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INTRODUCTION

The use of short- l ived positron emitters together with positron-emission

tomography for probing the dynamics of physiological and biochemical processes

in the normal and diseased states in man is presently an active area of

research whose bounds continue to expand rap id ly . Spec i f i ca l l y , the use of

compounds label led vrith the positron emitters carbon-11, f luor ine-18,

nitrogen-13, and oxygen-15 have permitted the successful invest igat ion of

function and metabolism in the brain and myocardium (32). The methodology of

positron computed tomography (PET) and tracer kinetic modelling and the

application of these noninvasive nuclear - imaging techniques to the

understanding and treatment of various pathologic states have been thoroughly

reviewed recently from d i f fe rent perspectives (26,31,32,45).

Understandably, the pathway from production of the appropriately labelled

precursor or f i na l product to subject imaging in a diagnostic or research

environment demands a mul t id isc ip l inary e f f o r t . One of the pivotal elements

for the continued growth and success of PET, especially in a c l i n i ca l se t t ing ,

is the routine delivery of useful quantit ies of radioact iv i ty incorporated in

the desired positron emitt ing labelled compound. To date, the cyclotron

remains the accelerator of choice for production of medically useful

radionuclides. For the shorter l ived isotopes, i . e . , 0-15 ( t V2 = 2.03 min),

N-13 ( tV2= 9.96 min), and even C- l l ( tV2 = 20.38 min) th is necessitates close

proximity of the accelerator to radiochemical preparation systems, c l i n i ca l

f a c i l i t i e s , and imaging hardware. Compounds label led with F-18 ( tV2= 109.72

min) pose less of a res t r i c t i on because of the longer h a l f - l i f e . However, as

has been discussed elsewhere, (45) the more prudent strategy may s t i l l d ictate

an in-house accelerator f a c i l i t y , even for f luorine-18 labelled compounds.



SINGLE PARTICLE MINTCYCLOTRONS

The development of PET has provided the capability of performing

noninvasive local biochemical measurements in man that have never before been

possible. The results from the applications of PET have provided a rapid

increase in the number of positron emission tomography centers throughout the

world. However, the major difficulty in the dissemination of PET is the

cyclotron technology. Although progress has been made in the chemical

synthesis of positron-emitting labelled radiopharmaceuticals, the design of

cyclotrons required for the on-site production of those short-lived

radionuclides has not changed significantly over the past t^o decades. This

has stimulated a number of research investigators to explore this technology

to meet the requirements of the medical environment.

Until recently, pragmatic concerns of physical size limitations and

expense have limited the acquisition of cyclotrons to relatively large

institutions having aggressive clinical programs and/or research objectives..

However, with the advent of a new era of small, mini, or "baby" cyclotrons,

(48) it is anticipated that a larger audience will be able to share in the

benefits provided by PET. If the focus of the clinical program at hand is

production of the four positron-emitters mentioned above, then several

machines potentially capable of meeting existing production demands are either

under contruction or commercially available (18,36,48). Machine parameters

and physical descriptions of some of these accelerators have been given

elsewhere (36,45). Most of these "baby" cyclotrons, however, have been

developed in a conventional format of the physics cyclotron, with multiple

particles and, for the most part, are not designed for low radiation shielding

requirements, or to be used with computerized control.



For simplicity of design and operation, low radiation shielding

requirements, low space and cost requirements, a low-energy single-parti els

machine is desirable. A small 8-10 MeV proton accelerator with 50-100

microanps of current meets these requirements and yet satisfy the needs for

the production of sufficient quantities of radioactivity. The rationale for

suggesting that a low energy, proton only machine is capable of providing the

necessary levels of the four radionuclides in question was provided by an

analysis of the available nuclear reaction yield data for proton bombardment

of enriched stable isotopes (17,18,42). The proton reactions for production

of the positron emitters of interest and their saturation yields of 8 MeV are

given in Table 1,

Certainly, the yield of a given nuclear reaction at a particular energy

is only part of the story. There are several other considerations that must

be addressed before one arrives at the final radiolabelled product. Some of

these factors include (33): 1) choice of target (i.e., solid, liquid, or gas)

and ease of remote handling and transfer; 2) variables that affect efficiency

of producing the theoretical maximum activity for a given set of machine

parameters, including beam optics, small angle multiple scattering, and target

gas density reduction (43); 3) generation of the desired chemical form of the

labelled precursor by irradiation of the appropriate nuclear target,

separation of this precursor from other unwanted labelled species, and their

behavior and distribution as a function of irradiation conditions (9,10); and

4) precursor trapping and extraction efficiencies and radiochemical yields of

the synthetic methods used. With these considerations in mind, a more

realistic representation of cyclotron requirements based on user needs is

given in Table 2. Here, we have transformed the current UCLA radiochemical

activity level requirement per nuclide per production run into the theoretical

end of bombardment (EOB) activity that is necessary to arrive at this desired



f i n a l product. In t u rn , the ant ic ipa ted 8 MeV machine parameters based on

these EOB a c t i v i t y levels are l i s t e d in column f i v e . In both instances, CS-22

vs 8 MeV, the s ta r t i ng level of a c t i v i t y is more than su f f i c i en t to provide

enough f ina l product ac t i v i t y per pat ient study.

