
BNL--45766

DE92 007624

DEVELOPMENTOFPOLYMERCONCRETE
FORDIKEINSULATIONAT LNGFACILITIES,

PHASEIV, LOWCOSTMATERIALS

FINALREPORT
SEPTEMBER1,1987--APRIL30,1990

LawrenceE.Kukacka

WorkPerformedby:JackJ. Fontana,WalterReams,
andDavidElling

January1991

Preparedby the
GASRESEAHCHINSTITUTE

ENVIRONMENTALANDSAFETYRESEARCHDEPARTMENT
CHICAGO,ILLINOIS60631

ENERGYEFFICIENCYANDCONSERVATIONDIVISION
DEPARTMENTOFAPPLIEDSCIENCE

BROOKHAVENNATIONALLABOI_ATORY
ASSOCIATEDUNIVERSITIES,II_C.

Thisworkwasperformedundertheauspicesof theU.S.Departmentof £_ergy

Washington,D,C.UnderContractNo.De-ACO2-76CHO0016 _ _'_ L,_

_r,

Ml?II•ml

..... II' "] .
w i;UII[I_ATION . It_,,--; ;,_. & & hmw_,, _ _,.

P_(GR190/0259....... ,j. ,.......,-.....,,.,...._..,._,......... ..

_ TTIW_ I_Am_ L Rlm_ kind
Development of Polymer Concrete for Dike Insulation December 1990

at LNG Facilities, Phase IV, Low Cost Materials --

;.
& P_ O,p,WamWw_mqS. Ns.

Lawrence E. Kukacka

9.Ps_ C_mn_ Ns,,_m_4,_ldrm_
IO,P,_ua/we,_ &N_aNs.

Energy Efficiency and Conservation Division BNL-45766__

Department of Applied Science II._ o,_) _,. --
Brookhaven National Laboratory _084- 252 -1144
Upton, N.Y. 11973

_m

l& leee_erlmqlOrpnl=otkm Nmmem_ Addr_s IS.Tyro st Itelx_ L Peril Coversd
Gas Research Institute Final September 1987
Environmental and Safety Research to April 1990
Chicago, IL 60631

14.

IS.hpeleme_ary N_os

i

IL JUbSts'sCt(t.Wmm_) _) -

Earlier ORl-sponsored work at Brookhaven National Laboratory has resulted in the

development and utilization of insulating polymer concrete composites (IPC) as a means of

reducing the evaporation rate of liqulfied natural gas in the event of a spill into a

containment dike, thereby improving the safety at these sites. Although all of the re-

quired properties can be attained with the IPC, it was estimated that a low-cost replace-

ment for the expensive organic binder would be necessary before use of the material would

be cost-effective. In the current program, several latex modified cement formulations

were evaluated and the most promising one identified. A mixture of two carboxylated sty-

rene-butadiene latexes was selected for use in detailed laboratory property characteriza-

tions and a subsequent field evaluation. When compared to the properties of IPC, the

latex-modified insulating materials display somewhat higher thermal, conductivities, great-

er permeability to water, and reduced strength. However, these properties still meet most

of the performance criteria, and the unit cost of the material ($0.29/Ib) is less than

one-fifth that of IPC made with epoxy bi_)ders. When installed as a 0.75-in. thick over-

lay, matGrial costs are estimated to be $1.O0/ft z. Laboratory produced specimens had a

density of -5[lh/ft 3, compressive strength >1500 psi, tensile strength of >200 psi, flex-

ural strength >400 psi, and a thermal conductivity of <0.20 BTU/hr-ft-°F. Lietle change
in the latter occurs upon immersion in water.

W. Oeceme_ Jt#tmlyslsm.Oetc,d_o_m

b. Identifiers/Open.EndedTerms

r.. COS_TIField/Group

IlL Av_llebllllyINltemon; |lk _ _ (11dllliIINWI) 1_|. No.!4 Pmlles
Release Unlimited _8

II). _leeurNyCk.m fl_ls Pqm) I1.
• Unclassified

(FormerlyICTIS-_S)
i i __ 04 Commerce

Research Summary

Title Development of Polymer Concrete for Dike Insulation at LNG

Facilities, Phase IV, Low Cost Materials

Contractor Associated Universities, Inc.

Brookhaven National Laboratory

GRI Contract No. 5084-252-1144

Principal Jack J. Fontana

Investigator

Report September 1987-April 1990
Period

Objective The objective of this project was to develop and field eval-
uate an insulating lightweight concrete composed of low cost

materials which can be used to effectively insulate LNG

storage tank containment dikes.

Technical Cost-effective methods for reducing vapor dispersion dls-

Perspective tances at storage facilities are needed. Since studies have
indicated that the rate and quantity of LNG evaporation are

dependent upon the rate of heat transfer from the dike

surface to the spilled LNG, insulation of the dikes can sub-

stantially reduce boil-off, thereby greatly increasing

safety.

Earlier GRI-sponsored work at BNL resulted in the develop-

ment and application of insulating polymer concrete compos-

ites. These materials consist of low density multicellular

glass and/or ceramic macrospheres bound together with unsat-

urated polyester or epoxy resins, and they meet all of the

necessary property erlteria. Unfortunately, it was estimat-

ed that a low-cost replacement for the organic binder would

be necessary before the materials would be a cost-effective

option for reducing dispersion distances. In the current

program, latex modified cement mortars were evaluated as.a
lower cost substitute for the insulating polymer cement.

Results A series of latex modified cement mortar formulations were

evaluated. Based upon these tests, a mixture of two carbox-

ylated styrene-butadiene latexes was selected for u_e in

detailed laboratory evaluations and a subsequent field eval-

uation. When compared to the properties of the insulating

polymer concrete, the latex-modifed materials have somewhat

higher thermal conductivities, greater permeabilities to

water, and reduced mechanical properties. However, they

still exceed most of the performance criteria. Laboratory

produced specimens typically had densities ranging between

55 and 60 lh/ft 3, compressive strength >1500 psi, tensile

strength >200 psi, flexural strength >400 psi, and a thermal

iii -

conductivity <0.20 Btu/hr-ft,°F. The low permeability of
the material results in little increase in thermal conduc-

tivity upon prolonged immersion in water. Reproducibility

of the properties on a larger scale was demonstrated in a

field evaluation when the composite was applied to horizon-

tal and vertical surfaces previously insulated with a stYro-
foam bead concrete. Excellent bonding and low conduc-

tivities were achieved, but numerous shinkage cracks were

formed, probably due to improper curing. After 9 months in
service, no additional deterioration was apparent and the

_-s__ conductivity was lower than the original values

determined from field cast samples. Material costs are

estimated to be $0.29/Ib or $1.00/ft z when applied as a

0.75-in. thick overlay.

Technical Screening experiments were conducted in which five latexes,
Approach produced by four manufacturers, were evaluated. Styrene-

butadiene, acrylic and epoxy latexes were included. In con-

Junction with each of these materials, a variety of

insulating type fillers were evaluated. Variables included
filler composition and particle size distribution, latex-

type, concentration, and the effect of wetting agents.

Based upon these tests, a styrene-butadiene-based formula-

tion was used in additional experiments. A detailed proper-

ty characterization of the mix was made. Th_ formulation
was further evaluated in a field test in order to determine

if the laboratory-scale test results were reproducible, to

establish placement techniques and to determine the long
term durability.

Project The results from the laboratory development and subsequent

Implications field evaluation verify that lightweight insulating latex
modified cement composites yield properties that make them
suitable for use as durable insulation on containment dikes

at LNG storage facilities. The cost of latex modified

cement is approximately one-fifth that of polyester and

epoxy based insulating polymer concretes. This lower cost,

plus the added simplicity of installing a portland cement
base material, makes latex modified concrete a more cost

effective option for insulating LNG impoundment surfaces

where high strength as well as good insulating properties
are required. As a result, vaporization rates from an

accidental spill and the resulting vapor dispersion dis-

tances can be greatly reduced at a reasonable cost. Beyond
their use at large storage facilities, these materials show

considerable promise for hazard mitigation at IIG end-user
facilities.

Ted A. Williams

GRI Project Manager
- iv -

TABLE OF CONTENTS

Page

INTRODUCTION ... I

OBJECTIVE .. 2

IABORATORY STUDIES ... 2

Materials Selection 3

Screening Experiments 4

I. Compressive Strength 8

2. Flexural Strength 8

3. Thermal Conductivity 8

4. Material Cost Estimate 10

Characterization Tests I0

1 Compressive Strength ii

2 Tensile Splitting Strength 13

3 Flexural Strength 13

4 Bond Strength to Concrete Substrates 15

5 Thermal Conductivity 17

6 Water Absorption 20

EVALUATION .. 23

Characterization of Existing Lightweight Concrete...' 23

Field Installation 24

1 Mix Design .. 24

2 Surface Preparation 25

3 Installation of Screed Rails 25

4 Mixing, Placement and Finishing 28

5 Materials Cost and Manpower Requirements 31

6 Mechanical and Physical Properties Attained 32

7 Video Documentation 35

8 Post-Test Inspection 35

9 Summary ... 37

COMPUTER SIMULATION MODEL DEVELOPMENT 37

CONCLUSIONS AND RECOMMENDATIONS 38

REFERENCES ... 40

APPENDIX I. COMPUTER CODE

APPENDIX 2. USER MANUAL

- V "

LIST OF TABLES

Page

i. Lightweight Latex Modified Cement Insulating

Composites, Survey Experiments 7

2. Compressive Strength vs Curing Time, Survey Experiments 9

3. Flexural Strength Results, Survey Experiments 9

4. Material Cost Estimate, Survey Experiments.. I0

5. Mix Design Used in Characterization Experiments ii

6. Compressive Strength vs Curing Time, Characterization Tests. 12

7. Compressive Strength at Various Temperatures ,. 14

8. Tensile Splitting Strength at Various Temperatures 14

9. Flexural Strength and Modulus of Lightweight

Insulating Composites 17

I0. Thermal Conductivity Results 19

ii. The Effect of Water Immersion on Thermal Conductivity 20

12. Water Absorption Results ' ,. 21
r

13. Thermal Conductivity Results for Latex Contaln_ng
i

Antifoam Agents 22

14. Mix Design Used in Field Evaluation 25

15. Material Requirements for Field Evaluation 31

16. Field Placement Labor Requirements ,...... 33

17. Mechanical and Physical Properties of Lightweight

Latex Modified Mortar Used in Field Evaluation 34

18. Thermal Conductivity of Lightweight Latex Modified Mortar

Overlay After Field Exposure 36

- vi o

LIST OF FIGURES

Page

I. Hollow Spheres Used as Insulating Aggregates in Latex-Modified

Concrete Composites ... 5

2. Sectioned Pieces of Multicellular Glass Spheres Within

Latex-Modified Cement Matrix 6

3. Typical Section From a Conventional Portland Cement Concrete

Slab Insulated With a Latex-Modlfied Concrete Overlay 16

4. Condition of Sump Floor Prior to Placement of Latex-Modified

Lightweight Concrete Insulation 26

5. Typical Wall Section Prior to Placement of

Insulating Overlay ... 27

6. Layout of Sump Floor 29

7. Section of Stump Floor and Wall After Placement of

Insulating Overlay ... 30

- vii

INTRODUCTION

Safety at liquefied natural gas (LNG) storage sites has always been of

uppermost importance to the natural gas industry. Of primary concern is the

accidental spillage of LNG from storage tanks and ancillary piping into

earthen containment dikes or those lined with crushed stone. (1,2) When spilled

LNG comes into contact with warmer dike surfaces, it vaporizes very rapidly

and mixes with the ,atmosphere to form a hazardous flammable mixture. Depend-

ing upon the ambient conditions, these hazardous mixtures can extend downwind

for long distances from i_G storage facilities. Analyses of the problem have

indicated that the rate and quantity of LNG evaperation are dependent upon the

rate of heat transfer from the dike surfaces to the LNG contained in the

dike. (3,4) Typically, the maximum evaporation rate occurs within four to eight

minutes after a spill. Tharefore, since the e_aporation rate depends upc_ the

thermal energy transferred from the earth and dike, reductions in the heat

flow can result in reductions in the total quantity of LNG evaporated per unit

time. One approach to reducing the heat transfer rate is to insulate the dike

surfaces, thereby creating a thermal barrier between the walls and floor of

the dike and the spilled LNG.

Utilization as a dike insulating material imposes severe requirements.

In addition to having low thermal conductivities over temperatures ranging

between ambient and -260°F, the insulating material must have a low perme-

ability to insure that the conductivity is not ipcreased due to the absorption

of rainwater, be durable under normal weathering conditions, have structural

characteristics suitable to support loads from maintenance vehicles exhibit
!

good bonding to a variety of dike materials, and be cost-effective. Conven-

tional insulating materials do not meet all of these criteria.

In 1983, the Gas Research Institute (GRI) started work at Brookhaven

National Laboratory (BNL) to develop materials that met the above criteria.

In Phase I of the program which was conducted under GRI Contract No. 5083-252-

0812, a lightweight polymer matrix composite which met most of the property

criteria was identified. (5) The composite consisted of an unsaturated poly-

ester resin binder and hermetically sealed glass nodules or expanded perlite

aggregate. These insulating polymer concrete (IPC) composites have thermal

conductivities ranging from 0.08 to 0.15 BTU/hr-ft-°F, water absorptions <2%,

low densities (30 to 60 Ib/ft_), and compressive strengths ranging from I000

1

to 3000 psi. Two installation methods (precast panels or cast-in-piace)

appeared to be technically feasible.

In Phase II of the program (GRI Contract No. 5084-252-1144>, optimization

of the IPC formulation and further property characterization were

performed. C8) Attention was focused on improving the shrinkage and fire

resistance characteristics of the composite. Evaluations of possible con-

struction techniques were made, and technology for the installation of the IPC

on concrete substrates was developed. Cost analyses were also made.

Application methods were further evaluated in Phase III of the program. <7)

In this work, it was determined that the IPC formulation could be applied over

concrete or crushed stone substrates using shotcreting techniques similar to

those used in the concrete industry. Test sections produced by this method

exl,lbited thermal, physical and mechanical properties similar to those for

samples made under laboratory conditions. Compared to the use of precast

placement methods, significant cost reductions of up to 30% can be accrued by

the use of shotcreting. It was also estimated that further reductions in cost

would be necessary before the material wo_11d be a cost effective option for

reducing downwind vapor dispersion distances. These reductions could only be

attained by the replacement of the expensive organic binder with lower cost

materials such as latex modified portland cement mortars. This was the goal

of the Phase IV program, the results from which are described in this report.

o

PROJECT OBJECTIVE

The objective of this project (Phase IV) was to develop and field evalu-

ate an insulating lightweight latex modified portland cement mortar which can

be used effectively to insulate LNG storage tank containment dikes. In addi-

tion, as an aid to GRI for the transfer of the technology to the gas industry,

a software computer program was to be developed for use in the calculation of

LNG boil-off rates from uninsulated and insulated dike surfaces. A video

describing the properties and methods for the preparation and placement of the

insulating latex modified mortar was also to be prepared.

lABORATORY STUDIES

lt is well known that conventional lightweight portland cement concretes

have low thermal conductivities when dry. (8) Unfortunately, their open-cell

2

0

structures yield large water absorptions resulting in increases in conductiv-

ity and decreased weatherability. In an attempt to overcome these defi-

ciencies, the use of latex modified cements in conjunction with closed cell

multicellular glass beads was investigated. Since the latex forms a continu-

ous film throughout the portland cement matrix, it was expected to yield a

lower permeability mortar or concrete.

A. Materials Selection

A total of five latexes from four different manufacturers were used in

initial exploratory experiments. Styrene-butadiene, acrylic and epoxy latexes

were included. Descriptions of each are given below.

_de_t_ficatlo_ Source

carboxylated styrene- TYLAC 97-314 Reichhold

butadiene copolymer latex Chemicals, Inc.

carboxylated styrene-acrylic SYNTHEMUL DL-8466 Reichhold

copolymer latex Chemicals, Inc.

styrene-butadiene MOD-A Dow Chemical U.S.A.

polymer emulsion

acrylic latex MC-1834 Rohm and Haas Co.

epoxy emulsion WDE Robson-Downes

Associates, Inc.

Other materials used in these exploratory experiments are listed below.
r

Material Description

Type I Portland Cement general concrete construction cement

Type III Portland Cement high early strength cement

Macrolite spheres multicellular glass spheres with a ceramic

coating from 3M company

P2000 free flowing hollow aluminum silicate

microspheres from Fillite U.S.A.

52-7-S hollow aluminum silicate microspheres from
Fillite U.S.A.

BYK-A-500 a wetting agent from Byk-Mallinckrodt

3

The types of hollow spheres used as insulating aggregates in these exper-

iments are shown in Figure i. Sectioned pieces of the multicellular spheres

within a latex-modified cement matrix are shown in Figure 2.

B. Screenin_ Exper%men_s

Based upon the results from Phases I-III of GRl-sponsored research on
jl

/
insulating lightweight composites, 5"7 the following property criteriawere es-

tablished for the purpose of identifying promising materials: compressive

strength >I000 psi, water absorption <1%, density 40 to 65 lh/ft 3, and thermal

conductivity 0.I0 to 0.15 Btu/hr-ft-°F. , /

The materials described in Section A were used to make a series of light-

weight latex-modified mortars for the purpose of determining the workability

of the slurries and the density and compressive strength of the cured materi-

als. These results are summarized in Table I. General conclusions from these

tests were as follows. The inclusion of large (No. 4 to 3/8-in. sieve size)

macrollte spheres in the slurry (Mix Designs 2 and 8) results in poor work-

ability, and after curing for 7 days, a compressive strength of <I000 psi.

The best results were obtained when the particle size of the macrolite spheres

ranged between 600 microns and 5.65 mm in diameter. In order to produce a

good workable slurry and a cured material with a density in the range of 50 to

54 lh/ft 3, it was necessary to add a small amount of a mixture of free flowing

hollow aluminum silicate microspheres having an average particle size of 70

microns and a bulk density of 8 lh/ft 3 This material was identified as

P2000 by the supplier Fillite U.S.A. The average compressive strength of

these samples at an age of 7 days ranged from 1300 to 1700 psi.

Little effect of the latex composition on the properties of the cured

composite was noted. However, two general observations were made; i) the

concentration of the epoxy-based compound (WDE) required was 2 to 4 times

greater than those for the other latexes, thereby increasing the cost, and

2) the curing rate for the epoxy was less than those for the other latexes.

Based upon these observations, it was decided to eliminate the epoxy latex

from further evaluation.

Additional tests were conducted with samples made in accordance with Mix

Design 9 in Table I. Measurements of the compressive strength, flexural

strength, and thermal conduccivity were made. Estimates of the cost of the

material were also made. Each of these results are discussed below.
4

4

,,__

7

i. Compres@ive Strength

A series of samples were made to determine the strength developed as a

function of curing time. The results from these tests, performed in accor-

dance with ASTM procedure C495, are given in Table 2. Each value listed rep-

resents the average of three samples. The data indicate an increase in

strength from 1032 psi at an age of I day to 1728 psi after 5 days. The

strength remained essentially constant thereafter.

2. Flexural Strength

Flexural strength measurements were made using the procedure described in

ASTM C78-75. Beams 2-in. x 2-in. x 12-in. long were used in these tests. The

data, summarized in Table 3, indicate an average strength of 459 psi. The

standard deviation was ±67 psi. The value for the tangen_ modulus as calcu-

lated from the fracture deflec£ion curves was 456,477 psi. The standard devi-

ation was ±22,340 psi.

3. Thermal Conductivity

Preliminary estimates of the thermal conductivity of this mix were

also made. Values e_&_£ed 24 hr after casting ranged from 0.17 to

0.18 BTU/hr-ft-°F. After curing for 4 weeks, the value decreased to the range

0.126 to 0.129 BTU/hr-ft-°F. When the latter specimens were immersed in water

for 2 hr and tested 5 minutes after removal from the water bath, they exhib-

ited a thermal conductivity of 0.136 BTU/hr-ft-°F. Compared to the fully

cured control, this represents an increase of 5.4%. After exposure to air for

7 days, the thermal conductivity decreased to its original value of

0.129 BTU/hr-ft-°F.

Table 2

Compressive Strength vs Curing Time, Survey Experiments

Cure time, Compressive strength,

day ps la'b'°'d

i 1032

3 1624

5 172.8

7 1735

9 1674

12 1702

14 1537

28 1834

a, Test procedure, ASTM C495

b, Each value represents average of three samples

c, Specimen size, 3-in. diam x 6-in. long cylinders
d, Latex used, TYLAC 97-314

Table 3

Flexural Strength Results, Survey Experiments

Sample No. =' Flexure strength, a,b Tangent modulus,

psi _ psi

49 397 478 406

50 473 441 607

51 417 433 273

52 547 472 503

Average 459 456 477
Standard deviation 4_67 ±22 340

a, Test procedure, ASTM C78-75

b, Specimen size, 2-in. x 2-in. x 12-in. long beams
c, Latex used, TYL%C 97-314

r

4. Mat_r_al Cos_ Estimate

A preliminary estimate of the cost of the materials for the most promis-

ing mix design identified in the survey experiments (Mix Design 9, Table I),

was made. These results, summarized in Table 4, indicate a material cost of

$0.29/Ib, less than one-fifth the cost of IPC made with epoxy binders. 7

Based upon a density of 55 Ib/ft s for the lightweight latex modified cement

composite and an overlay thickness of l-in, to provide uniform insulation,

this material cost corresponds to $1.33/ft s of insulated surface. Due to the

similarity of the latex-modlfied concrete with conventional portland cement

concretes, placement costs can be assumed to be equivalent.

Table 4
i

Material Cost Estimate, Survey Experiments

Material Quantity, Material cost, Unit cost,
wt % S/lD S/lD

Macrolite spheres 30 0.50 0.15
P2000 4.5 0.65 0.03

Type III port_and
cement 41.0 0.I0 0.04

Latex 12.0 0.60 0.07

Water 12.5 0 0

$0.29

For 0.75-in. thickness, $_.00/ft z

C. Characterization Tests

Based upon the results described above, a mix design was selected for use

in a series of tests to fully characterize the material prior to using it in a

small-scale field evaluation. The composition of this mix is given in

Table 5. Three latexes used in the survey experiments (TYLAC 97-314, MOD-A,

and MC-1834) were selected for continued characterization. In addition, an .,_

other latex (TYLAC 68-009) was also evaluated. This carboxylated styrene-

butadiene copolymer latex was supplied by Reichhold Chemicals, Inc. and is

chemically similar to the TYLAC 97-314 except that it is less odorous. This

makes it easier to use in enclosed areas.

i0

Table 5

Mix Design Used in Characterization Experiments

Material Concentration, % wt

Latex I 12.0

Macrolite spheres z

3.5 to 7 i0.0
7 to 14 i0.0

14 to 30 i0.0

Macrospheres Q-Cel 4003 4.5

Type III portland cement 41.0

Water 12.5

i) TYLAC 97-314, TYLAC 68-009, MOD-A, and MC-1834 latexes were used. The
TYLAC 68-009 is a modification of the 97-314 that is less odorous and

designed for use in enclosed areas.
2) Sphere size range in U.S. Mesh

3) Average particle size 75 microns. Supplied by the PQ Corporation.

Properties measured include compressive strength, tensile splitting

strength, flexural strength, bond strength, thermal conductivity, and water

absorption. The results from these tests are given below.

i. Compressive Strength

Series of specimens consisting of the inorganic constituents previously

listed and three carboxylated styrene-butadiene latexes were made for use in

compressive strength measurements. These tests were performed in accordance

with ASTM procedure C495 using 3-in.-diam x 6-in. long cylindrical specimens.

Compressive strength data for two latexes as a function of curing age are

summarized in Table 6. Specimens containing the TYLAC 97-314 latex exhibited

a strength of 1032 psi at an age of i day. Between ages of 3 and 28 days the

strengths were relatively constant and averaged 1690 psi.

