BNL--45766
DE92 007624

'DEVELOPMENT OF POLYMER CONCRETE
FOR DIKE INSULATION AT LNG FACILITIES,
PHASE IV, LOW COST MATERIALS

FINAL REPORT
SEPTEMBER 1, 1987 — APRIL 30, 1990

Lawrence E. Kukacka

Work Performed by: Jack J. Fontana, Walter Reams,
and David Elling

January 1991

Prepared by the
GAS RESEARCH INSTITUTE
ENVIRONMENTAL AND SAFETY RESEARCH DEPARTMENT
CHICAGO, ILLINOIS 60631

ENERGY EFFICIENCY AND CONSERVATION DIVISION
DEPARTMENT OF APPLIED SCIENCE
BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC.

This work was performed under the auspices of the U.S. Department of Energy
Washington, D.C. Under Contract No. De-AC02-76CH00016 M AQ;%%R
~ : Goar i b

e e h gepea e r e e w4 N N NP L ol S AL Y
[0 DG O e v b DGO AT s Wi hen sl M

v

2]
REPORT DOCUMENTATION (1. REPORY NO.] . Reciplent’s Ascosaion Me.

) PAGE L GRI90/0259
¢ Title ond Subtitie & Mepert Dete
Development of Polymer Concrete for Dike Insulation December 1990
at LNG Facilities, Phase IV, Low Cost Materials Py ——
Cy. dvarm T T - - Tmm—— - -

8 Porforming Organtzstion Rept, Ne.

‘L Lawrence E. Kukacka_
9. Performing Organization Neme and Address

[re——_——

10. Project/Task/Werk Unx Mo,

Energy Efficiency and Conservation Division BNL-45766
Department of Applied Science 11, Contract(C) or Grant(G) M. |
Brookhaven National Laboratory ©P84-252-1144

Upton, N.Y. 11973 @

12. Bponsering Orgenization Name end Momu

13. Type of Report & Pertod Covered

Gas Research Institute | Final September 1987

Environmental and Safety Research to April 1990

Chicago, IL 60631 —_— — o]
14.

IS Supplementery Notes ~ v - T

16, Abstract (Limit: 200 words) o ‘ T T =

Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the
development and utilization of insulating polymer concrete composites (IPC) as a means of
reducing the evaporation rate of liquified natural gas in the event of a spill into a
containment dike, thereby improving the safety at these sites. Although all of the re-
quired properties can be attained with the IPC, it was estimated that a low-cost replace-
ment for the expensive organic binder would be necessary before use of the material would
be cost-effective. In the current program, several latex modified cement formulations
were evaluated and the most promising one identified. A mixture of two carboxylated sty-
rene-butadiene latexes was selected for use in detailed laboratory property characteriza-
tions and a subsequent field evaluation. When compared to the properties of IPC, the
latex-modified insulating materials display somewhat higher thermal conductivities, great-
er permeability to water, and reduced strength. However, these properties still meet most
of the performance criteria, and the unit cost of the material ($0.29/1b) is less than
one-fifth that of IPC made with epoxy biuders. When installed as a 0.75-in. thick over-
lay, matérial costs are estimated to be $1.00/ft2. Laboratory produced specimens had a
density of ~5% 1b/ft®, compressive strength >1500 psi, tensile strength of >200 psi, flex-
ural strength >400 psi, and a thermal conductivity of <0.20 BTU/hr-ft-°F. Litrtle change
in the latter occurs upon immersion in water.

17. Document Anslysis . Descriptors T

0. identiflers/Open-Ended Yerms

€. COSATI Fleld/Group

18. Avalisbility Statemon: 19. Security Clase (This Repert) 21. No, of Pages
Release Unlimited 40]
20. decurity Class (This Page) 22. Price
i Unclassified
(See ANSI-239.18) See Inctructions en Reverse OPTIONAL FORM 272 (4-TD

(Formarly KTIS-3%)
i1 Department of Commarcs

Research S

Title

Contractor

Principal
Investigator

Report
Period

Objective

Technical
Perspective

Results

Development of Polymer Concrete for Dike Insulation at LNG
Facilities, Phase IV, Low Cost Materials

Associated Universities, Inc.
Brookhaven National Laboratory
GRI Contract No. 5084-252-1144

Jack J. Fontana
September 1987-April 1990

The objective of this project was to develop and field eval-
uate an insulating lightweight concrete composed of low cost
materials which can be used to effectively insulate LNG
storage tank containment dikes.

Cost-effective methods for reducing vapor dispersion dis-
tances at storage facilities are needed. Since studies have
indicated that the rate and quantity of LNG evaporation are
dependent upon the rate of heat transfer from the dike
surface to the spilled LNG, insulation of the dikes can sub-
stantially reduce boil-off, thereby greatly increasing
safety. .

Earlier GRI-sponsored work at BNL resulted in the develop-
ment and application of insulating polymer concrete compos-
ites. These materials consist of low density multicellular
glass and/or ceramic macrospheres bound together with unsat-
urated polyester or epoxy resins, and they meet all of the
necessary property ~riteria. Unfortunately, it was estimat-
ed that a low-cost replacement for the organic binder would
be necessary before the materials would be a cost-effective
option for reducing dispersion distances. In the current
program, latex modified cement mortars were evaluated as.a
lower cost substitute for the insulating polymer cement.

A series of latex modified cement mortar formulations were
evaluated. Based upon these tests, a mixture of two carbox-
ylated styrene-butadiene latexes was selected for u.e in
detailed laboratory evaluations and a subsequent field eval-
uation. When compared to the properties of the insulating
polymer concrete, the latex-modifed materials have somewhat
higher thermal conductivities, greater permeabilities to
water, and reduced mechanical properties. However, they
still exceed most of the performance criteria. Laboratory
produced specimens typically had densities ranging between
55 and 60 lb/ft®, compressive strength >1500 psi, tensile
strength >200 psi, flexural strength >400 psi, and a thermal

- iii -

Technical
Approach

Project
Implications

conductivity <0.20 Btu/hr-£ft-°F. The low permeability of
the material results in little increase in thermal conduc-
tivity upon prolonged immersion in water. Reproducibility
of the properties on a larger scale was demonstrated in a
field evaluation when the composite was applied to horizon-
tal and vertical surfaces previously insulated with a styro-
foam bead concrete. Excellent bonding and low conduc-
tivities were achieved, but numerous shinkage cracks were
formed, probably due to improper curing. After 9 months in
service, no additional deterioration was apparent and the
in-situ conductivity was lower than the original wvalues
determined from field cast samples. Material costs are
estimated to be $0.29/1b or $1.00/ft? when applied as a
0.75-in. thick overlay.

Screening experiments were conducted in which five latexes,
produced by four manufacturers, were evaluated. Styrene-
butadiene, acrylic and epoxy latexes were included. In con-
Junction with each of these materials, a variety of
insulating type fillers were evaluated. Variables included
filler composition and particle size distribution, latex-

‘type, concentration, and the effect of wetting agents.

Based upon these tests, a styrene-butadiene-based formula-
tion was used in additional experiments. A detailed proper-
ty characterization of the mix was made. The formulation
was further evaluated in a field test in order to determine
if the laboratory-scale test results were reproducible, to
establish placement techniques and te determine the long
term durability. '

The results from the laboratory development and subsequent
field evaluation verify that lightweight insulating latex
modified cement composites yield properties that make them
suitable for use as durable insulation on containment dikes
at LNG storage facilities. The cost of latex modified
cement is approximately one-fifth that of polyester and
epoxy based insulating polymer concretes. This lower cost,
plus the added simplicity of installing a portland cement
base material, makes latex modified concrete a more cost
effective option for insulating LNG impoundment surfaces
where high strength as well as good insulating properties
are required. As a result, vaporization rates from an
accidental spill and the resulting vapor dispersion dis-
tances can be greatly reduced at a reasonable cost. Beyond
their use at large storage facilities, these materials show
considerable promise for hazard mitigation at LNG end-user
facilities.

Ted A. Williams
GRI Project Manager
- iv -

TABLE OF CONTENTS

INTRODUCTION.ovveuunn T e e
PROJECT OBJECTIVE......... e e e e
LABORATORY STUDIES..... e e e e Ceeas
A. Materials Selection.............. e e
B. Screening Experiments............ et
1. Compressive Strength............... e e e
2, Flexural Sﬁrength....... e e
3. Thermal Conductivity........ et e e
4., Material Cost Estimate.............. e e .
C. Characterization Tests......... ittt
1. Compressive Strength............ ... iy .
2. Tensile Splitting Stremgth............ ... i,
3. Flexural Strength................... e e e e
4, Bond Strength to Concrete SUDSETAtES. .\ vvrrrerrns.s
5. Thermal Conductivity..........coiviiiiiiiiiiiiiiiiinn,
6. Water Absorption........ .ottt
FIELD EVALUATTION . t vttt it e tetn ettt tnsa oo e arnenassens
A, Characterization of Existing Lightweight Concrete........
B. Field Installation.t niiinn e
Mix Design. it i i i e
Surface Preparation.........i.covvi i
Installation of Screed Ralls............ vy
Mixing, Placement and Finishing..................

1
2
3
4
5. Materials Cost and Manpower Requirements..............
6. Mechanical and Physical Properties Attained...........
7. Video Documentation............oiviiiiiiiniiininneiaan
8 PostLTest Inspection. ... i i e
9
COMPUTER SIMULATION MODEL DEVELOPMENT.................conn,
CONCLUSTONS AND RECOMMENDATIONS . ..\ttt it
REFERENCES . . .o e e e e
APPENDIX 1. COMPUTER CODE
APPENDIX 2. USER MANUAL

40

O 00 N O Bt BN

10.
11.
12.
13.

14,
15.
16.
17.

18.

LIST OF TABLES

Lightweight Latex Modified Cement Insulating
Composites, Survey Experiments......... et e
Compressive Strength vs Curing Time, Survey Experiments.....
Flexural Strength Results, Survey Experiments...............
Material Cost Estimate, Survey Experiments............... e
Mix Design Used in Characterization Experiments.............
Compressive Strength vs Curing Time, Characterization Tests.
Compressive Strength at Various Temperatures................
Tensile Splitting Strength at Various Temperatures..........

Flexural Strength and Modulus of Tightweight
Insulating Composites....... civiiiiiiiiiinn i

Thermal Conductivity Results..........cciviveriirirnnnnnsen

The Effect of Water Immersion on Thermal Conductivity...;...‘
Water Absorption Results............. i iviievvrrnnnan, P

Thermal Conductivity Results for Latex Containing
Antifoam Agents.......... . iiiii i ‘.h..
Mix Design Used in Field Evaluation.................vvvinn.
Material Requirements for Field Evaluation..................
Field Placement Labor Requirements.....,..........cccou....
Mechanical and Physical Properties of Lightweight
Latex Modified Mortar Used in Field Evaluation..........
Thermal Conductivity of Lightweight Latex Modified Mortar
Overlay After Field EXposure...........c.vvivevnnnrneroneees

- vi -

Page

10
11
12
14
14

17
19
20
21

22
25
31
33

34

« 36

LIST OF FIGURES

Hollow Spheres Used as Insulating Aggregates in Latex-Modified

Concrete CompoSites. ...ttt iniiiioteioeionnoenononenennns
Sectioned Pieces of Multicellular Glass Spheres Within

Latex-Modified Gement‘Matrix
Typical Section From a Conventional Portland Cement Concrete

Slab Insulated With a Latex-Modified Concrete Overlay........
Condition of Sump Floor Prior to Placement of Latex-Modified
Lightweight Concrete'Insulation......,
Typical Wall Section Prior to Placement of

Insulating Overlay.........covitiiiiintinrnnnneinernneennens
Layout of Sump Floor.............co.vu. P
Section of Sump Floor and Wall After Placement of

Insulating Overlay........ .ottt in i irieeneennans

- vii -

Page

16

26

27
29

30

INTRODUCTION

Safety at liquefied natural gas (LNG) storage sites has always been of
uppermost importance to the natural gas industry. Of primary concern is the
accidental spillage of LNG from storage'tanks and ancillary piping into
earthen containment dikes or those lined with crushed stone.!*'2) When spilled
LNG comes into contact with warmer dike surfaces, it vaporizes wvery rapidly
and mixes with the atmosphere to form a hazardous flammable mixture. Depend-
ing upon‘the ambient conditions, these hazardous mixtures can extend downwind
for long distances from ING storage facilities. Analyses of the problem have
indicated that the rate and quantity of LNG evapcration are dependent upon the
rate of heat transfer from the dike surfaces tu the LNG contained in the
dike. () Typically, the maximum evaporation rate occurs within four to eight
minutes after a spill. Therefore, since the evaporation rate depends upcu the
thermal énergy transferred from the earth and dike, reductions in the heat
flow can result in reductions in the total quantity of LNG evaporated per unit
time. One approach to reducing the heat transfer rate is to insulate the dike
surfaces, thereby creating a thermal bafrier between the walls and floor of
the dike and the spilled ING. ‘

Utilization as a dike insulating material imposes severe requirements.
In addition to having low thermal conductivities over temperatures ranging
between ambient and -260°F, the insulating material must have a low perme-
ability to insure that the conductivity is not ircreased due to the absorption
of rainwater, be durable under normal weathering conditions, have structural
characteristics suitable to support loads from maintenance vehicles, exhibit
good bonding to a variety of dike materials, and be cost-effective. Conven-
tional insulating materials do not meet all of these criteria.

In 1983, the Gas Research Institute (GRI) started work at Brookhaven
National Laboratory (BNL) to develop materials that met the above criteria.
In Phase I of the program which was conducted under GRI Contract No, 5083-252-
0812, a lightweight polymer matrix composite which met most of the property
criteria was identified.‘® The composite consisted of an unsaturated poly-
ester resin binder and hermetically sealed glass nodules or expanded perlite
aggregate. These insulating polymer concrete (IPC) composites have thermal
conductivities ranging from 0.08 to 0.15 BTU/hr-ft-°F, water absorptions <2%,
low densities (30 to 60 1b/ft®), and compressive strengths ranging from 1000

1

to 3000 psi. Two installation methods (precast panels or cast-in-place)
appeared to be technically feasible.

In Phase II of the program (GRI Contract No. 5084-252-1144), optimization
of the IPC formulation and further property characterization were
performed.(® Attention was focused on improving the shrinkage and fire
resistance characteristics of the composite. Evaluations of possible con-
struction techniques were made, and technology for the installation of the IPC
on concrete substrates was developed. Cost analyses were also made.