I t should be noted that providing curie levels of positron emitters (18)

i s not as simple as o f fse t t ing the lower proton energy (and, thus, y i e l d in

some instances) with a higher beam current. The potent ial problem of

radiat ion-induced complications has already been mentioned above. In

add i t i on , potent ia l problems due to excessive target and target containment

f o i l heating due to higher beam currents must be resolved. Also, the cost,

recovery, and reuse of expensive enriched isotopes must he care fu l l y

considered.

RADIOPHARMACEUTICAL PRODUCTION

I t is very l i t t l e doubt that wi th the use of enriched targets su f f i c ien t

quant i t ies of F-18 (34), C- l l ( 8 ) , N-13 (24,47), and 0-15 (19) can be produced

i n the form of synthet ica l ly useful radiolabeled precursors. The more

compelling issue upon which hinges the success of a low energy, proton only

machine is provis ion of a su i tab le F-18 labeled precursor for e lec t roph i l i c

reactions (e .g. F-18 F-).

The problem is not one of producing s u f f i c i e n t quanti t ies of F-18 via 8

MeV proton bombardment. As can be seen in Figure 1, roughly 130 mCi/uA at

saturat ion of F-18 can be produced 8 MeV using ^ 0 ( p , n ) ^ F react ion. A

s im i la r y i e l d for the 2 0 Ne(d ,a) 1 8 F reaction requires in excess of 20 MeV

deuterons. Because a single p a r t i c l e machine can produce F-18 only via the

°O (p,n) i OF reac t ion , some concern can be expressed over i t s a b i l i t y to

produce F-18 F2 Tor F-18 labeled 2-deoxy-2-fluoro-D-glucose ((F-18)2-FDG)

synthesis via e lec t roph i l i c add i t ion (20,21).



Only limited success was mat in producing (F-lS)Fp by adding carrier to

an 0-18 Op target (33,34). Recent advances, however, in target chemistry have

paved the way for demonstrating that the single energy, proton only machine

can be used successfully in a cl inical setting. The development of a two-step

radiation-induced exchange of F-18 (from 0-18(p,n)) deposited on the target

wall with carrier F£ added in the second step after recovery of the 0-18 O2

has resulted in production of more than 60 mCi of (F-18)Fp (25,28).

Preliminary results from this laboratory have shown that 25% of the

theoretical yield of F-18 act iv i ty can be recovered as F£ using this method,

with specific act ivi t ies that approximate those presently used for production

of (F-18)2-FDG.

Moreover, the continued pursuit of new synthetic routes to [F-18]2-FDG

has involved nucleophilic displacement by fluoride ion (23,39,41). The use of

fluoride ion is attractive because al l of the fluorine-18 produced could be

incorporated into the final product. Furthermore, accelerator production of

F-18 fluoride is more readily achievable, and at the no-carrier added level,

than (F-lSjFg. Because of competing reactions, nucleophilic displacement at

C-2 of carbohydrates is d i f f i cu l t and the reaction proceeds only with low

yields using the appropriate 2-0-trifluoromethanesulfonyl-B-D-mannopyranoside

as a substrates (23). The use of the 2,3-sulfate ester of 4,6-benzylidene 1-

0-8-methyl mannopyranoside provides an elegant solution to the problem, giving

excellent yields of the fluoro sugar upon treatment with fluoride ion (41).

Similar encouraging results have been obtained by nucleophilic displacements

on l,2-anhydro-3,4:5,6-di-0-isopropylidene-l-C-nitro-D-mannitol with potassium

hydrogen fluoride (39), a reaction being extended with modifications, to F-18

fluoride at our Laboratories (35).

Reactions with F-18 fluoride ion are particularly important when high

specific act iv i t ies are required for the F-18 labeled products. Exquisite



examples of these are radiotracers for the mapping of neuroreceptcrs,

specifically F-18 labeled neuroleptics for central dopamine neurotransmission

localization (4). A concentrated effort to label F-1S labeled neuroleptics

(e.g. F-18 labelled spiperone and haloperidol) is presently taking place in

various laboratories using nucleophilic aromatic substitution with non-carrier

added F-18 fluoride (6,40) on a variety of organic substrates, e.g. 1-aryl-

3,3-dialkyltriazenes, and nitroaromatics (46). This has provided a stimulus

for the exploration and development of new methods of F-18 fluoride production

(44). In fact the literature is replete with methodology for the production

of "anhydrous" H 1 8F, (11-15,22) and aqueous or anhydrous fluoride ion (16).

Thus, labelled fluoride ion can be provided either by proton bombardment of a)

enriched •*• 0? gas target and subsequent recovery of F-18 HF (37,38) or *°F~

(aq), (27) or b) an enriched 0-18 water target and recovery of F~(aq) (44).

