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INTRODUCTION

The use of short-lived positron emitters together with positron-emission
tomography for probing the dynamics of physialogical and biochemical processes
in the normal and diseased states in man is presently an active area of
research whose bounds continue to expand rapidly. Specifically, the use of
éompounds labelled with the positron emitters carbon-11, fluorine-18,
nitrogen-13, and oxygen-15 have permitted the successful investigation of
function and metabolism in the brain and mvocardium (32). The methodology of
positron computed tomography (PET) and tracer kinetic modelling and the
application of these noninvasive nuclear — imaging techniques to the
understanding and treatment of various pathologic states have been thoroughly
reviewed recently from different perspectives (26,31,32,45).

Understandably, the pathway from production of the appropriately labelled
precursor or final product to subject imaging in a diagnostic or research
environment demands a multidisciplinary effort. One of the pivotal elements
for the continued growth and success of PET, especially in a clinical setting,
is the routine delivery of useful quantities of radioactivity incorporated in
the desired positron emitting Tlabelled compound. To date, the cyclotron
remains the accelerator of choice for production of medically useful
radionuclides. For the shorter lived igotopes, i.e., 0-15 (t k@ = 2.03 min),
N-13 (t 1= 9.96 min), and even C-11 (t 15= 20.38 min) this necessitates close
proximity of the accelerator to radiochemical preparation systems, clinical
fdci]ities, and imaging hardware. Compounds labelled with F-18 (t b@= 109,72
min) pose 1es§ of & restriction because of the longer half-1ife. However, as
has been discussed elsewhere, (45) the more prudent strategy may still dictate

an in-house accelerator facility, even for fluorine-18 labelled compounds.



SINGLE PARTICLE MINICYCLOTRONS

The development of PET has provided the capability of perfarming
noninvasive local biochemical measurements in man that have never before been
possible. The results from the applications of PET have provided a rapid
increase in the number of positron emission tomography centers throughout the
world. However, the major difficulty in the dissemination of PET is the
cyclotron technalogy. Although progress has been made in the chemical
synthesis of positron-emitting labelled radiopharmaceuticals, the design of
cyclotrons required for the on-site production of those short-lived
radionuclides has not changed significantly over the past two decadas. Tnis
has stimulated a number of research investigators to explore this technology
to meet the requirements of the medical environment.

Until recently, pragmatic concerns of physical size limitations and
expense have limited the acquisition of cyclotrons to relatively large
institutions having aggressive clinical programs and/or research objasctives..
However, with the advent of a new era of small, mini, or "baby" cyclotrons,
(48) it is anticipated that a larger audience will be able to share in the
benefits provided by PET. If the focus of the clinical program at hand is
production of the four positron-emitters mentioned above, then several
machines potentially capable of maeting existing production demands are either
under contruction or commercially available ({18,36,48). Machine parameters
and physical descriptions of some of these accelerators have been given
elsewhere (36,45). Most of these "baby" cyclotrons, however, have been
devaloped in a canventional format of the pnysics cyclotron, with multiple
paftic]es and, for the most part, are not designed for low radiation shiz2lding

requirements, or to be used with computerized control.



For simplicity of design and operation, 1low radiation shielding
requirements, low space and cost requirements, a low-energy single-particie
machine 1is desirable. A small 8-1G MeV proton accelerator with 50-100
microamps of current meets these requirements and yet satisfy the needs for
the production of sufficient quantities of radioactivity. The rationale for
suggesting that a low energy, proton only machine is capable of providing the
necessary levels of the four radionuclides in question was provided by an
analysis of the available nuclear reaction yield data for proton bombardmant
of enriched stable isotopes (17,18,42). The proton reactions for production
of the positron emitters of interest and their saturation yields of 8 MeV are
given in Table 1.

Certainly, the yield of a given nuclear reaction at a particular energy
is only part of the story. There are several other considerations that must
be addressed before one arrives at the final radiolabelled product. Some of
these factors include (33): 1) choice of target (i.e., solid, liquid, or gas)
and ease of remote handling and transfer; 2) variables that affect efficiency
of producing the theoretical maximum activity for a given set of machine
parameters, including beam optics, small angle multiple scattering, and target
gas density reduction (43); 3) generation of the desired chemical form of the
]abe]]ed precursor by idirradiation of the appropriate nuclear target,
separation of this precursor from other unwanted labelled species, and their
behavior and distribution as a function of irradiation conditions (9,10); and
4) precursor trapping and extraction efficiencies and radiochemical yields of
the synthetic methods used. With these considerations in mind, a more
réa]istic representation of cyclotron requirements based on user needs is
given in Table 2. Here, we have transformed the current UCLA radiochemical
activity level requirement per nuclide per production run into the theoretical

end of bombardment (EOB) activity that is necessary to arrive at this desired



-

final product. In turn, the anticipated 8 MeV machine parameters based on
these EOB activity levels are listed in column five. In both instances, CS-22
vs 8 MeV, the starting level of activity is more than sufficient to provide
enough final product activity per patient study.