Application methods were further evaluated in Phase III of the program.(”’
In this work, it was determined that the IPC formulation could be applied over
concrete or crushed stone substrates using shotcreting techniques similar to
those used in the concrete industry. Test sections produced by this method
exuibited thermal, physical and mechanical properties similar to those for
samples made under laboratory conditions. Compared to the use of precast
placement methods, significant cost reductions of up to 30% can be accrued by
the use of shotcreting. It was also estimated that further reductions in cost
would be necessary before the material would be a cost effective option for
reducing downwind vapor dispersion distances. These reductions could only be
attained by the replacement of the expensive organic binder with lower cost
materials such as laéex modified portland cement mortars. This was the goal

of the Phase IV program, the results from which are described in this report.

PROJECT OBJECTIVE
The objective of this project (Phase IV) was to develop and field evalu-

ate an insulating lightweight latex modified portland cement mortar which can
be used effectively to insulate LNG storags tank containment dikes. In addi-
tion, as an aid to GRI for the transfer of the technology to the gas industry,
a software computer program was to be developed for use in the calculation of
LNG boil-off rates from uninsulated and insulated dike surfaces. A video
describing the properties and methods for the preparation and placement of the

insulating latex modified mortar was also to be prepared,

LABORATORY STUDIES
It is well known that conventional lightweight portland cement concretes

have low thermal conductivities when dry.(®’ Unfortunately, their open-cell

2

structures yield large water absorptions resulting in increases in conductiv-
ity and decreased weatherability. In an attempt to overcome these defi-
ciencies, the use of 1atéx modified cements iﬁ conjunction with closed cell
multicellular glass beads was investigated. Since the latex forms a continu-
ous film throughout the portland cement matrix, it was expected to yileld a
lower permeability mortar or concrete.
A. Materials Selection

A total of five latexes from four different manufacturers were used in
initial exploratory experiments, Styrene-Butadiene, acrylic and epoxy latexes

were included. Descriptions of each are given below,

Iype Identification Source

carboxylated styrene- TYLAC 97-314 Reichhold
butadiene copolymer latex ‘ Chemicals, Inc.

carboxylated styrene-acrylic SYNTHEMUL DL-8466 Reichhold
copolymer latex Chemicals, Inc.

styrene-butadiene . 'MOD-A Dow Chemical U.S.A.
polymer emulsion

acrylic latex MC-1834 Rohm and Haas Co.

epoxy emulsion WDE Robson-Downes

Assoclates, Inc.

Other materials used in these exploratory experiments are listed below.

Matexial Description
Type 1 Portland Cement] general concrete construction cement
Type III Portland Cement high early strength cement
Macrolite spheres , multicellular glass spheres with a ceramic

coating from 3M company

P2000 free flowing hollow aluminum silicate
‘ microspheres from Fillite U.S.A.

52-7-5 hollow aluminum silicate microspheres from
Fillite U.S.A.

BYK-A-500 a wetting agent from Byk-Mallinckrodt

The types of hollow spheres used as insulating aggregates in these exper-
iments are shown in Figure 1. Sectioned pleces of the multicellular spheres
within a latex-modified cement matrix are shown in Figure 2,

B. cre Xpe en

Based upon the results from Phases I-III of GRI-sponsored research on .
insulating lightweight composites,®’ the following property criteria were es-
tablished for the purpose of identifying promising materials: compressive
strength >1000 psi, water absorpéion <1l%, density 40 to 65 1b/ft®, and thermal
conductivity 0,10 to 0.15 Btu/hr-ft-°F.

The materials described in Section A were used to make a series of light-
weight latex-modified mortars for the purpose of determining the workability
of the slurries and the density and compressive strength of the cured materi-
als. These results are summarized in Table 1. General conclusions from these
tests were as follows. The inclusion of large (No. 4 to 3/8-in. sieve size)
macrolite spheres in the slurry (Mix Designs 2 and 8) results in poor work-
ability, and after curing for 7 days, a compressive strength of <1000 psi.

The best results were obtained when the particle size of the macrolite spheres
ranged between 600 microns and 5.65 mm in diameter. In order to produce a
good workable slurry and a cured material with a density in the range of 50 to
54 1b/ft®, it was necessary to add a small amount of a mixture of free flowing
hollow aluminum silicate microspheres having an average particle size of 70
microns and a bulk density of 8 1lb/ft3®, This material was identified as
P2000 by the supplier Fillite U.S.A. The average compressive strength of
these samples at an age of 7 days ranged from 1300 to 1700 psi.

Little effect of the latex composition on the propérties of the cured
composite was noted. However, two general observations were made; 1) the
concentration of the epoxy-based compound (WDE) required was 2 to 4 times
greater than those for the other latexes, thereby increasing the cost, and
2) the curing rate for the epoxy was less than those for the other latexes,
Based upon these observations, it was declded to eliminate the epoxy latex
from further evaluation.

Additional tests were conducted with samples made in accordance with Mix
Design 9 in Table 1. Measurements of the compressive strength, flexural
strength, and thermal conductivity were made. Estimates of the cost of the

material were also made., FEach of these results are discussed below,

4

Hollow spheres used as insulating aggregates in lightweight latex-modified concrete

Figure 1.

macrolite spheres sized 3.5/7, 7/14, 14/30

from left to right,

and P2000 powder.

.
-

composites

11 sl [l

*XTIleW JUDWID
pojJFpouw-x938] B UTY3ITA saxayds aeinI1e0F3[nu Jo sa09fd pauojloss

*Zz 9In31g

L'

v

{1
E

B B E

IR

£y
;

-5u] ‘$2)WLJ0SSY SIUMOQ-UOSTOY WOJ) UOLISINWI Axoda - o -6

0] SUeH PuUR WYO¥ WOJj XIW]-I1]jAIde - S€8L-IN -8
“auj ‘S)1EJIWRY) PIOYIiIY WOl XIIW) 2114408-3U23418 - 99498-10 2
-3poaxauL] 1PN-J4g wousy Jusbe Bulilas - 005-¥-XA8 °9
-y $°0 3311114 wWoJ) sIIydsoldtm IILIL]LS UNUILNIE ROTIOY - §-2-2§ S
03 1EI1WIY) MOQ WO XIIB] IUIIPEING-WIAIS - v OOW -y
-3uj ‘$1891B9Y) PIOYI1IY WO LVOISINER X)W Jsek10d03 3UR1PEING-UIIAIS PIBAXOQIED - 91€-26 J91AL €
*¥"S°N 3311114 WoJ) 2J3ydsoJdtm WIL}iS WIUN|E KO0y Sutmol} 3343 - 00024 2
B ~Auedwo) WE wWoJj SuLINOD J1WIID ® YA sas9yds sse18 JenyiNyw - saiayds 91110420 ‘1 18330k
2622 239 ¥'6 1§-26 1771y 111 92°% /00024 o9t 8672 8672 pas
£ 1] 25°0Y 3 92t 111 %$°¢ /00024 8872 8872 8872 9l
1£02 ss°ol [28 74 £l 88°S¢ m 69°¢ /00024 12°8 '8 e St
28S 9 65°L €26 003-13 "Ly 11t 92°y /00024 £0°0L €070t 0701 k4]
-r4 4% 1765 657 £€2°6 ncnd_.-u: Y%Ly 111 92"y /00024 £0°0L €070t €0°0¢ 111
2143 65" €276 5030-3 9Ly 111 92"y /00024 £0°0ot £0°01 €0°01 43
9kl g0 8rst 2L7o0L y\£-26 18°tY 111 25"y /0002d 90°8 90°¢ €19l it
wdoig &
413 L 4 11 cocm-fu»- 65 L7 y9g-L6 9Ly 111 92"y /00024 £€0°01 £0°0L £0°0L oL
F424% [49511 657 €76 "9ne-16 "Ly 1 92"y /00024 £0°0% £0°01 £0°01 6
99 £ty 99°91 69°6 y9e-26 09°S€ 111 99°¢ /90024 98 9°8 98 1%°0L 8
kL 243 29°8 *i€-26 S8 iy 1 SL°9 /$-2-2S siot SL°01 siTot L
9%l 9°69 21°€l 8Ls Yi£-26 92y 1 on.inm&&m y€° 0L €701 %€°0L 9
6281 2799 67" 99°6 v Q0N ey 1 OoL°¢ “/0002d czot 22701 22701 S
b 31) £29 €09 si°6 «—m&o 1671y 1 60°€ /00024 61701 61704 61701 k4
1522 1°59 £n €% e-26 9Ly 1 £y /00024 c ot 0701 0°0L <€
696 0Ly y2°si 99°01 71€-26 967 1 09°9 /00024 (Y2813 %9701 6076 4
E4¥3 8°2 9L°%91L €271 nﬁm.sm 66°2% 1 92°L \~uoo~a g80°G! 2171t 3
yod 33/9) < % % 3 X x b4 3 X
psuenls A3ysueg A juenp A3pueng adAy A3pyuenpg add) A3yausnp/adAy 0S/0¢ og/9 /L /8¢ 8/g-Y
uvoscaadeo) Jaien
SUALIIPPY X318 JURT JNN 4 usisag
g saJayds 33110496K AN

]

sjuswysadn3 AsAins ‘se3jsodso) Bujlvinsul Jus) P13 1PON %3197 1yS1anIusL]
1 3)1qe})

1. Compressive Strength
A series of samples were made to determine the strength developed as a

function of curing time. The results from these tests, performed in accor-
dance with ASTM procedure C495, are given in Table 2. Each value listed rep-
resents the average of three samples. The data indicate an increase in
strength from 1032 psi at an age of 1 day to 1728 psi after 5 days. The
strength remained essentially constant thereafter.

2. Flexural Strength

Flexural strength measurements were made using the procedure described in
ASTM C78-75. Beams 2-in. x 2-in, x 12-in. long were used in these tests. The
data, summarized in Table 3, indicate an average strength of 459 psi. The
standard deviation was 67 psi. The value for the tangenu modulus as calcu-
lated from the fracture deflection curves was 456,477 psi. The standard devi-
ation was +22,340 psi.

3. Thermal Conductivity

Preliminary estimates of the thermal conductivity of this mix were
also made. Values mz:sured 24 hr after casting ranged from 0.17 to
0.18 BTU/hr-ft-°F. After curing for 4 weeks, the value decreased to the range
0.126 to 0.129 BTU/hr-ft-°F. When the latter specimens were immersed in water
for 2 hr and tested 5 minutes after removal from the water bath, they exhib-
ited a thermal conductivity of 0.136 BTU/hr-ft-°F. Compared to the fully
cured control, this represents an ilncrease of 5.4%. After exposure to air for
7 days, the thermal conductivity decreased to its original value of
0.129 BTU/hr-£ft-°F,

Table 2

Compressive Strength vs Curing Time, Survey Experiments

Cure time, Compressive strength,
Qa:[mia,h,c,d ‘
1 1032
3 1624
5 1728
7 ‘ 1735
9 ! 1674
12 1702
14 1537
28 1834

a, Test procedure, ASTM C495

b, Each value represents average of three samples
c, Specimen size, 3-in. diam x 6-in. long cylinders
d, Latex used, TYLAC 97-314

Table 3

Flexural Strength Results, Survey Experiments

Sample No.® Flexure strength, 2:® Tangent modulus,
psi psi

49 397 478,406

50 473 441,607

51 417 433,273

52 547 472,503
Average 459 456,477
Standard deviation +67 +22,340

a, Test procedure, ASTM C78-75
b, Specimen size, 2-in. x 2-in. x 12-in. long beams
¢, Latex used, TYLAC 97-314

4. t o) t

A preliminary estimate of the cost of the materials fqr‘the'most promis-
iﬁg‘mix design identified in the survey experiments (Mix Design 9, Table 1),
was made. These results, summarized in Table 4, indicate a material cost of
$0.29/1b, less than one-fifth the cost of IPC made with epoxy binders.’
Based upon a density of 55 1b/ft® for the lightweight latex modified cement
composite and an overlay thickness of 1l-in. to provide uniform insulation,
this material cost corresponds to $1.33/ft? of insulated surface. Due to the
similarity of the latex-modified concrete with conventional portland cement

concretes, placement costs can be assumed to be equivalent.

(Table 4

Material Cost Estimate, Survey Experiments

Material Quantity, Material cost, Unit cost,
wt % $/1b __$/1b
Macrolite spheres 30 0.50 0.15
P2000 4.5 0.65 0.03
Type III portland
cement 41.0 0.10 0.04
Latex 12.0 0.60 0.07
Water 12.5 -0 0
$0.29
For 0.75-in. thickness, $1.00/ft?

C. Characterization Tests

Based upon the results described above, a mix design was selected for use
in a series of tests to fully characterize the material prior to using it in a
small-scale field evaluation. The composition of this mix is given in
Table 5. Three latexes used in the survey experiments (TYLAC 97-314, MOD-A,
and MC-1834) were selected for continuedlcharacterization. In addition, an-
other latex (TYLAC 68-009) was also evaluated. This carboxylated styrene-
butadiene copolymer latex was supplied by Reichhold Chemicals, Inc. and is
chemlically similar to the TYLAC 97-314 except that it is less odorous. This

makes it easier to use in enclosed areas.

10

Table 5
Mix Design Used in Characterization Experiments

at al Concentration, % wt
Latex! 12.0

Macrolite spheres?

3.5 to 7 v 10.0

7 to 14 10.0

14 to 30 10.0
Macrospheres Q-Cel 400° 4.5
Type III portland cement 41.0
Water 12.5

1) TYLAC 97-314, TYLAC 68-009, MOD-A, and MC-1834 latexes were used. The
TYLAC 68-009 is a modification of the 97-314 that is less odorous and
designed for use in enclosed areas.

2) Sphere size range in U.S. Mesh

3) Average particle size 75 microns. Supplied by the PQ Corporation,.

Properties measured include compressive strength, tensile splitting
strength, flexural strength, bond strength, thermal conductivity, and water
absorption. The results from these tests are given below.

1. Compressive Strength

Series of specimens consisting of the inorganic constituents previously
listed and three carboxylated styrene-butadiene latexes were made for use in
compressive strength measurements. These tests were performed in accordance
with ASTM procedure C495 using 3-in.-diam x 6-in. long cyliﬂdrical specimens.

Compressive strength data for two latexes as a function of curing age are
summarized in Table 6. Specimens containing the TYLAC 97-314 latex exhibited
a strength of 1032 psi at an age of 1 day. Between ages of 3 and 28 days the
strengths were relatively constant and averaged 1690 psi.

The use of the TYLAC 68-009 latex yielded a higher ultimate strength. At

an age of 1 day, the strength was 994 psi. This value increased with curing

11

time up to 4 days where it leveled off at an average value of 2077 psi. Both
latexes reached the 1000 psi compressive strength criterion within 24 hr and
had an ultimate strength far above it.