The use of the TYLAC 68-009 latex yielded a higher ultimate strength. At

an age of 1 day, the strength was 994 psi. This value increased with curing

ii

t

time up to 4 days where it leveled off at an average value of 2077 psi. Both

latexes reached the I000 psi compressive strength criterion within 24 hr and

had an ultimate strength far above it.

Table 6

Compressive Strength vs Curing Time, Characterization Tests

Compressive strength, psi a,b,a

Cure time, Latex type
day _AC 97-314 TYIAC 68-009

I 1032 994

2 -- 1351

3 1624 --

4 -- 1964

5 1728 1738

6 -- 1999

7 1735 2035

8 1674 --

9 1702 2022

12 1537 2274
14 -- 2832

28 1834 2203

a, Test procedure, ASTM C495

b, Each value represents average of three samples

c, Specimen size, 3-in.-diam x 6-in.-long cylinders

12

p

The TYLAC 68-009 latex was also used in a series of tesus to determine

the effects of temperature on the strength of the composite. Measurements

were made at -50 °, 70° and 140°F, As shown in Table 7, the strength decreased

with increased temperature from an average value of 3069 psi at -50°F to 1445

psi at 140°F. Similar trends were noted for previously developed IPC sys-

tems.(S) "

For comparative purposes, specimens prepared with the MC-1834 were also

tested. The formulation used. for these specimens is identified in Table 1 as

Mix Design No. 13. The results from these tests, also given in Table 7, indi-

cate trends similar to those obtained with the styrene-butadiene latex (TALAC

68-009). Over the temperature range -50 ° to 140°F the compressive strength

decreased 48% from an average value of 2865 psi to 1498 psi. The styrene-

butadiene latex-based specimens decreased 53%. However, at 140°F, both mate-

rials exceeded the design criterion and are strong enough to support mainte-

nance vehicles or other normal load requirements.

2. Tensile Splitting Strength

The tensile splitting strength as a function of temperature was measured

for a series of 3-in. diam by 6-in. long specimens containing the TYLAC 68-009

latex. The test procedure was in accordance with ASTM C496-71. Trends

similar to those for the compressive strength were obtained. At -50°F the

average tensile splitting strength was 484 psi. This decreased to 228 and 210

psi at 70 ° and 140°F, respectively. These data are given in Table 8.

Similar trends were obtained for specimens containing the acrylic latex

MC-1834, but the extent of strength regression with increasing temperature was

less. The strength decreased 51% from a value of 441 psi at -50°F to 214 psi

at 140°F. Over the same range of temperature, specimens containing the TYLAC

68-009 exhibited a 56% reduction.

3. Flexural Strength

Flexural strength tests were performed on samples containing the three

polymer latexes. The tests were performed in accordance with ASTM procedure

C78-75 using 2-in. x 2-in. x 12-in. long beam samples. The results are summa-

rized in Table 9, and they indicate similar strengths (-425 psi) for the TYLAC
i

68-009 and MOD-A-based formulations. The MC-1834 acrylic latex formulation

yielded a strength of 284 psi, a value -33% lower.

13

Table 7

Compressive Strength at Various Temperatures

Compressive strength, psi, at

test temperature, °F

Latex_ype -50° 70° 140____°

TALAC 68-009 3190 2472 1588
3121 2564 1580

2871 2061 1168

AV. 3060 2366 1445

MC-1834 2810 2149 1593

3347 1974 1536

2438 1978 1365

AV. 2865 2034 1498

Test procedure, ASTM C495

Specimen size, 3-in.-diam x 6-in.-long cylinders

i

Table 8

Tensile Splitting Strength at Various Temperatures

Tensile splitting strength, psi, at
test temperature, °F

Latex type -50_____° 70___° 140°

TALAC 68-009 491 238 233

472 228 199

488 218 200

AV. 484 228 210

HC-1834 488 308 231

407 243 202

428 300 209

AV. 441 284 214

Test procedure, ASTM C496-71

Specimen size, 3-in.-diam x 6-in.-long cylinders

14

4. _ond Strength to Concrete Substrates

The bond strength in tension of a lightweight latex modified mortar con-

taining the TYLAC 68-009 latex was determined using the method described in

American Concrete Institute (ACI) Standard 503R-80. Two types of concrete

substrates were considered. The first was a normal density portland cement

concrete and the other was a lightweight concrete containing styrofoam beads,

sometimes referred to as expanded polystyrene concrete (EPS). The latter is

of interest since it has been installed at some LNG facilities as an insulat-

ing material, and the ability to bond to it will be of great importance during

retrofit operations.

Slabs, 4 ft by 4 ft by -4-in. thick, of each material were cast and

allowed to fully cure. After cleaning the top surface by sandblasting, a

primer coat consisting of 50% latex (TYLAC 68-009) and 50% portland cement was

brushed on immediatel_ prior to placing a 0.75-in. thick lightweight

insulating overlay. _% typical section from a portland cement concrete slab

insulated with a latex-modified concrete overlay is shown in Figure 3. In the

case of the bond test with the conventional concrete substrate, failure always

occurred in the insulating overlay. "The average tensile bond strength was 250

psi, in good agreement with the previously'discussed tensile strength value of

228 psi. With the lightweight concrete slabscontaining the expanded polysty-

rene beads, failure was always in the concrete substrate. The average ten-

sile bond strength was a very low 106 psi and it is indicative of the poor

strength and durability characteristics of this type of concrete. The ability

to bond latex modified insulating lightweight concrete overlays to other insu-

lating-type concretes should not be a constraint for possible remedial field

applications.

15

Figure 3. Typical section from a conventional portland cement concrete slab

(bottom) insulated with a latex-modifled concrete overlay (top),

16

Table 9

Flexural Strengths and Modulus of Lightweight Insulating Composites

Flexural strength, Flexural modulus,

Latex type Del l0s psi

TYLAC 68-009 545 4.69

378 6,95

349 6.04

AV, 424 5.89

MC-1834 294 6.47

277 6.85
281 5.60

AV. 284 6.31

MOD-A 425 3.83

511 5.60

349 5.34

AV. 428 4.92

Test procedure, ASTM C78-75

Specimen size, 2-in. x 2-in. x 12-in. beams

! ,,

The effect of thermal shock on the bond was also evaluated. In these
J

tests, liquid nitrogen was poured onto the surfaces of insulated slabs pre-

pared in the manaer described above. After two thermal cycles, neither crack-

ing or disbondent of the insulating overlay were apparent. Upon applying a

tensile load, bond strength results similar to those reported above were ob-

tained. Namely, failure of the slab containing the EPS concrete substrate

occurred within the substrate, and with the conventional concrete substrate,

the failure was in the overlay.

5. Thermal Conductivity

A series of plaques 7 by 7 by l-in. thick were made for use in measure-

ments of the thermal conductivity after exposure to air and water. A Shotherm

QTM-D2 Quick Thermal Conductivity Meter, manufactured by Showa Denko K.K., was

used, The samples tested were composed in accordance with the optimized com-

posite mix design and contained TYLAC 97-314, TYLAC 68-009, MOD-A and MC-1834

17

latexes. These results are given in Table I0. With the TYLAC-type latexes,

the thermal conductivity decrdased during the first 7 days as hydration of the

portland cement progressed After curing in air for 7 days, the values ranged

between 0.131 and 0.136 BTU/hr-ft-°F. The specimens were then fully immersed

in water for 24 hr. Measurements made immediately upon removal of the plaques

from the water indicated conductivities essentially the same as those when the

specimens were first cast (0.19 to 0.21 BTU/hr-ft-°F). However, within 24 to

48 hr of exposure to a laboratory air environment, the conductivities de-

creased to their p"e-immersion values.

Tests were also performed on specimens containing MOD-A and MC-1834 la-

texes. Results obtained were similar to those from the TYLAC-containing sam-

ples.

The eff6ct of prolonged immersion in water on the thermal conductivity

was also investigated. In this work, 7-in. x 7-in. x l-in. thick plaques,

made in accordance with the formulation listed in Table I0, were soaked in

water at ambient temperature for ii days. The test results, summarized in

Table II, indicate similar trends for each of the latex systems. When com-

pared to the conductivities of air dried samples, ali three latex systems

exhibited significant increases within 24 hr, after which they remained rela-

tively constant for the ii day period. Samples containing the MOD-A and

MC-1834 latexes had thermal conductivities of 0.194 and 0.195 BTU/hr-ft-°F,

respectively, upon saturation with water. These values represent increases

when compared to the controls of 19 and 26%, respectively. The TYLAC 68-009

sample increased approximately 32%, thereby indicating a greater amount of

porosity accessable to water. This is discussed further in Section 6, Water

Absorption.

18

Table I0

Thermal Conductivity Results

Thermal conductivity, BTU/ht- ft-°F

Cure time, Latex type: TYLAC 97-314 TYLAC 68-009 MOD-A MC-1834

day

I 0.193 0.210 0.180 0.182

2 -- 0,184 -- 0.163

3 -- 0_181

4 0.137

5 0.136

7 -- 0.131 -- 0.156

Sample Composition

Macrospheres 3.5 - 7 IG,0%
7 - 14 i0.0%

14 - 30 i0.0%

Macrospheres Q-Cel 400 4.5%

Type III Cement 41.0%
Water 12.5%

Latex 12.0% .

; //
,,

/ u

19

/

Table II
i

The Effect of Water Ir_ersion on Thermal Conductivity

Thermal Conductivity, BTU/hr- ft-°F

ImmersiOn time, Latex type: TYLAC 68-009 MOD-A MC-1834

day

0 0.171 a 0.165 a 0 156 a

I 0.227 0.197 0 197

2 0.231 0.190 0 197
3 0.225 0.192 0 197

4 0.224 0.193 0 193

7 0.220 0.193 0 188

8 0.220 0.193 0 192

9 0.219 0.193 0 192

i0 0.216 0o197 0 198

II 0.216 0.202 0 200

a, Air dried specimens

Sample size, 7-in. x 7-in. x 1-in. thick

6. Water Absorption

The water absorption of polymer modified lightweight concrete was mea-

sured using two different techniques. The first involved determinations of

the change in weight after saturation in water. An electrical resistivity

method as described in AASTHO-T277-81 was the second method used.

Test results from weight change measurements are summarized in Table

12. In these tests, samples of two sizes, 3-in.-diam x 6-in.-long cylinders

and 7-in. x 7-in. x l-in. thick plaques, were evaluated after immersion in

water at ambient temperature for times up to II days. Three polymer latexes

at a concentration of 12 wt_ were compared. The following generalizations are

apparent ° I) cylindrical-shaped specimens had significantly lower water

absorptions than the plaques, probably due to their lower surface/volume ratio

and the relative ease of compaction during casting, 2) the use of the MOD-A

styrene-butadiene polymer emulsion resulted in the lowest water absorptions,

and 3) the data for the TYLAC 68-009 and MC-1834-containing specimens exhibit

a great deal of scatter, but in general plaque-shaped samples containing the

20

Table 12

Water Absorption Results

Water absorption, wt%

Imy_ersion Latex type: TYLAC 68-009 MOD-A MC-1834

time, day Sample size C P C P C P

I 2.92 6.3 0.36 4.0 2.37 8 2

2 3.08 6.5 0.50 4.0 2.63 8 5

3 3.20 6.5 0.58 4.3 2.80 8 6

4 3.29 6.6 0.70 4.4 3.04 8 8

7 3.57 6.9 0.96 4.7 3.52 9 0

8 3.65 6.9 1.00 4.8 3.55 9 0
9 3.70 6.9 1.06 4.8 3.62 9 0

i0 3.77 7.0 1.13 4.9 3.74 9.1

II 3.79 7.0 1.15 4.9 3.77 9.1

C, Specimen size, 3-in.-diam x 6-in.-10ng cylinders

P, Specimen size, 7-in. x 7-in. x l-in. thick plaques

former had lower water absorptions. Both series of cylindrical-shaped samples

had similar values. Comparison of these observations with the thermal conduc-

tivity values given in Table ii for the same specimens fail to reveal a clear
i

relationship between thermal conductivity and water absorption. Based upon

theory, it would be expected that the thermal conductivity of the MOD-A speci-

mens would be the lowest, followed by the TYLAC 68-009 and then the MC-1834.

This was not observed experimentally where the MOD-A and MC-1834 systems pro-

duced samples that had conductivities when water saturated of 0.194 and

0.195 BTU/hr-ft-°F, respectively, and the TYLAC 68-009 system

0.222 BTU/hr-ft-°F. The limited number of specimens tested, and physico-

chemical factors affecting the workability of the mix formulations, polymer

distribution within the samples, and the bonding to the fillers, may be the

cause of these descrepancies.

Additional tests were performed to determine if reductions in the water

absorption, and thereby lower thermal conductivities, could be accrued by

increasing the polymer content. Two TYLAC 68-009 latex concentrations (12% wt

21

and 18% wt) were used in these tests which were performed in accordance with _

AASTHO-T277-81.

The test results indicated a permeability value of 991 coulombs for the

sample containing 18% wt latex and 2800 coulombs for the sample with 12% wt

latex. Normally, the permeability values for conventional latex-modified

mortars (3"1 sand-portland cement) vary from 800 to 2000 coulombs, depending

upon the latex concentration and length of cure. Since the water permeability

values for the 12% wt latex-containlng samples were higher than desired, it

was decided that TYLAC 68-010 latex would be used as a partial replacement for

the TYLAC 68-009 in a planned small field evaluation, These resins are iden-

tical except that the former contains a defoam or antifoam system. It's use

was expected to reduce the number of air voids resulting from entrapped air

during mixing of the lightweight concrete formulation, thereby reducing the

permeability to water.

A series of specimens containing 15% wt TYLAC 68-010 were prepared and the

thermal conductivities measured as a function of curing time in air. These

data are summarized in Table 13. The values decreased from

Table 13

Thermal Conductivity Results for Latex Containing Antifoam Agents

Cure time, Thermal conductivity, a,b

day BTU/hr-ft-°F

i 0 173

4 0 165
5 0 160

o

6 0 156

7 0 158

Ii 0 164

15 0 153
25 0 152

32 0 155

a, Latex, 15% wt TYLAC 68-010

b, Specimen size, 7-in. x 7-in. x l-in. thick plaques

22

0.173 BTU/hr-ft-OF at an age of i day to 0.156 BTU/hr-ft-°F after 6 daya.

Beyond that age, little further reduction occurred. A comparison of these

results with those obtained earlier with samples containing 12% wt TYLAC 68-

009 (Table i0), indicates that at early ages the TYLAC 68-010 formulation had

lower thermal conductivitles (0.165 vs 0.181 BTU/hr-ft-°F). However, at ages

beyond 7 days the TYLAC 68-009 had lower values (0.131 vs 0.158 BTU/hr-ft-°F).

The reason for this may be that the water content in the former was decreased

from 12.5 wt% to 9.5 wt% in order to accommodate the increased latex concen-

tration. This reduction in initial water content would be expected to result

in a lower thermal conductivity product at early curing ages. However, upon

further hydration of the cement, the increased density of the cured concrete

would be expected to yield a less porous and therefore higher conductivity

product. Also, upon immersion in water, the reduced porosity would be expect-

ed to maintain the conductivity closer to its air dried value. Unfortunately,

this was not verified experimentally. Based upon these data, a 50:50 mixture

of the two latexes was selected for use in the field evaluation. This [atio

represented a compromise between product density az,d porosity as they affect

thermal conductivity in wet environments. Time and budgetary constraints

prevented a quantitative evaluation of these parameters.

FIELD EVALUATION

In order to determine if the results obtained in the laboratory character-

ization of lightweight latex modified composites could be reproduced in the

field and to demonstrate possible placement techniques, a small field evalua-

tion was conducted. Plans were made and later implemented to piace an insu-

lating overlay on approximately 1650 ft z of horizontal surface and 150 ftz of

verticle surface at a concrete-lined LNG gathering sump, and to compare the

results with those from a polystyrene foam lightweight concrete which had been

commercially installed earlier to insulate the sump. Some of this insulation

had subsequently been treated with an epoxy sealer as a repair technique.

Details of this work are given below.

A. Characterization of Existing Lightweight Concrete

Measurements were made to determine the thermal conductivity of the

expanded polystyrene (EPS) lightweight cemeut concrete insulation that was in

service at the field test site. For use in these tests, several small pieces

of the EPS were removed and sent to BNL. The samples were shipped and stored

23

in plastic bags in order to maintain the moisture content at a level approxi-

mating that when in service. The thermal conductivities of these samples

which contained between 25 and 35 wt% water, ranged from 0.35 to

0.50 BTU/hr-ft-°F. After oven drying the samples, this value decreased to the

range 0.08 to 0.I0 BTU/hr-ft-°F. In contrast, samples of the BNL developed

lightweight latex modified insulating concrete had a thermal conductivity of

-0.20 BTU/hr-ft-°F immediately following full immersion in water for II days

and a pre-immersion value of -0.13 BTU/hr-ft-°F within 48 hr upon exposure to

laboratory air conditions.

Since the field evaluation would necessitate placement of the latex modi-

fied insulating concrete on the EPS concrete, attempts were made to measure

the bond strength between these materials. In these tests, the surface of the

EPS concrete was sandblasted prior to application of the latex modified insu-

lation. Visual inspection of the interface indicated good bonding, but unfor-

tunately the small sample size precluded the performance of tensile bond mea-

surements. Based upon this observation and the results from earlier laborato-

ry studies in which the bond strength to an EPS concrete was measured (see

Laboratory Studies Section C-4), it was concluded that bonding of the two

materials could probably be attained in the field.

B. Field Installation

In November 1988 a styrene-butadiene late_ modified concrete insulating

composite was placed on the sump floor and -70 ftz of side walls at a field

site. Descriptions of the materials used and method of placement are given

below.

I. Mix Design

The mix design selected for use in the field evaluation is given in Table

14. It should be noted that in comparison to the mix design used for the

laboratory characterization work (see Table 5), the latex concentration was

increased from 12 to 15% wt. This was done in order to reduce the permeabil-

ity of the cement matrix, thereby maintaining a low thermal conductivity when

exposed to wet environments.

24

In order to minimize the weighing and mixing'of the various constituents

at the Job site, all of the solid components were mixed and then packaged at

BNL in cardboard boxes. Each box contained aggregate sufficient to produce a

2 ft3 mix.

Table 14

Mix Design Used in Field Evaluation

Material GoDgentratlon. % Wt

Latex" 15.0

Macrolite spheres b
3.5 to 7 i0.0

7 to 14 I0.0

14 to 30 , i0.0

Grefco HP 520o 4.5

Type III portland cement 41.0

Water , 9.5

a, Two carboxylated styrene-butadlene latexes, TYLAC 68-009 and TYLAC 68-010,

both supplied by Reichhold Chemical, Inc., were mixed in equal quantities.

b, Multlcellular glass spheres with a ceramic coating supplied by the 3M Com-
pany. Size distribution in U,S. Mesh.

c, Filler supplied by Grefco, Inc. Average particle size 70 microns.

2. Surface Preparation

Ali of the surfaces that were to be overlaid were scraped and sandblasted.

This was followed by additional cleaning which consisted of scraping off as

much of the epoxy coating and pieces of delaminated portland cement mortar

from the EPS concrete as possible. Both materials had been applied earlier in ,

attempts to repair sections of the EPS concrete. Figure 4 illustrates the

condition of the floor surface after the cleaning was completed, and it is

readily apparent that considerable variation i'n the substrate existed. A,

typical wall section is shown in Figure 5.

3. Installation of Screed Rails

Screed rails were attached to the sump floor in order to facilitate com-

paction and leveling of the insulating material. Wooden strips 2-in. wide by

l-in. thick and wrapped with Mylar tape were used for the rails. Attachment

to the concrete floor was accomplished using 3-in. long screw nails. The

25

_i''_i_i_i

Figure 4. Condition of sump floor prior to placement of latex-modified

lightweight concrete insulation.

26

•_i'_ :._'_ i_̧

Figure 5. Typical wall section prior to placement of insulating overlay.

27

rails were installed so as to divide the sump into 6 strips, the four inner

ones being -5-ft wide and the outer ones -2.5 ft,

A. Mixing, Placement aBd Finishing

An 8 fts cement mortar mixer was used for the mixing of the insulating

latex modified portland cement overlay. First, an amount of prepackaged ag-

gregate sufficient to p':oduce a 2 ft3 batch was placed in the mixer and mixed

for 2 to 3 minutes. The latex and water were then added and ali were mixed

for 3 to 5 minutes.

The horizontal area to be overlaid was wetted with water and then a slurry

containing -50 wt% latex - 50 wt% cement was broomed onto the surface as a

bond coat. The insulating composite mix was transported by wheelbarrow and

spread out on the floor in front of the screed using shovels and rakes, A

vibratory screed riding on the screed rails was used to level and compact the

overlay. Some additional hand finishing was done using magnesium floats.

Several minutes after the overlay was placed, it was covered with a vapor

barrier to prevent the evaporation of water from the insulating concrete. In

this installation, Transguard I00 (a fibrous mat attached to a polyethylene

film) was prewetted and then rolled out onto the surface. The covering.

remained in piace for 24 hr.

The nominal 1-in. thick overlay was placed in strips as indicated in Fig-

ure 6. Strips i and 5 were ~2.5-ft wide, and strips 2-4 and 6 were 5-ft.

Strips i, 2 and 3 were placed on the first day, Strips 4, 5 and 6 on the sec-

ond day. A completed section of the floor is shown in Figure 7.

A 17.5-ft long by 4-ft high section of a vertical wall in the sump was

also overlaid with the lightweight latex modified mortar. The approximate

thickness of the overlay was to be 2-in. The overlay was placed by filling a

2-in. wide annulus between a polyethylene sheet-covered plywood form and the

EPS concrete covered wall surface. Compaction of the composite during place-

ment was accomplished using a vibratory screed motor which was mounted on

vertical beams attached to the form. Unfortunately, wL_en the overlay was

about 50% complete, the form work started to pull away from its anchors, lt

was possible to re-anchor the form before it collapsed, however, the overlay

28

Figure 6, Layout of sump floor.

29

F_gure 7. Section of sump floor and wall aft_r placement of insulating
overlay. _'

3O

4

thickness became irregular varying between 2 and 3-in. A completed section of

the wall is shown in Figure 7.

The quantities of material needed for each floor strip and the wall are

summarized in Table 15, The placement times required for each section are

also given in this Table.

Table 15

Material Requirements for Field Evaluation

Strip No. Placement time, Material required,
min ib

I 45 600

2 45 1500

3 45 1500

4 40 1800

5 40 800

6 45 1800

wall 60 II00

Total 9100

5. Materials Cost and Manpower Requirements

As summarized in Table 15, a total of 9100 Ib of the latex modified

lightweight concrete was placed over floor and wall areas of approximately

1324 ft2 and 70 ft2, respectively. Due to the extreme irregularity of the

thickness, it is not possible to calculate the material cost on an area basis

for the wall. However, for the floor where the overlay thickness was a nomi-

nal l-in., the materials cost of $0.29/ib (see Table 4) translates to

$1.75/ft 2, This can be compared with the estimated $1.33/ft z that was dis-

cussed in Section B-4. The latter was based upon a product density of

55 Ib/ft 3. When the field derived density of 64.8 ib/ft 3 is factored into the

estimate, this increases the laboratory work-predicted cost to $1.56/ftz, The

remaining difference can be attributed primarily to variations in the overlay

thickness, and secondarily to material losses during mixing and placement.

31

Due to salary scale differences, the labor costs of BNL Professional and

Technical Staff personnel have not been used to calculate placement costs,

Time requirements were determined and these are listed below in Table i76 A

total of 129 man hr were required to pre-weight the solid constituents in th4_

laboratory, prepare the surface, fabricate and install forms and guiderails,

and to mix, place and screed the overlay, lt should be noted that the poor

initial condition of the concrete substrata resulted in a large labor require-

ment for surface preparation. This should not be considered typical. Pre-

batching of the aggregate represented 20% of the total labor. For a large-

scale field installation, a considerable reduction in the time required for

this operation should be attainable. The use of larger-scale continuous con-

crete batching and mixing equipment would also significantly reduce the place-

ment time.