It should be noted that providing curie levels of positron emitters (18)
is not as simple as offsetting the Tlower proton energy (and, thus, yield in
some instances) with a higher beam current. The potential problem of
radiation-induced complications has already been mantioned above. In
addition, potential problems due to excessive target and target containment
foil heating due to higher beam currents must be resolved. Also, the cost,
recovery, and reuse of expensive enriched isotopes must he carefully
considered.

RADIOPHARMACEUTICAL PRODUCTION

It is very 1ittle doubt that with the use of enriched targets sufficient
quantities of F-18 (34), C-11 (8), N-13 (24,47), and 0-15 (19) can be produced
in the form of synthetically useful radiolabeled precursors. The more
compelling issue upon which hinges the success of a low energy, proton only
machine is provision of a suitable F-18 labeled precursor for electrophilic
reactions (e.g, F-18 Fz).

The problem is not one of producing sufficient quantities of F-18 via 8
MeV proton bombardment. As can be seen in Figure 1, roughly 130 mCi/uA at
saturation of F-18 can be produced 8 M2V using 18O(p,n)lsF reaction. A
similar yield for the 20Ne(d,a)lBF reaction requires in excess of 20 MeV

deuterons. Because a single particle machine can produce F-18 only via the
180 (p,n)18F reaction, some concern can be expressed over its ability to
produce F-18 F, ror F-138 labeled 2-deoxy-2-fiuoro-D-glucose ((F-18)2-FDG)

synthesis via electrophilic addition (20,21).



Only limited success was met in producing (F—18)F2 by adding carrier to
an 0-18 0, target (33,34). Recent advances, however, in target cheaistry have
paved the way for demonstrating that the single energy, proton only machine
can be used successfully in a clinical setting. The development of a two-step
radiation-induced exchange of F-18 (from 0-18(p,n)) deposited on the target
wall with carrier Fo added in the second step after recovery of the 0-18 0,
has resulted in production of more than 60 mCi of (F-18)F2 (25,28).
Preliminary results from this laboratory have shown that 25% of the
thecretical yield of F-18 activity can be recovered as F, using this method,
with specific activities that approximate those presently used for production
of (F-18)2-FDG.

Moreover, the contfnued pursuit of new synthetic routes to [F-18]2-FDG
has involved nucleophilic displacement by fluorid2 ion (23,39,41). The use of
fluoride ion is attractive because all of the fluorine-18 produced could be
incorporated into the final product. Furthermore, accelerator production of
F-18 fluoride is more readily achievable, and at the no-carrier added level,
than (F-18)F2. Because of competing reactions, nucleophilic displacement at
C-2 of carbohydrates is difficult and the reaction proceeds only with law
yields using the appropriate 2-0-trifluoromathanesulfonyl-B-D-mannopyranoside
as a substrates (23). The use of the 2,3-sulfate ester of 4,6-benzylidene-1-
0-B-methyl mannopyranoside provides an elegant solution to the problem, giving
excellent yields of the fluoro sugar upon treatment with fluoride ion (41).
Similar encouraging results have been obtained by nucleophilic displacements
on 1,2-anhydro-3,4:5,6-di-0-isopropylidene-1-C-nitro-D-mannitol with potassium
hydrogen fluoride (39), a reaction being extended with modifications, to F-18
fluoride at our Laboratories (35).

Reactions with F-18 fluoride ion are particularly important when high

specific activities are required for the F-18 labeled products. Exquisite



examples of these are radiotracers for the mapping of neuroreceptors,
specifically F-18 labeled neuroleptics for central dopamine neurotransmission
localization (4). A concentrated effort to label F-18 labeled neuroleptics
(e.g. F-18 labelled spiperone and haloperidol) is presently taking place in
various laboratories using nucleophilic aromatic substitution with non-carrier
added F-18 fluoride (6,40) on a variety of organic substrates, e.g. l-aryl-
3,3-dialkyltriazenes, and nitroaromatics (46). This has provided a stimulus
for the exploration and devalopment of new methods of F-18 fluoride production
(44). In fact the literature is replete with mzathodology for the precduction
of "anhydrous" H18F, (11-15,22) and aqueous or anhydrous fluoride ion (16).
Thus, labelled fluorid2 ion can be provided either by proton bcmbardment of a)
enriched 1302 gas target and subsequent recovery of F-18 HF (37,38) or 1BF'
(aq), (27) or b) an enriched 0-18 water target and recovery of 18F'(aq) {44).