Table 6

Compressive Strength vs Curing Time, Characterization Tests

Compressive strength, psi?b.c

Cure time, Latex type

—day TYILAC 97-314 TYLAC 68-009
1 1032 994
2 -- 1351
3 1624 --
4 - 1964
5 1728 1738
6 -- 1999
7 1735 2035
8 1674 --
9 1702 2022
12 1537 2274
14 -- 2832
28 ‘ 1834 2203

a, Test procedure, ASTM C495
b, Each value represents average of three samples
c, Specimen size, 3-in.-diam x 6-in.-long cylinders

12

The TYLAC 68-009 latex was also used in a series ?f tesus to determine
the effects of temperature on the strength of the composite. Measurements
were made at -50°, 70° and 140°F, As shown in Table 7,\the strength decreased
with increased temperature from an average value of 306@ psi at -50°F to 1445
psi at 140°F. Similar trends were noted for previousldeeveloped IPC sys-
tems. (® H

For comparative purposes, specimens prepared with the MC-1834 were also
tested. The formulation used for these specimens is identified in Table 1 as
Mix Design No. 13. The results from these tests, also given in Table 7, indi-
cate trends similar to those obtained with the styrene-butadiene latex (TALAC
68-009). Over the temperature range -50° to 140°F the compressive strength
decreased 48% from an average value of 2865 psi to 1498 psi. The styrehe-
butadiene latex-based specimens decreased 53%. However, at 140°F, both mate-
rials exceeded the design criterion and are strang enough to support mainte-
nance vehicles or other normal load requirements.

2. Tensile Splitting Strength

The tensile sﬁlitting strength as a function of temperature was measured
for a series of 3-in. diam by 6-in. long specimens containing the TYLAC 68-009
latex. The test procedure was in accordance with ASTM C496-71. Trends
similar to those for the compressive strength were obtained. At -50°F the
average tensile splitting strength was 484 psi. This decreased to 228 and 210
psi at 70° and 140°F, respectively. These data are given in Table 8.

Similar trends were obtained for specimens containing the acrylic latex
MC-1834, but the extent of strength regression with increasing temperature was
less. The strength decreased 51% from a value of 441 psi at -50°F to 214 psi
at 140°F, Over the same range of temperature, specimens containing the TYLAC
68-009 exhibited a 56% reduction.

3. Flexural Strength

Flexural strength tests were performed on samples containing the three
polymer latexes. The tests were performed in accordance with ASTM procedure
C78-75 using 2-in. x 2-in. x 12-in. long beam samples. The results are summa-
rized in Table 9, and they indicate similar strengths (~425 psi) for the TYLAC
68-009 and MOD-A-based formulations. The MC-1834 acrylic latex formulation

yielded a strength of 284 psi, a value ~33% lower.

13

Table 7

Compressive Strength at Various Temperatures

Compressive strength, psi, at
test temperature, °F

Latex type -50° 70° 140Q°
TALAC 68-009 3190 2472 1588
‘ 3121 2564 1580
2871 2061 1168

AV, 3060 2366 1445
MC-1834 2810 2149 1593
3347 1974 1536

2438 . 1978 1365

AV, 2865 2034 1498

Test procedure, ASTM C495
Specimen size, 3-in.-diam x 6-in.-long cylinders

Table 8

Tensile Splitting Strength at Various Temperatures

Tensile splitting strength, psi, at
test temperature, °F

Latex type -50° 70° 140°
TALAC 68-009 491 238 233
472 228 199

488 218 200

AV, 484 228 210
HC-1834 488 308 231
407 243 202

428 300 209

AV, 441 284 214

Test procedure, ASTM C496-71
Specimen size, 3-in.-diam x 6-in.-long cylinders

14

4. Bond Strenmgth to Concrete Substrates

The bond strength in tension of a lightweight latex modifjéd mortar con-
taining the TYLAC 68-009 latex was determined using the method described in
American Concrete Institute (ACI) Standard 503R-80, Two types of concrete
substrates were considered. The first was a normal density portland cement
concrete and the other was a lightweight concrete containing styrofoam beads,
sometimes referred to as expanded polystyrene concrete (EPS). The latter is
of interest since it has been installed at some LNG facilities as an insulat-
ing material, and the ability to bond to it will be of great importance during
retrofit operations. _

Slabs, 4 ft by 4 ft by ~4-in. thick, of each material were cast and
allowed to fully cure. After cleaning the top surface by sandblasting, a
primer coat consisting of 50% latex (TYLAC 68-009) and 50% portland cement was
brushed on immediately prior to placing a 0.75-in. thick lightweight
insulating overlay. .\ typical section from a portland cement concrete slab
insulated with a latex-modified concrete overlay is shown in Figure 3. 1In the
case of the bond test with the conventional concrete substrate, failure always
occurred in the insulating overlay. ' The average tensile bond strength was 250
psi, in good agreement with the previously' discussed tensile strength value of
228 psi. With the lightweight concrete slabs containing the expanded polysty-
rene beads, failure was always in the concrete substrate. The average ten-
sile bond strength was a very low 106 psi and it is indicative of the poor
strength and durability characteristics of this type of concrete. The ability
to bond iatex modified insulating lightweight concrete overlays to other insu-
lating-type concretes should not be a constraint for possible remedial field

applications.

15

Figure 3. Typical section from a conventional portland cement concrete slab
(bottom) insulated with a latex-modified concrete overlay (top).

16

Table 9

Flexural Strengths and Modulus of Lightweight Insulating Composites

Flexural strength, Flexural modulus,
atex t psi 103 psi

TYLAC 68-009 545 - 4.69
378 6.95

349 6.04

AV, 424 5.89
MC-1834 294 6.47
277 6.85

281 5.60

AV, 284 6.31
MOD-A 425 3.83
511 5.60

349 5.34

AV, ‘ 428 4.92

Test procedure, ASTM C78-75
Specimen size, 2-in. x 2-in. x 12-in., beams

The effect of thermal shock on the bond was also evaluatqd. In these
tests, liquid nitrogen was poured onto the surfaces of insulated slabs pre-
pared in the mar.ier described above. After two thermal cycles, neither crack-
ing or disbondent of the insulating overlay were apparent. Upon applying a
tensile load, bond strength results similar to those reported above were ob-
tained. Namely, failure of the slab containing the EPS concrete substrate
occurred within the substrate, and with the conventional concrete substrate,
the failure was in the overlay.

5. Thermal Conductivity

A series of plaques 7 by 7 by 1l-in. thick were made for use in measure-
ments of the thermal conductivity after exposure to air and water. A Shotherm
QTM-D2 Quick Thermal Conductivity Meter, manufactured by Showa Denko K.K., was
used. The samples tested were composed in accordénce with the optimized com-

posite mix design and contalned TYLAC 97-314, TYLAC 68-009, MOD-A and MC-1834

17

latexes. These results are given in Table 10, With the TYLAC-type latexes,
the thermal conductivity decrcased during the first 7 days as hydration of the
portland cement progressed After curing in alr for 7 days, the values ranged
between 0.131 and 0,136 BTU/hr-ft-°F., The specimens were then fully immersed
in water for 24 hr. Measurements made immediately upon removal of the plaques
from the water indicated conductivities essentially the same as those when the
specimens were first cast (0.19 to 0.21 BTU/hr-£ft-°F)., However, within 24 to
48 hr of exposure to a laboratory air enviromment, the conductivities de-
creased to their p+-e-immersion values.

Tests were also performed on specimens containing MOD-A and MC-1834 la-
texes, Results obtained were similar to those from the TYLAC-containing sam-
ples.

: The effect of prolonged immersion in water on the thermal conductivity
was also investigated. In this work, 7-in. x 7-in. x l-in. thick plaques,
made in accordance with the formulation listed in Table 10, were soaked in
water at ambient temperature for 11 days. The test results, summarized in
Table 11, indicate similar trends for each of the latex systems. When com-
pared to the conductivities of air dried samples, all three latex systems
exhibited significant increases within 24 hr, after which they remained rela-
tively constant for the 11 day period. Samples containing the MOD-A and
MC-1834 latexes had thermal conductivities of 0.194 and 0,195 BTU/hr-£ft-°F,
respectively, upon saturation with water. These values represent increases
when compared to the controls of 19 and 26%, respectively. The TYLAC 68-009
sample increased approximately 32%, thereby indicating a greater amount of
porosity accessable to water. This is discussed further in Section 6, Water

Absorption,

18

Table 10

Thermal Conductivity Results

Thermal conductivity, BTU/hr-ft-°F
MC-1834

Cure time, Latex type: TYLAC 97-314 TYLAC 68-009 MOD-A
day
1 0.193 0.210 0.180 0.182
2 -- 0.184 .- 0.163
3 -- 0.181 -- --
4 0.137 -- -- .-
5 0.136 -- -- .-
6 -- ae -- --
7 -- 0.131 -- 0.156
Sample Composition :
Macrospheres 3.5 -7 10.0%
7 - 14 10,0%
14 - 30 10.0%
Macrospheres Q-Cel 400 : 4.,5%
Type III Cement 41.0%
Water 12.5%
Latex 12.0% .
/] ‘/« 'l

/
’ 19

Table 11

The Effect of Water Irmersion on Thermal Conductivity

Thermal Conductivity, BTU/hr-£ft-°F

Immersion time, Latex type: TYLAC 68-009 MOD-A MC-1834
day

0 0.171 0.165° 0.156®

1 0.227 0.197 0.197

2 0.231 0.190 0.197

3 0.225 0.192 0.197

4 0.224 0.193 0.193

7 0.220 0.193 0.188

8 0.220 0.193 0.192

9 0.219 0.193 0.192

10 0.216 0.197 0.198

11 0.216 0.202 0.200

a, Air dried specimens
Sample size, 7-in. x 7-in. ® 1-in. thick

6. Water Absorption

The water absorption of polymer modified lightweight concrete was mea-

sured using two different techniques. The first involved determinations of

the change in weight after saturation in water. An electrical resistivity
method as described in AASTHO-T277-81 was the second method used.

Test results from weight change measurements are summarized in Table
12. 1In these tests, samples of two sizes, 3-in.-diam x 6-in.-long cylinders
and 7-in. x 7-in. x 1-in. thick plaques, were evaluated after immersion in
water at ambient temperature for times up to 11 days. Three polymer latexes
at a concentration of 12 wt% were compared. The following generalizations are
apparent: 1) cylindrical-shaped specimens had significantly lower water
absorptions than the plaques, probably due to their lower surface/volume ratio
and the relative ease of compaction during casting, 2) the use of the MOD-A
styrene-butadiene polymer emulsion resulted in the lowest water absorptions,
and 3) the data for the TYLAC 68-009 and MC-1834-containing specimens exhibit

a great deal of scatter, but in general plaque-shaped samples containing the

20

Table 12

Water Absorption Results

Water absorption, wt$

Im.ersion Latex type: TYLAC 68-009 MOD-A MC-1834
time, day Sample size o] P c P C P
1 2.92 6.3 0.36 4.0 2.37 8.2
2 3.08 6.5 0.50 4.0 2.63 8.5
3 3.20 6.5 0.58 4.3 2.80 8.6
4 3.29 6.6 0.70 4.4 3,04 8.8
7 3.57 6.9 0.96 4.7 3.52 9.0
8 3.65 6.9 1.00 4.8 3.55 9.0
9 3.70 6.9 1.06 4.8 3.62 9.0
10 3.77 7.0 1.13 4.9 3.74 9.1
11 3.79 7.0 1.15 4.9 3.77 9.1

C, Specimen size, 3-in.-diam x 6-in.-long cylinders
P, Specimen size, 7-in. x 7-in. x 1l-in. thick plaques

former had lower water absorptions. Both series of cylindrical-shaped samples
had similar values. Comparison of these observations with the thermal conduc-
tivity values given in Table 11 for the same specimens fail to reveal a clear
rélationship between thermal conductivity and water absorption. Based upon
theory, it would be expected that the thermal conductivity of the MOD-A speci-
mens would be the lowest, followed by the TYLAC 68-009 and then the MC-1834.
This was not observed experimentally where the MOD-A and MC-1834 systems pro-
duced samples that had conductivities when water saturated of 0.194 and
0.195 BTU/hr-ft-°F, respectively, and the TYLAC 68-009 system
0.222 BTU/hr-ft-°F. The limited number of specimens tested, and physico-
chemical factors affecting the workability of the mix formulations, polymer
distribution within the samples, and the bonding to the fillers, may be the
cause of these descrepancies.

Additional tests were performed to determine if reductions in the water
absorption, and thereby lower thermal conductivities, could be accrued by

increasing the polymer content. Two TYLAC 68-009 latex concentrations (12% wt

21

and 18% wt) were used in these tests which were performed in accordance with
AASTHO-T277-81.

The test results indicated a permeability value of 991 coulombs for the
sample containing 18% wt latex and 2800 coulombs for the sample with 12% wt
latex. Normally, the permeability values for conventional latex-modified
mortars (3:1 sand-portland cement) vary from 800 to 2000 coulombs, depending
upon the latex concentration and leagth of cure. Since the water permeability
values for the 12% wt latex-containing samples were higher than desired, it
was decided that TYLAC 68-010 latex would be used as a partial replacement for
the TYLAC 68-009 in a planned small field evaluation. These resins are iden-
tical except that the former contains a defoam or antifoam system. It's Qse
was expected to reduce the number of air voids resulting from entrapped air
during mixing of the lightweight concrete formulation, thereby reducing the
permeability to water. ‘

A series of specimens containing 15% wt TYLAC 68-010 were prepared and the
thermal conductivities measured as a function of curing time in air. These

data are summarized in Table 13, The values decreased from

Table 13

Thermal Conductivity Results for Latex Containing Antifoam Agents

Cure time, Thermal conductivity, 2:°
day BTU/hr-ft-°F
1 0.173
4 0.165
5 ' 0.160
6 0.156
7 0.158
11 0.164
15 0.153
25 0.152
32 0.155

a, Latex, 15% wt TYLAC 68-010
b, Specimen size, 7-in. x 7-in. x l-in. thick plaques

22

0.173 BTU/hr-ft-°F at an age of 1 day to 0.156 BTU/hr-ft-°F after 6 days.
Beyond that age, little further reduction occurred. A comparison of these
results with those obtained earlier with samples containing 12% wt TYLAC 68-
009 (Table 10), indicates that at early ages the TYLAC 68-010 formulation had
lower thermal conductivities (0.165 vs 0.181 BTU/hr-£ft-°F)., However, at ages
beyond 7 days the TYLAC 68-009 had lower values (0.131 vs 0.158 BTU/hr-ft-°F).
The reason for this may be that the water content in the former was decreased
from 12,5 wt% to 9.5 wt% in order to accommodate the increased latex concen-
tration., This reduction in initial water content would be expected to result
in a lower thermal conductivity product at early curing ages. However, upon
further hydration of the cement, the increased density of the cured concrete
would be expected to yield a less porous and therefore higher conductivity
product. Also, upon immersion in water, the reduced porosity would be expect-
ed to maintain the conductivity closer to its air dried value. Unfortunately,
this was not verified experimentally. Based upon these data, a 50:50 mixture
of the two latexes was selected for use in the field evaluation. This ratio
represented a compromise between product density and porosity as they affect
thermal conductivity in wet environments. Time and budgetary constraints
prevented a quantitative evaluation of these parameters.