6. _echanlcal and Physical Properties Attained

Samples were cast during the placement of the overlay for use in measure-

ments of the mechanical and physical properties of the composite. Compared to

earlier specimens prepared in the laboratory in which compaction was performed

by use of a vibrating table, the field samples were compacted by hand tamping

the molds against the ground or other firm surfaces. The test results from

these specimens are summarized in Table 17.

Compressive strength tests were made on 29 cylinders. The average

strength was 1788 psi with a coefficient of variation of 24.2%. The average

flexural strength of 7 beams was 252 psi and the coefficient of variation

was 31.4%. These large variations can be attributed to slight variations in

the fluid concentrations in each of the 2 ft3 batches, and to differences in

the degree of compaction of the samples. Earlier laboratory samples had an

average compressive strength of 2345 psi and a flexural strength of 424 psi.

Water absorption measurements conducted on 7 samples yielded a value of

0.56%, lower then the samples prepared in the laboratory. The density of 32

32

Table 16

Field Placement Labor Requirements

Operation No. of Men Total time,a
man-hr

Surface preparation 2 32

Mixing of dried aggregate 2 25

Preparation and placement
of' forms and screed guides 2 16

Mixing and placement of

overlay _ 4 56

129

a, Treated area, 1394 ft2

b, Quantity mixed, 9100 Ib

33

TABLE 17

Mechanical and Physical Properties of Lightweight Latex Modified Mortar
Used in Field Evaluation

Compressive Flexural Thermal Density, Water

Sample strength, strength, conductivity, absorption,

No. psi psi Btu/hr-ft-°F Ib/ft 3 %

260 317 0.206 63°4 0.5

261 236 0.191 65.5 0 6

262 307 0.193 62.6 0 7

263 360 0.191 63.2 0 7

264 152 0.193 63.9 0 5

265 226 0.213 61.1 0 45

266 163 0.219 62 7 0 48

267 1171 65 8

268 1458 69 0
269 2012 66 3

270 2149 66 1

271 1943 66 3

272 1905 66 4

273 1088 69 1

274 2233 69 9

275 2084 66 1

276 2000 66 7

277 1741 65 5

278 2153 66 6

279 2783 68 8
280 1871 64 5

281 1214 63 2

282 1099 63 2

283 1703 63 6

284 1714 64 5

285 1970 63 8

286 1882 63 8

287 1451 68 8

288 1718 64 2

289 1172 60 7

290 1600 62 7

291 1313 60 9

292 2584

293 2058

294 1985

295 1145

Mean 1788 252 0.200 64.8 0.56

Std. Dev. 433 79 0.011 2.4 0.i0

Coef.

of Var. 24.2% 31.4% 5.8% 3.7% 18.8%

34

fleld-produced samples was 64.8 Ib/ft 3, approximately 15% greater than the

laboratory values. Lesser agreement was obtained with the thermal conductivity

data. In this case the field samples had a thermal conductivity of O. 200

BTU/hr-ft-°F compared to the 0.159 to 0.131 BTU/hr-ft-aF range measured on

laboratory samples.

7. Video Docume_tation

In order to aid in the transfer of the technology developed in this program

to the gas industry, video personnel from BNL taped all of the operations per-

formed during the field test. After editing, this tape was combined with others

produced in the laboratory to serve as the basis for an instructional video.

This video was delivered to GRI.

8. Post-Test Inspectio_

An inspection of the lightweight latex-modified mortar overlay was made in

August 1989, approximately 9 months after installation. The overlay displayed

many cracks in a spiderweb pattern but no delamination or spalling from the EPS

concrete substrate. Discoloration around the cracks was also apparent. The

crack pattern is indicative of shrinkage cracking which is generally caused by

excessive evaporation of water from the latex modified concrete. In the case of

the latex mortar in this test, the top surface of the overlay was exposed to

ambient temperatures generally in the range of 80 ° to 95°F. In contrast, the

bottom of the overlay was in contact with water saturated EPS concrete at a tem-

perature probably only 55° to 65°F. Thus, the _op surface dried out at a much

faster rate, thereby creating the shrinkage cracks. This problem has recently

been recognized by latex-modified concrete producers and the construction indus-

try, and the most current installation procedures for latex modified cement

overlays on bridge decks specify a wet cure of 48 hr in order to control shrink-

age cracking.

The discoloration around the cracks appears to have been due to the percola-

tion of groundwater up through the substrate and cracked overlay followed by

evaporation from the upper surface.

The only portion of the floor that did not contain cracks was an area which

was generally shielded from direct sunlight by a balcony above it. This observa-

tion tends to support the possibility that the cracking occured due to high

surface moisture evaporation rates.

35

A survey was made of the thermal conductivity of the lightweight latex modi-

fied mortar overlay using a Shotherm QTM-D2 Quick Thermal Conductivity Meter.

These data are summarized in Table 18, and they indicate an average value of

TABLE 18

Thermal Conductivity of Lightweight Latex Modified Mortar Overlay
After Field Exposure

Thermal conductivity,

Panel Noa BTU/hr-ft-OF

6 0.179

0.190

5 0.173

0.173

4 0.184

0.184

3 0.177

0.194

0.167

2 0.194

. 0.213

Mean 0.184

Std. Der. 0.013

Coef. of Var. 7.0%

arefers to Figure 6.

o

0.184 BTU/hr-ft-°F. The coefficient of variation was 7%. Earlier measurements

made on samples cast during the placement of the overlay had an average value of

0.20 BTU/hr-ft-°F.

Thermal conductivity measurements were also made on the wall containing the

insulating latex modified motar overlay. In this case the average value was

0.175 BTU/hr-ft-OF, considerably lower than the control value of 0.476 BTU/ht-ft-

°F for the EPS concrete covered with a cement mortar.

36

9. Summary

Based upon the results obtained during the installation and subsequent

inspection after 9 months of field exposure of the lightweight latex modified

mortar overlay, the following _eoncluslons can be made: I) the permeability of

the insulating overlay is very low, and as a result, the overlay maintains its

low thermal conductivity even in moist environmental areas, 2) the shrinkage

cracking that occurred appears to be related to inadequate installation proce-

dures rather than an inherent problem with the composite, and 3) the composite

bonds well to concrete surface insulation and repair materials, thereby making it

suitable for retrofit applications as well as new construction.

COMPUTER SIMULAT!O_jMODELDV_LO_MENT

As a subcontracted effort with Robert F. Benenati, Inc. a computer software

program was developed for use in the calculation of LNG boil-off rates and dis-

persion distances. A programmed floppy disk which can be used in a PC or equiva-

lent type computer, and a User Manual were prepared. The program is written in

the C program language. Copies of the computer code and the User Manual are

given in Appendix I and 2, respectively.

The personal computer-based program was designed to provide the user with

vaporization rate data for LNG spills within a user-defined LNG storage dike or

other impoundment. By calculating solid conductive heat transfer up through up

to three layers of dike floor and wall materials, the program can be used for

evaluating the effectiveness of dike insulating alternatives in mitigating rapid

vaporization of spilled LNG. Vaporization rates and volumes are provided to

assist the user in determining hazard zones associated with downwind dispersion

of the resulting LNG vapor cloud. Ideally, the user would use calculated vapor-

ization rates as input to an appropriate heavy gas vapor dispersion model or

laboratory experiment.

In addition, the program provides the user with the option of calculating

vapor dispersion distances directly from the program, which includes a simple

Gaussian passive dispersion procedure. However, this dispersion calculation

should be used for comparative purposes only since, as typical of Gaussian dis-

persion models, it neglects important LNG vapor dispersion physics. Dispersion

calculations produced by the program should not be used for site-specific hazard

evaluation or for regulatory compliance evaluation purposes.

37

The objective of the User Manual is to provide program users with informa-

tion on program organization and operation as well as underlying calculation

approaches employed. An error in the program relating to the association of

spill rates to vaporization was recently discovered. Resolution of this program

was outside of the budget limitations of the contract.

CONCLUSIONS AND RECOMMENDATIONS

The results from the laboratory development and subsequent field evaluation

of latex modified lightweight cement composites indicate that the materials have

properties that make them suitable for use as durable load bearing insulation on

containment dikes at LNG storage facilities. The composite bonds well to con-

ventional portland cement concrete, EPSrbased insulating concretes, and polymeric

coatings that are sometimes placed on EPS concrete to reduce water absorption and

improve its durability. As a result of the excellent bonding to these sub-

strates, the insulating composite can be used for retrofit applications as well

as new construction. A thickness of 0.75-in. will provide adequate insulation to

substantially reduce LNG boil-off rates. Based upon this thickness, the cost of

the matl_rials is estimated as $1.00/ft 2.

The recommended procedures for surface preparation, mixing and placement of

the insulating composite are as follows:

i. The overlay must be placed on a clean and structurally sound substrate.

Sandblasting or other mechanical abrading methods should be used to remove

any deteriorated concrete or laitances from the substrate surface prior to

application of the overlay. The degree of uniformity in the flatness of the

surface will determine the amount of overlay material needed to insure a

minimum thickness of 0.75-in. Therefore, any holes or irregularities in the

substrate should be filled using conventional repair materials.

2. Prior to the application of the insulating overlay, the clean substrate

surface should be wetted with water and then a bonding agent consisting of a

50 wt% latex - 50 wt% cement slurry applied. The slurry can be spread using

brooms.

3. For large installations, continuous automated batching of the solid and

liquid constituents in the insulating composite, mixing, and placement, can

most economically be performed using conventional concrete industry equip-

ment such as a concrete mobile. This will also help to insure a homogeneous

38

overlay. Smaller quantities can be batch mixed in conventional drum-type

concrete mixers and placed by hand.

4. After placement, screedlng, and surface finishing, wet curing of the

composite is essential. Ali overlaid surfaces should be covered with a sin-

gle layer of water saturated burlap immediately after the finishing opera-

tion. Then apply a single layer of polyethylene film onto the burlap before

uhe burlap begins to dry. An alternate method is to apply a fog spray di-

rectly onto the overlay. Wet curing should be maintained for a minimum of

48 hr. Air curing until the specified strength or cure time has been

achieved should then be performed.

39

REFERENCES

I. Chatlos, D.J. and Reid, R.C. Boiling and Spreading Rates of Instantaneous

Spills of Liquid Methane on Water. GRI-81/0045, April 1982.

2. Welker, J.R. Vaporization of LNG Spills on Composite Materials, Applied

Technology Corporation, OK, Sept. 1983.

3. "Evaluation of LNG Vapor Control Methods," Arthur, D. Little, Inc.,

Cambridge, MA, Oct. 1974.

4. Fontana, J.J., Cheng, H.C., and Reams, W. Development of an Insulating

Polymer Concrete Overlay for Dike Insulation at Long Island Lighting

Company's LNG Storage Facility, BNL 39906-R, June 1987.

5. Fontana, J. J. and Steinberg, M. Development of Polymer Concrete for Dike

Insulation at LNG Facilities, Final Report, BNL 35699, GRI-84/0193, Nov.

1984.

6. Fontana, J. J., Cheng, H. C. Steinberg, M. Reams, W., and El.ling, D.

Development of Polymer Concrete for Dike Insulation at LNG Facilities, Phase

II, BNL 38808-R, GRI-86/0249, Oct. 1986.

7. Fontana, J. J., Reams, W., and Elling, D. Development of Polymer Concrete

for Dike Insulation at LNG Facilities, Phase III, BNL 40632,

GRI-87/0301, Oct. 1987.

8. "Lightweight Concrete," American Concrete Institute Publication SP-29,

Detroit, MI, 1971.

o

40

APPENDIX I

/.**** 07/03/89 , to beep a brief sound */

void bleep (void)
{
sound (44O);
delay (500) ;
nosound ();
return;
}

/**** 05/24/89 to write base line on screen baseline */

#include <conio. h>
#include <stdio.h>
#define barColor textattr (BLACK + (LIGHTGRAY<<4));
#define stdColor textattr (LIGHTGRA¥ + (BLACK<<4)) ;

,!
/* function prototypes

void baseLine (void) ;
void mycputs (inr, inr, char []) ;

void baseLine (void)
{
barCo Ior; ,,
mycputs (1, 25, " Wellborn Systems

. copyright 1989 ") ;

stdColor;
return;
} /, baseLine bgen. lib */

barText
/**** o3/2Sle9 ,/

tO write text on the base line

#include <conio.h>
#include <stdio. h>
#define barColor textattr (BLACK + (LIGHTGRA¥<<4)) ;
#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

void barText (inr x, char text[I)
{
window (I, I, 80, 25);
barColor;
mycputs (x, 25, text) ;
stdColor;

return; bgen lib */
} /• barText

/**** 04/20/89 tO get the absolute value of a real number absc */

double absv (double arg)
{
return ((arg < 0.0)? -arg:arg) ;
}

l

r _ '

conduction

/**** 03/18/89
function solves the one dimension conduction equation for a fixed

surface temperature boundary condition for up to three zones, eac_h
different

ARGUMENTS:
ts -- surface temperature, deg F

alpha[] -- thermal diffusivity for each zone, sq ft/ht
k[] -- thermal conductivity of each zone,BTU/hr, ft,degF
deltime -- time step, seconds

xi] -- vector of node lengths, ft

til -- vector of node temperatures, deg F

nc[] -- number of nodes in each zone ,/
n -- count of total number of nodes

void conduction (double ts, double alpha[], double k[], double deltim_,
double xi], double tj], inr nc[], inr n)

{
double qin, qout, term, tnew[50];
inr i-O, j-0, jflag-O, getoutflag - 0, ncsum;
ncsum - nc[0];
term - 2.0 * alpha[OI * deltime;

qout - (t[0]- ts) / xi0];
in: qin" (t[i+l] - til]) / (x[i] + x[i+l]);
in: tnew[i] - t[i] + term / x[i] * (qin - qout) ;

if (getoutflag) goto getout;
if (Jflag){ term _ 2.0 _* alpha[j] * deltime; jflag = 0;}

if (!qin) goto getout;

qout - qin;
if (++i < ncsum-l) goto in;
if (i -- n-l){ qin - 0.O;getoutflag = i; goto tn;}

gin- (t[i+l] -til]) / (x[i] + (x[i+l] * k[j]) / k[++j]);
ncsum +- nc[++j];
jflag = i;
goto tn;

getout: for (j = O; j <= i; j++){
t Ij] = tnew[j];}

return;

} /, conduction dike. lib */

p

/**** 03/30/89 to assign coordinate values to all nodes coordina
end insure that node boundaries coincide with zone

boundaries; function returns n, the count of nodes in
each zone. lt also returns the total count of all nodes.

Max nodes n I00, max zones u 3.

ARGUMENTS:

11 - length of zone one, inches

12 - length of zone 2
13 - length of zone 3

1[] - coordinate vector for all nodes,li0]=0, l[i] = 11+12+i
no[] - count of nodes in each zone

nodePos[] - last node in zones 1 and 2

/* function prototypes */

inr coordinates (double, double, double, double[], inr[I, inr[]);

inr coordinate_ (double 11, double 12, double 13, double i[], inr nc[]
inr nodePos[])

{
inr i, ncsum - 0, zone - 0;

double xi] _ {0.0,0.01,0.01,0.02,0.02,0.03,0.04,0.05,0.05,0.I,0.I,0.25,0.25,
0.5,0.5,I.0},

zoneLength; /* boundary of current zone, inches */
i[0] u 0.0;
nc[2] - no[li - nc[0] = 0;
zoneLength - Ii;
for (i - I; i < s0; i++){

l[i] - l[i-l] + ((i<=15) ? x[i] : 1.0);

if (l[i] >- zoneLength){
nc[zone] = i - ncsum;
nodePos[zone] = i;
ncsum += no[zone++];

l[i] = zoneLength;
switch (zone){

case I:

if (12 == 0.0) return i;
zoneLength += 12;
break;
case 2:

if (13 == 0.0) return i;

zoneLength += 13;
break;
default:

return i;}
}}

if (1149] > zoneLength) 1149] = zoneLength;
return 50;

} /* coordinates dike. lib */

I**** 06122189 to turn cursor on cursoron */

#include <conio.h>
#include <dos.h>
#include <stdio.h>

*/
I* function prototypes

void cursorOn (inr);

void cursorOff (inr start)
{
union REGS regs:
inr end - 13;
regs.h.ch - (char)start;
regs.h.cl - (char)end;
regs.h.ah - 1;
int86(0x10, ®s, ®s);

return; bgen.lib */
} I, cursor0n

exit

/**** 06/22/89 to turn cursor off cursroff */

#include <conic. h>
#include <dos. h>
#include <s_dio. h>

*/
/* function prototypes

void cursorOff (void) ;

void oursorOff (void)
{
union REGS regs;
regs.h.ch - 0x20;
regs.h.ah - 1;
int86(0x10, ®s, ®s);
return;
} /, cursorOff bgen.lib */

• main */

I**** 09102189

#include <conio.h>
#include <stdio.h>
#include <b:dike.h>

#include <time.h>
*/

I* function prototypes

int coordinates (double, double, double, double [], inr [], int []);
void cursorOff (void);
void cursorOn (int);

void dikeDim2 (int, int);
void dikeDim3 (inr, int, int, double []);

double dikeDimension (int, int, int, double, double [], double []);
void dike_Materials (int, double *, double [][4]);

' void disclaim (int, inr, int far *, inr);

inr dispMatlPropt (int, double *, double[I[4]);
void distance (char, double, double, double);
void draWAbox (int,int,int,int,char ,,char *);

inr far * eqpList (void);
double flashFraction (double);

void floorWall (int, double []);

int getKey (int, int, char *[], int, int);
double getNum (void);
void nodeLength (int, double [], double []);

void mycputs (int, int, chart]);
void oneLayerBoiloff (double, double, double, double, double [],

double *, double *);

double pipeFlow (double, double, double, double, double, double, double *);
void report (int,int,int,double,double,double[],double,d°uble'd°uble'

double[],double,double[][4],double,double,d°uble);

void report0 (inr, double, double, double);
void report1 (double) ;

inr report2 (double) ;
int rerun (void) ;

int respond (int, inr);

int spillFacts (double *, double *, double *);
void splash0 (int, int, int far *, int);

void splash1 (int far *, inr);
double tank (double *, double *, double *, double *, double *, double *);

void transient (double [], double [], double [], double [], double [],
int [], int, int[]);

void tansientl (double [], double [], double [], double [], double [],
int [], inr, int[]);

void twoLayerBoilOff (double, double [], double [], double, double [],
double [], double *, double *);

void warning (inr, double, double);
char weather (void);

main()

{
inr i, x, y;
int far *videoptr;
double ii,12,13, floorArea;

alpha[0] = alpha[l] = alpha[2] = k[0] = k[l] = k[2] = 0.0;
videoptr = eqpList () ;

splash0 (1, l, videoptr, 0x0700);
disclaim(l, I, videoptr, 0x0700);

splashl (videoptr, oxuTuu);
start:barText (30, "selection keys only");

timelOverDike - time2OverDike - dispISource = disp2Source _ 0.0;
shape - dikeDetails (&style, &typecon) ;
tankVol- tank (&tankHeight, &tankDia, &htUllage, &ullagePress, &ullageVol,

flashFrac - flashFraction (ullagePress);
dikeVol- dikeDimension (style, shape, typecon,tankDia, dimension, dikeArea);

dikeVapVol - dikeVol - tankArea * dimension[0] ;
if (dikeVol < tankVol) warning (i, dikeVol, tankVol);

else if (dikeVol < 1.1 * tankVol)warning (0, dikeVol, tankVol);
floorWall (typecon, thickness) ;
dikeMaterials (typecon, &soilMoisture, propts);

spillMode- spi11Facts (&spillRate, &spillTime, &pipe_i_d);
floorArea - dikeA_ea [0];

if(spillMode --- 2) 11 - pipeFlow (pipe_i_d, htUllage,
ullagePress, floorArea, tankArea, spillTime, &spillRate

if (11 < spi11Time) spi11Time - 11;
windTemp (&windSpeed, tempture);
ambientTemp - tempture [0];

barText (30, " patience n) ;
mycputs (10, 12, "calculating - Please wait") ;

cursorOff ();

report (shape, style, typecon, tankDia, tankHeight, dimension,
htUllage, ullagePress, ambientTemp, thickness, windSpeed,

propts, soilMoisture, tankVol, dikeVol);

report0 (spillMode, pipe_i_d, spillRate, spilITime);

ullageVol - tankArea * htUllage; /* correct dike vapor vol and dike */
ullageLiqHt - ullageVol / dikeArea[0] ; /* wall area due to liquid */

dikeVapVol = dikeVol - ullageVol - tankArea *(dimension[0] - ullageLiqHt);
dik_WallArea = dikeArea[1] * ullageLiqHt / dimension[0] ;
dikeArea[1] = dikeWaliArea;

/* calculate boiloff fro
I[0] = thickness[0];

111] = thickness[li;
alpha[2] = propts[0][3];
k[2] = propts[0][2];

switch (typecon){ /* dike with liner */
case 1:

case 2 :

alpha[0] - alpha[l] = propts[typecon] [3];
k[0] = k[l] = propts[typecon] [2];

doit:twoLayerBoilOff (ambientTemp, k, alpha, dikeVapVol,dikeArea, i,

&timelOverDike, &displSource) ;
break;

case 3 :

alpha[0] = propts[typecon] [3] ;
alpha[l] = propts[typecon-l] [3] ;

k[0] = propts[typecon] [2] ;
k[l] = propts[typecon-1] [2];
goto dolt ;

case 4 :

alpha[0] = alpha[l] = propts[3] [3] ;

k[0] = k[1] = propts[3][2];
goto doit ;

case 0: /* dike without !
alpha[0] = propts[0] [3] ;
k[0] = propts[0] [2] ;

oneLayerBoiloff (ambientTemp, k[0], alpha[0], dikeVapVol,dikeArea,
&timelOverDike, &displSource) ;

}

+

reportl (time1OverDike) ;

/, calculate boil off from insulated dik

alpha[2] = propts[0][3];

k[2] - propts[0][2];
li0] - thickness[0] + thickness[2];
l[l]- thickness[l] + thickness[3];
switch (typecon) {

case 0:

alpha[O] - propts[4][3];
alpha[l] - propts[4][3];

k[O] - propts[4][2];
k[l] - propts[4][2];
break;

case 1:
case 2 :

k[O] - I[0] / (thickness[O] / propts[typecon][2] + thickness[2] /propts[4][2]) ;

k[l] = i[i] / (thickness[l] /propts[typecon] [2] + thickness[3] /propts[4] [2]) ;

alpha[O] = i[0] * k[O] / (thickness[O] * propts[typecon] [0] +thickness[2] * propts[4][O])

alpha[l] = i[I] * k[l] / (thickness[l] * propts[typecon][O] +thickness[3] * propts[4] [0])

break;
case 3 :

k[O] = i[0] / (thickness[OI / propts[2][2] + thickness[2] /propts[4][2]) ;

kill = i[i] / (thickness[l] / propts[l][2] + thickness[3] /. propts[4][2]) ;

alpha[0] = li0] * k[0] / (thickness[0] .* propts[2][0] +thickness[2] * propts[4] [0])

alpha[l] = li1] * k[l] / (thicknessI'.l] * propts[l][0] +thickness[3] * propts[4] [0])

break;
case 4 :

k[0] = li0] / (thickness[0] / propts[3][2] + thickness[2] /propts [4][2]);

kill = l[1] / (thickness[li / propts[2][2] + thickness[3] /propts [4] [2]) ;

alpha[0] = li0] * k[0] / (thickness[0] * propts[3][0] +thickness[2] * propts[4] [0])

alpha[li = i[I] * kill / (thickness[l] * propts[2][0] +thickness[3] * propts[4] [0])

