs.

Parallel Debug Level : This controls debugging information relating to the par-

allel aspects of the system. For example, level 5 causes debugging information

about the low level message handling between nodes to be printed.

Global Debug Level : This controls debugging information not covered by the
other three variables. For example, level 1 causes startup parameters and

boot arguments to be printed.

The four debug levels can be manipulated in two ways. On a single node, they can

be modified through the use of the PDB variables ($emu]ator_dl, $gc_dl, Sparallel_dl,
and Sglobal_dl) described in § 14.6.

The debug levels can also be set from the command line. The following command

line arguments set the various debug levels on all nodes, including the host.

-d <:eve:> : This sets all debug levels.

-e <:level> : This sets the emulator debug level. It overrides the level set by the
-d flag.

-g <:ovo:> : This sets the garbage collector debug level, lt overrides the level set
by the -d flag.

-p <levo1> : This sets the parallel debug level, lt overrides the level set by the

-d flag.

The following command enables low-level trace information after the a specified
number of procedure calls.

-r <reduction_number> : Do not print any debugging output until the number

of procedure calls given by reduction_numbor have been executed.

The following command line arguments can be used to set debug levels selectively
in different nodes of a multiprocessor.

-node <node_number> : Only apply the following node debug level flags to a par-

titular node node_number. If this argument is not used or node..number is -1

then apply the following node debug level flags to all nodes.

-nd <:eve:> : This sets all debug levels on the appropriate node(s).

-ne <:eve:> : This sets the emulator debug level on the appropriate node(s). It

overrides the level set by the -hd flag.

98

-ng <level> : This sets the garbage collector debug level on the appropriate

node(s). It overrides the level set by the -nd flag.

-hp <level> : This sets the parallel debug level on the appropriate node(s), lt
overrides the level set by the -nd flag.

-nr <reduction_.number> : Do not print any debugging output on the appropriate

node(s) until the reduction..number reduction has been reached.

For example, the following command would set the emulator debug level to 3

and the garbage collector debug level to 2 on node 5 of a 10 node run.

pcn -n I0 -he 3 -ng 2 -node 5

Ali debugging messages are preceded by the node number from which the message

originated and reduction number on that node when the message was printed. When
debug levels are set on multiple nodes simultaneously the debugging output from
these nodes will be interleaved. The node and reduction number ceonhell)you sort

out these interleaved messages.

Interleaving problems can be avoided by telling the run-time system to log all

debugging messages to files, instead of to the screen, by putting _ -log on tim
command line. This will cause the system to create a Logs directory into which all

debugging output will be printed. Further, the debugging output from each node

will be put in a separate file in this Logs directory.
b,

99

Part IV

Appendices

A Obtaining the PCN Software

The PCN software is availabl e by anonymous FTP from Argonne National Labo-

ratory, in the pub/pcn directory on info.mcs.anl.gov. The latest version of this

document is also available a_t the same location. The following session illustrates

how to obtain the software in this way.

% rtp info.mcs.anI.gov

Connected to anagram.mcs, anl.gev.

220 anagram.mcs.anl.gov FTP server (Version 5.60+UA)ready.

Name (info.mcs. anl.gev :XXX) : anonymous

331 Guest login ok, send ident as password.

Password: /* Type your user name here */

230- Guest login ok, access restrictions apply.

Argonne National Laboratory Mathematics 8:Computer Science Division

Ali transactions with this server, info.mcs.anl.gov, are logged.
230 Local time is Fri Nov 8 18:26:39 1991

frF> cd pub/pcn
280 CWD command successful.

frF> ls
200 PDRT command successful.

150 Opening ASCII mode data connection for file list.

pcn.vl.2.tar.Z

README

pcn_prog, ps.Z

pcn_prog, tar.Z

226 Transfer complete.

78 bytes received in 1.3e-05 seconds (5.9e+03 Kbytes/s)

rtp> binary

200 Type set to I.

ftp> get pcn.vl.2.tar.Z
200 PORT command successful.