FIELD_ EVALUATION

In order to determine if the results obtained in the laboratory character-
ization of lightweight latex modified composites could be reproduced in the
field and to demonstrate possible placement techniques, a small field evalua-
tion was conducted. Plans were made and later implemented to place an insu-
lating overlay on approximately 1650 ft? of horizontal surface and 150 ft? of
verticle surface at a concrete-lined LNG gathering sump, and to compare the
results with those from a polystyrene foam lightweight concrete which had been
commercially installed earlier to insulate the sump. Some of this insulation
had subsequently been treated with an epoxy sealer as a repair technique.
Details of this work are given below.

A. Characterization of Existing Lightweight Concrete

Measurements were made to determine the thermal conductivity of the
expanded polystyrene (EPS) lightweight cement concrete insulation that was in
service at the field test site. For use in these tests, several small pieces

of the EPS were removed and sent to BNL. The samples were shipped and stored

23

in plastic bags in order to maintain the moisture content at a level approxi-
mating that when in service. The thermal conductivities of these samples
which contained between 25 and 35 wt% water, ranged from 0.35 to

0.50 BTU/hr-ft-°F. After oven drying the samples, this value decreased to the
range 0.08 to 0.10 BTU/hr-ft-°F., In contrast, samples of the BNL developed
lightweight latex modified insulating concrete had a thermal conductivity of
~0.20 BTU/hr-£ft-°F immediately following full immersion in water for 1l days
and a pre-immersion value of ~0,13 BTU/hr-ft-°F within 48 hr upon exposure to
laboratory air conditions..

Since the field evaluation would necessitate placement of the latex modi-
fied insulating concrete on the EPS concrete, attempts were made to measure
the bond strength between these materials. In these tests, the surface of the
EPS concrete was sandblasted prior to application of the latex modified insu-
lation. Visual inspection of the interface indicated good bonding, but unfor-
tunately the small sample size precluded the performance of tensile bond mea-
surements. Based upon this observation and the results from earlier laborato-
ry studies in which the bond strength to an EPS concrete was measured (see
Laboratory Studies Section C-4), it was concluded that bonding of the two
materials could probably be attained in the field.

B. Field Installation

In November 1988 a styrene-butadiene latex modified concrete insulating
composite was placed on the sump floor and ~70 ft? of side walls at a field
site. Descriptions of the materials used and method of placement are given
below.

1. Mix Design

The mix design selected for use in the field evaluation is given in Table
14. It should be noted that in comparison to the mix design used for the
laboratory characterization work (see Table 5), the latex concentration was
increased from 12 to 15% wt. This was done in order to reduce the permeabil-
ity of the cement matrix, thereby maintaining a low thermal conductivity when

exposed to wet environments,

24

In order to minimize the weighing and mixing of the various constituents
at the job site, all of the solid components were mixed and then packaged at
BNL in cardboard boxes. Each box contained aggregate sufficient to produce a
2 £t® mix.

Table 14
Mix Design Used in Field Evaluation

Material tratio t
Latex® 15.0
Macrolite spheres®

3.5 to 7 10.0

7 to 14 10.0

14 to 30 . 10.0
Grefco HP 520° 4.5
Type III portland cement 41.0
Water ' J 9.5

a, Two carboxylated styrene-butadiene latexes, TYLAC 68-009 and TYLAC 68-010,
both supplied by Reichhold Chemical, Inc., were mixed in equal quantities.

b, Multicellular glass spheres with a ceramic coating supplied by the 3M Com-
pany. Size distribution in U.S. Mesh.

c, Filler supplied by Grefco, Inc. Average particle size 70 microns.

2. Surface Preparation

All of the surfaces that were to be overlaid were scraped and sandblasted.
This was followed by additional cleaning which consisted of scraping off as
much of the epoxy coating and pieces of delaminated portland cement mortar
from the EPS5 concrete as possible. Both m&terials had been applied earlier in
attempts to repair sections of the EPS concrete., Figure 4 illustrates the
condition of the floor surface after the cleaning was completed, and it is
readily apparent that considerable variation ia the substrate existed. A.
typical wall section is shown in Figure 5.

3. Installation of Screed Rails

Screed rails were attached to the sump floor in order to facilitate com-
paction and leveling of the insulating material. Wooden strips 2-in. wide by
l-in. thick and wrapped with Mylar tape were used for the rails. Attachment

to the concrete floor was accomplished using 3-in. long screw nails. The

25

Figure 4. Condition of sump floor prior to placement of latex-modified
lightweight concrete insulation,

26

o - .
; - . : L

Figure 5. Typical wall section prior to placement of insulating overlay.

rails were installed so as to divide the sump into 6 strips, the four inner
ones being ~5-ft wide and the outer ones ~2.5 ft.

4., Mixing, Placement and Finishing

An 8 ft® cement mortar mixer was used for the mixing of the insulating
latex modified portland cement overlay. first, an amount of prepackaged ag-
gregate sufficient to p:oduce a 2 ft® batch was placed in the mixer and mixed
for 2 to 3 minutes. The latex and water wcre then added and all were mixed
for 3 to 5 minutes. J

The horizontal area to be overlaid was wetted with water and then a slurry
containing ~50 wt% latex - 50 wt% cement was broomed onto the surface as a
bond coat. The insulating composite mix was transported by wheelbarrow and
spread out on the floor in front of the screed using shovels and rakes. A
vibratory screed riding on the screed rails was used to level and compact the
overlay. Some additional hand finishing was done using magnesium floats.

Several miﬁutes after the dverlay was placed, it was covered with a vapor
barrier to prevent the evaporation of water from the insulating concrete. In
this installation, Transguard 100 (a fibrous mat attached to a polyethylene
film) was prewetted and then rolled out onto the surface. The covering
remained in place for 24 hr.

The nominal 1-in., thick overlay was placed in strips as indicated in Fig-
ure 6. Strips 1 and 5 were ~2.5-ft wide, and strips 2-4 and 6 were 5-ft,
Strips 1, 2 and 3 were placed on the first day, Strips 4, 5 and 6 on the sec-
ond day. A completed section of the floor is shown in Figure 7.

A 17.5-ft long by 4-ft high section of a vertical wall in the sump was
also overlaid with the lightweight latex modified mortar. The approximate
thickness of the overlay was to be 2-in. The overlay was placed by filling a
2-in., wide annulus between a polyethylene sheet-covered plywood form and the
EPS concrete covered wall surface. Compaction of the composite during place-
ment was accomplished using a vibratory screed motor which was mounted on
vertical beams attached to the form. Unfortunately, when the overlay was
about 50% complete, the form work started to pull away from its anchors. It

was possible to re-anchor the form before it collapsed, however, the overlay

28

5'

5'

[
1,

2.5

A1S

N- f
—

I.llll'l'llllllllllul'lllllllll\llll!llll||l

l"‘ll"lllll"‘l'l"ll‘lIllllll‘l'lull

|||“Il|ll|ll|lll|l|ll||ll“l|ll — e et

Flgure 6.

Layout of sump floor.

29

Figure 7. Section of sump floor and wall after placement of insulating
overlay.

thickness became irregular varying between 2 and 3-in. A completed section of
the wall is shown in Figure 7.

The quantities of material needed for each floor strip and the wall are
summarized in Table 15. The placement times required for each section are
also given in this Table.

Table 15

Material Requirements for Field Evaluation

Strip No. Placement time, Material required,
min 1b
1 45 600
2 45 1500
3 45 1500
4 40 1800
5 40 800
6 45 1800
wall 60 1100
Total 9100

5, Materials Cost and Manpower Requirements

As summarized in Table 15, a total of 9100 1lb of the latex modified
lightweight concrete was placed over floor and wall areas of approximately
1324 ft2 and 70 ft?, respectively. Due to the extreme irregularity of the
thickness, it is not possible to calculate the material cost on an area basis
for the wall. However, for the floor where the overlay thickness was a nomi-
nal l-in., the materials cost of $0.29/1b (see Table 4) translates to
$1.75/ft?. This can be compared with the estimated $1.33/ft? that was dis-
cussed in Section B-4. The latter was based upon a product density of
55 1b/ft3, When the field derived density of 64.8 1b/ft® is factored into the
estimate, this increases the laboratory work-predicted cost to $1.56/ft*. The
remaining difference can be attributed primarily to variations in the overlay

thickness, and secondarily to material losses during mixing and placement.

31

Due to salary scale differences, the labor costs of BNL Professional and
Technical Staff personnel have not been used to calculate placement costs,
Time requirements were determined and these are listed below in Table 4. A
total of 129 man hr were required to pre-weight the solid constituents in the
laboratory, prepare the surface, fabricate and install forms and guiderails,
and to mix, place and screed the overlay. It should be noted that the poor
initial condition of the concrete substrate resulted in a large labor require-
ment for surface preparation. This should not be considered typical. Pre-
batching of the aggregate represented 20% of the total labor. For a large-
scale fileld installation, a considerable reduction in the time requifed for
this operation should be attainable. The use of larger-scale continuous con-
crete batching and mixing equipment would also significantly reduce the place-
ment time,

6, e and es d

Samples were cast during the placement of the overlay for use in measure-
ments of the mechanical and physical properties of the composite. Compared to
earlier specimens prepared in the laboratory in which compaction was performed
by use of a vibrating table, the field samples were compacted by hand tamping
the malds against the ground or other €i.m surfaces. The test results from
these specimens are summarized in Table 17,

Compressive strength tests were made on 29 cylinders., The average
strength was 1788 psi with a coefficient of variation of 24.2%. The average
flexural strength of 7 beams was 252 psi and the coefficient of variation
was 31.4%. These large variations can be attributed to slight variations in
the fluid concentrations in each of the 2 ft® batches, and to differences in
the degree of compaction of the samples., Earlier laboratory samples had an
average compressive strength of 2345 psi and a flexural strength of 424 psi.

Water absorption measurements conducted on 7 samples yielded a value of

0.56%, lower then the samples prepared in the laboratory. The density of 32

32

Table 16

Fleld Placement Labor Requirements

Operation No. of Men Total time,®
man-hr

Surface preparation 2 32

Mixing of dried aggregate 2 25

Preparation and placement

of* forms and screed guides 2 16

Mixing and placement of

overlay® 4 56
129

a, Treated area, 1394 ft?
b, Quantity mixed, 9100 1b

33

(L]

TABLE 17

Mechanical and Physicﬁl Properties of Lightweight Latex Modified Mortar
Used in Field Evaluation

Compressive Flexural Thermal Density, Water

Sample strength, strength, conductivity, absorption,

No. psi psi Btu/hr-£t-°F 1lb/ft? %

260 317 0.206 63.4 0.5

261 ‘ 236 0.191 65.5 0.6

262 307 0.193 62.6 0.7

263 360 0.191 63.2 0.7

264 152 0.193 63.9 0.5

265 226 0.213 61.1 0.45

266 163 0.219 62.7 0.48

267 1171 65.8

268 1458 69.0

269 2012 66.3

270 2149 66.1

271 1943 66.3

272 1905 66.4

273 1088 69.1

274 2233 69.9

27¢ 2084 66.1

276 2000 ' 66.7

277 1741 . . 65.5

278 2153 66.6

279 2783 68.8

280 1871 64.5

281 1214 63.2

282 1099 63.2

283 1703 63.6

284 1714 64.5

285 1970 63.8

286 1882 63.8

287 1451 68.8

288 1718 64.2

289 1172 60.7

290 1600 62.7

291 1313 60.9

292 2584

293 2058

294 1985

295 1145
Mean 1788 252 0.200 64.8 0.56
Std. Dev. 433 79 0.011 2.4 0.10
Coef.

of Var. 24.2% 31.4% 5.8% 3.7% 18.8%

34

field-produced samples was 64.8 lb/ft3, approximately 15% greater than the
laboratory values. Lesser agreement was obtained with the thermal conductivity
data. In this case the field samples had a thermal conductivity of 0.200
BTU/hr-£ft-°F compared to the 0.159 to 0.131 BTU/hr-ft-°F range measured on
laboratory samples.

7. Video Documentation

In order to aid in the transfer of the technology developed in this program
to the gas industry, video personnel from BNL taped all of the operations per-
formed during the field test. After editing, this tape was combined with others
produced in the laboratory to serve as the basis for an instructional video.
This video was delivered to GRI.

8. Post-Test Inspection

An inspection of the lightweight latex-modified mortar overlay was made in
August 1989, approximately 9 months after installation. The overlay displayed
many cracks in a spiderweb pattern but no delamination or spalling from the EPS
concrete substrate. Discoloration around the cracks was also apparent. The
crack pattern is indicative of shrinkage cracking waich is generally caused by
excessive evaporation of water from the latex modified concrete. In the case of
the latex mortar in this test, the top surface of the overlay was exposed to
ambient temperatures generally in the range of 80° to 95°F. In contrast, the
bottom of the overlay was in contact with water saturated EPS concrete at a tem-
perature probably only 55° to 65°F. Thus, the top surface dried out at a much
faster rate, thereby creating the shrinkage cracks. This problem has recently
been recogaized by latex-modified concrete producers and the construction indus-
try, and the most current installation procedures for latex modified cement
overlays on bridge decks specify a wet cure of 48 hr in order to control shrink-
age cracking.

The discoloration around the cracks appears to have been due to the percola-
tion of groundwater up through the substrate and cracked overlay followed by
evaporation from the upper surface.

The only portion of the floor that did not contain cracks was an area which
was generally shielded from direct sunlight by a balcony above it, This observa-
tion tends to support the possibility that the cracking occured due to high

surface moisture evaporation rates,

35

A survey was made of the thermal conductivity of the lightweight latex modi-
fied mortar overlay using a Shotherm QIM-D2 Quick Thermal Conductivity Meter.

These data are summarized in Table 18, and they indicate an average value of

TABLE 18

Thermal Conductivity of Lightweight Latex Modified Mortar Overlay
After Field Exposure

Thermal conductivity,

Panel No® BTU/hr-£ft-°F
6 0.179
0.190
5 0.173
0.173
4 0.184
0.184
3 0.177
0.194
0.167
2 0.194
0.213
Mean 0.184
Std. Dev. 0.013
Coef. of Var. 7.0%

%refers to Figure 6.

0.184 BTU/hr-ft-°F. The coefficient of variation was 7%. Earlier measurements
made on samples cast during the placement of the overlay had an average value of
0.20 BTU/hr-ft-°F.