}
twoLayerBoilOff (ambientTemp, k, alpha, dikeVapVol, dikeArea, i,&time2OverDike, &dis

i = report2 (time2OverDike);
if (i)goto end;
weatherMode = weather () ;

fprintf (stdprn, "\n\n Downwind Dispersion Information"
"\n (based on weather type %c)\n"

,,\n\nFor the dike 'as built',",weatherMode) ;
distance (weatherMode, windSpeed, displSource/dimension[l], dimension[l]) ;

fprintf (stdprn, "\nFor the dike with insulation,");
distance (weatherMode windSpeed, disp2Source/dimension[l], dimension[l]) ;, ,,);
end:fprintf (stdprn, "

if (!rerun()) goto start;

exit(0) ;

}

I**** 06/02189 dikedeta
to get dike shape, style, and construction materials */

#include <conio. h>
#include <stdio.h>

char *shapes[2]-{
"Circular",

"Rectangular"
};

char *styles[3]w{
"Straight Sides",
"Sloped Sides",

"Sloped Sides w/shelf"
};

char *construct [5]w{
"Tamped Earth + Gunite",
"Earth + Poured Concrete",

"Earth, concrete floor, gunite wall",

"Tamped Earth",
"Tamped Earth + Loose Rock"
};

/* function prototypes */

void drawAbox (int, inr, int, int, char *, char *) ;

inr error (int) ;

int getKey (inr, int, char *[], inr, inr) ;
void mycputs (int, int, char[]);

inr dikeDetails (int *style, int *typecon)

{
int i = 5, shape, x = 19, y = 7;
window (i, 1, 52, 24) ;
clrscr () ;

window (1, 1, 80, 25);

model () ;
"Select Shape") ,z"Dike Shapes",drawAbox(x, y, 18, 2,

shape = getKey(x+2, y+3, shapes, 2, 0);
gotoxy (69, 7);

if (shape) cputs ("rectangle");
else cputs ("circle") ;
drawAbo_(x, y, 22, 3, "Dike Styles", "Select Style");

*style = getKey(x+2, y+3, styles, 3, 0);
gotoxy (69,8) ;
switch (*style) {

case 0 :

cputs ("straight") ;
i = 3;
break;
case 1 :

cputs ("sloped") ;
break ;
case 2 :

cputs ("sl/shelf") ;
bream ;}

drawAbox(x-2, y, 34, i, "Dike Construction", "Select Construction Type");

*typecon = getKey(x, y+3, construct, i, 0) ;
gotoxy (69,9) ;

switch (*typecon) {
case 3 :

cputs ("earth") ;
break;

h

case 4 :
cputs ("e+rock") ;
break;
case 0 :
cputs ("e+gunite") ;
break;
case 1:

cputs ("e+concrete") ;
break;
case 2 :
cputs ("conc+gu_ite") ;
break; }

window (i, i, 52, 24);
clrscr () ;
return shape;
} /, dikeDetails _ dike. lib */

/**** . 03/09/89 to paint part of dike dimension screen dikeDim2 */
#include <conio.h>
#include <dos. h>
#include <math. h>
#include <stdio. h>

/* function prototypes */

void dikeDim2 (inr, inr) ;

void dikeDim2 (inr y, inr style)
{
gotoxy (5, y);
cputs ("Angle(degrees from vertical) - ?");
if (style !- 2) return;
gotoxy(5, y+2) ;

cputs ("Shelf height, inches - ?") ;
gotoxy (5, y+4) ;
cputs (°'Shelf width, inches - ?");
return;

} /* dikeDim2 */

/*** 09/13/89 to get wall angle and shelf dimensions dikedim3

function prototypes */

void oleanSpace (int, inr, inr) ;
void dikeDim3 (inr, inr, inr, double[]);
double getNum (void) ;

#include <stdio.h>

void dikeDim3 (int y, inr style, int typecon, double dimension[])
/* dimension[3] - angle(radians) from vertical, read in as degrees

[4] - shelf height, feet
[5] - shelf width

{
double angle;
redo: gotoxy (36, y) ;
angle - getNum ();

if ((typecon mm 3 I typecon -_ 4) && angle < 52.0 && error (4)) goto gogo;
if (angle >- 80.0 && error (2)){

gogo: cleanSpace (34, y, 9);
goto redo; }

gotoxy (70, 13) ;

c_rintf ("%.If", angle) ;
dimension[3] - angle / 5'i'.296;
if (style i-2){

mycputs (69, 14, " - - - ") ;
return; }

gotoxy (28, y+2) ;

dimension[4] - getNttm () ;
gotoxy (27, y+4) ;

dimension[5] = getNum ();
gotoxy (69, 14) ;

cprintf ("%.Ifx%.If", dimension[4], dimension[5]);
dimension[4] /= 12.0;

dimension[5] /= 12.0;
return;

} /* dikeDim3 dike. lib */

/*** 09/25/89 dikedimn
to get dike dimensions & compute & return the dike volume */

#include <conic. h>
#include <dos. h>

#include <math. h>
#include <stdio. h>
#define PI 3. 14159

/* function prototypes . */

double dikeDimension (inr, inr, inr, double, double [], double []);
inr error (inr);
double getNum (void) ;

double dikeDimension (inr style, inr shape, int typecon, double tankDia,
double dimension[], double dikeArea[])

/* dimension[0] -dike height, feet

[1] - diameter/length
[2] = width
[3] - angle of wall from vertical, radians
[4] = shelf height

[5] = shelf width
dikeArea[0] = floor area(not including tank), sqft

[i] - wal_ area */

{
double areal, /* total area of floor of dike, sq ft */

area2, /* total area of top of dike, sq ft */

bigDia, /* top dia of tapered circular dike, feet */
shelfVol, /* volume of shelf at floor, cu ft */

smallDia, /* diameter inside shelf at floor for style=2 */
vol, ' /* dike volume, cu ft */

xtral; /* avg increase in length & width due to tapered walls */

gotoxy (13, i) ;
if (shape) cputs ("Rectangular ") ;

else cputs ("Circ_lar ") ;
cputs ("Dike Dimensions") ;

please (I0, 22) ;
"Height ft = ?") ;mycputs (5, 5,

gotoxy (5, 7) ;
switch (shape) {

case 0: /* circular */
cputs ("Diameter (at floor), ft = ?") ;
if (style i= 0) dikeDim2 (9, style);
break ;

case I: /* rectangular */
cputs ("Length, ft = ?") ;

"Width ft = _"mycputs (5, 9, , .) ;

if (style i= 0) dikeDim2 (ll, style);
break ;}

gotoxy (18, 5) ;

dimension[0] = getNum (); /* get numeric values of dimensions */
gotoxy (70,10) ;

cprintf ("%.if", dimension[0]) ;
switch (shape) {

case 0: /* circular */
mycputs (56, iI, "diameter") ;
redo: gotoxy (31, 7) ;

dimension[l] = getNum () ;

if ((tankDia >= dimension[l]) && (error (0))){
cleanSpace (20, 7, 9) ;
goto redo;}

cjotoxy (7 0, 11) ;
cprintf ("%.If", dimension[l]) ;
vol = 0.786 * dimension[0] * dimension[li * dimension[l

if (style i= 0){dikeDim3 (9, style, typecon, dimension)
bigDia = 2.0 * dimension[0] * tan (dimension[3])

vol = (Pl / 12.0) * dimension[0] * (dimension[li
dimension[l] + bigDia * bigDia + sqrt (

if (style -" 2){
smallDia = dimension[l] - dimension[5] / 6.0;

/, o.o6545- pi / (4 */
shelfVol - 0.06545 * (almension[l] * dimension[1

smallDia * smallDia) *

vol -- shelfVol; }

break;

case 1:
redol: gotoxy (18, 7) ;
dimension[l] - getNum () ;

gotoxy (17 9);
dimension[2] " getN%Lm () ;

if ((tankDia >" dimension[l]) II (tankDia >" dimension[2]) &&

cleanSpace (18, 7, 9) ;
cleanSpace (17, 9, 9) ;

goto redol; }

if (dimension[2] > dimension[l]){ /, set largest dim = length *
xtral - dimension [1];

dimension[l] - dimension[2] ;
dimension[l] - xtral;}

mycputs (56, ii, ,'length ");

gotoxy (70, ii) ;
cprintf ("% if" dimension[i]) ;

gotoxy (70, 12) ;
cprintf ("%.If", dimension[2]) ;
vol " dimension[0] * dimension[l] * dimension[2];

_f (style != 0){ dikeDim3 (11, style, typecon, dimension);
xtral = 2.0 * dlmension[0] * tan (dimension[3]);
areal = dimension[l] * dimension[2] ;

area2 - (dimension[l] + xtral) • (dimension[2] + xtral);
vol = 0.3333 * (areal + area2 + sqrt (areal. * area2)) *

if (style == 2){ /, 0.013899 = 2

shelfVol " 0.013889 * dimension[5] * dimension[4] *
(dimension[l] + dimens

vol -- shelfVol;}

break ;} •

switch (shape) { /, calculate floor and wall areas /
case 0: tankDia *

dikeArea[0] = 0.786 * (dimension[l] * dimension[l] -

dikeArea[l] = PI * dimension[l] * dimension[0];
break ;

case l: dikeArea[0] = dimension[l] * di_ension[2] - 0.786 * tankDia *

dikeArea[l] = dimension[0] * 2.0 * (dimension[l] + dimension[2])

break ;}

window (1, i, 52, 24);

clrscr () ;
window (I, I, 80, 25);
return vol;

} /* dikeDimension dike.lib */

dikemate

/**** 09/14/89
to get soil moisture content and dimensions and properties of dike

construction materials
*/

function prototypes

void barText (inr, char *) ;
void dikeMaterials (inr, double *, double[] [4]) ;
inr dispMatlPropt (inr, double *, double[][4]);
void getPropts (inr, double *, double[][4]) ;

#include <oonio. h>

void dikeMaterials (inr typeoon, double ,soilMoisture, double propts[][4])

{ /, dummy place holder for soil moisture in functions */double x;
barText (30, .selection keys only");
window (I, I, 52, 24);

"Dike Material properties") ;mycputs (12, I, soilMoisture,
if (dispMatlProp (2, soilMoisture, propts)) getPropts (2,propts) ;

switch (typecon){ /* 3 earth, 0 gunite, 1 concrete, 2 c+g, 4 rock */
,J

case 3 :
break;

case 0: if (dispMatlProp (0, &x, propts)) getPropts (0, &x, propts) ;
break;

case i: if (dispMatlProp (I, &x, propts)) getPropts (I, &x, propts) ;
break;

case 2: if (dispMatlProp (0, &x, propts)) getPropts (0, &x, propts) ;
if (dispMatlProp (i, &x, propts)) getPropts (I, &x, propts) ;
break;

case 4: if (dispMatlProp (3, &x, propts)) getPropts (3, &x, propts) ;
break; } /*new get insulation properties. *

if (dispMatlProp (4, &x, propts)) getPropts (4, &x, propts) ;
clrscr ();
return;
} /, diKeMaterials dike.lib */

I**** 09/6/89 to write the GRI disclaimer to the video disclaim */ram directly

#include <stdio.h>
#include <conio.h>

/, function prototypes */

void ,lisclaim (inr, inr, inr far *, inr);
void pakc (inr, inr, inr far *, inr);
void splash (inr, inr, inr far *, char [], inr);

void disolaim (int x, int y, inr far *videoptr, inr colt)
{
char meg [] - "

"G R I DISCLAIMER\n\n\nLEGAL NOTICE This program was "
.prepared by Wellborn Systems\has a projact sponsored by the Gas"
. Research Institute (GRI).\nNeither GRI, members of GRI, nor any"
" person acting on behalf\nor either:\n\na. Makes any warranty or"
. representation, express or\n implied, with respect to the "
.accuracy, completeness,\n or usefullness of the information "
,,contained in this\n computer program, or that the use of any "
.apparatus,\n method, or process disclosed in this program may not"
"\n infringe privately owned rights; or\n\nb. Assumes any "
"liability with respect to the use of, or\n for damages resulting"
., from the use of, any\n information, apparatus, method, or process"
" discloeed\n in this program.";

splash (x, y, videoptr, meg, colr);
splash (i, 25, videoptr, " Gas Research Institute", 0xT000);
pakc (24, 24, videoptr, colr);
window (i, I, 80, 24);
clrscr ();
return;
} /* disclain dike.lib */

I*** 09113189 to display material properties and request dispmpro
approval for their use. Returns 0 if properties are

acceptable; 1 if user wishes to substitute other values.
*!

function prototypes

void cleanSpace (inr, int, inr);
int dispMatlProp (inr, double *, double[II4]);

void mycputs (int, int, char[]);
inr respond (inr, inr, char[]);

#include <stdio.h>

inr dispMatlProp (inr matCode, double ,soilMoisture, double propts[][4])

{

char ,materials[5] -{" gunite ",
. concrete ",

. tamped earth",

. loose rock ",

. insulation "};

inr i = 0, j;

gotoxy (17, 3);
cputs (materials[matCode]);

mycputs (5, 5, "The approximate properties of ");
cputs (materials [matCode]);

"are as follows") ;
mycputs (5, 6, #/cu ft");
mycputs (5, 7, "density
gotoxy (26, 7);

printf ("%.3f", propts[matCode][0]);
mycputs (5, 9', "heat capacity BTU/#-degF");

gotoxy (26,9);
printf (-%.3f", propts[matCode][l]);
mycputs (5, 11, .'thermal conductivity- BTU/hr-ft-degF");

gotoxy (26, ll);
printf ("%.3f", propts[matCode] [2]) ;
gotoxy (5,z3);
switch (matCode) {

case 2:

printf (..moisture content %.if #/#dry soil",
,soiiMoisture);

mycputs (5, 15, ..however these values can vary locally");
mycputs (5, 16, "due to moisture and other factors");
break;

case 3:

cputs ("loose rock characteristics depend on the ") ;
mycputs (5, 14, "size distribution of the rock mixture") ;
break;

case 0:

cputs (,,gunite is known to vary from one application");

mycputs (5, 14, "to another.");
break;

case i: cputs ("concrete properties vary somewhat with ") ;
mycputs (5, 14, ,'pouring practice");
break;

case 4:

cputs (,'insulation is a highly variable product ");
break;}

if f_m_nnnd (I0. 17. "Are these values acceptable?")){

cleanSpace (25, 7, 9);

cleanSpace (25, 9, 9);

cleanSpace (25,11, 9);

if (!matcode) cleanSpace (25, 13, 9);
i- 1;}

window (5, 14, 52, 20) ;
clrscr ();
window (I, I, 52, 24);
return i ;
} /, dispM_tlProp dike. lib */

/**** 06/01/89 to compute the maximum downwind distance distance
at which a methane concentration of 2.5% will be found
ARGUMENTS:
weatherMode -- letter B thru F for Gifford atmospheric categories

windVel ft/see ,/
source -- flow over dike, #/sec/ft of dike width

#include <math.h>
#include <stdio.h>

*/
/* function prototypes

double absv (dauble);
void distance (char, double, double, double);

double err (double);

void di:3tance (char weather, double windVel, double source, double dikeW)

{ /* Giffords categories */

double con, con1, con2, con3, /* dist with conc > 2.5% */
distl _ 0.0, /, dist with conc < 2.5% */
dist2, /, new trial dist, ft */

xlee = 100.0, /, calculated methane conc at xlee */
newCono,

power - 0.919,
sigy,sigz, /, dispersion factors */
term, /, temporary store */

ystar, zstar;

inr split - 0;

if (source I= 0.0) {
fprintf (stdprn, "there is no downwind dispersion for this case\n"

"in the first 45 minutes•") ;

return; }

switch (weather) {
case 'B':

con = 158.0;

conl = 2.041;
con2 = 1.048;
con3 = 0.041;

power = 0.9;
break;

case 'C':
con = 104.0;
conl = 1.786;
con2 = 0.914;

con3 = 0.0;

power = 0.913;
break;

case 'D':
con = 69.0;
conl = 1.505;

con2 = 0.737;
con3 = -0.105;

break;

case 'E':
con = 51.0;
conl = 1.332;

con2 = 0.678;

break;
case 'F':

con n 34.0;
conl s 1.146;
con2 - 0.65;

con3 - -0. 113 ;
break; }

redo: term - xlee / 3280.0;

sigy - 3.2808 * con * pow (term, power);
term = logi0 (term) ;

sigz - 3.2808 * pow (i0.0, conl + term * (con2 + term * con3));

ystar _ err (dikeW / (2.8284 * sigy)); /* 2.8284 = 2*sqrt(2) */
zstar - 0.79788456 / sigz; /* .79788456 = 2/sqrt(2pi) */

/* 0.6233 = 35

newConc - 0.6233 * source * ystar * zstar / (windVel * dikeW);

switch (split) {
case 0:

if (newConc > 2.5) {
distl - xlee;

xlee *- 2.0;

goto redo; }
else{

dist2 = xlee;

split = 1;
new: xlee = 0.5 * (distl + dist2);

goto redo; }
case 1:

if (absv (newConc / 2.5- 1.0) <= 0.0001){
fprintf (stdprn, " the maximum downwind distance at which the

"methane concentration reaches 2.5%% is %. Of ft\n",xle

return; }

if (newConc > 2.5){
distl = xlee;

goto new; }
else{

dist2 = xlee;

goto new; }

}
} /* distance dike. lib */

i

I**** 09107189 to draw a single line border box of drawbord
specified size at x,y location

*/
function prototypes

void drawBorder (inr, inr, inr, inr) ;
void mycputs (inr, inr, char[]) ;

void drawBorder (inr x, inr y, inr width, int lines)
{
char line [80],

line2 [80] ;
inr i;

for (i - I, line[0] = '', line2[0] _ ''; i < width; i++){
line[ii - '';
line2[i] - ' ';}

line[width] " '';
line2[width] - '';
line[width + I] - line2[width + I] = '\0';
mycputs (x, y, line) ;
for (i - 1; i < lines - 1; i++){

mycputs (x, y + i, line2);}
line[0] - '';
line[width] = '';
mycputs (x, y + lines - i, line) ;

return; dike. lib */
} /• drawBorder

/**** 08/10/89 to draw a box with arbitrary borders draw box
at an arbitrary location

ARGUMENTS:
style constant zero thru three

0 = single line, i = double line,
2 = single horizontal, double vertical
3 = double horizontal, single vertical

x,y screen coordinates upper left corner
width box width

height box height
color color attribute

*/
_unction prototypes

void drawLine (inr,inr,inr,inr,inr);

void drawBox (int, int,int,int,int,int);

void drawBox (inr style, inr x, inr y, inr width, inr height, inr color)

{
static inr styles[4][4] - {{11,81,81,31},

{14,83,83,34},

{12,83,83,32},
{13,si,81,33}};

if (width * height =_ O) return;
drawLine (styles[style]lO], x, y++, width, color);
drawLine (styles[style][l], x, y, height - l, color);
drawLine (styles[style][2], x + width-l, y, height - l, color);

drawLine (styles[style][3], x, y + height - 2, width, color);
return;

} /* drawBox john.lib */

/**** 10/08/89 to clear an area of screen drawcler
ARGUMENTS :
x,y screen coordinates ul corner
width width of rectangular area
height height of rectangular area
color color to be used
dec fill character (if any)

*!
function prototypes

void drawClear (inr, inr, inr, inr, inr, int);

#include <global.h>

void drawClear (inr x, inr y, int width, inr height, inr color, inr dec)

{
register inr i, j ;
inr far *vp;
vp - OA(x,y);
for (j- 0; j < height; j++){

for (i = 0; i < width; i++) ,(rp+i) u dec I color;
vp +- 80;} /, end for */

return;
} /, drawClear bgen. lib */

#include <stdio.h>
/**** 07/21/89 to draw a line at arbitrary locat_on drawline

ARGUMENTS:

videoptr indicates monochrome or color monitor
i - 0/i for single/double horizontal line

- 1/2 for single/double vertical lineline
startx screen x location for start of line

starry screen y location for start of line
length total line length

function prototypes */

void drawLine (inr far *, inr, inr, inr, inr);

void drawLine(int far *videoptr, inr i, int startx, inr starry, inr length)
{
inr far *videonow;
int code[] -{195, 205, 179, 186}, x;
videonow - videoptr;
videonow +- (80 * (starry - I) + startx - I);
switch (i){

case O: /* horizontal line */
case I:

for (x = I; x <= length; x++){
• (videonow++) - code[i] I 0x0700;}

break;
case 2: /* vertical line */
case 3:

for (x _ 1; x <m length; x++){
• (videonow) = code[ii I 0x0700;
videonow +m 80;}

break;}
return;
} /* drawLine bgen.lib */

/**** 05/06/89 to check eqpliL_t word and reset video mode eqplist */
i

#define EQLIST 0x410
*/

/, function prototypes

inr far * eqpList (void);

inr far * eqpList (void)
{
inr far ,farptr;
inr far ,videoptr;
unsigned inr eq;

farptr - (inr far *)EQLIST;
eq - *farptr;
if ((eq >> 14) < i) { '

puts ("This program requires a printer attached to paralle1\nprinter"
" port LPTI") ;

puts ("ABORTING");
exit (0) ;}

/, should add a check for math coprocessor here */

switch ((eq >> 4) & 3){
case I:

•farptr +m 9; ,/
case 2: /, color graphics adapter

videoptr m (int far ,)0xBS000000;

goto Qut; _/
case 3: /* monochrome adapter

videoptr = (inr far *)0xB0000000;
out: return videoptr; }

} /• eqpList bgen. iib */

i**** 03/12/89 err
returns the value of the error function */

#includ_ <math. h>
#include <stdlib. h>

double err (double) ;

double err (double x)
{
#define E1 0.254829592
#define E2 -0.284496736
#define E3 1.421413741
#define E4 -1. 453152027
#define E5 1.061405429
#define P 0.3275911

double t;
if (x >- 3.6) return 1.0;
if (x <- -3.6) return -I.0;
t ,,1.o / (1.o + P * x);
return (I.0 - t * (El + t * (E2 + t * (E3 + t * (E4 + t * E5)))) /

,xp (x * x));
} I* err */

double err (double) ;
double erfc (double) ;

double erfc (double x)
{
return (I.0 - etf(x)) ;
} /* erfc */

/**** 09/13/89 to write error meg to screen and errorsolicit a response

#include <stdlib.h>
*/

/, function prototypes

void bleep (void) ;
inr error (inr) ;
void mycputs (inr, inr, char *) ;

inr question (inr, inr, char[], char[]);

inr error (inr no)

{ W1!
char buffer[22*11*2], line1[] = , .;

line2[] " "

!, inr action, i;

bleep ();

gettext (17, 14, 38, 24, buffer) ;
mycputs (17, 14, linel);
for (i - 1; i < 10; i++){

mycputs (17, 14 + i, line2) ;}

linel[0] " '';
linel[21] " '';

mycputs (17, 24, linel) ;
switch (no) {

case 0:

mycputs (18, 15, "The tank diameter");

mycputs (18, 16, "exceeds the dike");
,,dimensions");

mycputs (18, 17, ,, abort " " redo ");
act: action = question (19, 19,

break;

case I:

mycputs (18, 15, "The liquid height");
mycputs (18, 16, ,,cannot be greater");

mycputs (18, 17, "than the tank height") ; •
gotoact;

case 2:

mycputs (18, 15, "You specified a wall");
mycputs (18, 16, "angle which is too");

mycputs (18, 17, ,,shallow");
goto act;

case 3:
mycputs (18, 15, .'You pressed RETURN'");
mycputs (18, 16, .,without entering");

mycputs (18, 17, "any number");

goto act;
case 4:

mycputs (18, 15, ..Your wall angle is");
mycputs (18, 16, "steeper than angle");
mycputs (18, 17, "of repose");

goto act;
default:

break;