150 Opening BINARY mode data connection for pcn.vl.2.tar.Z (XXX bytes).

226 Transfer complete.

local: pcn.vl.2.tar.Z remote: pcn.vl.2.tar.Z

XXX bytes received in YY seconds (ZZ Kbytes/s)

rtp> quit

221 Goodbye.

100

B Supported Machines

The following t_ble lists the machines on which PCN is currently supported, along
with the architecture name.

arch name machine name

dec5000 DECstation 5000 and 3100

deita Intel Touchstone Delta

hp9k3 HP 9000 series 300 running HP/UX

hp9k8 HP 9000 series 800 running HP/UX
intel386 Intel 386 Unix PC running System V 3.2

ipscg60 Intel iPSC/860
iris Silicon Graphics Iris
next040 NeXT

rs6000 IBM RS/6000
s2010 Symult 2010 running the Cosmic Environment

sun3 Sun 3 (Motorola 680x0 based)

sun4 :_un 4 (SPARC based)

symmetry Sequent Symmetry

101

C Reserved Words

The following words may not be used as variable names or procedure names in PCN
programs.

append_stream
char

close_stream

data

decre,_mnt_stream
default

directive
double

exports

foreign
init_recv
init_send

int

length
PCN

stream

stream_send

stream..recv

tuple
p*

pdb*

102

Incompatibilities with Previous Releases

1. The sizeof() command has been changed to length(), lt returns the number of
elements in an array, or the arity of a tuple.

2. The sequential operator now sequentializes everything, not just operations

involving mutable variables.

3. The PCN_PATH environment variable must now contain "." explicitly if you
want the current directory to be searched when the system tries to load a

.pam file. In previous releases, the current directory was always searched first,

regardless of whether "." was in your PCN_PATH or not.

4. Meta operations now use 'var' (matching back quotations) instead of 'var (un-

matched single quote) to denote a string that is to be interpreted as a variable
n am e.

103

E Common Questions

What does it mear_ when PCN prints an Illegal tag message? This usu-
ally means that PCN internM data structure has been corrupted somehow. The

usual way in which this happens is that user code writes past the beginning or end

of an array (either in PCN or foreign code).
To help detect this situation" If you use arrays in your PCN code then you call

do bounds checking by running the program under pcn.pdb. If you use arrays in

Fortran code, many Fortran compilers have a flag to turn on bounds checking (also
known as range checking).

When do I have to relink programs with pcncc? You only need to relink

programs with pcncc when a foreign object file changes. In other words, if you

change and recompile foreign code, then you need to run pcncc to link this new code
into the run-time system.

If you only change the PCN portion of your program, then you should not have

to relink everything with pcncc, although it does not hurt if you do.

104

F Known Deficiencies

1. The pcncomp program does not return a nonzero return code when compilation
fails. This limits its utility in make files.

2. It is possible for PCN to exhaust its internal storage in an irrecoverable manner.

If this happens in a single node run, a No space left message is printed
and PCN terminates. If this happens in a multiple node run, a No space -

broadcasting message is printed and PCN hangs indefinitely. (In ttle multiple

node case, it is sometimes possible for PCN to recover, but it is not likely.)

To work around this problem, try running PCN with a large internal data

space (heap) by using the -k flag. By default, the heap size is 512 kilo-cells.

For example, to double the heap size to 1024 kilo-cells run:

pcn -k 1024

To calculate the amount of memory required for a particular heap size, simply

multiply the number kilo-cells of heap space by 8096. This yields the number

of bytes of memory that will be allocated for heap spac e for this size heal).

3. It is possible for PCN to overflow its internal storage in an irrecoverable man-

ner. If this happens, a heap overflow message is printed and PCN terminates.

To work around this problem, try running your program using the -gs flag to
increase the buffer zone at the top of the heap, which should reduce the chance

of overflowing the heap. The default value for this parameter is 32 kcells. Try

doubling or tripling this value. For example:

pcn -gs 64

Another strategy for working around this problem is to break up any proce-
dures that allocate large amounts of array data into smaller procedures that

allocate less storage.

105

G PCN Syntax

We present two BNF grammars for the PCN syntax. The first is that used by

tile parser; error messages printed by the PCN compiler include a rule from this

grammar to indicate why parsing failed. The second is an expanded, more readal)h,

version of this grammar.