Thermal conductivity measurements were also made on the wall containing the
insulating latex modified motar overlay. In this case the average value was
0.175 BTU/hr-£ft-°F, considerably lower than the control value of 0.476 BTU/hr-ft-

°F for the EPS concrete covered with a cement mortar,

36

9. Summary

Based upon the results obtained during the installation and subsequent
inspection after 9 months of field exposure of the lightweight latex modified
mortar overlay, the following conclusions can be made: 1) the permeability of
the insulating overlay is very low, and as a result, the overlay maintains 1its
low thermal conductivity even in moist environmental areas, 2) the shrinkage
cracking that occurred appears to be related to inadequate installation proce-
dures rather than an inherent problem with the composite, and 3) the composite
bonds well to concrete surface insulation and repair materials, thereby making it
suitable for retrofit applications as well as new construction.

COMPUTER SIMULATION MODEL DEVEIOPMENT

As a subcontracted effort with Robert F. Benenati, Inc. a computer software
program was developed for use in the calcuiation of ING boil-off rates and dis-
persion distances. A programmed floppy disk which can be used in a PC or equiva-
lent type computer, and a User Manual were prepared. The program is written in
the C program language. Copies of the computer code and the User Manual are
given in Appendix 1 and 2, respectively.

The personal computer-based program was designed to provide the user with
vaporization rate data for LNG spills within a user-defined LNG storage dike or
other impoundment. By calculating solid conductive heat transfer up through up
to three layers of dike floor and wall materials, the program can be used for
evaluating the effectiveness of dike insulating alternatives in mitigating rapid
vaporization of spilled LNG. Vaporization rates and volumes are provided to
assist the user in determining hazard zones associated with downwind dispersion
of the resulting LNG vapor cloud. Ideally, the user would use calculated vapor-
ization rates as input to an appropriate heavy gas vapor dispersion model or
laboratory experiment.

In addition, the program provides the user with the option of calculating
vapor dispersion distances directly from the program, which includes a simple
Gaussian passive dispersion procedure. However, this dispersion calculation
should be used for comparative purposes only since, as typical of Gaussian dis-
persion models, it neglects important LNG vapor dispersion physics. Dispersion
calculations produced by the program should not be used for site-specific hazard

evaluation or for regulatory compliance evaluation purposes.

37

The objective of the User Manual is to provide program users with informa-
tion on program organization and operation as well as underlying calculation
approaches employed. An error in the program relating to the association of
spill rates to vaporization was recently discovered. Resolution of this program
was'outside of the budget limitations of the contract.

CONCLUSTONS AND RECOMMENDATIONS

The results from the laboratory development and subsequent field evaluation
of latex modified lightweight cement composites indicate that the materials have
properties that make them suitable for use as durable load bearing insulation on
containment dikes at LNG storage facilities. The composite bonds well to con-
ventional portland cement concrete, EPS-based insulating concretes, and polymeric
coatings that are sometimes placed on EPS concrete to reduce water absorption and
improve its durability. As a result of the excellent bonding to these sub-
strates, the insulating composite can be used for retrofit applications as well
as new construction. A thickness of 0.75-in. will provide adequate insulation to
substantially reduce LNG boil-off rates. Based upon this thickness, the cost of
the matiirials is estimated as $1.00/ft2, -

The recommended procedures for surface preparation, mixing and placement of
the insulating composite are as follows:

1. The overlay must be placed on a clean and structurally sound substrate.

Sandblasting or other mechanical abrading methods should be used to remove

any deteriorated concrete or laltances from the substrate surface prior to

application of the overlay. The degree of uniformity in the flatness of the

surface will determine the amount of overlay material needed to insure a

minimum thickness of 0.75-in. Therefore, any holes or irregularities in the

substrate should be filled using conventional repair materials.

2. Prior to the application of the insulating overlay, the clean substrate

surface should be wetted with water and then a bonding agent consisting of a

50 wt% latex - 50 wt% cement slurry applied. The slurry can be spread using

brooms.

3. For large installations, continuous automated batching of the solid and

liquid constituents in the insulating composite, mixing, and placement, can

most economically be performed using conventional concrete industry equip-

ment such as a concrete mobile. This will also help to insure a homogeneous

38

overlay. Smaller quantities can be batch mixed in conventional drum-type
concrete mixers and placed by hand,

4. After placement, screeding, and surface finishing, wet curing of the
composite is essential, All overlald surfaces should be covered with a sin-
gle layer of water saturated burlap immediately after the finishing opera-
tion. Then apply a single layer of polyethylene film onto the burlap before
the burlap begins to dry. An alternate method is to apply a fog spray di-
rectly onto the overlay. Wet curing should be maintained for a minimum of
48 hr. Ailr curing until the specified strength or cure time has been
achieved should then be performed.

39

REFERENCES

1.

Chatlos, D.J. and Reid, R.C. Boiling and Spreading Rates of Instantaneous
Spills of Liquid Methane on Water. GRI-81/0045, April 1982,

Welker, J.R. Vaporization of LNG Spills on Composite Materials, Applied
Technology Corporation, OK, Sept. 1983.

"Evaluation of LNG Vapor Control Methods," Arthur, D. Little, Inc.,
Cambridge, MA, Oct. 1974,

Fontana, J.J., Cheng, H.C,, and Reams, W, Development of an Insulating
Polymer Concrete Overlay for Dike Insulation at Long Island Lighting
Company’s LNG Storage Facility, BNL 39906-R, June 1987,

Fontana, J. J. and Steinberg, M. Development of Polymer Concrete for Dike
Insulation at LNG Facilities, Final Report, BNL 35589, GRI-84/0193, Nov.
1984,

Fontana, J. J., Cheng, H. C. Steinberg, M. Reams, W., and Elling, D.
Development of Polymer Concrete for Dike Insulation at LNG Facilities, Phase
II, BNL 38808-R, GRI-86/0249, Oct. 1986,

Fontana, J. J., Reams, W., and Elling, D. Development of Polymer Concrete
for Dike Insulation at LNG Facilities, Phase III, BNL 40632,

GRI-87/0301, Oct. 1987. .

"Lightweight Concrete," American Concrete Institute Publication SP-29,
Detroit, MI, 1971.

o

40

APPENDIX 1

[#%kk 07/03/89 .
void bleep (void)

{

sound (440);
delay (500);
nosound ()
return;

}

to beep a brief sound

*

[ak*% 05/24/89 to write base line on screen baseLine = */

#include <conio.h>
#include <stdio.h>
Jdefine barColor textattr (BLACK + (LIGHTGRAY<<4)
#define stdColor textattr (LIGHTGRAY + (BLACK<<4)

.
’
.
/

)
)
/* function prototypes */

void baselLine (void);
void mycputs (int, int, char [])i

void baseline (void)

{

barColor;

mycputs (1, 25, " Wellborn Systems "
" copyright 1989 ");

stdColor;

return;

} /* Dbaseline bgen.lib */

[wwk® 03/25/89 barText
to write text on the base line * /

#include <conio.h>

#include <stdio.h> ,

#define barColor textattr (BLACK + (LIGHTGRAY<<4))
#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

void barText (int x, char text[])

{

window (1, 1, 80, 25);

barcolor;

mycputs (x, 25, text);

stdColor;

return;

} /* barText bgen.lib */

[wk*% 04/20/89 to get the absolute value of a real number absc

double absv (double arg)

{
return ((arg < 0.0)? -arg:arg);
}

*/

[*hkx 03/18/89 conduction
function solves the one dimension conduction equation for a fixed
surface temperature boundary condition for up to three zones, each
different
ARGUMENTS:
tg == surface temperature, deg F
alpha({] == thermal diffusivity for each zone, sq ft/hr
k(] == thermal conductivity of each zone,BTU/hr,ft,degF
deltime -- time step, seconds
x[] == vector of node lengths, ft
t[] =-- vector of node temperatures, deg F
nc{] == number of nodes in each zone
n == count of total number of nodes

void conduction (double ts, double alpha[], double k[], double deltime,
double x[], double t[], int nc[], int n)

{
double qin, gout, term, tnew([50];
int i=0, j=0, jflag=0, getoutflag = 0, ncsumj
ncsum = nc{0];
term = 2.0 * alpha(0] * deltime;
gqout = (t[{0] - ts) / x[0];
in: gin = (t[i+1] - €£{i)) / (x(1] + x[i+1]);
tn: tnew(i] = t[i] + term / x[1] * (gin - gout);
if (getoutflag) goto getout;
if (3flag){ term = 2.0 * alpha(j] * deltime; jflag = 0;}
if (lqgin) goto getout;
gout = gin;
if (++1 < ncsum-1) goto in;
if (i == n=-1){ gin = 0.0;getoutflag = 1; goto tn;}
qin = (£{i+1] = £(i]) / (x[1] + (x[i+1] * k(3]) / k(++31) 7
nesum += nc(++3); -
jflag = 1;
goto tn;
getout: for (3 = 0; J <= i; 3++) ¢
(3] = tnew(]li}
return;
} /* conduction dike.lib */

*/

/h*4% 03/30/89 to assign coordinate values to all nodes coordina
end insure that node boundaries coincide with zone
boundaries; function returns n, the count of nodes in
each zone. It also returns the total count of all nodes.
Max nodes = 100, max zones = 3,

ARGUMENTS:
11
12
13

1(]
ncf] -

length of zone one, inches

length of zone 2

length of zone 3

coordinate vector for all nodes,l(0]=0, 1l({i] = l1+1l2+1
count of nodes in each zone

nodePos(] -~ last node in zones 1 and 2

/* function prototypes

int coordinates (double,
int coordinates (double

int i, ncsum = 0, zone =
double x(] = {0.0,0.01,0
zoneLength;

1[0] = 0.0;

nc{2] = ng(l] = nc(0] =
ZoneLength = 11;

*/
double, double, double[], int(], int(]);

11, double 12, double 13, double 1l[], int nc[]
int nodePos(])

0y
'01,0-02'0-02,0-03,000410005’0-05,00‘1,001'0-25’0025'
¢.5,0.5,1.0},
/* boundary of current zone, inches */

0;

for (1 = 1; i < 50; i++){

1(i] = 1(i-1] +

((i<=15) ? x[i] : 1.0);

if (1(i] >= zoneLength) {

nclzone]
nodePos|{

= 1 - ncsum; -
zone] = i;

ncsum += nclzone++];

1{(i] = 2z
switch (

if (1[(49] > zonelLength)
return 50;
} /* coordinates

onelength;

zone) {

case 1:

if (12 == 0.0) return i;
zonelLength += 12;

break;

case 2:

if (13 == 0.0) return i;
zonelength += 13;

break;

default:

return i;}

}}
1[49) = zonelength;

dike.lib */

[*#*%* 06/22/89 to turn cursor on

#include <conio.h>
#include <dos.h>
#include <stdio.h>

/* function prototypes
void cursoron (int);
void cursorOff (int start)

union REGS regs;

int end = 13;

regs.h.ch = (char)start;
regs.h.cl = (char)end;
regs.h.ah = 1;

int86(0x10, ®s, ®s);
return;

} [/* cursoroOn

bgen.lib

*/

cursoxon

*/

*/

exit
[ankk 06/22/89 to turn cursor off

#include <conio.h>
#include <dos.h>
#include <stdio.h>

/* function prototypes
void cursorOff (void);
void cursoroff (void)

{

union REGS regs;

regs.h.ch = 0x20;
regs.h.ah = 1;

int86(0x10, ®s, ®s);
return;

} /* cursorOff

bgen.1lib

*/

cursroff

*/

*/

[wde® 09/02/89 : , main */

#include <conio.h>
#include <stdio.h>
- #include <b:dike.h>
" #include <time.h>

/* function prototypes ‘ */

int coordinates (double, double, double, double [], int [], int (1)
void cursorOff (void);
void cursoron (int);
void dikeDim2 (int, int);
void dikeDim3 (int, int, int, double (1)
double dikeDimension (int, int, int, double, double [], double []);
void dikeMaterials (int, double *, double []([4]):
void disclaim (int, int, int far ¥, int);
int dispMatlPropt (int, double *, double(]([4]);
void distance (char, double, double, double);
void drawAbox (int, int, int, int,char *,char *);
int far * eqpList (void); ,
double flashFraction (double);
void floorWwall (int, double [])7
int getKey (int, int, char *[],
double getNum (void);
void nodelength (int, double [], double []);
void mycputs (int, int, char(l);
void onelayerBoiloff (double, double, double, double, double [],
double *, double *);

double pipeFlow (double, double, double, double, double, double, double ¥*);
void report (int,int,int,double,double,double[],double,double,double,

’ double[],double,double[][4],double,double,double);
void reporto (int, double, double, double); .
void reportl (double);
int report2 (double);
int rerun (void);
int respond (int, int);
int spillFacts (double *, double *, double *);
void splasho (int, int, int far *, int);
void splashl (int far ¥, int);
double tank (double ¥*, double *, double *, double *, double *, double *);
void transient (double [], double [], double (], double [], double [],

- int ({1, int, int(]); :
void tansientl (double [], double [], double [], double [], double [],

int [], int, int(]):.
void twolayerBoiloff (double, double (], double [], double, double [],
double [], double *, double *);

void warning (int, double, double);
char weather (void);

int, int);

main()

{

int 1, %, Y7

int far *videoptr;

double 11,12,13, floorArea;

alpha{0] alpha(l] = alpha(2] = k(o] = k[1] = k(2] = 0.0y
videoptr egplList ();

splasho (1, 1, videoptr, 0x0700);

disclaim(1l, 1, videoptr, 0x0700) ;

splashl (videoptr, 0xU0700) ;

start:barText (30, "selection keys only");

timelOverDike = time20verDike = displSource = disp2Source = 0.0;
shape = dikeDetails (&style, &typecon);
tankVol = tank (&tankHeight, &tankDia, &htUllage, &ullagePress, &ullageVol,

flashFrac = flashFraction (ullagePress);

dikevVol = dikeDimension (style, shape, typecon,tankDia, dimension, dikeArea);
dikevapVol = dikeVol - tankArea * dimension{0];

if (dikeVol < tankVol) warning (1, dikeVol, tankVol);

else if (dikeVol < 1.1 * tankVol) warning (0, dikeVol, tankVol);

floorWall (typecon, thickness);

dikeMaterials (typecon, &soilMoisture, propts);

spillMode = spillFacts (&spillRate, &spillTime, &pipe_i_d);
floorArea = dikeArea[0);
if(spillMode == 2) 11 = pipeFlow (pipe_i_d, htUllage,
ullagePress, floorArea, tankArea, spillTime, &spillRate
if (11 < spillTime) spillTime = 11;
windTemp (&windSpeed, tempture);
ambientTemp = tempture(0];
barText (30, " patience "),
mycputs (10, 12, "calculating =~ Please wait");
cursorQOff();

report (shape, style, typecon, tankDia, tankHeight, dimension,
htUllage, ullagePress, ambientTemp, thickness, windSpeed,
propts, soilMoisture, tankVol, dikeVol);
report0 (spillMode, pipe_i_d, spillRate, spillTime);

ullageVol = tankArea * htUllage; /* correct dike vapor vol and dike */
ullageLigHt = ullageVol / dikeArea(0]; /* wall area due to liquid */
dikeVapVel = dikeVol - ullageVol - tankArea *(dimension[0] - ullageLigHt);
dikeWallArea = dikeArea(l] * ullageLiqHt / dimension[0];