}
if (action == 0) abort () ;

puttext (17, 14, 38, 24, buffer);

return I; dike lib */
} /* error

/**** 03/07/89 to calculate the flash Eraction based on flashfra
the ullage pressure using table look up of table B2
(p74) of ADL report 80406, April 1978

*/
function prototypes

I

double flashFraotion (double) ; .
double funlext (double, double [], double [], inr);

double flashFraction (double ullagePress)
{
double pVt[] " {1.0,1.203,1.497,2.248,3.22,4.488,6.074,7"8},

f[] . {0.0,0.015,0.034,0.071,0.111,0.151,0.191,0'234};
i

return (funlexr (ullagePress, pev, f, 7);
} /, flaehFraction dike.lib */

/**** 03/07/89" to caloulate the flash fraction based oI_ flashfra
the ullage pree_ttre using table look up of table B2
(p74) of ADL report 80405, April 1978

function prototypes */

double flashFraction (double);
double funlext (double, double [], double OI, inr);

double flashFraction (double ullagePress)
{
double pvt[] _ {I.0,I.203,1.497,2.248,3.22,4.488,6.074,7.8},

f[] _ {0.0,0.015,0.034,0.071,0.111,0.151,0.191,0.234};

return (funlexr (ullagePrees, ptr, S, 7);
} /* flashFraction dike.lib */

r

/**** 09/13/89 to get dike floor coverinq, wall cover flocrwaland insulation thickness

ARGUMENTS: typecon 3Tramped earth
0-gunite floor and walls
1-concrete floor and walls
2-concrete floor,gunite walls
4-1oose rock floor and walls

thickness[0] - floor covering, inches
[I] - wall covering
[2] - insulation on floor
[3] - insulation on walls

*/
function prototypes

void barText (inr, char []);
void floorWall (inr, double []);
double getNum (void);
void mycpute (inr, inr, char []);

#include <stdio.h> i

void floorWall (inr typecon, double thickness[])
{
char ,material[4] " {" gunite ",

,,concrete ",
.insulation ",
"loose rock "};

inr y- 5 ;
barText (30, .numerics only ") ; . ,,
mycputs (15, I, ,'dike Liner Information);
switch (typecon) {

case 3:
insul: mycputs (5, y, "new insulation thickness on floor,inches = ?");
mycputs (30, y + 2, "on walls,inches = ?");

break; /, loose rock . */case 4:
put: mycputs (5, y, "thickness of ");
mycputs (18, 5, material[typecon - i]);
mycputs (29, 5, " on floor,inches = ?");
mycputs (29, 7, " on walls,inches = ?");
gogo: y _ 9;

goto insul; /, gunite. */
case 0: ,/
case I: /, concrete

goto put; ,
case 2: /* concrete on floor with gunite on walls /

mycputs (5, y, ,'thickness of concrete on floor, inches = ?") ;
mycputs (18, 7, material[typecon-l]);

"on walls,inches = _");mycputs (29, 7,
goto gogo;}

" switch (typecon) {
case 3 :

get: gotoxy (48, y) ;
thickness[2] = getNum ();
gotoxy (71, 17) ;
cprintf ("%.if", thickness[2]) ;
gotoxy (48, y + 2) ;
thickness[3] = getNum () ;
gotoxy (71, 18) ;
cprintf ("%.If", thickness[3]);
break;

case 0 :

case 1:
case 2 •
case 4 :

qotoxy (48, 5);
thickness [0] = getNum () ;

IS);
gotoXy (71, If" thickness[0]) ;
cprintf ("%.
gotoxy (48, 7) ;
thickness[li m getNum () ;

gotoxy (71, 167; . s
cprintf (,,%.If", thlcknes [I]);
gotO get; }

window (I, I, 52, 24);

clrscr () ;
window (i, I, 80, 24);

return; dike. lib */

} /, floorWall

/*** 08/31/89 table look-'-'P with linear slope funlext
interpolation and extrapolation.
ARGUMENTS:

x look-up argument, double

xl[] table to be looked at, float
yl[] response table, float
n size of tables, inr

*/
function prototypes

double funlext (double, float [], float [], inr);

double funlext (double x, float xl[], float yl[], inr n)

{
inr i;

if (x < xl[0]) return (yl[0]-(xl[0]-x)*(yl[l]'yl[0])/(xl[l]'xl[0])) ;
if (x > xl[n]) return (yl[n]+(x-xl[n])*(yl[n]-yl[n'l])/(xl[n]-xl[n-l])) ;
for (i-O; i<-n; i++) {

if (x ms xl[i]) return yl[i];
if (x < xl[i]) return (yl[i] - (xl[i] - x) * (yl[i] - yl[i-l]) /(xl[i] - xi[i-li));}

} /* funlext breath, lib */

getKey

/, os/2_/s9 */
to control menu display and return user response

#include <conio. h>
#include <dos.h>

#include <stdio. h>
#define reverseColor textattr (BLACK + (LIGHTGRAY<<4));
#define stdColor textattr (LIGHTGRAY + (BLACK<<4)); *!
!, function prototypes

inr getKey (inr, inr, char *[], inr, inr) ;
void blQep (void) ;

inr getKey(int x, int y, char ,words[], int number, int txt)

{ /* line s index to menu item */
inr key, key2, line, ystart;

ystart s Y;
for (line - O; line < number; line++){

gotoxy(x,y++);
cprintf (words[line]) ;}

gotoxy(x, y = ystart) ;
line = 0;
reverseColor;

cprintf (words [line]) ;
stdColor;

while((key _ getch()) != '\r'){
if (key == 0){

key2 = getch() ;
switch (key2) {

ca&_ 16: /, abort *!
exit (0) ;

case 72: /* go up */
if (line == 0){

' bleep () ;
break; }

gotoxy (x, y--) ;
cprintf (words[line--]):;
test: if (txt) text (line);

break;

case 80: /* go down */

if (line == number-l){
bleep () ;
break; } •

gotox7 (x, y++) ;
cprincf (words[line++]);

goto test ;
default:

bleep ();
break ;

}
}

reverseColor ;

gotoxy (x,Y) ;

cprintf (words[line]);
stdColor ;

}
return line;

} /, getKey bgen. lib */

/**** 10/08/89 to get line lenght for a piect of text getlen
ARGUMENTS:

ptx pointer to text
w ' width of window space
.RETURN index of next character to print

function prototypes */

inr getLen (char *,, inr);

inr getLen (char *ptx, int w)
{
inr newlen - 0;
while ((newlen < w && ptx[newlen] i- '\r') && (newlen < w &&

ptx[ne
newlen++;

if ((ptx[newlen] i= '') && (ptx[newlen] !- '\r') && (ptx[newlen] != ' '))
while (ptx[--newlen] _- ' ');

return (newlen + 1);
}

getNum

/**** 05/26/89
get a number from the keyboard in string format, check for validity,/

then return a numeric value

#include <math.h>
#include <conio. h>
#include <stdio. h>
#include <dos. h>

*/
/, function prototypes

void bleep (void) ;
inr error (inr) ;

double getNum (void) ;
inr warning (inr) ;

double getNum (void)

{
inr digitcount " 0,x,y, /, change to 1 when first digit has been posted */Nflag m 0,

Pf lag = 0; /, change to digitCount when period has been posted */

char numString[10] = " " !

key;
double numb;

x m wherex() ;

y = wherey() ;
redo:while ((key = getch()) i= '\r'){

if (key n 0){ key m getch () ;
if (key _" 16){ exit (0);}
else{

bleep () ;

goto redo;}}

switch (key) {
c&se '\b' :

if (!Nflag) {.bleep() ; break;}

printf ("\xlB[D") ;
putch(' ') ;

printf ("\xIB[D") ;
numString[digitCount-l] = '\0';

if (Pf lag == digitCount--)Pflag = 0;
if (digitCount == O)Nflag = 0;
break.;

case I i•• •

if (Pflag) { bleep() ; break;}

Pf lag = digitCount ;
if (Nflag)goto postIt;

putch ('0') ;
numString[digitCount++] = '0' ;

Nflag = I;

goto postlt;

case '0' :
if (!Nflag){ bleep() ; breal_;}

postIt: putch (key) ;
numStr ing [digitCount++] = key;
break;

case 'i' :
case i2 _:

case '3 ':
case '4 ':
case '5 ':
_ i61 :

case 17 ':

case '8 ':

case 191:
if (INflag) Nflag = 1;
goto postIt;

default: bleep(); break;}
}

if (digitCount s= 0 && error (3)) {gotoxy (x, y); goto redo;}
numb - atof (numString);

if (numb .m 0.0 && warning (2)) {gotoxy (x, y); goto redo;}
return (numb);

} /, getNum bgen.lib */

, /' J

, , s/ '

/**** . 09/14/89 getpropt
to get density, heat capacity, and thermal conductivity of
specific dike materials and soil moisture content */

/* function prototypes */

void barText (inr, char *);
double getNum (void) ;
void getPropts (inr, double *, double[].[4]) ;

void getPropts (inr marl, double *soilMoisture, double propts[][4])
[
barText (30, "numerics only ");
gotoxy (26, 7);
propts [matl][0] - getNum () ;
gotoX_ (26, 9) ;
propts[matl][l] s getNum ();
gotoxy (26, 11);

. propts[matl][2] - getNum ();
propts[matl][3] - propts[matl][2] / (propts[matl][0] * propts[matl] [1]) ;
if (matl _- 2){

gotoxy (26, 13) ;
•soilMoisture = getNum () ;}

barText (30, "selection keys only") ;
return;
} /* getPropts */

f

/*** 10/04/89 splash a limited number of lines on screen Imtsplsh

note: ,there is no check for limits of text to be
, splashed relative to size of window

ARGUMENTS:

lines count of number of lines to be splashed

x, y screen coordinates of up-left corner
ch pointer to first character of string to be splashed

function prototypes */

char * limitSplash (int, inr, inr, int far *, char *);

char * limitSplash (inr lines, inr x, inr y, int far *videoptr, char *ch)
{
inr count - 0,' attr- 0x07;
inr far *videonow;
inr far *videostart;
char c;

videonow - videcstart = videoptr + x - 1 + 80 * (y - 1);

while (*ch I= ''){
c = *ch++;
switch (c){

case '\n':
if (++count == lines) return ch;

videonow = (videostart += 80);
break;

case '{': /* start intensified *
attr- attr'Ox08;
break;

case '}': /* return to normal *
attr= Ox07;
break;

case '[': /_ start reverse video *

attr= (attr&Ox88)lOx70 ;
break;

case ']': /* start blinking *
attr= attr'OxSO;
break;

case ' ': /* start underline *

attr= (attr&Ox88) lOxOl ;
break;

default:

• (videonow++) = clattr<<8 ;
} /* end switch */

} /* end while */
return O;

} /* limitSplash bgen.lib */

ii

model

/**** 09/25/89 */
to display entire model structure on splash screen

#include <conio. h>
#include <stdio. h>

/. function prototypes */

void drawBorder (inr, inr, inr, inr) ;
void model (void) ;

void model (void)
{
drawBorder (53, i, 27, 24) ;
mycputs (58, 1, ,,PROBLEM DESCRIPTION") ;

"TANK: ") ; ,
mycputs (55, 2, ft"
mycputs (56, 3, ,,diameter);

,,height ft") ;
mycputs (56, 4, ft"
mycputs (55, 5, ,,Liquid height);
mycputs (60, 6, .pressure psig") ;
mycputs (55, 7, .DIKE:shape");

"style") ;mycputs (60, 8,
mycputs (56, 9, ,,construction") ;
mycputs (56, I0, ,,height ft") ;
mycputs (56, 11, ,'dia/length ft") ;
mycputs (56, 12, ,'width ft") ;
mycputs (56, 13, ,'wall angle deg") ;

"shelf inch") ;mycputs (56, 14,
mycputs (56, 15, ,'floor liner inch");
mycputs (56, 16, ,'wall liner inch");
mycputs (56, 17, "fPC on floor inch") ;
mycputs (56, 18, "fPC on wall inch");
mycputs (55, 19, "SPILL rate gpm ");
mycputs (61, 20, "time min");
mycputs (55, 21, ,,WEATHER degF");
mycputs (55, 22, "Wind speed m/ht") ;
mycputs (55, 23, ,,Downwind dist ft");

return; dike. lib */
} /* model

I

/**** 03/27/89 mycputs
to write an arbitrary message at an arbitrary location */

void mycputs (inr x, inr y, char msg[])
{
gotoxy (X, y);
oputs (msg);
,}

i

I**** 06113/89 to print C listings with line numbers niceprnt

Prints standard input to standard output after adding line numbers,
truncating to 80 characters, etc */

#include <stdio. h>
#define min (x, y) (x < y) ? x z y

/* function prototypes */

int main ();
void nesting (unsigned *, char *);

/* MAIN - read from STDIN one line at a time. Reprint each line to
STDOUT after adding line numbers and nesting levels

main ()
{
char string[256];
unsigned linenum, level, newlevel;

linenum - 0;
newlevel _ 0;
while (gets (string)) {

level _ newlevel;
nesting (&newlevel, string) ;
str ing[70] = '\0';
printf ("%3u[%2u]: ", ++linenum, (level<newlevel) ? level:newlevel);
puts (string) ;

};

while (linenum++ % 66)
printf ("\f\n") ;

}
/*** nesting - search the given string for "{" and "}". Increment nesting

level on "{" and decrement it on "}".

void nesting (unsigned *levelptr, ch,_r *stringptr)
{
do{

J.f (*stringptr == '{')
•levelptr +=I;

if (*stringptr == '}')
•levelptr -=l;

} while (*stringptr++) ;
}

/**** 04/27/89 boiloff from single homogeneous material onelboff
according to the formula _=ts+(t0-ts)*erf(X) where X-x/2t
ARGUMENTS
to ambient temperature, deg F
k thermal oonductlvity of solid, BTU/hr-ft-degF

alpha thermal diffusivity of solid, sq ft/ht
dikeArea[2] dike area [0] u floor area, sq ft ,/

_I] - wall area

#include <conic.h>
#include <math.h>
#include <stdio.h>

*/
/* function prototypes

double err (double);
double, double, double, double[], doublevoid oneLayerBoiloff (double,

• , doubl. *); double double * double *);
inr testVaporVol (double, double, double, , ,

void oneLayerBoiloff (double tO, double k, double alpha,double dikeVaporVol,
double dikeArea [], double *timeod, double *dispST)
{ */
inr odflag _ 0; /, flagml when vapor overflows dike
double boilOffRate, /* rate of evap of LNG from entire dike, #/br */

cumeFlux, /* Q/A, BTU/sqft at any time */
effDikeArea, /* dike area available for heat transfer/latent

heat evaporation of LNG, # sqft/BTU */

heatFlux, /* q/A, BTU/hr-sqft */
latHeat - 220 0, /* latent heat evap LNG */• ,/
time-O.0, /, seconds ,/
timeHrs, /* hours

timetable[]={0.001,0.1,0.5,1.0,2.0,5.0,10.0,25"0,50"0'100"0'250'0'500'
1000.O,1500.0,1800.0,2100.0,2400.0!2700.0},/*time

for print,seconds /, temperature at x, degF */•I t,
term, ,/
ts = -260.0, /* boiling point of LNG, degF
vaporWt = 0.0, /*total weight of LNG vaporized, Ibs */
x = 0.005; /* distance in from surface, inches */

int i=O; ,/
term = x / 24.0; /* 24 = 2 * 12 units conversion
effDikeArea = (dikeArea[0] + dikeArea[l]) / latHeat;
while (time < 2700.0){

timeHrs = (time = timeTable[i++]) / 3600.0;
t = ts :_ (t0-ts) * err (term / sqrt (alpha * timeHrs)) ;
heatFlux = k * (t0-ts) / sqrt (3.14156 * alpha * timeHrs) ;
boilOffRate = heatFlux * effDikeArea;
cumeFlux = 2.0 * k * (t0-ts) * sqrt (timeHrs / (3.14156 * alpha));
if (time l= 0.001){

vaporWt = cumeFlux * effDikeArea;
if(!odflag) odflag = testVaporVol(dikeVaporVol, time,

vaporWt, boilOffRate, timeod, dispST) ;}

if (time == 0.I II time == 0.5){
"%4 If %9.1f %ll.lf %10.1f %7.2f\n"

fprintf (stdprn, • time,heatFlux,boilOffRate,vaporWt,tl;}

else{ "%4 Of %9.1f %ll.lf %lO.If %7.2f\n",
fprintf (stdprn, • time,heatFlux,boilOffRate,vaporWt,t);}

}
return;
} /, oneLayerBoiloff dike.lib _/

J

/**** 04/27/89 boiloff from single homogeneous material on,elboff
according to the formula t-ts+(t0-ts)*erf(X) whert X=x/2t
ARGUMENTS

to ambient temperature, deg F
k thermal conductivity of solid, BTU/hr-ft-degF

alpha thermal diffusivity of solid, sq ft/ht
dikeArea[2] dil_e area [0] - floor area, sq ft

[I] = wall area */

#include <conic. h>
#include <math. h>

#include <stdic. h>

/* function prototypes */

doubl, err (double) ;
void oneLayerBoiloff (double, double, double, double, double [], double

*, double *) ;

inr testVaporVol (double, double, double, double, double *, double *);

void oneLayerBoiloff (double tO, doubl_ k, double alpha,double dikeVaporVol,

double dikeArea [], double *timeod, double *dis#ST)
{
inr odflag = 0; /* flag=1 when vapor overflows dike */
double boilOffRate, /* rate of eva# of LNG from entire dike, #/hr */

cumeFlux, /* Q/A, BTU/sqft at any time */

effDikeArea, /* dike area available for heat transfe_:/latent
heat evaporation of LNG, # sqft/BTU */

heatFlux, /* q/A, BTU/hr-sqft ,/
latHeat = 220.0, /* latent heat evap LNG */

time-O. O, /* seconds */
timeHrs, /* hours ,/

timeTable[]={0. 001,0. i, 0.5,1.0,2.0,5.0,10.0,25.0,50.0, I00.0,250.0,500.

1000.0,1500.0,1800.0,2100.0,2400.0,2700.0 },/*time
for print, seconds

/ t, / temperature at x, degF */
term,

ts = -260.0, /* boiling point of LNG, degF */
vaporWt = 0.0, /*total weight of LNG vaporized, ibs */
x- 0.005; /* distance in from surface, inches */

inr i=O;

term- x / 24.0; /* 24 = 2 * 12 units conversion */
effDikeArea = (dike_cea[0] + dikeArea[i]) / latHeat;
while (time < 2700.0){

timeHrs _ (time = timeTable[i++]) / 3600.0;

t = ts + (t0-ts) * err (term / sqrt (alpha * timeHrs)) ;
heatFlux = k * (t0-ts) / sqrt (3.14156 * alpha * timeHrs) ;
boilOffRate = heatFlux * effDikeArea;

cumeFlux = 2.0 * k * (t0-ts) * sqrt (timeHrs / (3.14156 * alpha));
if (time _= 0.001) {

vaporWt = cumeFlux * effDikeArea;

if(!odflag) odflag = testVaporVol(dikeVaporVol, time,

vaporWt, boilOffRate, timeod, dispsT);}
if (tims == 0.i II rims == 0.5) {

"%4.1f %9 If %11.1f %10.1f %7.2f\n,'fprintf (stdprn, .

time, heatFlux, boilOffRate, vaporWt, t) ;}
else{

"%4.0f %9 If %ll.lf %10.1f %7 2f\n"fprintf (stdprn, . . ,

time, he_'_Flux, boilOffRate, vaporWt, t) ;}
}

return;

} /* oneLayerBoiloff dike. lib */

/**** 09/06189 prints press any key etc pakc */

#inalude <conic. h>
#inalude <stdio. h>

/, function prototypes */

void barText (inr, char []) ;
void pakc (inr, inr) ;
void splash (inr, inr, inr far *, char[I, inr);

void pakc (inr X, inr y)
{
inr key;
extern inr far * videoptr;
splash (x, y, videoptr, "press any key to continue", 0x0700);
barText (30, "alt Q to abort .");
key - getoh ();
if (key mm 0){

key " getch() ;
if (key--16) exit (0);}

return;
} /* pakc bgen.lib */

I**** 06101189 to calc flow from pipe in tank as function pipeflowof time in minutes

ARGUMENTS:
pipe i d, inches
htUiiage, height of ullage in tank, ft
ullagePress vapor pressure of ullage in tank, psig
dikeArea, dike floor area, sq ft
tankArea tank floor area, sq ft

spillTime, duration of spill, minutes
spillRate, initial spill rate, gpm ,/
RETURN: time to empty tank, minutes

#include <conic.h>
#include <math.h>
#include <stdio.h>

*!
I* function prototypes

double pipeFlow (double, double, double, double, double, double, double *);
double pipeLeak (double, double, double);

double pipeFlow (double pipe i d, double htUllage, double ullagePress,
double dikeArea, do_ble tankArea, double spillTime, double ,spillRate

{
double flow, 1, cuft/min */

time = 0.0, /* min *I
liqHtinDike = 0.0, I* ft */
pressHead; /* ft head equivalent to the ullage pressure */

pressHead - ullagePress / 0.191;
while ((htUllage+pressHead > liqHtinDike)&&(htUllage > 0;0)&&(time <=

spillTime)){
time++;
flow = pipeLeak (pipe_i_d, (htUllage - liqHtinDike), ullagePress) /

7 48;

if (time == 1.0) ,spillRate = 7.48 * flow;
htUllage -= flow / tankArea;

liqHtinDike += flow / dikeArea;. . . ,
/* printf ("time =%3.0f, ht in tank=% Of, ht in dike=% Of, flow=% 0f\n"

time, htUllage, liqHtinDike, flow); */
}

/*printf ("time in minutes to empty tank = %f\n",time);*/
return (time) ;
} /, pipeFlow dike.lib */

I**** 03/09/89 pipeleak
return leak rate gpm given pipe size and liq head based on

AGA report April,78 appendix a, pages 67-68
ARGUMENTS:

pipe_i_d pipe i.d., inches
htUllage height of liq in tank, ft
ullagePress vapor pressure of liquid in tank, psig */
RETURN flow, gpm

#include <math. h>

I* function prototypes */

double pipeLeak (double, double, double);

double pipeLeak (double pipe_i_d, double htUllage, double ullagePress)
{
double coef, pratio ;

pratio- (ullagePress + 14.7 + 0.191 * htUllage) / 14.7;/* 0.191=(rho=27.5)/144
coef - (pratio < 2.0) ? sqrt (pratio - 1.0) : sqrt (0.5 * pratio);
return 105.2 * coef * pipe i d * pipe_i_d;

/* 105.2=0.61*sqrt (64.4,rh_*[44"14.7) *60*7.48/rho*. 786/144 */
} /, pipeLeak dike. lib */

please */
/**** 03/01/89

#include <conio.h>
#include <stdio.h>

*/
/* function prototypes

void please (inr, inr);

void pleaser (inr x, inr y)
{
mycputs (x, y++, "Please input the values requested");
_otoxy (x, y);

return; dike.lib */
} /, please

/* 06/01/89 to get user response to a question flashed question
on _:he screen. First response choice returns 1,

second response choice returns 0. AIt-Q aborts *

#include <conio.h> ;
#define reverseColor textattr(BLACK + (LIGHTGRAY<<4)) ;

#define stdColor textattr(LIGHTGRAY + (BLACK<<4)) ;

*/
/, function prototypes

void drawBorder (inr, inr, inr, int);

inr question (inr, inr, char[], char[]);

inr question (inr x, inr y, char responsel[], char response2 [])