THE INTEGRATED REMOTE, AUTOMATED SYSTEM

The integrated radiopharmaceutical production system, designed to meet

the needs of the medical research environment and to provide the capabilities

for the dissemination of the technology in a clinical setting should have the

following key features: i) operatior by a Nuclear Medicine Technician from

an interactive video-terminal which exercises control on the cyclotron,

radiation monitors, delivery lines and precursor modules, ii) efficient

production of radiopharmaceuticals with automated chemistry modules, iii) low

equipment cost, and iv) reduced cost of personnel and space (e.g. small size

of the system).

Consequently, the system, can be viewed as having the following

components; a) a small, microprocessor-video terminal controlled low-energy,

single particle cyclotron, with physical size and weight significantly reduced

compared with other small cyclotrons (45); b) electronically controlled

exchangeable target system for production and delivery of C-ll, F-18, N-13 and
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0-15 in appropriate chemical forms, c) modules for conversion of these

radionuclides into appropriate chemical precursors, and d) automated chemistry

modules (unit operations) for the synthesis, processing and purif ication of

the final radiopharmaceutical preparation, in a steri le and pyrogen-free form,

suitable for injection into humans.

Thus, i t should be clearly recognized that the development of the

technology for production of a number of radiopharmaceuticals for the study of

blood flow, membrane transport, metabolism, protein synthesis and

neuroreceptor localization requires not only the development of a low-energy,

single part icle cyclotron, but also the targetry, delivery systems, the

chemical methods for production of labeled compounds in an automated form,

and, f ina l l y , the integration of al l these components.

Although an integrated system, specifically designed for biomedical

applications, has never been developed, a significant amount of groundwork has

been laid for this technology. A small, simplified low-energy, only a proton

cyclotron has been specifically designed and constructed for this purpose, and

the data available demonstrate that with the use of enriched targets

sufficient quantities of F-18, C- l l , N-13 and 0-15 can be produced in

appropriate chemical form (Table 1).

At UCLA we have also developed and used remote semi automated systems,

with the ultimated goal of refining this approach to achieve complete

automation of the synthetic process through total microprocessor control

(1). This approach to the design of these systems was dictated by two

requirements. First , the system must be composed of simple, interchangeable

units, one for each type of operation being carried out (e.g., aqueous-organic

extraction, column purif ication, s ter i l izat ion, etc.) Second, these units are

to be composed of common laboratory items whenever possible. Thus, any system

in i t i a l l y constructed for the preparation of a specific compound may easily be



disassembled into its components, which can then be reco.Tibined in a different

way to obtain another synthesis system. In line with these objectives, each

u.iit (or step) of the synthetic procedure has been simplified as much as

possible which makes the unit operations easily adaptable to a microprocessor

control. The flexibility and reliability of this design approach is attested

by the record of over 1200 production runs for th-- preparation of (F-13) 2-FDG

(2), [1-11C]2-DG (29), [l-11C]palmitic acid (3: L-a;nino acids labelled with

carbon-11 and nitrogen-13, produced enzymatic-' from (C-11) carbon dioxide

(3) and (N-13) anrnonia (7), and L-[l- C]leucin- ,-rcpared using the Bucherer-

Strecker reaction (5).

In summary, the development of this technology, which is within reach the

human resources of Nuclear Medicine, entails building of a core cyclotron

specifically designed for this purpose, and further research into the areas of

nuclear reactions, targetry, isotope delivery, and rapid chemical and

biosynthetic techniques. Thus a project of this kind requires the dedicated

input of a multidisciplinary group of engineers, chemists, physicists,

computer scientists and physicians, knowledgeable about each of these

technologies and able to foresee the most important applications of PET now

and in the future. The work already done in this area, and discussed above,

demonstrates the feasibility of this technology and brings the concept of

widespread use of small cyclotrons in a clinical atmosphere several steps

closer to reality.
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Table 1. Proton Reactions and Yields for a 8 MeV Cyclotron

Nuclear Reaction Saturation .Yield(mCi/pA)

1 4 N( P j a ) n C 40

15N(p,n)150 47

13C(p,n)13N 82

1 80(p,n)1 8F 129a

88b

a0-18 gas target

°0-18 v/ater target
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Table 2. Cyclotron Production of Radionuclides

TCC CS-22 H+ on ly , 8 MeV f ixed

Reaction of 8aam Theoret ical ReaTi
Choice Conditions'3 EQP A c t i v i t y " Reaction Condi t i ons c

20Ne(d,Ci)18F 9.4 flsV 450 mCi 1 80(p,n) 1 3F 16 yA x 1 hr
25 yA x 1 hr

1 4 N ( p , a ) n C 12.3 MeV 1.1 Ci 1 4N(p,c0UC 30 pA x 35 m
30 yA x 10 min

1 6 0(p ,a ) 1 3 N 20 MeV 700 nCi 13C(p,n)13M 15 ;uA y 15 m
20 yA x 15 n in

1 4 N(d,n) l b Q 9.4 MeV 1.3 Ci 1 5 N(P.n) l 5 0 30 yA x 3 m
30 yA x Sm min

aDicta ted by user needs, reac t ion / t rapp ing /ex t rac t ion e f f i c i e n c i e s , e t c .
Energies l i s t e d are "on t a r g e t " .

"Assumes a th i ck ta rge t .

cAssui-nes use of soiTie t a rge t r y as fo r CS-22.
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