G.1 Parser BNF

Programs : Form] Programs Fol:m
Form : Program I Directive

Directive • EXPORTS Args I FOREIGN Args I DIRECTIVE Args

Program : Heading Declarations Implication
Heading : ID Names '

Names : '(' ')' I '(' NameList ')'
NameList : ID[NameList ','ID

Declarations : /*empty*/I Declarations Declaration
Declaration : CHART Mutables ';'1 INTT Mutables ';'[

DOUBLET Mutables ';' I STREAMT Mutables ';'
Mutables : Mutable I Mutables ',' Mutable
Mutable : lD Dimension

Dimension : /*empty*/] '[' ']' I '[' INTEGER ']' I '[' IO ']'

Implication : Block I Guard IMPLY Block

Block : Var ASGN Sxp I Var '=' Term lID I Call I '{' Op Blocks '}'
Blocks : Implication I Blocks ',' Implication
Op : '1"1'1'?'1';'1 STRING I IDArgs
Guard : Tests] DEFAULT
Tests : Test I Tests ',' Test

Test : ID MATCH RAs ICon Uq Con [Exp Ar Uxp I Type '(' Term ')'
(:on : Exp I STRING I '[' '1' I '1' ')'
Rhs : List [Tuple [Call
Eq : EQINE Q
Ar : '<' I '>' I LEQ I GEQ

Type : INTT I DOUBLET [CHART I TUPLET I DATATI UNKNOWNT

(?,ali : LocalCall I RemoteCall I SystemCall
SystemCall : ' !' ID Args
RemoteCall : LocalCall '@' INTEGER [LocalCall '(-_' QID PArgs
LocalCall : QID ':' QID Args [QID Args
QID : ID I "' lD I "' IO "'

Args : '(' ')' I '(' ArgList ')'
ArgList : Term I ArgList ',' Term
PArgs : /* empty */ I Args

106

Term : STRING [List I Tuple [Exp ICall
List : '[' ']' I '[' Elements ']' I '[' Elements '1' Term ']'
Tuple : '{' Elements '}'1 " "
Elements : Term I Elements ',' Term

Exp : ETerm I Exp '-_' ETerm I Exp '-' ETerm
ETerm : Factor I ETerm '*' Factor I

ETerm '/' Facto r I
ETerm '%' Factor

Factor ' NEm I'(' Exp ')' [LENGTH '(' ID ')'
NEm : Numeric['-' Numeric [Var
Numeric : INTEGER] REAL
Var : ID Subscript
Subscript : /* empty */] '[' Exp ']'

G.2 Expanded BNF

The following syntactic conventions are employed in this expanded BNF:

nonterminal ::= production

[] Surround an optional element.

{ } Surround an element that may occur zero or more times.

I Separates alternatives.
boldface Indicates reserved words.

"quotes" Indicate characters that appear literally.

The symbols unsigned-integer, unsigned-real, character-string, and identifier denote
terminal symbols and are not defined further here.

Comments are delineated by the start-comment symbol/* and the end-comment

symbol */.

Compilation Module

compilation-module "= program-or-directive { program-or-directive }

program-or-directive :'= program-declaration I directive

Directive

directive ::= directive-name "(" directive-arguments ")"

directive-name ::= -directive I -exports I -foreign

directive-arguments ::- [directive-argument { "," directive-argument }]

directive-argument ::= character-string

107

i

Program Declaration

program-declaration ::= program-heading mutable-declarations program-body
,

I'

/ program-heading ::= identifier "(" formal-parameters ")"
formal-parameters ::= [formal-parameter { "," formal-parameter }]
formal-parameter ':= identifier

mutable-declarations ":= { mutable-type mutable-declaration-list ";" }

mutable-type ::= inr I double _1char

mutable-declaration-list ":- mutable-declaration { "," mutable-declaration }
mutable-declaration ':= identifier ["[" [unsigned-integer [identifier] "]"]

program-body ":= block

Block

block ::= assignment-statement I

definition-statement[

program-call I
sequential-composition I

parallel-composition I
choice-composition

assignment-statement ::= variable ":=" expression

definition-statement "= variable "=" term

program-call "= local-program-call]

remote-program-call [

system-program-call I
met a-program- call

local-program-call "= simple-program-call

remote-program-call ::= simple-program-call "@" annotation

system-program-call ::= "!" simple-program-call

108

meta-program-caU ::= identifier

simple-program-call ::= program-specifier "(" actual-parameters ")"
program-specifier ::= [module-name ":"] program-name

module-name ".'= quoted-identifier

program-name ':= quoted-identifier
actual-parameters ":= [actual-parameter { "," actual-parameter }]

actual-parameter "= term

annotation ::= unsigned-integer I character-string I quoted-identifier

quoted-identifier ::= 'identifier '1 identifier

N.B. The single quote characters in the previous line indicate literally that character.