.dikeArea[1l] = dikeWallArea;

/* calculate boiloff fro
1[0] = thickness[0];
1{1] = thickness(1];
alpha({2] = propts(0](3];
k(2] = propts(0](2];
switch (typecon) { /* dike with liner */
case 1:
case 2:
alpha(0] = alpha(l] = propts{typecon]([3];
k(0] = k{1] = propts[typecon][2];
doit:twolLayerBoilOff (ambientTemp, k, alpha, dlkeVapVol dikeArea, 1,
&timelOverDike, &displSource) ;
break;
. case 3:
alpha[0] = propts(typecon][3];
alpha(l] = propts(typecon-1)[3];
k[0] = propts[typecon](2];
k[1l] = propts[typecon-1][2];
goto doit;
case 4:
alpha(0] = alpha(l] = propts(3][3];
k(0] = k(1] = propts(3](2];
goto doit;
case 0: /* dike without 1
alpha[O] = propts(0](3];
k(0] = propts(0](2];
oneLayerBoiloff (ambientTemp, k[0], alpha[0], dikeVapVol,dikeArea,
&timeloverDike, &dlsplSourCe);
}

reportl (timeloverDike) ;

/* calculate boil off from insulated dik
alpha(2] = propts([0][3];
k(2] = propts([0](2]/
1[{0] = thickness(O] + thickness(2];
1[{1] = thickness[1l] + thickness(3];
switch (typecon) {
case 0:
alpha({0] = propts(4]1(3]);
alpha(l] = propts{41(3];
k[0] = propts(4](2]/
k(1] = propts(4][2];
break;
case 1l:
case 2:
k(0] = 1[0] / (thickness[0] / propts([typecon] (2] + thickness(2] /
propts(4](2]);
k[(1] = 1[(1] / (thickness(1] / propts[typecon]([2] + thickness(3] /
' propts(4](2]);
alpha[0] = 1(0] * k(O] / (thickness([0] * propts(typecon][0] +
thickness[2] * propts(4](0])
alpha(1] = 1[1] * k(1] / (thickness(1l] * propts(typecon] (0] +
thickness([3] * propts(4][0])
break;
case 3:
k(0] = 1[(0] / (thickness([0] / propts(2](2] + thickness(2] /
| : propts(4](2])i
k(1] = 1(1] / (thickness(1] / propts(1l](2] + thickness([3] /
' propts(4](2])7
alpha[0] = 1[0] * K[O] / (thickness[0] * propts(2]([0] +

thickness([2] * propts(4](0])
alpha(l] = 1[1] * k[1] / (thickness[1] * propts(1](0] +
thickness(3] * propts(4]1(0])
break;
case 4:

k[0] = 1[0] / (thickness(0] / propts(3](2] + thickness(2] /
propts{4](2]);
k(1] = 1[1] / (thickness([1] / propts(2](2] + thickness[3] /
propts(4](2]);
alpha(0] = 1[{0] * k(O] / (thickness([0] * propts(3](0] +

thickness[2] * propts(4](0])
alpha(1] = 1[1] * k(1] / (thickness(1l] * propts[2](0] +
thickness[3] * propts(4]([0])

}
twoLayerBoilOff (ambientTemp, k, alpha, dikeVapVol, dikeArea, 1,
&time20verDike, &dis

i = report2 (time20verDike) ;
if (i)goto end;
weatherMode = weather();
fprintf (stdprn, "\n\n Downwind Dispersion Information"

"\n (based on weather type %c)\n"

"\n\nFor the dike 'as puilt',",weatherMode) ;

distance (weatherMode, windSpeed, displSource/dimension{1], dimension(1l]);
fprintf (stdprn, "\nFor the dike with insulation,");
distance (weatherMode, windSpeed, disp2Source/dimension(1], dimension(1]);
end:fprintf (stdprn, " "y,
if (!'rerun()) goto start;

exit(0);
}

[*4%*% 06/02/89
to get dike shape, style, and construction mgterials

#include <conio.h>
#include <stdio.h>

char *shapes([2]={
"circular®,
"Rectangular"

}i
char *styles[3]={
"Straight Sides",
"Sloped Sides",
"sSloped Sides w/shelf"
}i
char *construct[5]={
"Tamped Earth + Gunite",
"Earth + Poured Concrete",
"Earth,concrete floor,gunite wall",
"Tamped Earth",
"Tamped Earth + Loose Rock"
Yi

/* functioﬁ prototypes

void drawAbox (int,int,int,int,char *,char *);
int error (int);

int getKey (int, int, char *[], in%t, int);
void mycputs (int, int, char(]);

int dikeDetails (int *style, int *typecon)

int i = 5, shape, x = 19, y = 7;
window (1, 1, 52, 24);
clrscr ()
window (1, 1, 80, 25);
model () ;
drawAbox (x, Yy, 18, 2, "Dike Shapes", "Select Shape") {
shape = getKey(x+2, y+3, shapes, 2, 0);
gotoxy (69, 7);
if (shape) cputs ("rectangle");
else cputs ("circle");
drawAboix(x, Yy, 22, 3, "Dike Styles", "Select Style");
*style = getKey(x+2, y+3, styles, 3, 0);
gotoxy (69,8);
switch (*style){
case 0:
cputs ("straight");
i=3;
break;
case 1:
cputs ("sloped");
break;
case 2:
cputs ("sl/shelf");
break;}

dikedeta
*/

*/

drawAbox (x-2, y, 34, 1, "Dike Construction", "Select Construction Type");

*typecon = getKey(x, y+3, construct, i, 0);
gotoxy (69,9);
switch (*typecon) {

case 3:

cputs ("earth");

break;

case 4: ,

cputs ("e+rock") ;
break;

case 0:

cputs ("e+gunite");
break;

case 1l:

cputs ("e+concrete") ;
break;

case 2:

cputs ("conc+gunite") ;
break;}

window (1, 1, 52, 24);
clrscr ()i
return shape;

dikeDetails | dike.lib

*/

/****

#include
#include
#include
#include

.03/09/89
<conio.h>
<dos.h>
<math.h>
<gtdio.h>

to paint part of dike dimension screen

/* function prototypes

void dikeDim2 (int, int);

void dikeDim2 (int y, int style)

{

gotoxy (5, ¥); ,
cputs ("Angle(degrees from vertical) = ?%);
if (style != 2) return;

gotoxy (5,

y+2);

cputs ("Shelf height, inches = ?9);

gotoxy (5, y+4);
cputs ("Shelf width, inches = ?");

return;

} /* dikeDim2

dikeDim2

*/

*/

[/*** 09/13/89 to get wall angle and shelf dimensions dikedim3
function prototypes */

void cleanSpace (int, int, int);
void dikeDim3 (int, int, int, double[]);
double getNum (void);

#include <stdio.h>

void dikeDim3 (int y, int style, int typecon, double dimension(])

/* dimension([3] = angle(radians) from vertical, read in as degrees
(4] = shelf height, feet
(5] = shelf width

{ ;
double angle;
redo: gotoxy (36, ¥);
angle = getNum ();
if ((typecon == 3 | typecon == 4) && angle < 52.0 && error (4)) goto gogo;
if (angle >= 80.0 && error (2)){
gogo: cleanSpace (34, y, 9);
goto redo;)}
gotoxy (70, 13);
cprintf ("%.1£", angle);
dimension[3) = angle / 57.296;
if (style != 2){
mycputs (69, 14, " = = =).,
return;}
gotoxy (28, y+2);
dimension{4] = getNum ();
gotoxy (27, y+4);
dimension(5] = getNum ()7
gotoxy (69, 14);
cprintf ("%.1f£x%.1f", dimension[4], dimension(5]);
dimension(4] /= 12.0;
dimension([5] /= 12.0;
return;
} /* dikeDim3 dike.lib */

e 09/25/89 dikedimn
to get dike dimensions & compute & return the dike volume */

#include <conio.h>
#include <dos.h>
#include <math.h>
#include <stdio.h>
#define PI 3.14159

/* function prototypes . */
double dikeDimension (int, int, int, double, double [], double []);

int error (int);

doubla getNum (void);

double dikeDimension (int style, int shape, int typecon, double tankDia,
double dimension(), double dikeArea(])

/* dimension([0] = dike height, feet
(1} = diameter/length
[2] = width
(3] = angle of wall from vertical, radians
(4] = shelf height
[6] = shelf width
dikeArea[0] = floor area(not including tank), sqft
(1] = wall area * /
{
double areal, /* total area of floor of dike, sq ft */
area2, /* total area of top of dike, sq ft
bigDia, /* top dia of tapered circular dike, feet
shelfVol, /* volume of shelf at floor, cu ft */
smallDia, /* diameter inside shelf at floor for style=2
vol, /* dike volume, cu ft
xtral; /* avg increase in length & width due to tapered walls

gotoxy (13, 1);
if (shape) cputs ("Rectangular ");
else cputs ("Circular ");
cputs ("Dike Dimensions");
please (10, 22);
mycputs (5, 5, "Height, ft = 2?");
gotoxy (5, 7);
switch (shape) {
case 0: /* circular
cputs ("Diameter (at floor), ft = ?2%);
if (style != 0) dikeDim2 (9, style);
break;
case 1l: /* rectangular
cputs ("Length, £t = ?");
mycputs (5, 9, "Width, ft = ?");
if (style != 0) dikeDim2 (11, style);
break;}
gotoxy (18, 5);
dimension{0] = getNum (); /* get numeric values of dimensions */
gotoxy (70,10);
cprintf ("%.1f", dimension(0]);
switch (shape) {
case 0: /* circular
mycputs (56, 11, "diameter");
redo: gotoxy (31, 7);
dimension{1l] = getNum ();
if ((tankDia >= dimension{l]) && (error (0))){
cleanSpace (20, 7, 9);
goto redo;}

*/

*/

*/

gotoxy (70, 11); ‘

ocprintf ("%.1f", dimension(1])

vol = 0.786 * dimension([0] * dimension[1] * dimension(l

if (style != 0) {dikeDim3 (9, style, typecon, dimension)
bigbia = 2.0 * dimension(0] * tan (dimension(3])

vol = (PI / 12.0) * dimension(0] * (dimension(1]
dimension(1] + bigbDia * bigbia + sqrt (

if (style == 2)({
smallDia = dimension{l] - dimension[5] / 6.07
/% 0.06545 = pi / (4 ¥ 12) */
ghelfVol = 0.06545 * (dimension(1] * dimension(l
smallDia # smallDia) *
vol == shelfVol;}
break;
case 1:
redol: gotoxy (18, 7)i
dimension([1] = getNum ();
gotoxy (17, 9)i
dimension(2] = getNum ();
if ((tankDia >= dimensionf1]) || (tankDia >= dimension(2)) &&

cleanSpace (18, 7, 9);
cleanSpace (17, 9, 9),
goto redolj}

if (dimension(2] > dimension(1]){ /* set largest dim = length *
xtral = dimension(1l];
dimension(1] = dimension(2];
dimension[1] = xtral;}

mycputs (56, 11, "length ")

gotoxy (70, 11); '

cprintf ("%.1£", dimension(1]):

gotoxy (70, 12);

cprintf ("%.1f£", dimension(2])

vol = dimension([0] * dimension(1] * dimension(2];

if (style != 0){ dikeDim3 (11, style, typecon, dimension) ;
xtral = 2.0 * dimension(0] * tan (dimension(3])
areal = dimension(1l] * dimension(2];
area2 = (dimension(1l] + xtral) * (dimension(2] + xtral);
vol = 0.3333 * (areal + area2 + sqrt (areal * area2)) *

if (style == 2){
/* 0.013899 = 2
shelfVol = 0.013889 * dimension(5) * dimension(4] *
(dimension(1l] + dimens
vol == shelfVol;}
break;}
switch (shape) { /* calculate floor and wall -areas */
case 0:
dikeArea(0]

0.786 * (dimension(1l] * dimension[1l] - tankDia *

il

dikeArea(1l]
break;

PI * dimension(l] * dimension{O0];

case 1:
dikeArea(0]

i

dimension(1l] * dirension(2] - 0.786 * tankDia *

dikeArea[l] = dimension(0] * 2.0 * (dimension(1l] + dimension(2))
break; }
window (1, 1, 52, 24);
clrscr ()
window (1, 1, 80, 25)i
return vol;

} /* dikeDimension dike.lib */

[Hkww 09/14/89 dikemate
to get soil moisture content and dimensions and properties of dike
construction materials

function prototypes */

void barText (int, char *);

void dikeMaterials (int, double ¥%, double(](
int dispMatlPropt (int, double *, double[][4
void getPropts (int, double %, double[][4])}

#include <conio.h>
void dikeMaterials (int typecon, double *soilMoisture, double propts(](4])

{

double x; /* dummy place holder for soil moisture in functions */
barText (30, "selection keys only");

window (1, 1, 52, 24);

mycputs (12, 1, "pDike Material Properties");

if (dispMatlProp (2, soilMoisture, propts)) getPropts (2, soilMoisture,

propts) ;
switch (typecon) { /* 3 earth, 0 gunite, 1 concrete, 2 c+g, 4 rock */
case 3: '
break;
case 0:
if (dispMatlProp (0, &X, propts)) getPropts (0, &xX, propts) ;
break;
case 1:
if (dispMatlProp (1, &x, propts)) getPropts (1, &x, propts) ;
break;
case 2!

if (dispMatlProp (O, &x, propts)) getPropts (0, &X, propts) ;
if (dispMatlProp (1, &x, propts)) getPropts (1, &X, propts) ;

break;
case 4:
if (dispMatlProp (3, &X, propts)) getPropts (3, &x, propts);
' break;} /*now get insulation properties
if (dispMatlProp (4, &X, propts)) getPropts (4, &x, propts) ;
clrscr ();
return;
} /* dixeMaterials ‘ dike.lib */

[hkk 09/6/89 td‘write the GRI disclaimer to the video disclaim :
ram directly . */

#include <stdio.h>
#include <conio.h>

/* function prototypes */

void iisclaim (int, int, int far *, int);
void pakec (int, int, int far %, int);
void splash (int, int, int far #%, char [], int);

void disclaim'(int %, int y, int far *videoptr, int colr)