{
inr loc, xl, width;

char key, key2;

xl - 3 + strlen (response1);
width - xl + 2 + strlen (response2);

xl +m x;

cursorOff () ;
drawBorder (x, y, width, 3) ;

gotoxy (x +- 3, y += i);
reverseColor;

cputs (responsel) ;
loc = 0;
stdColor;

mycputs (xl, y, response2) ;

while ((key - getch ()) != '\r'){
stdColor;
if (key == 0) {

key2 = getch () ;
switch (key2) {

case 16: /* abort */

exit (0) ;

case 77: /* right arrow */

if (loc) break;
Ioc = 1 ;

gotoxy (x, y);
cprintf (responsel) ;
reverseColor;

gotoxy (xl, y);
cprintf (response2) ;
break;

case 75: /* left arrow */

if (!loc) break;
loc = 0 ;

gotoxy (xl,y) ;
cprintf (response2) ;

gotoxy (X, y) ;
reverseColor ;

cprintf (responsel) ;
break;

default: break;}

} }
stdCo for;

cursorOn (0) ;
return loc;

} /* question bgen. lib */

I**** 09195189 report
to start the output report of the dike program */

#include <toni.. h>
#include <stdio. h>
#include <time. h>

*/
I* function prototypes

void report(inr, int, inr, double, double, double [], double, double,
double, double [],double, double [][4], double, double, double);

void report(inr shape, inr style, inr typecon,
double tankD1a, double tankHe_ght, double dimension[], double

htUllage, double ullagePress, double ambientTemp, double thickness [],
double windSpeed, double pr.pis [][4],

double soilMoisture, double tankVol, double diker.l)

{

inr now, typeconWall; I* string holding date and time *Ichar ,stm,w,
*styles[3] s {,,straight sides ",

"sloped sides ",

"sloped sideslfioor shelf"},

*marl [5] = {"gunite ",
.concrete ",
"concrete ",

"earth ",
"loose rock" },

weacon, words []1,,gunite concrete loose-rock" ;

t ime (&now) ;
strnow=ctime (&now) ;

typeconWall = typecon;
if (typecon == 2) typeconWall = 0;

fputs ("\f GAS RESEARCH INSTITUTE\n". LNG Spill Simulation Pr.gram\n"

"\t\t\t\t\t\t page 1 of 2 pages \n,',stdprn);
l

fprintf (stdprn, .Date/Time:%s \n" strnow); \n"

fputs (".......... DIKE TANK

,stdprn) ; Diameter % If ft\n", I

fprintf (stdprn, "shape %s
(shape==0?,,circular _,:,,rectangular") ,tankDia) ;

• # •
"style %s Height % If ft\n"fprintf (stdprn, styles [style],ta

if (style I= I) fprintf (stdprn, "angle from vertical %.If ""Volume % if cu ftkn" dimension[3]* 57. 296, tank

else fprintf (stdprn, ,,\t\t\t\t Volume %.if cu ft\n", tankVol);
- t

fprintf (stdprn,"Height % lf\n" dimension[0]) ;

if (shape) { Liquid height % if ft\n"
fprintf (stdprn, "Length %. if

dimension[l], htUllage) ;

fprintf (stdprn,"Width %.if Vapor pressure %.lf psig\n
dimension[2], ullagePress) ;

I
fprintf (stdprn, "Volume %.lr cu ft\n" dikeVol) ;}

else{ Liquid height % if ft\n"
fprintf (stdprn,"Diameter %.If " '

dimension[l], htUllage) ;

fprintf (stdprn,"Volume %.if cu ft Vapor pressure %.if psig\n"
, dikeVol, ullagePress);}

fputs ("Floor surface\n" stdprn) ;0

fprintf (stdprn, " material %s -...... Weather Conditions \n"
,matl [typecon]) ;

fprintf (stdprn," thickness %_2f inches Ambient temperature %.if de

thickness [0], ambientTe_mp) ;
. insulation % 2f inches Wind velocity %.If mfprintf (stdprn,

thickness[2],windSpeed / 1.46666667) ;
fprintf (stdprn, "Wall surface \n") ;
fprintf (stdprn, " material %s\n,,,matl[typeconWa11]);
fprintf (stdprn, " thickness %.2f inches\n",thickness[1]);
fprintf (stdprn," insulation %.2f inches\n\n",thickness[3]) ;
fputs ("-- ---- Material Properties - "'-"

. \n" stdprn) ;_I_aem #

fprintf (stdprn,
. soil insulation %s\n",words) ;

fprintf (stdprn,
• . • t"density,#/cu ft %.2f % 2f %.2f % 2f % 2f\n"

propts[2][0], propts[4][0], propts[0][0], propts[l][0], propts[3][0]);
fprintf (stdprn,

"heat capacity, BTU/#, F %.2f %.2f %.2f %.2f %.2f\n
propts[2][l], propts[4][l], propts[0][l], propts[l][l], propts[3][1]);

fprintf (stdprn,
"thermal cond,BTU/hreft, F %.2f %.2f %.2f %.2f %.2f\n

propts[2][2], propts[4][2], propts[0][2], propts[1][2], propts[3][2]);
fprintf (stdprn, "Moisture, #/# dry soil %.2f\n\n", soilMoisture);
return;
} /* report dike. lib */

/**** 05/27/89 to add spill description to output report report0 */

#include <stdio. h>
*/

/, function prototypes

void report0 (inr, double, double, double);

void report0 (inr spillMode, double pipeid, double spillRate, double spillTime)

{ Spill Description - - '............ \n",,puts ("...........
stdprn) ;

switch (spillMode) {

case 0: ,print, (stdprn, "The spill is assumed to be of sufficient"
" size to cover the dike floor instantaneously but to a very"
.' shallow depth thus a11owing most of the dike volume to" ,!

. accumulate the vapor formed. Following the initial spill,
" the spill rate is the boil-off rate.");
break;

case 1: ,print, (stdprn, "The simulation which follows is for a spill
" of %7.2f gallons per _inute for a total time of %7.2f "
.'minutes, after which the leak has stopped but the boil-off"
" may continue " spillRate, spillTime);
break;

case 2: ,print, (stdprn, The spill is from a broken pipe %4.1f inches"
" in diameter, and lasts for %7.2f minutes. The initial spill"
" rate from this pipe is %7.2f gallons per minute•",pipeid,

spillTime, spillRate) ; _ _ _..
,puts ("\n....... Spill Consequences (for dike as is)

"\n\n", stdprn) ;
,puts ("..................... simulation Details \n\n

,stdprn) ;
fputs ("time heat rate to LNG boil off Ibs LNG surface temp\n",stdprn);
,puts (" sec BTU/hr/sq ft • rate #/hr vaporized degF\n" stdprn) ;
return;
} report0 dike. lib */

,L

/**** 04/30/89 report1
to print the second part of the dike report */

#include <conio oh>
#include <stdio. h>

/* function prototypes */

void report1 (double) ;

void report1 (double timelOverDike)
{
if (timelOverDike --- 0.0) {

fputs("\nFor the or%ginal dike, vapor overflow does not occur in\n"
"the first 45 minutes after the spill starts.", stdprn);

mycputs (1, 3, "For the original dike, 45 min passes");
mycputs (1, 4, "without vapor overflow") ;}

else{
fputs ("\nThe LNG vapor cloud overflowed the uninsulated dike\n", stdprn);
mycputs (1, 1, "The LNG vapor cloud overflowed the uninsulated dike");
fprintf (stdprn, "%.If seconds after spill started\n", timelOverDike);
gotoxy (i, 2);
printf ("%.1f seconds after spill started", timelOverDike);}
fputs ("\f GAS RESEARCH INSTITUTE\n"

" LNG Spill Simulation Program\n"
"\t\t\t\t\t\t page 2 of :2pages \n",stdprn);

fputs (".... Spill Consequenses (for dike with insulation) \n"
,stdprn) ;

fputs ("\n Simulation Details -............ ,--\n\n"

fputs("time heat rate to LNG boil off lbs LNG surface temp\n",std'prn) ;
fputs (" sec BTU/hr/sq ft rate #/hr vaporized degF\n",stdprn) ;
return;
} /* reportl dike. lib */

/**** 04/30/89 report2
to print the third part of the dike report */

#include <conio. h>
#include <stdio. h>

*/
/* function prototypes

inr report2 (double) ;

inr report2 (double time2OverDike)
{
if(time2OverDike "_ 0.0) {

fpuZs(',\nFor the insulated dike, vapor overflow does not occur in\n"
"the first 45 minutes after the spill starts." ,stdprn);

mycputs (I, 3, "For the insulated dike, 45 min passes");
mycputs (i, 4, .without vapor overflow");}

else{
fputs (.\nFor the insulated dike, vapor overflow would begin\n" stdprn) ;
mycputs (I, 3, "For the insulated dike, vapor overflow would begin");
fprintf (stdprn, ,'%5.1f seconds after spill started\n", time2OverDike);
go,oxy (l, 4);
printf ("%5 If seconds after spill started", time2OverDike);}• ,,);_t

mycputs (10, 12,
mycputs (I, 6, "Would you like the downwind dispersion distances ?") ;

return (question (10, 8, " yes ", "_no "));
} /* report2 dike/lib , */

/**** .09/25/89 to see if a rerqn is reqd rerun */

#include <conio.h>;
#define reverseColor textattr (BLACK + (LIGHTGRAY<<4)) ;
#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

/* function prototypes */

void drawAbox (inr, inr, inr, int, char *, char *) ;
inr getKey (inr, inr, char *[], int, inr);
inr rerun (void);

inr rerun (void)
{
inr x - 19, y - 7;
char *choices[2] - {"run new case", "exit program"};
drawAbox (x, y, 18, 2, "Options", "Choose one");
return (getKey (x+2, y+3, choices, 2, 0));
} I* rerun dika.lib *I ,

/, 09/04/89 question requiring a yes/no response respond
, */

function prototypes

void mycputs (inr, inr, char[I) ;
inr question (inr, inr, char[], char[]) ;
inr respond (int,_ inr, char[I) ;

inr respond, (inr x, inr y, char query[])
{

mycputs (x, y, query) ; " yes " " no "));return (question (x+8, y+1,
} /, respond bgen */

/**** 03/10/89 function returns the value of sigy sigyz
and sigz (based on info in ADL program)
ARGUMENTS:

xlee - distance from dike, ft
weather - letter B thru F signifying Gifford atmospheric categories

sigy - sigma y
sigz - sigma z */

#include <math. h>

/* function prototypes */

void sigyz (double, char, do_ble *, double *) ;

void sigyz (double xlee, char weather, double *sigy, double *sigz)
{
double con, con1, con2, con3, power = 0.919, term;
switch (weather) {

case 'B' :

con -158.0;
conl - 2. 041;

con2 - 1.048;
con3 - 0.041;
power = 0.9;
break;

case 'C' :

con w 104.0;
conl - 1.786;

con2 _ 0.914;
con3 - 0.0;

power = 0.913;
break;

case 'D' :

con = 69.0;
conl = 1.505;
con2 = 0.737;

con3 = -0.105;
break;

case 'E' :

con = 51.0;
conl = 1.332;
con2 = 0.678;

con3 w -0.112;
break;

case 'F' :

con - 34.0;
conl = 1.146;
con2 = 0.65;

con3 = -0.113;}
term = xlee / 3280.8 ;

•sigy = 3.2808 * con * pow (term, power);
term = 1ogl0 (term) ;

•sigz = 3._2808 * pow (i0.0, conl + term * (con2 + term * con3)) ;
return;

} /* sigyz dike. lib */

/**** 08/10/89 to write general msg to part of screen smalspla
ARGUMENTS:
x x location of upper left corner of print area

y location of upper left corner of print area

_ideoptr start of video ramaddress of

msg[] the actual message to be printed

#include<conio.h>
#include <stdio.h>
#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

,!
/, function prototypes

void smaliSplash (inr, inr, inr far *, char[]);

void smallSplash (inr x, inr y, inr far ,videoptr, char msg[])

{
inr far ,videonow;
inr far ,videostart;

char c, *ch;
stdColor;

ch - msg;
videonow s videostart = videoptr + x + 80 * y;

while (*cb !s ,,){
c _ *ch++;

switch (c){
case '':

• (videonow++) - 250 I 0x0700;
break;

,, case ,e:

• (videonow++) = 182 I 0x0700;
break;

case '''.

• (videcnow++) = 199 I 0x0700;
breek;

case '\n':
videonow = (videostart += 80);

break;
case '':

• (videonow++) = 248 I 0x0700;
break;

case ''"
• (videonow++) = 218 I 0x0700;
break;

case ''"

• (videonow++) = 196 I 0x0700;
break;

case ii:

• (videonow++) = 179 I 0x0700;
break;

case '':
• (videonow++) = 192 i 0x0700;
break;

case '''.
• (videonow++) = 217 I Ox0700;
break;

case '':

• (videonow+.) = 191 I Ox0700;
break;

case ''"
• (videonow++) = 197 I Ox0700;
break;

case it:

*(videonow++) - 180 Ox0700;
break;

case t,:

*(videonow++) ,- 193 Ox0700;
break;

case ct.

*(videonow++) - 194 Ox0700;
break;

case ,t:

*(videonow++) - 195 Ox0700;
break;

case '':

*(videonow++) - 214 Ox0700;
break;

case '''

*(videonow++) - 211 Ox0700;

break;
case '''

*(videonow++) - 201 Ox0700;
break;

case '''

*(videonow++) = 205 Ox0700;
break;

case '':

*(videonow++) = 186 Ox0700;
break;

case '''

*(videonow++) - 200 Ox0700;
break;

case '''

*(videonow++) = 187 Ox0700;

break;
case I,:

.(videonow++) = 188 Ox0700;
break;

case '''

*(videonow++) = 169 Ox0700;
break;

case '''

*(videonow++) = 170 Ox0700;

break;
case '''

*(videonow++) = 208 Ox0700;
break;

case ''"

*(videonow++) = 219 Ox0700;
break;

case '':

*(videonow++) = 222 Ox0700;
break;

case '':

*(videonow++) = 229 Ox0700;

break;
case '':

*(videonow++) = 233 Ox0700;
break;

case '':

*(videonow++) = 215 Ox0700;
break;

default:

*(videonow++) = c I Ox0700;}}
return;

I**** 05123189 to write qianeral msg to video ram splash */

#include<conio.h>

#include <stdio.h>
*/

/, function prototypes

void splash (inr x, inr y, inr far ,videoptr, char msg[], int colr)

{
inr far ,videonow;
inr far ,videostart;
char c;
char *cb;

ch - msg;
videonow - videostart - videoptr+x-l+80*(y-1);

while (*cb l- ''){
c m *cb++;

switch (c){
case '\n':

if(videonow - videostart < 160)
videonow = (videostart += 80);

break;

case ii:
*(videonow++) = 218 colt;
break;

case '':
,(videonow++) = 196 colr;
break;

case '':

,(videonow++) = 179 colt;
break;

case '':

,(videonow++) = 192 colr;
break;

case ''"
,(videonow++) = 217 colr;
break;

case '''.

,(videonow++) = 191 colt;
break;

case "°

,(videonow++) = 197 I colt;
break;

case '':

,(videonow++) = 180 I colt;
break;

case '''.
,(videonow++) = 193 I colr;
break;

case '':

,(videonow++) = 194 I colr;
break; _

case '':

,(videonow++) = 195 I colt;
break;

case '':
,(videonow++) = 214 I colr;
break;

case ''"
,(videonow++) = 211 I coir;
break;

case 0,..

,videcnow++) - 2ol I colE;

break;
case '':

*(videonow++) -205 I colr;
break;

case ''•

,(videonow+4.) - 186 I colt;
break;

case ' ':
*(videonow++) - 204 I colt;
break;

case ''•o

*(videcnow++) -185 I colr;
break;

case '':

*(videonow++) -200 I colr;
break;

case ' '."

,(videonow++) -187 I colr;
break;

case '':

* (videonow++) = 188 colr;

break;
case '':

*(videonow++) " 169 colt; L
break;

case ' ':

* (videonow++) = 170 colt;
break;

case '':

* (videonow++) _ 208 colr;
break;

case ''•

, (videonow++) = 215 colr;
break;

case ''••

* (videonow++) = 219 colr;
break;

case ''•

* (videonow++) = 222 colr;
break;

case '''.

*(videonow++) ='249 I colr;
break;

default:

,(videonow++) = c I colt; }}

return;

} /* splash bgen. lib */

I**** 06123/89 to write logo screen and disclaimer splash0

directly to videoram

#include <conio. h>

#include <dos.h>
#include <stdio. h>

/* function prototypes */

void baseLine (void) ;

void cursorOff (void) ;
void splash0 (inr, inr, inr far *, inr);
void pakc (inr, int, inr far *, inr) ;

void splash (inr, inr, inr far *, char[], inr);

void splash0 (inr x, inr y, inr far *videoptr, inr colt)
{
char words[] = " "

" \n"
WN

"\n"
Ii II

" \n"
I!tW

"\n"
II II

It \ n"
lt II

"\n"
lt tw

tt \ n lt

ii WELLBORN SYSTEM"

'tS \n"
II li

lt \ .n lt

II a tl

" \n tt
lt tW

tt \ n vt
" d i V i S i O n "

" o f \n"
li lt

lt \ ntt

Ii R O b e r t F , B e n"

" e n a t i I n c . \n"
Ill II

" \ n"
" 7 5 D e e p d a 1 e"
" D r i v e \n"
Itr II

,t \n ,t
" M a n h a s s e t "

Ii N . Y . I I 0 3 0 \n II
II l!

" \n"
" 516 Un 9 8440"

" \n"
li t!

lt \ n tt
II lt

It \ n lt
tt tt

It tt

. I!

II II •
I

char msg [] m "WELLBORN SYSTEMS DISCLAIMER\n\n\nLEGAL NOTICE Wellborn"
" Systems warrants that this program will substantially\nconform"
" to the specifications described in the documentation provided\n"
"it is used on the computer hardware and with the operating\n"
"system for which it was designed.\n \nExcept as specifically"
" provided above, Wellborn Systems makes no warranty or\nrepresent"
"ation, either expressed or_imp!ied, with respect to this program"
" or\ndocumentation, including their quality, performance, merchan"
"tability, or\nfitness for a particular purpose.\n\nBecause computer"
" programs are inherently complex and may not be completely\nfree "
"of errors, you are advised to verify your work. In no event will"
"\nWellborn Systems be liable for direct, indirect, special, incid"
"ental, or\nconsequential damages arising out of the use or inabi1"
"ity to use the\nprogram or documentation, even if advised of the "
"possibility of such\ndamages _. In particular, Wellborn Systems is"
" not responsible for any costs\nincludind but not limited to those"
" incurred as a result of lost proflts\nor revenue, loss of use of"
" the computer program, loss of data, the cost_of a s_bstitute pro"
"gram, claims by third parties or for other similar costs."',

clrscr () ;
cursorOff ();
splash (x, y, videoptr, words, colt); _....
sleep (3);
clrscr ();
splash (x, y, videoptr, msg, colt);

" Wellborn Systems "splash (1, 25, videoptr,
" copyright 1989 ", 0x7000) ;

pakc (24, 24, videoptr, col_) ;
window (1, 1, 80, 24);
clrscr ();
return;
} /* splash0 bgen.lib */

I**** 09/07/89 tO write opening screen ' splashl */

#include <conio.h>
#include <stdiooh>

/, function prototypes

void pakc (inr, int, inr far *, inr);
void splash (int, inr, inr far *, char *, inr);
void splashl (inr far *, inr) ;

- ,,

void splashl (inr far ,vide,ptr, inr colr)

{ GAS RESEARCH INSTITUTE\n"
char msg[] - " . LNG Spills\n"

. Vaporization and Dispersion\n\n"

.Thisprogram is intended for evaluation of the"

. effectiveness of LNG storage\ndike insulation material to"
" aid decision making regarding installation of new\ndike"

,, insulation. Depending on several site-specific conditions"
" and candidate\nmaterials, dike insulation can significantly

,,mitigate hazards associated with\naccidental LNG spills"
hv minimizinu vaporization rates and\n

,, within storage dikes -_ - ' ' of"
,,downwind dispersion. The program permats evaluatlon
" dike insulation for\hb.rh uninsulated dikes and insulated"
,' dikes considered for insulation retrofit.\n\nUser-specified

" input regarding a storage tank and its surrounding diked"
,, area\his used to calculate vaporization rates for a user-"
,,defined spill scenario.\nCalculated boil-off rates are"

,, provided for cases with and without the addition\nor new"
" dike insulation. Next, the user is provided the option of"

,, calculating\nvapordispersion distances for concentrations"
" of interest using a simple\nGaussian dispersion algorithm."

,'Dispersion calculations are provided for\ncomparative purpos
" only as use of this algorithm for safety evaluation or\n"

,,regulatory compliance is not recommended by GR/.";

splash (1, i, vide.ptr, msg, colr);

pakc (24, 24, videoptr_ colt);
window (!, i, 80, 24);
clrscr ();

return; ,/
} /, splashl "dike.lib

k_
.