Sequential Composition

sequential-composition ::= "{" ";" block { "," block) ")"

Parallel Composition

parMlel-composition "'= "{" "II" block { "," block)")"

Choice Composition

choice-composition ::= guarded-block]

"{" "?" guarded-block { "," guarded-block } "}"

guarded-block ::= guards -+ block
guards ::= guard-list I default

guard-llst ::= guard { conditional-and guard }
conditional-and "'- " "

guard ::= pattern-match I equality-test I relational-test I data-test

109

pattern-match ::= identifier "?=" pattern

pattern ::= tuple-pattern lUst-pattern

tuple-pattern ::= "{" pattern-elements "}" I
identifier "(" pattern-elements ")"

list-pattern ::= "[" pattern-elements "]" I

"[" pattern-element-list "1" pattern-element "]"

pattern-elements ::= [pattern-element-list]
pattern-element-list ::= pattern-element { "," patt_!rn-element }

pattern-element ::= signed-number I character-string I identifier I pattern

equality-test ':= equality-operand "==" equality-operand I
equality-operand "!=" equality-operand

equality-operand ::= expression I character-string I empty-tuple I empty list

empty-tuple ::= "{" "}"

empty-list ::= "[" "]"

relational-test ::= relational-operand "<" relational-_)perand I

relational-operand ">" relational-operand I

relational-operand "<=" relational-operand I

relational-operand ">=" relational-operand

relational-operand "'= expression

data-test ::= int "(" term ")" I

double "(" term ")" I

char "(" term ")" I
tuple "(" term ")'[

data "(" term ")"

Variable

variable ::= identifier ["[" index "]"]
index ::= unsigned-integer I identifier

110

Expression

expression ::= adding-expression

adding-expression ::= multiplying-expression I

adding-expression "+" multiplying-expression I
adding-expression "-" multiplying-expression

multiplying-expression ::= primary-expression]

multiplying_expression ,,*,, primary_expression I
"/" primary-expression Imultiplying-expression j

multiplying-expression "%" primrrry-expression

primary-expression "= signed-number I

variable I

length "(" identifier ")" I

"(" expression ")"

signed-number ':= ["-"] unsigned-integer I

["-"] unsigned-real

Term

term ::= expression I

character-string I

tuple-constructor I
list-constructor

tuple-constructor "= "{" elements "}" I
identifier "(" elements ")" i

list-constructor ::= "[" elements "]" I

"[" element-list "J" element "]"

elements ':= [element-list]
element-list ':= element { "," element }

element ::= signed-number I character-string I variable [

tuple-constructor I list-constructor

111

ii i llIl

Index

.rood file, 6 nondeterminisnl introduced with,

.t)am file, 6 22

.pcnrc file notation, 21
for automatic execution of shell com- rules, 22

mands, 9 synchronization mechanism, 21

.pdbrc file, 64 use, 23
.tem file, 57 comments in PCN, 16

bwd annotation, 55 compilation of a PCN module
fwd annotation, 55 from the PCN shell, 83

random annotation, 55 with pcncomp command, 6

compilation of a PCN program
access to PCN software, 100 .mod file, 6

annotations, 55 .pam file, 6
applications of PCN, 96 compiler

associativity of operators, 16 auxiliary procedures, 61

auxiliary procedures basic text for techniques, 96

barrier processes, 63 capabilities, 83
naming, 61 toolkit overview, 3

wrappers, 61 compiler directive

dont_transform,57
barrier processes, 63

block of a procedure, 17 entrypoints, 57
blocks virtual.machine, 56

replacement of, 61 for process mapping, 56
sequential, 62 composition operators

transformed (parallel), 62 basic, 2
transformed (sequential), 62 choice, 21

parallel, 19
C sequential, 17

preprocessor, 48 types., 17
with PCN, 50 user defined, 2

(3 relation to PCN, 15 compositionality, 14

capabilities, 83 concurrency
compiler, 83 composition, 14

definition, 9 first-class, 13

Gauge profiler, 85 in PCN shell, 10

process mapping tools, 57, 87 premature termination, 10

Upshot trace col.lector, 86 programming concepts, 13
choice composition consumer of data, 29