{
char msg [] = " "
‘ "G R I DISCLAIMER\n\n\nLEGAL NOTICE This program was "

wprepared by Wellborn Systems\nas a projact sponsored by the Gas"
n Research Institute (GRI).\nNeither GRI, members of GRI, nor any"
» person acting on behalf\nof either:\n\na. Makes any warranty or"
» representation, express or\n implied, with respect to the "
"accuracy, complateness,\n or usefullness of the information *
"contained in this\n computer program, or that the use of any "
"apparatus, \n method, or process disclosed in this program may no
"\n infringe privately owned rights; or\n\nb. Assumes any "

nliability with respect to the use of, or\n for damages resulting"
% from the use of, any\n information, apparatus, method, or process'

% disclosed\n in this program.";

splash (x, y, videoptr, msg, colr); :

splash (1, 25, videoptr, " Gas Research Institute", 0x7000);
pakc (24, 24, videoptr, colr);

window (1, 1, 80, 24);

clrscr ();

return; '

} /* disclain dike.lib */

JA LA 09/13/89 to display material properties and request dispmpro
approval for their use. Returns 0 if properties are
acceptable; 1 if user wishes to substitute other values.

function prototypes */
void cleanSpace (int, int, int);
int dispMatlProp (int, double *, double[]1([4])/
void mycputs (int, int, char(]);
int respond (int, int, char(]);
#include <stdio.h>

int dispMatlProp (int matCode, double *soilMoisture, double propts(](4])
{

char *materials(5] ={" gunite ",
" concrete ",
» tamped earth",
" loogse rock ",
"

insulation "};

int i = 0, j;

gotoxy (17, 3);

cputs (materials({matCode]);

mycputs (5, 5, "The approximate properties of ");

cputs (materials(matCode]);

mycputs (5, 6, "are as follows");

mycputs (5, 7, "density-============= #/cu £t");
gotoxy (26, 7);

printf ("%.3f", propts[matCode] (0]);

mycputs (5, 9, "heat capacity======== BTU/#-degF") ;
gotoxy (26,9);

printf ("%.3f", propts(matCode](1]);

mycputs (5, 11, "thermal conductivity- BTU/hr-ft-degF") ;
gotoxy (26, 11);

printf ("%.3f", propts(matCode] (2]);

gotoxy (5,13);

switch (matcCode)

case 2:

printf ("moisture content----- %$.1f #/#dry soil",
*soilMoisture);

mycputs (5, 15, "however these values can vary locally");
mycputs (5, 16, "due to moisture and other factors");
break;

case 3:
cputs ("loose rock characteristics depend on the ")
mycputs (5, 14, "size distribution of the rock mixture");
break;

case 0:
cputs ("gunite is known to vary from one application");
mycputs (5, 14, "to another.");
break;

case 1:
cputs ("concrete properties vary somewhat with "y,
mycputs (5, 14, "pouring practice");
break;

case 4:

cputs ("insulation is a highly variable product "y
break;}
if (respond (10, 17, "Are these values acceptable?")) {
cleanSpace (25, 7, 9);
cleanSpace (25, 9, 9);
cleanSpace (25,11, 9);

window
clrscr
window

return i

}o/*

ir (!matCodé) cleanSpace (25, 13, 9);

i=1;}

(5, 14, 52, 20);
()3

(1, 1, 52, 24);

’
dispMatlProp

dike.lib

*/

[**** 06/01/89 to compute the maximum downwind distance distance
at which a methane concentration of 2.5% will be found

ARGUMENTS:

weatherMode -- letter B thru F for Gifford atmospheric categories
windvel ft/sec

source =-- flow over dike, #/sec/ft of dike width */

#include <math.h>
#include <stdio.h>

/* function prototypes ‘ */
double absv (docuble); :

void distance (char, double, double, double);

double erf (double);

void distance (char weather, double windVel, double source, double dikeW)

double con, conl, con2, con3, /* Giffords categories */
distl = 0.0, /* dist with conc > 2.5% */
dist2, /* dist with conc < 2.5% * /
xlee = 100.0, ‘ /* new trial dist, ft */
newconc, /* calculated methane conc at xlee */
power = 0.919,

sigy,sigz, /* dispersion factors */
term, /* temporary store ~ */

ystar, zstar;
int split = 0;
if (source == 0.0){
fprintf (stdprn, nthere is no downwind digpersion for this case\n"
win the first 45 minutes."); '
return;}

switch (weather) {

case 'B':
‘con = 158.0;
conl = 2.041;
con2 = 1.048;
con3 = 0.041;
power = 0.9;
break;

case 'C':
con = 104.0;
conl = 1.786;
con2 = 0.914;
con3 = 0.0;
power = 0.913;
break;

case 'D':
con = 69.0;
conl = 1.505;
con2 = 0.737;
con3 = =-0.105;
break;

case 'E':
con = 51.0;
conl = 1.332;
con2 = 0.678;
conl = -0.112;
break;

case 'F':

con = 34.0;
conl = 1.146;
con2 = 0.65;
con3 = -0,113;
break;}
redo: term = xlee / 3280.0;
- sigy = 3.,2808 * con * pow (term, power);
.term = logl0 (term);
sigz = 3.2808 * pow (10.0, conl + term * (con2 + term * con3));
ystar = erf (dikeW / (2.8284 * sigy)); /* 2.8284 = 2*sqrt(2) */
zstar = 0.79788456 / sigz; /* .79788456 = 2/sqrt(2pi) */
/* 0.6233 = 35
newConc = 0.6233 * source * ystar * zstar / (windVel * dikeW);
switch (split){
case O: :
if (newConc > 2.5){
distl = xlee;
xlee *= 2,0;
goto redo;}
else{
dist2 = xlee;
split = 1;
new: xlee = 0.5 * (distl + dist2);
goto redo;} '
case 1l:
if (absv (newConc / 2.5 = 1.0) <= 0.0001){
 fprintf (stdprn, " the maximum downwind distance at which the
"methane concentration reaches 2.5%% is %.0f ft\n", xle
return;} ‘
if (newConc > 2.5){
distl = xlee;
goto new;}
else{ - :
dist2 = xlee;
goto new;}
}
} /* distance dike.lib */

[ake®x 09/07/89 to draw a single line border box of drawbord

specified size at X,y location
function prototypes

void drawBorder (int, int, int, int);
void mycputs (int, int, char(]);

*/

void drawBorder (int x, int ¥, int width, int lines)

{
char line(80],

© 1line2(80];
int i;

for (1 = 1, line[0] = v1, line2(0) = ''; i < width; i++){

line(i] = '';}
line2{i] = ' ';}
line[width] = '';
line2(width] = '';
line[width + 1] = line2[width + 1] = '\0';
mycputs (X, Y, line);
for (1 = 1; 1 < lines - 1; i44) {
mycputs (x, y + i, line2) ;}
linef{0] = '';
line(width] = ''; |
mycputs (x, Y + lines - 1, line);
return;
} /* drawBorder dike.lib

*/

[a%*% 08/10/89 to draw a box with arbitrary borders draw box
‘ - at an arbitrary location
ARGUMENTS:
style constant zero thru three
0 = single line, 1 = double line,
2 = single horizontal, double vertical
. 3 = double horizontal, single vertical
X,Y screen coordinates upper left corner
width box width
height box height
color color attribute

function prototypes : */

void drawLine (int,int,int,int,int);
void drawBox (int,int,int,int,int,int);

void drawBox (int style, int x, int y, int width, int height, int color)

{

static int styles[4][4] = {{11,81,81,31}, :
{14,83,83,34},

{12,83,83,32},

{13,81,81,33}};

if (width * height == 0) return; :

drawLine (styles[style][0], X, y++, width, color);

drawLine (styles([style](1], X, Y, height -1, color) ;

drawLine (styles(style](2], x + width-1, vy, height - 1, color);
drawLine (styles([style][3], x, y + height - 2, width, color);
return;

} /* drawBox john.lib */

[**%% 10/08/89 to clear an area of screen drawcler

ARGUMENTS:
X,y screen coordinates ul corner
width width of rectangular area
height height of rectangular area
color color to be used
dec £i11 character (if any)
function prototypes */

void drawClear (int, int, int, int, int, int);
#include <global.h>
void drawClear (int x, int y, int width, int height, int color, int dec)

{

register int i, 3;

int far *vp;

vp = OA(X,Y);

for (3 = 0; 3 < height; Jj++){
for (i = 0; i < width; i++) *(vp+i) = dec | color;
vp += 80;} /* end for */

return;
} /* clrawClear bgen.lib */

#include <stdio.h>
J4*%% 07/21/89 to draw a line at arbitrary location drawline
ARGUMENTS:
videoptr « indicates monochrome or color monitor
i = 0/1 for single/double horizontal line
= 1/2 for single/double vertical lineline
startx screen X location for start of line
starty screen Y location for start of line
length total line length

function prototypes */
void drawLine (int far *, int, int, int, int);
void drawLine(int far *videoptr, int i, int startx, int starty, int length)

int far *videonow;
int code(] ={196, 205, 179, 186}, Xx;
videonow = videoptr,
videonow += (80 * (starty - 1) + startx - 1);
switch (1)¢{
case 0: /* horizontal line
case 1:
- for (x = 1; x <= length; x++){ .
‘ * (videonow++) = code(i] | 0x0700;}
break;
case 2: /* vertical line
case 3:
for (x = 1; x <= length; Xx++){
* (videonow) = code[i] | 0x0700;
. videonow += 80;}
break;}
return;
} /* drawLine bgen.lib */

*/

*/

[*%%% 05/06/89 to check eqplist word and reset video mode egplist ¥/
#define EQLIST 0x410 '

[* function prototypes */
int far * eqpList (void);

int far * egpList (void)

{

int far *farptr;

int far #*videoptr;

unsigned int eq;

farptr = (int far #)EQLIST;

eq = *farptr; ‘

if ((eq >> 14) < 1){ ' .
puts ("This program requires a printer attached to parallel\nprinter"

» port LPT1");
puts ("ABORTING") ;
exit (0);}
/* should add a check for math coprocessor here */
switch ((eg >> 4) & 3){
case 1l:
*farptr += 9;
case 2: /* color graphics adapter */
videoptr = (int far *)0xB8000000;
goto qut;

case 3: /* monochrome adapter %/
videoptr = (int far *)O0xB0000000; v
out:return videoptr;}
} /* egpList bgen.lib */

[w**% 03/12/89 ‘ erf
returns the value of the error function */

#includs <math.h>
#include <stdlilib.h>

double erf (double);
double erf (double x)

{

#define E1 0.254829592
#define E2 =0.284496736
#define E3 1.421413741
f#define E4 =-1.453152027
#define E5 1.061405429
#define P 0.3275911

double t;

if (x >= 3.6) return 1.0;

if (x <= -3.6) return -1.0;

t = 1.0 / (1.0 + P * x);

return (1.0 = t # (E1 + £ % (E2 + t * (E3 + t % (E4 + £t * E5)))) /
exp (x * x));

} /% ert ¥/

double erf (double);
double erfc(double);

double erfc (double Xx)

Ao
return (1.0 - erf(x));
} /* erfc */

Jeww% 09/13/89 to write error msg to screen and
golicit a response

#include <stdlib.h>
/* function prototypes

void bleep (void);

int error (int);

void mycputs (int, int, char *) 2

int question (int, int, char(], char(])i

int error (int no)

{
char buffer({22%11%2], linel[] = "",

line2(] = " "
int action, i;

bleep ();
gettext (17, 14, 18, 24, buffer);
mycputs (17, 14, linel);
for (i = 1; 1 < 10; 14+) {
mycputs (17, 14 + i, line2);}
line1l[0] = '';
lineif21] = '';
mycputs (17, 24, linel);
switch (no) {

case 0:
mycputs (18, 15, "The tank diameter");
mycputs (18, 16, nexceeds the dike");
mycputs (18, 17, rdimensions") ;
act: action = question (19, 19, " abort ",

: break;

case 1:
mycputs (18, 15, "The liquid height");
mycputs (18, 16, wcannot be greater");
mycputs (18, 17, "than the tank height"); .
goto act;

case 2:
mycputs (18, 15, "You specified a wall");
mycputs (18, 16, "angle which is too");
mycputs (18, 17, "ghallow") ;
goto act;

case 3:
mycputs (18, 15, "You pressed RETURN");
mycputs (18, 16, "without entering");
mycputs (18, 17, "any number") ;
goto act;

case 4:
mycputs (18, 15, "Your wall angle is");
mycputs (18, 16, "steeper than angle");
mycputs (18, 17, "of repose");
goto act;

default:
break;

}
if (action == 0) abort ()3
puttext (17, 14, 38, 24, buffer);
return 1;
} /* errar dike.lib */

error

*/

" redﬂ ");

[#%%w 03/07/89 *o calculate the flash fraction based on flashfra
the ullage pressure using table look up of table B2
(p74) of ADL report 80406, April 1978

function prototypes */

double flashFraction (double);
double funlext (double, double [], double [], int);

double flashFraction (double ullagePress)

{
double pvt[] = {1.0,1.203,1.,497,2.248,3.22,4.488,6.074,7.8},
£{] = {0.0,0.015,0.034,0.071,0.111,0.151,0.1291,0.234};

return (funlexr (ullagePress, ptv, £, 7):
} /* flashFraction dike.lib %/

IALLL) 03/07/89. to calculate the flash fraction based on flashfra
the ullage pressure using table look up of table B2
(p74) of ADL report 80406, April 1978
function prototypes */

double flashFraction (double);
double funlext (double, double [], double [], int);

double flashFraction (double ullagePress)

{
double pvt[] = {1.0,1.203,1.497,2.248,3.22,4.488,6.074,7.8},
£{] = {0.0,0.015,0.034,0.071,0.111,0.151,0.191,0.234}

return (funlexr (ullagePraess, ptv, f, 7);
} /% (flashFraction dike.lib #/

[wwwk 09/13/89 to get dike floor covering, wall cover floorwal
and insulation thickness
ARGUMENTS: typecon j-tamped earth

0-gunite floor and walls
1-concrete floor and walls
s-concrete floor,gunite walls
4-lo0se rock floor and walls

thickness(0] = floor covering, inches
[1] = wall covering
[2] = insulation on floor
(3] = insulation on walls

function prototypes ‘ */

void barText (int, char (]):

void floorwall (int, double []):
double getNum (void);

void mycputs (int, int, char (]);

#include <stdio.h>
void floorWall (int typecon, double thickness(])