I*** 09113189 tank
to request tank and liquid dimensions and return tank volume */

#include <conio.h>
#include <dos.h>
#include <math.h>
#include <stdio.h>
#define barColor textattr (BLACK + (LIGHTGRAY<<4));
#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

I* function prototypes */

void cleanSpace (inr, int, inr);
void cursorOn (inr);
double tank (double *, double *, double _, double *, double *, double *);
double getNum (void);

double tank (double *tankHeight, double *tankDia, double *htUllage,
double *ullagePress, double *ullageVol, double *tankArea)

{
window (1, 1, 80, 25);
barColor;
mycputs (30, 25, " numerics only ");
stdColor;
mycputs (15, 2, "Tank and Liquid Details");
gotoxy (5, 3);
please (10, 22) ;
mycputs (5, 5, "Diameter, ft - ?");
mycputs (5, 7, "Height, ft - ?") ;
mycputs (5, 9, "Height of liquid in tank, ft = ?_');
mycputs (5, 11, "LNG vapor pressure, psig = ?")
gotoxy (20, 5);
cursorOn (0) ;
*tankDia = getNum ();
if (*tankDia == 0.0){

mycputs(70, 3, "null");
*tankHeight = 0.0;
*htUllage = 0.0;

*ullagePress = 0.0;
goto out; }

gotoxy (70, 3) ;
cprintf ("%.1f", *tankDia) ;
gotoxy (18, 7);
*tankHeight = getNum();
gotoxy (70, 4);
cprintf ("%. If", *tankHeight) ;
redo:gotoxy (36, 9) ;
*htUllage = getNum () ;
if (*htUllage > *tankHeight && error (I)){

cleanSpace (35, 9, 9) ;
goto redo; }

gotoxy (70, 5) ;
cprintf ("%.if", *htUllage) ;
gotoxy (32, ll) ;
*ullagePress = getNum () ;
gotoxy (70, 6) ;
cprintf ("%.2f", *ullagePress) ;
out:*ullageVol = *htUllage * (*tankArea = 0.7854 * *tankDia * *tankDia);
window (I, i, 52, 24);
clrscr () ;
window (1, I, 80, 25);

return (*tankHeight * ,tankArea) ;
} /, tank dike. lib */

/**** 04/16/89 text
to print text related to input screens */

/* function prototypes */

void text (inr) ;

void text (inr line)
{
inr x m 2 ;
gotoxy (x, 16) ;
switch (line) {

case 0:

cputs ("This condition assumes a spill of sufficient size ") ;
mycputs (x, 17, "to cover the dike floor instantaneously but to a ");
mycputs (x, 18, "very shallow depth thus allowing most of the dike ");
mycputs (x, 19, "volume to accumulate the vapor formed. Following the");
mycputs (x, 20, "initial spill, the spill rate is the boil-off rate ");
mycputs (x, 21, " ");
break;
case 1:
cputs ("This condition takes a Specified spill rate and ") ;
mycputs (x, 17, "simulates its spread over the dike floor and the ") ;
mycputs ix, 18, "subsequent vaporization which results therefrom. ");
lastlin,::
mycputs ix, 19, "Since a specified spill time is involved, the ");
mycputs ix, 20, "vapor cloud is of finite size and may not overflow ");
mycputs (x, 21, "the dike.") ;
break;
case 2 :
cputs ("This condition assumes a ruptured pipe of specified");

"size. The leak rate from the ruptured pipe is ");mycputs ix, 17,
mycputs ix, 18, "calculated and becomes the LNG spill rate. ");
goto lastline;
}

return;
} /* text dike. lib */

/**** 03/27/89 tO control transient conduction calcs transient
ARGUMENTS:

alpha[] - thermal diffusivity earth/liner/insulation
dikeArea[] - floor/walls, sq ft

k[] - thermal conductivity earth/liner/insulation,eng units
T[] - temperature at nodes
x[] - node lengths, ft
nc[] - nodes per zone
n - total node count

nodePos[] - node # at zone boundaries */

#include <stdio.h>
*/

/, function prototypes

void conduction (double, double [], double [], double, double [],
double [], inr [], int);

void transient (double [], double [], double [], double [], double [],
inr [], inr, inr []);

void transient (double alpha[], double dikeArea[], double k[],
double TJ], double xi], int nc[], int n, inr nod

{

static double */boilOffRate, /* rate at which LNG boils off from entire dike, #/hr */

deltime, /* time step, sec
latHeat s 220.0, /* latent heat of evaporation of LNG */

prntInterval [] s
{1.0,4.0,5.0,20.0,30.0,50.0,100.0,250"0}, /, seconds

prntTime [] "
{I.0, 5.0, 10.0, 30.0, 150.0, 500.0, I000.0, 1.0el0}, /, seconds

/* avg heat flow from surface to LNG */

q' /* rate of heat flow to surface,BTU/hr/sqft _/qc = 0.0,
qold = 0.0, /* qc at beginning of time step 4/
sumq = 0.0, /* total BTU/sqft at any time */
timeold = 0.0, /, simulation time at which printing occurred */

ts = -2_0.0, /, simulation time, sec */
ytime,
vaporWt; /* total weight of LNG vaporized, lbs */

int i = 0;

ytime = 0.Q;
while (ytime <= 391.0) {

if (ytime < 0.I){ deltime = 0.01; goto run;}
if (ytime < 1.0) { deltime = 0.015; goto run;}
deltime = 0.0225;

run: qc = 2.0 * k[0] * (T[0] - ts) / xi0];
q = 0.5 * (qc + qold) ;

qold = qc;
/*sumq += q * deltime / 3600.0;*/
boilOffRate = q * dikeArea[0] / latHeat;

_aporWt += boil0ffRate * deltime / 3600.0;
conduction (ts, alpha, k, deltime/3600.0, x, Ts nc, n);

if (ytime == 0.0) II (ytime - timeold >= prntInterval[i])){
if (ytime >= prntTime[i]) i++;
goto prnt;}

else goto noprnt; "%4 Of %9 if %9 if %8 2f
prnt: fprintf (stdprn, • • • '

ytime, q, boilOffRate, vaporWt, T[0]) ;

timeold = ytime;

noprnt: ytime += deltime;}

return; dike lib */
} /, transient

twolayer
/**** 06/02/89

to calculate the near surface temperature, the heat flux, the
boil off rate and the amount evaporated from

a dike composed of two lawyers of different materials based on

dt/dx_-(t0-ts)/[l+2sum'nexp(n'21"2/ see Carslaw & Jaeger p322
ARGUMENTS: tO ambient temperature, degF

k[] thermal conductivity [0]=top layer on floor
[l]=top layer
[2]=bottom la

alpha[] thermal diffusivity [0]=top layer floor, sqft
[li=top
[2]=bot

dikeArea[] [0]=floor area, sqft
, [l]-wall area

1[] effective thickness of top layer [0]=on floor, in

#include <conic.h>

#include <math.h>
#include <stdio.h>

*/
/* function prototypes

double erfc (double);
double sumFunction (double, double, double *);

double tempFunction (double, double, double, double);

inr testVaporVol (double, double, double, double, double *, double *);
void twoLayerBoilOff (double, double [], double [], double, double [],

double [], double *, double *);

void tWoLayerBoilOff (double tO, double k[], double alpha[], double

dikeVaporVol, double dikeArea[], double I[3, double *timeod, double *dispST)

{
inr i = 0,

odflag = 0; /* flag = 1 when vapor overflows dike */

double amtEvap = 0.0,/* amount evaporated,#/hr from total dike */
beta, /* beta = (sigma - l)/(sigma + i) _/
betawall, /_ same as beta but for wall surface */
bc£1OffRate, /* rate of evaporation, #/hr from entire dike */

dtolatht, /, (t0-ts)/latent heat */
effDikeArea, /* dike area available for heat _ransfer */
heatFlux, /*average q/A, BTU/hr-sqft */

. latHeat = 220.0, /* latent heat evaporation of LNG, BTU/# */

ml, mr1, prefix, prefix1, sqraot,

term, terml, ,/
time = 0.0, /, seconds ,/
timeHrs, /* hours
timeTable[]={0.001,0.1,0.5,1.0,2.0, 5"0,I0"0,25"0'50"0'I00"0'250"0'500'

1000.0,1500.0,1800.0,2100.0,2400.0,2700.0},/,time for printout *

t, /, temperature at x, degF */
ts = -260.0; /* atmospheric boiling point of LNG, degF */

dtolatht = (tO - ts) / latHeat;
effDikeArea = dikeArea[0] + dikeArea[l];

term = sqrt (alpha[l] / alpha[2]); /, calculate gamma for walls */
t = term * k[2] / k[l]; /* calculate sigma for walls */

betawall = (t - 1.0) / (t + 1.0); /, calculate betawall */

term = sqrt (alpha[0] / alpha[2]); /* calculate gamma for floor */
t = term * k[2] / k[0]; /* calculate sigma for floor */

beta = (t - 1.0) / (t + 1.0) ; /, calculate beta */

l[0] /= 12.0; l[1] /= 12.0; /* convert thicknesses to ft */
while (time < 2700.0){

timeHrs = (time = timeTable[i++]) / 3600.0;

sqraot - sqrt (alpha[0] / timeHrs);
term - alpha[0] * timeHrs;
t - tempFunction (beta, term, i[0], tO);/*calc temp near surface */
terml - i[0] * i[0] / term;
prefix1 - dtolatht * sqraot * dikeArea[0] ;
prefix- 2.0 _ prefix1 * tlmeHrs;
boilOffRate-sumFunction (beta, terml, &ml) * prefix1;/* floor */
amtEvap = ml * prefix;
term - alpha[l] * timeHrs;
terml - 111] * 111] / term;
prefixl *- (dikeArea[l] / dikeArea[0]) ;
prefix *- (dikeArea[l] / dikeArea[0]) ;
boilOffRate +- (sumFunction (betawall, term1, &ml) * prefix1); /*walls
amtEvap +- (ml * prefix);
heatFlux-boilOffRate * 1airiest / effDikeArea;
if (time u 0.001) amtEvap = 0.0;
if (!odflag) odflag-testVaporVol (dikeVaporVol, time, amtEvap,

boilOffRate, ti
(time=- 0.i li time-- 0.s){

fprintf (stdprn, "%4• If %9.1f %10.1f %10.1f %7.2f\n",
time, heatFlux, boilOffRate, amtEvap, t);}

else{
fprintf (stdprn, "%4 Of %9 If %10 If %10 If %7 2f\n",J • • • • p

time, heatFl_x, boilOffRate, amtEvap, t);}}
}

double mumFuncti0n (double beta, double terml, double *amtEvap)
{
double betan, /* betaAn ,/

' 11, mrl, n, z, zs;

for (n = 1.0, betan = 1.0, ml=mrl=0.0i n <= 10.0; n++){
if ((zs = n * n * terml) < 6.76){

z = 1.0 / exp (zs);
mrl += (betan *= beta) * z; /* 1.7725 = sqrt (pi) */

• I += betan * (z - 1.7725 * sqrt (zs) * erfc (sqrt (zs))) ;}}
•amtEvap _ 1.0 + 2.0 * ml; ,

return (1.0 + 2.0 * mr1);
} /* sumFunct ion */

double tempFunction (duuble alpha, double term, double I, double tO)
{
double alphan = l.Oa /* alpha'n */

sum = 0.0,
ts = -260.0,
t,
x;

x = 0.000417 - l;
term = 0.5 / sqrt (term);
for (n = 0.0; n <= 5.0" n++){

sum += alphan * (erfc (((n + n + 1.0) * 1 + x) * term) - alpha *
erfc (((n + n + 1.0) * 1 - x) * term));

alphan *= alpha;}
return tO + (ts - tO) * sum;
} /* temp Function dike. lib */

I**** 04129/89 to test vapor vol relative to dike ro1 vaporvol
ARGUMENTS:
dikeVapVol - dike (less tank) vapor volume, cu ft
time - time, seconds
vaporWt - total wt vapor generated since time=0, #
boilOffRate - rate of vapor generation at time, #/hr
timeOverDike - time when vapor first overflowed dike, sec
dispSourceTerm - rate of overflow at time, #/hr

(timeOverDike & dispSourceTerm determined by linear
interpolation of two time spots)

/* function prototypes */

inr testVoporVol (double, double, double, double, double *, double *);

inr testVaporVo! (double dikeVaporVol, double time, double vaporWt, double
boilOffRate, double *timeOverDike, double *dispSourceTerm)

{
double factor,

vaporVol;
static double vaporVo11,

time1,
source1;

vaporVol = 9.121 * vaporWt; /* 9.121=359,(460+-260)/492/16 */
if (vaporVol < dikeVapVol){

vaporVoll = vaporVol;
time1 = time;
source1 - boi1OffRate;
return 0;}

factor.= (dikeVapVol - vaporVo11) / (vaporVol - vaporVoll);
•timeOverDike = time1 + factor * (time - time1);
•dispSourceTerm = source1 + factor * (boilOffRate - source1);
return I;
} /* testVaporVol dike.lib */

/**** 04/07/89 warning
to flash warning on screen and await response */

#include <conio. h>
#include <stdio. h>

#define brightColor textattr (WHITE + (BLACK<<4)) ;
#define stdColor textattr (LICHTGRAY + (BLACK<<4));

/* ftulction prototypes */

voidbieep (void);
void pakc (inr, inr) ;

inr question (inr, inr, char[], char[]);
inr warning (inr, double, double) ;

inr warning (inr no, double dikeVol, double tankVol)
{
inr action;

char buffer[60*7*2];
bleep () ;
gettext (I, 18, 52, 24, buffer);
window (I, 18, 52, 24);

_. clrscr () ;
switch (no) {

case 0 :

gotoxy (I,I);
printf ("Dike volume (%.1f cult) is less than",dikeVol);
gotoxy (3,2);
printf ("110%% of tank volume (%. if cult) _',tankvol) ;
pak:pakc (8, 5);

puttext (i, 18, 52, 24, buffer) ;
window (i, I, 52, 24);
clrscr () ;
break;

case 1 :

brightColor;

mycputs (12, 1, "Serious Warning") ;
stdColor;
gotoxy (1,2);
printf ("The dike volume (%.1f cuft) is inadequate to",dikeVol);
gotoxy (1,3) :
printf ("contain the total tank volume (%. if cult) ",tankVol) ;
goto pak;

case 2 :

mycputs (2, I, "You have entered 0.0");

mycputs (2, 2, "an improbable value!") ;

" accept " " retry ");act:action = question (2, 3,
puttext (1, 18, 52, 24, buffer);
window (1, i, 80, 24);

return action; }
window (i, i, 80, 24);
return (0) ;

} /* warning dike. lib */

/**** 09 /25 /89 weather
to get weather category for transient calcs */

#include <stdio. h>

*!
/* function prototypes

void barText (in', char *) ;
void cursorOff (void) ;
void cursorOn (in,) ;
void drawAbox (in,, in,, in,, in,, char *, char *) ;

inr getKey (in,, in,, char *[], int, in,) ;
char weather (void) ;

char weather ()

{
char line[53]s" .. \0";
char weacon;

'C' 'D' 'E' 'F'};char letter[] - {'B', , , ,
char ,categories[5] - { " E moderately unstable",

" C _lightly unstable",
" D neutral",

" E slightly stable",
" F moderately stable"} ;

inr i;
barText (30, "selection keys only") ;
window (i, i, 52, 24);

clrscr ();

cputs("To calculate downwind dispersion, you must specify");

mycputs(1, 2, "the weather conditions by choosing from categories");
mycputs (1,. 3, "B - F. See table below of meteorological categories") ;
mycputs (1, 4, line) ;
mycputs (i, 5, "surface");

mycputs (32, 5, ..nighttime conditions");
mycputs (2, 6, "wind") ;
mycputs (9, 6, "daytime insolation");

mycputs (34, 6, "(amount overcast) ") ;
mycputs (2, 7, "speed") ;
line[45] = '\0';

line[22] = line[23] = ' '"
mycputs (8, 7, line) ;

mycputs (2, 8, "mi/br");
mycputs (8, 8, "strong moderate slight");
go, oxy (34, 8);
putch ('\xr2') ;
cputs ("I/2 ") ;

go,oxy(44,8);
putch ('\xf3') ;
cputs ("3 /8") ;

"< 4 5 A A-B B") ;mycputs (2, 9,
" 4 5 A-B B C E F") ;mycputs (2, I0,

mycputs (2, II, " 9 B B-C C D E") ;
" 13 5 C C-D D D D") ;mycputs (2, 12,
"> 13 5 C D D D D") ;mycputs (2, 13,

cursorOff () ;

drawADox (16, 14, 26, 5, "Weather Conditions" "Select category");
weacon = letter[ge,Key (19, 17, categories, 5, 0)];
clrscr () ;

window (1, l, 80, 24);

go,oxy (69, 21) ;

putch (weacon) ;
return weacon;

} /• weather dike. lib */

I**** 04/30/89 to get wind speed and ambient temperature, windtemp
and to put ambient temp into tempture vector for transient calcs */

#include <stdio. h>
*/

/* function prototypes

void cursorOff (void) ;
void cursorOn (inr) ;
double getNum (void) ;
void windTemp (double *, double []) ;

void windTemp (double .windSpeed, double tempture [])
{
double ambientTemp;
inr i;

window (1, 1, 52, 24) ;
clrscr () ;
window (1, 1, 80, 24);
mycputs (15, i, "Weather conditions") ;
mycputs (5, 5, "wind speed, miles/ht = ?");
mycputs (5, 7, "ambient temperature, degF = ?") ;
cursorOn (0) ;
gotoxy (28,5) ;
*windSpeed - getNum ();
gotoxy (72, 22);
cprintf ("%. lr", .windSpeed) ;
*windSpeed *- 1.466666667; /.1.46667 - 5280/3600 */
got3xy. (33,7) ;
ambientTemp - getNum ();
for (i = O; i < 50; i++){

tempture [i] = ambientTemp ;}
gotoxy (71,21) ;
cprintf ("%. If" ,ambientTemp) ;
window (1, 1, 52, 24);
clrscr ();
return;
} /. windTemp dike. lib */

/**** 10/08/89 to write scrollable text to a window writetxt
ARGUMENTS:

ptext pointer to text to be written
e

x,y screen coordinates of ul corner of window
w width of _window
h height of window
color1 color attribute of main portion of text
color2 colo_ attribute of accented text

*/
function prototypss

writText (char *, inr *, inr, inr, inr, inr, inr, inr);

#include <global.h>

writText(char *ptext, inr *e, inr x, inr y, inr w, inr h, inr color1, inr color2

{
register inr i = 0, j - 0;
inr atend = FALSE;
inr color = color1;

inr far *rP;

inr len = 0 ;
inr m = 0 ;
inr more = TRUE;

vP = OA(x,y++);

if ((w -- NULL) && (h =- N_/LL)){
w = strlen (ptext) ;

h = ,I;} /* end i_ */

else { w -= 4; h -= 2; }

while ((j < h) && (atend == FALSE)){
*e += (len = getLen (p_ext + m, w));

for (i = 0; i < len; i++){
switch (*(ptext + m++)){

case '' : color = color2; break;
case '' : color = colorl; break;
case '' : color = color2; break;

, case '' : color = colorl break;
case '' : *(vP++) = 174 color; break;
case '' : *(vP++) = 175 color; break;
case '' : *(vP++) = 176 color; break; °

case, '' : *(vP++) = 177 color; break;
case '' : *(vP++) = 178 color; break;
case '' : *(vP++) = 192 color; break;

case '' : *(vP++) = 194 color; break;
case '' : *(vP++) = 196 color; break;

case '' : *(vP++) = 205 color; break;
case '' : *(vP++) = 217 color; break;
case '' : *(vP++) = 219 color; break;
case '' : *(vP++) = 220 color; break;
case '' : *(vP++) = 223 color; break;

case '' : *(vP++) = 248 color; break;
case '' : *(vP++) = 249 color; break;

case '' : *(vP++) = 254 color; break;

case '\n' :
case '\r' : break;
case '' : more = FALSE; atend = TRUE; continue;

default : *(vP++) = *(ptext + m- i) I color; break;
,} /* end switch */

} /, end for * /

vP-OA (x,y++) ;
j++;} /* end while */

/, ,e-c_u+*e;*/
return (more);

} /, writText bgen.lib */

k

/

#include <string. h>
#include <keys. h>
#include <global. h>

void drawClear(int, int, inr, inr, int, int) ;

writeText(char txt[], inr col, int row,int wid, inr hit, inr cl,int c2)

{
inr i;
inr size;
inr more-FALSE;
inr str-O, end-O, impend-0 ;
inr maxlines-0 ;

inr adjwid_wid-4 ;
inr line-0, ret;

char *pbuf;

if ((strchr(txt,233)) == NULL) strcat(txt, "");
size - strlen (txt);

pbuf - txt;
more- writText (pbuf, &end, coi+2, row+l, wid, hit, cl, c2);

impend - end;
while (tmpend < size) {

tmPend += getLen (pbuf+tmpend, adjwid) ;
maxlines ++;

}
while ((ret - getch()) != ESC) {

if (ret -- 0) {
ret - getch() ;
switch (ret) {

case END :
if (more -= FALSE) {

bleep () ;
break;} /* end if */

if (line <- (maxlines-(hit-2))) { /* full
while (end < size) { /* set vars to las

str += getLen (pbuf+str, adjwid)

impend = end += getLen (pbuf+end
line ++;} /* end while

drawClear (col+l, row+l, wid-2, hit-2, c
more = writText (pbuf+str, &tmpend, col+

wid, hit, cl,

break;} /* end if */

else { /* partial rewrit
inr nrow = ((row+hit-l) - (maxlines-line

tmpend=end;
movetext (col+l, row+l+(maxlines-line),

row+hit-2, col+l, row+l)

drawClear (col+l, row_(hit-(maxlines-lin
wid-2, maxlines-line, c

while (end < size) {
str+ -- getLen (pbuf+str, adjwid)

end += getLen (pbuf+end, adjwid)
line ++;} /* end while

more = writText (pbuf+tmpend, &tmpend, c
wid, 2+line, c

break;} /* end else */

case PGUP :

if (line == 0) {
bleep ();
break;} /* end if */

if (line >= hit-2) { /* full rewrite
tmpend= end;

°

line -m hit-3;

for (imO, str-0; i<line; i+_) str+=ge tLe
drawClear (coi+1, row+l, wid-2, hit-2, c

' more m writText (pbuf+str, &impend, col+
wid, hit, cl,

for (i=0, endm0; i<(hit-2)+line; i++) en
break; } /• end if *

else { /, partial re
movetext (col+l, row+l, col+wid-2, row+h

col+l, row+l+line) ;

drawClear (coi+1, row+l, wid-2, line, cl
more m writText (pbuf+0, &end, coi+2, ro

2+line, cl, c2

' str m ,line m 0;

for (imO, end=0; i<=(hit-3) ; i++) end+=g
break; } /, end 'else

case HOME :

if (line mm 0){
bleep () ;
break; } /, end if

if (line> m hit-2){ /, full rewri
str = end = line = 0; /, reset tr

drawClear (coi+1, row+l, wid-2, hit-2, c
more = writText (pbuf+str, &end, coi+2,

hit, cl, c2) ;

break; } /, end if

else { /, partial
movetext (col+l, row+l, col+wid-2, row+h

• col+l, row+l+line);

drawClear (col+l, row+l, wid-2, line, cl
more m writText (pbuf+0, &end, c01+2, ro

2+line, el, c2

• str = line = 0;

for (i=0, end=0; i<=(hit-3); i++) end+=g
break;} /, end else

case PGDN :

if (more == FALSE) {
bleep () ;
break;} /, end if */

if (line <= (maxlines-(hit-2))){ /* full
line += hit-3 ;

for (i=0, str=0; i<line; i++) str_=getLe
movetext (col+l, row+hit-2, col+wid-2, r

col+l, row+l);

drawClear (col+l, row+2, wid-2, hit-3, c
more = writText (pbuf+end, &end, coi+2,

hit-l, cl, c2)

break;} /* end if */

else { /* partial rewrit
int nrow = ((row+hit-1)-(maxlines-line))

%mpend=end ;
movetext (col+l, row+l+(maxlines-line),

row+hit-2, col+l, row+l)

drawClear (col+l, row+ (hit-(maxlines-lin
wid-2, maxlines-line, c

while (end < size) {
str += getLen (pbuf+str, adjwid)
end += getLen (pbuf+end, adjwid)
line ++;} /, end whil

more = writText (pbuf+tmpend, &tmpend, c ,
wid, 2+line, c

break;} /, end else

case DNARROW :

if (more -- TRUE){
line++;

' ' for (i-0, str-0; i<line; i++) Str+=getLe

movetext (coi+1, row+2, col+wid-2, row+h
row+I);

drawClear (col+l, row+hit-2, wid-2, I, c
more - writText (pbuf+end, &end, coi+2,

wid, 3, cl, c2

break; } /* end if */

else {
bleep ();
break;} /* end else */

case UPARROW :

if (line > 0){
line--;

movetext (col+l, row+l, col+wid-2, row+h
col+l, row+2) ;

drawClear (col+l, row+l, wid-2, I, cl, 0

for (i-0, str-0; i<line; i++) str += get

more - writText (pbuf+str, &end, col+2,
wid, 3, cl, c2

for (i-0, end=0; i<=(hit-3)+line; i++) e

break;} /, end if */

else {
bleep ();
break;} /* end else */

}
}

}
return;

}

I Jill'II ' l'i

• 'APPENDIX 2

U S E R M A N U A L :

8RI LNG Dike Vaporization Program (DIKE)

(Vet sion 1)

March 31_ 1989

Robert F. Benenati Inc. _ Manhasset_ N.Y.

Prol ogue

The computer program DIKE will run on any IBM PC/XT/AT or true
compatible_ equippe_ with the 8087 math co-processor chip and with
an 80 column printer connected to the parallel port LPT-I.

Before attempting to run the program_ it is recommended that you
make a back-up copy of the disk and that you store the original in

a safe place. Next you should examine the file CONFIG. SYS in the
root di_ectory. This file must contain the ANSI.SYS driver. If it
does nQt_ check that the file ANSI.SYS is in the root directory and

use your favorite editor program to add the liner

device = ANSI.SYS

to the CONFIS.SYS file. Be sure you store the modified CONFIB.SYS
file in the root directory then reboot the machine. You are now
ready to run the DIKE program_ which you do by just typing the word

DIKE (upper or lower case} followed by the <ENTER> key.

4

INTRODUCTION

This personal computer-based program is designed to provide the
user with vaporization rate data for LNG spills within a user-

defined LNG storage dike or other impoundment. By calculating

solid conductive heat transfer up thru up to three layers of dike
_Iocr and wall materials, the program can be used for evaluating
the effectiveness of dike insulating alternatives in mitigating
rapid vaporization of spilled LNG. Vaporization rates and volumes

are provided to assist the user in determining hazard zones as-
sociated with downwind dispersion of the resulting LNG vapor cloud.
Ideally, the user would use calculated vaporization rates as input

to an appropriate heavy gas vapor dispersion model or laboratory
experiment.