execution, 21 copying

mechanism for choosing alternatives, aliasing avoidance, 37
21 example, 39

core PCN, 61

112

basic composition operators, 2 in relation to nondeterministic ex-

extensions, 2 ecution, 15
features, 2 difference list, 41

cpp, 48 distributor
custom pcn definition, 33

creation, 52 stream registration, 34
for Symult 2010, 90

on Sequent Symmetry, 90 entry point, 57

on the DELTA, 89 environment variables, 97
bn the Intel iPSC/860, 88 errors

customizing the PCN environment, 97 illegal define, 11
insufficient memory, 12

data types, 16 logical, 60

debugging performance, 60
command line arguments, 60 examples

levels, 97 boundary value problem, 45

logical errors, 60 height of a tree, 41
of concurrent programs, 4 membership in a list, 40

per-module basis, 64 membership in a list with muta-

performance errors, 60 bles, 40

special needs with PCN, 61 preorder traversa] of a tree, 42
syntax errors, 59 quicksort, 42

warning messages, 59 reverse procedure, 41

declarations execution of a PCN program
form, 17 invocation of the shell, 6

section of a procedure, 17 expressions

deficiencies in PCN, 105 arithmetic, 16
definitional variables

anonymous, 19 files
as communication channels, 23 opening and closing, 79

benefits, 14 reading terms from, 82

comparison with mutable, 20 writing to, 79

definition, 8 foreign language interface
example, 8, 19 definition, 50

interaction with mutable variables, Fortran, 50
37 importing of procedures, 51

properties, 20 linker, 52

representation, 19 toolkit overview, 3
undefined, 19 foreign procedure calls, 50

use, 14 Fortran
value, 8 with PCN, 50

DELTA version of PCN, 89 Gauge

determinism basic text, 96

importance in parallel programming, capabilities, 85
15 data collection, 70

113

data exploration, 71 lists

definition, 4 building of, 29

host database, 72 computation of length, 28
invocation, 71, 72 stream structure, :30

loading, 70 _ransducer, 29
machines available on, 72 load

profile generation, 70 shell capability, 9

properties, 60 logical errors, 60
X window resources, 72

machines supporting PCN, 101

heap overflow, 105 mapping, 14
higher-order programming annotations used with, 53

example, 58 example, 54

features, 58 ' memory depletion in PCN, 105
host-control memory insufficiency

11' basic text, 95 cause, 12
,\ merger, 33

illegal define modules

avoidance, 12 files for, 6

example, 11 input-output, 77

illegal tag, 104 procedure invocation, 48
incompatibilities with previous releases, mutable variables

103 comparison with definitional, 20

incomplete message definition, 18
complex example, 35 interaction with definitional vari-

simple example, 34 ables, 37

installation of PCN, 5 use in parallel blocks, 37
Intel DELTA version of PCN, 89

Intel iPSC/860 ,version, 88 naming of processes, 63
intermodule calls, 6, 48 :net-PCN

example, 8 heterogeneous networks, 95
number of nodes, 95

libraries starting with rsh command, 92
input-output, 77 startup file examples, 93

toolkit overview, 4 startup file method, 93

utilities, 75 startup with -nodes argum(:nt, 92

linker, 57 startup with host-control, 94
for Intel iPSC/860, 88 startupfile syntax, 93

for Symult s2010, 90 termination, 94
invocation, 52 nondeterminism

options, 52 controlled, 13

toolkit overview, 3 in reactive _pplications, 22
when to re[ink, 104 merger as source, 33

list specification of, 15

elements of, 28 notation conventions, 6
list transducer, 29

114

operat ors procedures

associativity, 16 components, 17
precedence, 16 foreign, 51

orphan processes, 69 heading, 17
'_' '_ reserved names, 102

': parallel and sequential code process mapping, 4, 55

interaction, 37 producer of data, 29
interfacing between, 37 profiler

parallel composition data collection, 70

form, 19 data exploration, 71

role, 20 program composition
symbol, 19 example, 2

parallel computation importance, 2

mapping, 53 Program Transformation Notation
multiple processors, 54 definition, 4

on a network, 55 programming techniques
on multicomputers, 55 basic text, 95
on multiprocessors, .55 PTN