THE INTEGRATED REMOTE, AUTOMATED SYSTEM

The integrated radiopharmaceutical production system, designed ta meet
the needs of the medical research environment and to provide the capabilities
for the dissemination of the technology in a clinical setting should have the
following key features: i) operatior by a Nuclear Medicine Technician from
an interactive video-terminal which exercises control on the cyclotron,
radiation monitors, delivery lines and precursor modules, i) efficient
production of radiopharmaceuticals with automated chemistry modules, iii) low
equipment cost, and iv) reduced cost of personnel and space (e.g. small size
of the system).

Consequently, the system, can be viewed as having the following
cemponents; a) a small, microprocessor-video terminal controlled low-energy,
single particle cyclotron, with physical size and weight significantly reduced
compared with other small cyclotrons (45); b) electronically controlled

exchangeable target system for production and delivery of C-11, F-18, N-13 and



0-15 in appropriate chemical forms, c) modules for conversion of these
radionuclides into appropriate chemical precursors, and d) automated chemistry
modules {unit operations) for the synthesis, processing and purification of
the final radiopharmaceutical preparation, in a sterile and pyrogen-free fornm,
suitable for injection into humans.

Thus, it should be clearly recognized that the development of the
technology for production of a number of radiopharmaceuticals for the study of
blood flow, membrane transport, wmetabolism, protein synthesis and
neuroreceptor localization requires not only the development of a low-energy,
single particle cyclotron, but also the targetry, delivery systems, the
chemical methods for production of labeled compcunds in an automated form,
and, firally, the integration of all these components,

Although an integrated system, specifically designed for biomedical
applications, has never been developad, a significant amount of groundwork has
been laid for this technology. A small, simplified low-energy, only a proton
cyclotron has been specifically designed and constructed for this purpose, and
the data available demonstrate that with the use of enriched targsts
sufficient quantities of F-18, C-11, N-13 and 0-15 can be produced in
appropriate chemical form (Table 1).

At UCLA we have also cd2veloped and used remote semiautomated systems,
with the ultimated goal of refining this approach to achieve complete
avtomation of the synthetic process through total microprocessor control
(1). This approach to the design of these systems was dictated by two
requirements. First, the system must be composed of simple, interchangeable
uﬁits, one for each type of operation being carried out (e.g., aqueous-organic
extraction, column purification, sterilization, etc.) Second, these units are
to be composed of common laboratory items whenever possible. Thus, any system

initially constructed for the preparation of a specific compound may easily be



disassembled into its components, which can then be recomdined in a different
way to obtain another synthesis systen. In line with these objectives, each
vait (or step) of the synthetic procedure has been simplified as nuch as
possible which makes the unit operations easily adaptable to a micropracessor
control. The flexibility and reliability of this desiygn approach is attested
by the record of over 1200 production runs for the preparagion of (F-18) 2-FDG
(2), [-11c12-p6 (29), [1-1lclpatmitic acid (3 L-amino acids labelled with
carbon-11 and nitrogan-13, produced enzymatic. from (C-11) carbon dioxide
(3) and (M-13) emmonia (7), and L—[l—llc]leucin- srepared using the Bucherer-
Strecker reaction (5).

In summary, the developmant of this technology, which is within reach the
human resources of Nuclear Madicine, entails building of a core cyclotron
specifically designed for this purpose, and further research into the areas of
nuclear reactions, targstry, isotope delivaery, and ranid chemiczl and
biosynthetic techniques. Thus a project of this kind reguires the dedicatad
tnput of a multidisciplinary group of enginears, chemists, physicists,
computer scientists and physicians, knowledgeable about each of ‘these
technologies and able to foresee tha most important appiications of PET now
and in the future. The work already done in this area, and discussed above,
demonstrates the feasibility of this technology and brings the concept of
widespread use of small cyclotrons in a clinical atmosphere several steps

cioser to reality.
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Table 1. Proton Reactions and Yialds for a 8 MeV Cyclotron

Nuclear Reaction

Saturation Yield(mCi/uA)

30-18 gas target

b0-18 viater target

40
47
82

1292

gaP



Table 2.

Reaction of
Choice

20ne (d, ) 18F

14N( llc

Psc)
160(p, ) n

14y04,n) %0

TCC €S-22

Beam
Conditions®

9.4 IMay
25 A x 1 hr

12,3 MeV
30 pA x 10 min

20 MaVy
20 uA x 15 min

9.4 MeV
30 pA x & min

dpictated Ly
Energies iisted are "on targest”.

user

neads,

bAssumes a thick target.

Cyclotron Production of Radionuclides

Thegretical

12

H' only, 8 MeV fixed

EOR Activity®  Reaction
450 mCi 18g(p,n) 10
1.1 Ci Vyip,e)lic
700 riCi Bea,n)l
1.3 Ci By(p,n) 50

CAssumas use of some targetry as for CS-22.

reaction/trapping/extraction

efficiencies,

Conditions

Beam

o

16 uA x 1 hr

33 uA x 35 m

15k ¥ 153 m

WVuAd x3nm

etc.
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