In addition, the program provides the user with the option o_
calculating vapor dispersion distances directly from the program,

which includes a simple Gaussian passive di spersion procedure.
However, this dispersion calculation should be used for comparative
purposes only since, as typical of Gaussian dispersion models, it
neglects important LNG vapor properties. Dispersion calculations
produced by the program should not be used for hazard evaluation or

_or regulatory compliance evaluation purposes.

The objective c_ this User Manual is to provide program users with

informati on on program organi z ati on and operati on as wel I as
underlying calculation approaches employed. User questions regard-
ing specific aspects of the program can be addressed to either

Brookhaven National Laboratory or to. GRI.

PROSRAM ORGANIZATION

Two basic types of screens are employed, the selection screen and
the data input screen. The selection screen will display a short
list of items from which the user may choose, One of the items

will be highlighted. There may be notes displayed to elaborate on
the highlighted item. The arrow keys (up/down or right/left) can
be used to move the highlight bar from one item to another. The

RETURN key (ENTER key on some keyboards) will cause selection of

the highlighted item. Once an item has been selected by pressing
the RETURN key, the program will continue with the next screen.

There is no provision for backing up to previous screens; use the
RETURN key cautiously.

The dat_ entry screens are for the the entry of numeric data. Each
screen is self explanatory and will show all of the data required

and the units expected. Generally all non-numeric keys will be
deactivated while such a screen is active. The cursor wi Il be

positioned at the first data item. As numeric keys are pressed,
the number represented by the l(_s will appear on the screen. The
back arrow key can be used to erase characters entered in error.

Pressing the RETURN key causes acceptance of the date and moves the
cursor to the next item on the screen. Once again there is no

provision for backing up to previously accepted items so treat the
RETURN key with respect. When the last item on a screen has been
accepted, the program moves ahead to the next screen.

Whenever sufficient data has been entered, computation proceeds.

That is to say computations are going on between presentation o.
each data screen, and in some instances, between the entry of
different data items on a single screen.

q

On some data entry screens, with the request for specific data,
reasonable default values are displayed, along with a question as

to the suitability of the values presented. The question will be

accompanied by a selection box with the 'yes" response highlighted.
If'these values are acceptable, the user may simply press RETURN

and go on to the next screen. Alternatively, the user may move the
highlight bar to the "no" response before pressing RETURN and the
displayed data values will disappear, the cursor will move to the
first data field, and the user must then enter data values of his
choosing in the usual way.

Throughout the data input process, a column o_ model properties is
maintained on the right of the display screen. At the outset, this

colu._n of model properties is empty, but as data is accepted _rom
the data input screens by the program, this data is inserted in .he
moled properties table. Thus the user has a continuous reminder of
all the data already entered and accepted. This display of model

properties is for information purposes only.

Occasionally, the program will det_mct a fate3 err_l__ in the input
data (such as a dike diameter smaller than the ta_,k diameter) in
time far the error to be _orrected_ in which case the user will be

J o_fered an oppertunity to correct the error or to abort the
program. In such cases, a selection screen may ove(rlay a data
entry screen. Whenever both screen types are displayed simul-
taneously, the selection screen takes precedence. Incidentally,
the user can abort the program at any time during the model speci-
fication phase by pressing ali-q, is, pressing and holding the ali
key then pressing the 'q' (_or quit) key.

DETAIL SCREENS

Data input or problem deflnation is accomplished via a sequence
of screens designed to simplify to the maximum extent possible the

physical process of entering the data required to initialize a
calculation. This chapter describes each of these input screens
and provides specific instructions for their use.

The opening screen presents a very brief description of the
purpose for the prograam and displays a table entitled Problem

Description, which is reproduced as figure ='RO_LEM DESCRIPTION_
1 at the right. This table indicates all

of the arbitrary user input data required TANK:
diamet er ft

to adenti fy a patti cul ar probl mm. A1 so

shoown are the uni ts employed for each height _t
data item. All of the data items start Liquid height, ft
out blank and are filled in later as the pressure, ps_._

DIKE: shape rectangl e
user progresses thru the subsequent scree-

styl e
ns. This table remains on the display

const.ruct ion.
throughout the data input process to con-

height ft
tinuously remind the user of the specific

di a/l ength. -• Ftdai_a values which have been entered. Thls
wi dth f t

can be particularly use_ull if part way
thru the data entry process some incompat- wall angle-., deg
ability is detected and you are offered an shelf _ inc_

f loot ir,c_
oppertunity to reenter the latest data
item. wal 1 ir;cl"

IPC-41 oor inc,_
IPC-wal 1 intr

Screen 2 shown in figure 2 below refers
SPILL rate.-. 9Pm

to the dike shape and is a simple selec-
tion menu. The uppermost box is a title time mln

box indicating the overall screen purpose. WEATHER degF
The lowermost box, shown accented, indi- Wind speed m/Inr

Downwind dist. ft
cotes the user action required. The mid-

dle box indicates the selections available figure I
to the user. One of the selections is

highlighted. The user can change the highlighted item by pressing
the up or down arrow keys at the right of the keyboard. When the

RETURN key (or ENTER key) is pressed, the
highlighted item is selected and two

........ things happen, 1) the sel meted item

Dike Shapes appears in the program description table
...... on the display and 2) the screen changes

Circular to the next screen in the sequence. There
is no provision for backing up to theRectangular
previous screen in the sequence so treat

the enter key with some respect.Select Shape

For this screen and the two to follow,
figure 2 the highlight bar at the base of the

screen will re_d "selection keys only",
indicating that all other keys are tempor-

arily inactive.

The next screen, shown in figure 3, refers to the style of
construction of the dike. Three choices are available namely a

dike with vertical walls, a dike with sloping

_alls, and a dike with sloping walls and a shelf Dike Styles
at the junction between the dike floor and the
dike walls. The floor of all dikes is assumed Straight Sides

to be flat and level without either a drainage Sloped Sides
sump or an access ramp. Sloped Sides w/sheIT

Having decided on the general shape of the _ Select Style
dike, the next screen, shown in figure 4, deals figure 3
with the manner of construction of the dike.

The si mpl est construction being just packed

earth, and the more complicated being packed earth with some form
of surface coating (not including the insulation). Surface coat-

ings _ crushed stone, gunite, or poured concrete are allowed. It

is al,ao possible to select a case with poured concrete on the dike
floor and gunite on the dike walls, or to select a case both

concrete and preexisting insul-
ation on the di ke flout and

Dike Construction walls. If in the previous
...... screen, a dike with straight

Tamped Eart_ + Gunite walls was selected, a plain
Earth . Poured Concrete tamped earth dike will not be
Earth,concrete floor,gunite wall allowed nor Mill one with a
Tamped Earth loose rock liner be al lowed
Tamped Earth + Loose Rock since in each of these cases,

the wal I angle exceeds the

Select Construction Type iangle of repose of the top

figure 4 layer of material.

All qualitative character-

istics of the dike having been settled, the next screen deals with
the tank and is the first screen that requires input by the user of

specific numeric data. Tank and Liquid Details
This screen is shown

in figure 5 at the

. right. The highlight Diameter, ft = ..
bar at the base of the

screen indicates Height, ft =
"numeri cs only" and

infacc, pressing any Height of liquid in tank. _t =
key other than a

numeric key, the LNG vapor pressure, psig =
RETURN key, or the
backspace key will be

rejected, a short beep P1 ease input the val ues reqL_ested.
will be heard, and you following each with <RETURN>
wi II have a second

chance to enter the Gas Research Institute numerics only
data item.

figure 5

For this screen, the cursor is positioned at the beginning of
the first data field. After keying in the value of the tank
diameter and pressing RETURN, the value entered appears in the

problem description table and the cursor moves to the start of the
next data field. If you key in 0.0 (see below _or how to enter

such a value} for the tank diameter to simulate a tankless dike, _

the remainder of the screen will be skipped automatically.

Prior to pressing the RETURN key_ the backspace key could have
been used to erase and correct val ues that had been keyed

improperly= Once the RETURN key has been pressed and the cursor
has moved to the next data field, the numeric value keyed in has

been accepted; and there is no way to change that value short o.
restarting the entire program. _ Pressing the RETURN key without
first having keyed numeric values into the data field is always an

_'or. The program traps this error and provides an opportunity to

re-enter a numeric value or to abort the program. It is also
possible to deliberately abort the program at any data entry point
by typing ALT q (i.e._ holding down the ALT key and typing q).

There are very few circumstances when a data value of 0.0
constitutes an acceptable data entry, hence such an entry results

in a warning and an opportunity to re-enter a new value. If
however 0.0 is really what you wanted to enter, the program will

accept it and move on. To key in a value of 0.0, press the decimal

point first which will result in O. appearing in the data field.
Follow this with the trailing zero and the RETURN key.

The next screen refers to specific dike dimensions and takes

different forms depending on the shape and style of dike selected

on earlier screens. For example with rectangular dikes; the length

and width mill be Rectang_tlar Di_re DimEnsions
requested, as shown on

figure 6 to the right.
For ci rcul ar di kes,

the diameter wi I1 be Height, ft =
requested. If a dike

with sloped walls had Length, ft =
been ind icared ,

previously, the angle Width, ft =
of the wall from the

vertical will be Angle(degrees from vertical) =
requested at this
time. The example

shown in figure 6 is Please input the values requested,
.or a rectangular dike following each with ,'RETURN:;
with sloped si des.

Gas Research Institute numerics onl/

The next screen asks
figure 6

for dike liner dimens-
ions as wel I as new

insulation dimensions. The request for liner information will only

appear i_ a lined dike had been specified. The request for new
insulation thickness will always appear for it is assumed that the

user is interested in comparing the effects of boilof_ both with
and without insulation. Figure 7 at the top of the next page shows
the screen for a dike which has been designated as having a
concrete liner.

Dike Liner In#ormation

t'.hi m_l<ne_ss .c.i- ,z,i_l-_-M_.-:'_,?,"Jr-, .i:1,_:_'". i ,s, ,-.,-,:_ :.. I

or', _alls, inch_e. = _

n,e_._insu].ation thickness on Tloor:, i.r,che_" "= ?

Ol'l _..aal1 !S, '.i,r,lzhe:._. := '::
l

figure 7

There follows a series of screens, one for each of the materials

of which the dike is constructed, showing values for density, heat
capacity, and thermal conductivity. The "tamped earth' screen is
shown in figure 8 at the right. You will notice that this screen
shows numeri cal val ues

for each of the physical The approximate properties of _.amped ear_.b
p_operties indicated, but are as follows

asks for the users density 85.000 #1cu _t
approval of these values.

At this point the screen heat capacity 0 200 BTU/#-degFis a sel ect ion type

screen since the user can thermal conductivity-O.S50 BTU/ht-ft-de
on Iy sel ect between the
choi ces :yes" or 'no".

moi st'ure content0. I #/#dry sol 1
If the values displayed

for these properties are Are these values acceptable?

accept abl e, you would l
sel ect "yes" from the yes no

small selection box shown figure 8
on the screen.

A1 ternatel y you may

select "no' in which case, the displayed property values would
disappear, the cursor will appear at the beginning of the first
data field, and from this point on, the screen functions in the

normal manner of a data input screen. The final screen in this
series is for the insulation material used or intended to be used
in the dike.

Having described
Spill Facts the dike in quan-

titative detail,
instantaneous spill we turn our
_inite spill rate & time attention to the
ruptured pipe spill nature of the LNG

spill. The next

clnoose one screen, shown at
the left, refers
to the character

of the LNG spill
This condition assumes a spill of sufficient size being simulated.
to cover the dike floor instantaneou:sly but to a Three selection
very shallow depth thus allowing most of the dike

volume to accumulate the vapor formed. Following the
initial spill, __he spill rate is the boil-o_f rate

figure 9

choices are

Weather conditions available. High-
lighting each
choice results in

a brief descript-

wind speed, miles/ht = 5 ion of the spill
being d isp Iayed

ambient temperature, degF = 78 to aid in under-
standing the
choice you are
about to make.
The most severe

case is the inst-

antaneous spi 11

Gas Research Institut_ numerics only which assumes
that the entire

TL_"gure 10 contents of thetank flows into

the dike within a

second, ana a portion of it flashes instantly into vapor.

Frequently this results in an instantaneous flow of vapor over
the dike wall followed by the subsequent downwind dispersion.

The remaining two selectian categories involve spills of a
specific rate which last for a specific time. The spill is
assumed to spread outward from the tank in every direction, with

flashing and then evaporation occurring while the liquid is
spreading. The rate of flow of the spill is user specified.

In the last selection offered, the leak is assumed to be

from a rulptured pipe at the base of the tank. The pipe diameter
is user specified and the leakage rate from the pipe is
calculated and depends on the height of the LNG in the tank. The

leakage rate is most rapid at the start and slows down as the
tank empties. The duration of the spill is either for the time
indicated by the user or the time necessary to empty the tank,
whichever occurs first.

If calculation of the boiloff rates for both the dike, as

built and for the insulated dike are completed, if vapor overflow
occurred within the _irst fifteen minutes from the start of the

leak, the user is asked if downwind di sdpersi on calculations are
desired. A yes response results in yet another selection screen
to appear. This screen is shown as figure 11 on the following

page. It sho._s the weather conditions used by Gi fford to
identify six different categories which roughly indicate the
degree of turbulence in the air. The user must select one of
these weather categories after which the program will indicate
the minimum distance at which safe concentrations of methane will
be found.

To c,'._.lcu],ete downwind di_'ip_i, rsi,_n, ,,'o.., ,',u_'L ..::p.':,::,_._,..
t.h e we a'L"h ,.=.,r c c,n d i t i o n ,=. L,y c h _,(-_s i n _:3 i.:r' ,._,'n ,.:,_._-..r..-_._..,.'.:,r' l. +.:,-.:
B - F. See table bel,_w of ,T,.eteorolo:_ical ,:a_.',_,._,:'_ri,:.'_':"

muff ace ni gl',ttime ce, t-,di !':L c:,n:_
wind daytime insolation (amount. ,:_verc,=.',.,:-'.t_

speed
":imi/ht _.trm_ng moderate _li,_ht ::'1/2 :_3,,',..

< 4.5 A A-B B
4.5 A-B B C E F
9 B B-C C D E

13. ,5 C C-D D D D
> I..,_. 5 C D _ D D ._r,

1

We.-_..th e r C o n d i _:J.,:,n ,:" iJ
i

9 mod_r:!._.t'.elv un,'.-t:._.b!._- I

r, n e._u t I" .,'a1 l
E sli,,",htly _._'tab!e i
F ,nQ,j,__ratel'...,',:.:,t,b]. ,, i

i
S_-:l. eC t ,:':.-:t. e,:_f::sr 'y {

figure li

TECHN I CAL D I SCUSS I ON

The computer program, DIKE, attempts to simul ate the
consequences of a spill of LNG into an impounding dike. The LNG
is assumed to be in a suitable tank at a modest gage pressure

(the exact pressure being supolied by the user). When a spill

occurrs, some fraction of the spilled liquid is flashed to vapor
due to the excess enthalpy possesed by the liquid under pressure,

relative to saturated liquid at atmospheric pressure. The cold
liquid spills onto the dike floor which is assumed to be at
ambient temperature, i.e., more than several hundred degrees

Fahrenheit above the boi_ ing point of LNG at atmospheric
pressure. The LNG recievey_ heat from the dike floor and boils,

cooling the dike floor in the process. This cooling occurrs
quite rapidly at the sur-face of the floor material and, as it
does, the rata of hea'C flow into the LNG and consequently the
rate of boil off of th_ LNG falls. Ultimately the rate of heat

flow into the LNG is limited by the rate at which heat can be
conducted thru the dike materials from regions below.

CONDUCTION MODEL

Heat transfer to the broiling LNG has been modeled as a one-

di mensi anal conduct ion prob Iem with a constant sur face
temperature boundary condition at the boiling surface and a zero
tempermture gradient (i.e., infinite medium) at the opposite

boundary. Possi bIe occur ante of the Li edenf fast phenomena
(blanketing of the surface by an insulating vapor film) has been

ignored_ and the surface of the dike floor is assumed ta come
instantly to the boiling point of the LNG, i.e., equivalent ta an
infinite film coefficient a_ the surface.

The dike construction is presumed to consist of from one to
three material zones, thus up to three different material zones
are permitted at the cold end of the model. The underlying

material is always assumed ta be tamped earth. This may or may
not be covered by a liner of concrete or other suitable material,

which in turn may or may not be covered by a layer of insulation.
Alternately, the insulation may be applied directly to the tamped
earth. The thickness of the insulation zone and of the liner

zone are independantly specified by the user. The thickness of

the tamped earth zone is treared as infinite, lt is assumed that
there exists no contact resistance between zones at their contact

planes, thus at the interface between zones the temperature on
each side of the interface is the same and the heat flux across
the interface is identical on each side of the interface.

All dike structures modeled are assumed to be at ambient

temperatur at the start of the spill. The temperature of the

surface in contact with the spill is assumed to fall instantly
to the LNG boiling point. The temperature immediately under the
surf ace and indeed the temperatures throughout the di ke
construction materials fol low the laws of conduction heat
transfer.

There are three specific cases of interest in the present
situation, namely:

i) An unlined, uninsulated dike, e.g., a dike composed

of a single homogeneous material.

ii) An insulated, unlined dike or a lined, uninsulated

dike, e.g., a dike composed of two layers of
di fferent materi al s.

iii) An insulated, lined dike, e.g., a dike composed of
three layers of different materials.

i) Single Material Semi-infinite Thickness Case

The dike is considered to be a semi-infinite solid bounded

by the xy plane only and extending to infinity in the positive x
direction. The initial temperature, TO, is assumed to be uniform

in the solid and to be at the ambient temperature. At time = O,
the temperature of its surface at x = 0 is suddenly changed to

. and maintained at Ts, the boiling temperature of LNG.

This is a classical conduction problem which is described
extensively in the literature. The temperature at a _epth x into

the structure at any time following the spill is given by '_)

(T - Ts) / (TO - Ts) = erfc (X)

where erfc stands for the error function or probability integral
and X = x / 2J'_8. The instantaneous, heat flux at the surface is

then given by

q / A = K (TO - Ts) / ./_'_l_

and the surface cumulative heat flux is given by

Q / A = 2k (TO - Ts) _8/v¢

ii) The Composit Solid or Li ned Dike Case

The dike is considered to be a semi-infinite solid as before
but now the distance x = 0 and x = t is assumed to be a material

different from the bulk of the solid, as for example a layer of
concrete over tamped earth. As before, the temperature isd

everywhere assumed to be the ambient temperature and at time = O,
the surface temperature at x = 0 is suddenly changed to the
temperature of the boiling LNG.

lt is assumed that there is no contact resistance between

the two materials at x = I. This results in the requirement that

at x = t, T, = T= (subscripts 1 and 2 refer to the two different

materials), and k=_T,/_xL = k=_T=/_x= for all time > O.

This case too has been studied extensively and is described
in the literature _=_. The local temperature in each of the two
materials is given by:

T_-T3 7_ _ ,..... - --
r-% " ----

8

J

The temperature gradient at the surface is given by:

and the cumulative heat #lux is given by '=_

iii) Multi-Layered Solid or Insulated Li ned Dike Case

Here too the dike is considered to be a semi-infinite solid
but now there are two layers of finite thickness_ each composed
of a di.ferent material_ on top of the semi-infinite earth zone
as shown schematically below:

} ',; J J)

J _ ' ; 1

This case is not treated in the literature on conduction
heat trans_er_ but it can be handled readily using the classical

techniques of numerical analysis wherein the model geometry is
discretized and conduction equations and energy balance equations
are solved at each node resulating from the discretization.

While this problem solving technique is well known, it

posseses a Hell known shortcoming which makes it less desirable
than the closed-fa_-m solutions presented above. To accurately
follow the rapid t,emperature changes occurring close to the

surface, very small nodal distances must b_ chosen in that region
and the small di stances mandate a very small time step else the
calculations become wildly unstable. Solutions in this mode

become quite time consuming to the point of trying ones patience.

In the specific case where this mode of calculation is
called for, the first two nodes closest to the boiling liquid _
have been taken to be only 0.01 inch thick. The next two nodes
have been taken to be 0.02 inches thick. In this way a total of

eight nodes have been crammed into the first 0. i inch. Node
dimensions increase as the distance from the boiling liquid
increases but it is the two closest to the surface that mandate

the time step used in the calculations and which cause this
calcul ation to proceed very sl owly.

The program DIKE uses whichever of the above described

procedures is appropriate at each phase of its calculations.

DOWNW IND D ISPERS ION

The portion of this program which deals with the dispersion

of the vapor cloud resulting from the LN6; spill calculates the
_arthest downwind distance at which a methane concentration at or

above 2.5% will be found. The calculation is based on the
continuous line source model and uses the maximum rate of

evaporation found in the dike heat transfer section together with

a user specified set of atmospheric conditions.

The degree of dispersion of the vapor cloud as it moves

downwind depends on the stability of the atmosphers, i.e., the
degree of turbulence or gustiness in the atmosphere. Dispersion
is maximized, and therefore the methane concentration reduced,

when the atmosphere is unstable. The most popular atmospheric
dispersion model is derived by considering statistical variations
around the mean concentration value and results in the so called

Gaussian distribution model which gives the downwind
concentration as:

C = Q_ $ Zm Z Y" / V

ys = _{erf(dikewidth - y)/2_2_y . erf(dikewidth+y)/2J2ry)}

In this program, the crosswind distance, y, is taken as zero
thus maximizing the methane concentration at anyplace downwind.

i

The dispersion parameters_ r= and rv, depend on both the
atmospheric conditions and the downwind distance. They are
herein calculated from:

rv m con1 t 3.2808 t (xlee/3280. O) =en=

r= m 3. 2808+10 ==_=_=_4='n _.t==J==mo_ _a=_m-t_ ,NL.._==mo_ --=

_d_re the five coefficients are different for each atmospheric
condition as given in the table below. The atmospheric
categories listed in this table are those of 8ifford `4) and the

specific constants as well as the form of the correlations have
been taken @tom the report entitled "LNG Safety Program Phase II

Consequences of LN8 Spills on Land't).

Table of Dispersion Constants

Weather

Category con I con2 con3 con4 con5
B lZ8.0 0.9 2. 041 1.048 O. 04t
C 104.0 O. 913 1.786 O. 914 O. 0
D 69.0 O. 919 1.505 0 °737 -. i05

E 51.0 O. 919 1.332 0.a78 -. 112
F 34.0 O. 919 1. 146 O. a5 ,-.113

a

@ _ _' _I _

i. "' R£poi't, LH8 Safer,/ F'roQi-am F'ha_m II Con_eq_.Lence!=..,:-,_
Spills on Land, Nov 197_ Appendix D

2. _arslaw, H.S, _,.Jae_ar,, J,C,,Cprtd.b_c.t,i.c,,no.F He_.,,tin _,,,_!,'.h_.=.:,,

0_(40_c_ Universlty press, 1947 p321 _

,,'3.Fontana,, J. et al, Development o4 an Insulating Pol'o/mer

Concr_te Overlay 'For Dike Ins_._l.ation at I_on,@ Island
Lightimg Company"s LNG StoraQe Far_',i,lit',/,,BNL Report Dc,-
1987

4. 81floral, F.A., Use 04 Routine Meteoro,_icai, Obsev",_'ati,=,ns
for Estimating Atmospheric Di,,'._per_,i,:or',.Nuc],ear' ..:,,._,_v ,::,:
(19(_I)

5. Neville, A.M., H__-'lrdened Concrete F'h'ys.i..,.-.._.,[&. M,_.ch_.rl:cal.
_smects, Iowa State University Press., A,'nes I,D_rJ+i.,['_71.

6, Schnei der, F'.J. , Conduction............Neat Tr,.',-,n.=,.._er.,_Addi,_,J,r',-..Ne,.'.],ev..

;'ublishing CO , _ p240-_4_

IIIIIlllllll...........