PCN language, 13 basic text, 95

basic text, 95 definition, 4
constructs, 17 documentation, 5
model features, 14

pcncc, 52 quicksort

pcncomp definitional, 42

for program compilation, 6 in place, 43
PCN shell alternative, 9 with mutable arrays, 43

PDB

abbreviation of commands, 64 reactive programming

capabilities, 61 examples, 23
definition, 4 reading characters, 81

invocation, 64 reading terms, 82
modifiable variables, 67 recursion

operation, 61 actions, 25
orphan process check, 69 function, 24

process [abels, 63 multipl e calls, 25
read-only variables, 68 rsh, 92

replacement of nested blocks, 61 run-_ime system, 65
use, 64 basic text, 96

variables, 67 machine-dependent facilities, 3

PDB queues screen

examination of, 66 printing to, _0

modification of, 67 writing to, _0
types, 65 search method in PCN, 35

performa.ce error, 60 sequencing variables, 62

precedence of operators, 16 Sequent Symmetry version, '_0

115

sequential composition, 17 syntax

applications, 18 comments, 16

example, 18 data types, 16
shell declarations, 17

.pcnrc command, 9 error detection, 59

capabilities, 9 expanded BNF, 107

concurrent execution of commands, expressions, 16
10 parser BNF, 106

exit, 6 " procedures, 17
functions, 8 strings, 16

header, 7 variable names, 16

intermodule calls, 8 system utili:_iCs, 75
invocation, 6
_.oad capability, 9 templates

sequencing of commands, 10 definition, 2

toolkit overview, 3 threads
variables, 8 definition, 14

state change number of, 14
encapsulation to avoid nondeter- toolkit

minism, 15 basic text, 95

importance in parallel programming, components, 3
15 for program development, 2

Strand compatibility, 75 transformation to core PCN
stream creation of transformer output, 65

as abstract data type, 31 with PDB, 61

definition, 29 tuples, 26
flexibility of, 32 accessing, 27

processing strategies, 32 building, 27
stream communication comparison of, 28

communication patterns, 32 form, 26
consumer, 29 list, 28

example, 30 syntax, 28
implementation, 29

many-to-one, 33 Upshot

one-to-many, 33 analyzing a log, 74

producer, 29 collecting a log, 74

two-way, 34 definition, 4

strings instrumenting a progranl, 73
creation, 81 loading, 74

representation, 16 merging logs, 74

suspension of a test, 21 trace collector capabilities, 86
Symult 2010 version, 90 use, 60

synchronization variables

with choice composition operator, debug, 97

21 debugger, 67

116

definitional, 14

environment, 97

interaction, 37

mutable, 18

names, 16

representation, 8
reserved words, 102

sequencing, 62 ,
virtual machine, 56

size, 58

warning messages, 59
wildcards, 63

wrapper procedures, 61

xpcn

help facility, 71
invocation, 71 "

resource file, 72

117

Distribution for ANL-91/32, Revision 1

Inr ernal :

J. M. Beumer (20)

I. T. Foster (100)

F. Y. Fradin

G. W. Pieper
R. L. Stevens

S. J. Tuecke (100)

D. P. Weber

C. L. Wilkinson

ANL Patent Department

ANL Contract File

TIS Files (3)

External :

DOE-OSTI, for distribution per UC-405 (58)
ANL Libraries

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin

P Concus, Lawrence Berkeley Laboratory

E F. Inf_nte, University of Minnesota

M J. O'Donnell, University of Chicago

D O'Leary, University of Maryland

R E. O'Malley, Rensselaer Polytechnic Institute

M H. Schultz, Yale University

J. Cavallini, Department of Energy - Energy Research

F. Howes, Department of Energy - Energy Research

118