{
char *materialf4] = {" gunite ",
* concrete ",
"insulation ",
"loose rock "}
inty = 5;
barText (30, "numerics only ")
mycputs (15, 1, "dike Liner Information");
switch (typecon) {
case 3:
insul: mycputs (5, y, "new insulation thickness on floor,inches = M)
mycputs (30, y + 2, "on walls, inches = ?");
break;
case 4: /* loose rock . */
put: mycputs (5, Y, "thickness of ");
mycputs (18, 5, material([typecon = 1]);

mycputs (29, 5, " on floor, inches = ?");
mycputs (29, 7, " on walls, inches = ?");
gogo: y = 97
goto insul;
case 0: /* gunite */
case 1l: /* concrete */
goto put;
case 2: /* concrete on floor with gqunite on walls */

mycputs (5, Y, "thickness of concrete on floor,inches = ?");
mycputs (18, 7, material[typecon=-1]);

mycputs (29, 7, "on walls, inches = ?");

goto gogo;}

switch (typecon) {

case 3:
get: gotoxy (48, Y)i
thickness(2] = getNum ();
gotoxy (71, 17);
cprintf ("%.1lf", thickness(2]):
gotoxy (48, y + 2)i
thickness(3] = getNum ();
gotoxy (71, 18);
cprintf ("%.1£", thickness{3]);
break;

case 0:

gotoxy (48, 5)i

thickness([0] = getNum ()i
gotoxy (71, 15) ¢

cprintf ("%.1£", thickness(0])/
gotoxy (48, 7)i

thickness(1l] = getNum O
gotoxy (71, 16);

cprintf ("%.1£", thickness(1]) i
goto get;}

window (1, 1, 52, 24)7

clrser ()i

window (1, 1, 80, 24);

return;

} /* floorWall dike.lib */

[**% 08/31/89 table look-up with linear slope funliext
interpolation and extrapolation.
ARGUMENTS:
X look=-up argument, double
x1[] table to be looked at, float
yi(] response table, float
n size of tables, int

function prototypes */
double funiext (double, float [], float [], int);
double funlext (double x, float xi[], float yi[], int n)

{
int i;
if (x < x1(0]) return (yl[O]-(x1[0]-x)*(yl[l]-yl[O])/(xl[l]-xl[O]));
if (x > x1[n]) return (yl[n]+(x-x1[n])*(yl[n]-yl[n-l))/(xl[n]-xl[n—l]));
for (i=0; i<=n; i++){

if (x == x1[i]) return yi(il;

if (x < x1[i]) return (yi{i] = (x1[i} = x) * (yi[i] = yi(i-i}) /

(x1[i] - x1[i-11))/}

} /* funlext bmath.lib */

/* 05/26/89 getKey
to control menu display and return user response */
#include <conio.h>
#include <dos.h>
#include <stdio.h>
#define reverseColor textattr (BLACK + (LIGHTGRAY<<4));
#define stdColor textattr (LIGHTGRAY + (BLACK<<4))

/* function prototypes ’ ‘ */

int getKey (int, int, char *[], int, int);
void bleep (void);

int getKey(int x, int y, char #*words[], int number, int txt)

{
int key, key2, line, ystart; /* line = index to menu item */
ystart = Yj ‘
for (line = 0; line < number; line++) {
gotoxy (X,y++)i
cprintf(words[llne]);}
gotoxy(x, ¥ = ystart) ;
line = 0;
reverseColor;
cprintf(words[line]);
stdColor;
while((key = getch()) != "\r'){
if (key == 0){
key2 = getch();
switch (key2){
cas2 16: /* abort */

exit (0):
case 72: /* go up */
if (line == 0){
bleep ()i
break;}

gotoxy (X, y==) i ,
cprlntf(words[line--]y;
test: if (txt) text (line) ;

break;
case 80: /* go down */
if (line == number=1) {
bleep ();
break;} .

gotoxy (x,y++);
cprintf(words[line++]);

goto test;
default:
bleep ();
break;
}
reverseColor;
gotoxy(X,Y)i
cprintf(words[line]);
stdColor;
}

return line;
} /* getKey bgen.lib */

‘HI[

[**** 10/08/89 to get line lenght for a piect of text getlen

ARGUMENTS:

ptx pointer to text

W width of window space

- RETURN index of next character to print

function prototypes
int getLen (char *, int);
int getLen (char #*ptx, int w)

int newlen = 0;
while ((newlen < w && ptx([newlen] != '\r') && (newlen < w &&

newlen++;
if ((ptx[newlen] != '') && (ptx[newlen] != '\r') && (ptx[newlen! !=
while (ptx[--newlen] (= ').

return (newlen + 1);

"))

*/

ptx([ne

[RRnk 05/26/89 getNum
get a number from the keyboard in string format, check for validity,
then return a numeric value *

#include <math.h>
#include <conio.h>
#include <stdio.h>
#include <dos.h>

/* function prototypes | */
void bleep (void);

int error (int);

double getNum (void);

int warning (int);

double getNum (void)

{
int digitcCount = 0,X,Y,

Nflag = O, /* change to 1 when first digit has been posted
Pflag = 07 /* change to digitcount when period has been posted
char numString(10] =" ",

key;

double numb;
x = wherex();
= wherey();
redo:while ((key = getch()) = '\r'){
if (key == 0){ key = getch ();
if (key == 16){ exit (0);}
else{
bleep();
: ‘ goto redo;l}
switch (key){
case ‘'\b' :
if (!Nflaq){.bleep(); break;}
printf("\xlB(D");
putch(' ')
printf ("\x1B(D");
numsString(digitcCount-1] = "\o';
if (rflag == digitCount--)Pflag 0;
if {(digitCount == 0)Nflag = 0;

break;
case '.':
if (Pflag){ bleep(); break;}
Pflag = digitCount;
if (Nflag)goto postlt;
putch ('0');
numString(digitCount++] = '0';
Nflag = 1;
goto postlt;
case '0':
if (!Nflag){ bleep(); breaii;}
postIt: putch (key);
numString[digitcount++] = key;
break;
case '1':
case '2':
case '3':
case '4':
case '5':

casa '6':
case '7':
case '8':

case (9':
if (!Nflag) Nflag = 1;
goto postIt;

default: bleep(); break;}
if (digitCount == 0 && error (3)) {gotoxy (x, ¥)i goto redo;}

numb = atof (numString);
if (numb == 0.0 && warning (2)) {gotoxy (x, y); goto redoj}
return (numb);

bgen.lib */

} /* getNum

AR , 09/14/89 getpropt
to get density, heat capacity, and thermal conductivity of -
specific dike materials and soil moisture content */

/* function prototypes */

void barText (int, char *);
double getNum (void);
void getPropts (int, double *, double(][4]);

void getPropts (int matl, double #*soilMoisture, double propts[][4])

{
barText (30, "numerics only "
gotoxy (26, 7);
propts [matl][0] = getNum ();
gotoxy (26, 9);
propts(matl][1l] = getNum ();
gotoxy (26, 11);
propts{matlj[2] = getNum ();
propts(matl] (3] = propts[matl]([2] / (propts[matl][0] * propts[matl][l]),
if (matl == 2){
gotoxy (26, 13);
*soilMoisture = getNum ();}
barText (30, "selection keys only");
return;
} /* getPropts */

[*** 10/04/89 splash a limited number of lines on screen lmtsplsh
‘ note: there is no check for limits of text to be
' splashed relative to size of window
ARGUMENTS :
lines count of number of lines to be splashed
X, Yy screen coordinates of up-left corner
ch pointer to first character of string to be splashed

function prototypes */

char * limitsSplash (int, int, int, int far *, char ¥*);
char * limitsplash (int lines, int x, int y, int far *videoptr, char *ch)

{

int count = 0, attr = 0x07;
int far #*videonow;

int far #*videostart;

char c¢;

videonow = videostart = videoptr + x - 1 + 80 * (y = 1);
while (#ch l= ''){
C = *Ch++;
switch (c){
case '\n':
if (++count == lines) return ch;
videonow = (videostart += 80);

break;

case ‘{': /* start intensified
attr = attr~ox08;

. break;

case '}': /* return to normal
attr = 0x07;
break;

case '[': /* start reverse video
attr = (attr&0ox8s)|0x70;
break;

case ']': /* start blinking
attr = attr-0ox80;
break;

case '_': /* start underline
attr = (attr&0x88)|0x01;
break;

default:

*(videonow++) = c|attr<<s;
/* end switch */
/* end while */

L

return 0;
} /* limitSplash bgen.lib */

[aehk 09/25/89
to display entire model structure on splash screéen

#include <conio.h>
#include <stdio.h>

/* function proﬁbtypes

void drawBorder (int, int, int, int);
void model (void);

void model (void)
{
drawBorder (53, 1, 27, 24);

mycputs (58, 1, "PROBLEM DESCRIPTION");
mycputs (55, 2, WTANK:") ;

mycputs (56, 3, "diameter £ ;
mycputs (56, 4, "height ££")
mycputs (55, 5, "Liquid height ££");
mycputs (60, 6, "pressure psig");

mycputs (55, 7, "DIKE:shape") ;
mycputs (60, 8, "gtyle");
mycputs (56, 9, "construction");

mycputs (56, 10, "height ££");
mycputs (56, 11, "dia/length £f£") ;
mycputs (56, 12, "width ££") ;

mycputs (56, 13, "wall angle deg") ;
mycputs (56, 14, "gshelf inch");
mycputs (56, 15, “floor liner inch");
mycputs (56, 16, "wall liner inch");
mycputs (56, 17, "IPC on floor inch");
mycputs (56, 18, "IPC on wall inch");
mycputs (55, 19, WSPILL rate gpm ")
mycputs (61, 20, "time min") ;

mycputs (55, 21, "WEATHER degF");
mycputs (55, 22, "wind speed m/hr");
mycputs (55, 23, "Downwind dist £ty ;
return;

} /* model dike.lib */

model

*/

\ itlieaale df

[R®dk 03/27/89 mycputs
to write an arbitrary message at an arbitrary location */

void mycputs (int x, int y, char meg(])

{

gotoxy (x, ¥)i
cputs (msg);

1

[**k% 06/13/89 to print C listings with line numbers niceprnt

Prints standard input to standard output after adding line numbers,
truncating to 80 characters, etc */

#include <stcdio.h>
#define min (x, y) (x <y) ? x 1 vy

/* function prototypes */

int main ();
void nesting (unsigned *, char #);

/* MAIN - read from STDIN one line at a time. Reprint each line to
STDOUT after adding line numbers and nesting levels

main ()

char string(256];
unsigned linenum, level, newlevel;

linenum = 0;
newlevel = 0;
while (gets (string)){
level = newlevel;
nesting (&newlevel, string);
string(70] = '\0';
printf ("%3u(%2u]: ", ++linenum, (level<newlevel) ? level:newlevel);
puts (string);
i

while (linenum++ % 66)
printf ("\£\n");
}

/*** nesting =~ search the given string for "{" and "}". Increment nesting
level on "{" and decrement it on "}",

void nesting (unsigned *levelptr, char *stringptr)

{

do{ ‘

Lf (*stringptr == '{')
*levelptr +=1;

if (*stringptr == t}!')
*levelptr -=1;

} while (*stringptr++);

[k 04/27/89 boiloff from single homogeneocus material onelboff
according to the formula tw=ts+(t0-ta)+verf (X) where Xmy /2t

ARGUMENTS
to ambient temperature, deg F
k thermal conductivity of solid, BTU/hr-ft-degF

alpha thermal diffusivity of solid, sg ft/hr
dikeArea[2] dike area (0] = floor area, sq ft

(1] = wall area */
#include <conio.h>
#include <math.h>
#include <stdio.h>
/* function prototypes */

double erf (double);

void onelLayerBoiloff (double, double, double, double, double [], double
%, doubla #);

{int testVaporvol (double, double, double, double, double %, double *);

void onelLayerBoiloff (double tO, double k, double alpha,double dikevaporvoel,
double dikearea [], double #*timecd, double *dispsT)

{
int odflag = 0; /* flag=1 when vapor overflows dike */
double boilOffRate, /* rate of evap of LNG from entire dike, #/hr */
cumeFlux, /* Q/A, BTU/sqft at any time */
effDikeArea, /* dike area available for heat transfer/latent
heat evaporation of LNG, # sqft/BTU */
heatFlux, /* q/A, BTU/hr-sqft */
latHeat = 220.0, /* latent heat evap LNG */
time=0.0, /* seconds */
timeHrs, /* hours */

timeTable[]={0.001,0.1,0.5,1.0,2.0,5.0,10.0,25.0,50.0,100.0,250.0,500.
1000.0,1500.0,1800.0,2100.0,2400.0,2700.0),/*time .
for print,seconds '

/ t, / temperature at X, degF . */
term,
ts = =260.0, /* boiling point of LNG, degF */
vaporWt = 0.0, /*total welght of LNG vaporized, lbs */
x = 0.005; /* distance in from surface, inches */
int i=0;
term = x / 24.0; /* 24 = 2 * 12 units conversion */

effDikeArea = (dikeArea(0] + dikeArea(l]) / latHeat;
while (time < 2700.0)({
timeHrs = (time = timeTable(i++]) / 3600.0;
t = ts + (tO-ts) * erf (term / sqrt (alpha * timeHrs));
heatFlux = k * (tO-ts) / sqrt (3.14156 * alpha * timeHrs);
boilOffRate = heatFlux * effDikeArea;
cumeFlux = 2.0 * k * (tO-ts) * sqrt (timeHrs / (3.14156 * alpha));
if (time != 0.001){
vaporWt = cumeFlux * effDikeArea;
if (lodflag) odflag = testVaporvol (dikeVaporVvol, time,
vaporWt, boilOffRate, timeod, dispST) ;

if (time == 0.1 || time == 0.5){
fprintf (stdprn, "%4.1f %9.1f $11.1f %10.1f %7.2£\n",
time,heatFlux, boilOoffRate,vaporWt, t);}
else{
fprintf (stdprn, "%4.0f %9.1f %$11.1f %$10.1f $7.2£\n",

time,heatFlux,boilOffRate,vaporWt,t);}
}

return;
} /* onelayerBoiloff dike.lib */

[*¥wk 04/27/89 bolloff from sinqla homogeneous material onelboff
according to the formula t=ta+(t0~ts)+*erf(X) where Xwx/2t

ARGUMENTS
to ambient temperature, deg F
k thermal conductivity of solid, BTU/hr-~ft-degF

alpha thermal diffusivity of solid, sq ft/hr
dikeArea(2)]) dike area [0] = floor area, sq ft

(1] = wall area "/
#include <conio.h>
#include <math.h>
#include <stdic.h> |
/* function pratotypes */

double erf (doubla);

void oneLayerBoiloff (double, douhle, double, double, double [], double
*, double *);

int testVaporVol (double, double, double, double, double *, double *%);

void oneLayerBoiloff (double t0, double k, double alpha,double dikeVaporVol,
double dikeArea [], double *timeod, double *dispST)

{
int cdflag = 0; /* flag=1 when vapor overflows dike */
double boilOffRate, /* rate of evap of LNG from entire dike, #/hr */
cumeF lux, /* Q/A, BTU/sqft at any time */
effDikeArea, /* dike area available for heat transfer/latent
heat evaporation of LNG, # sqft/BTU */
heatFlux, /* q/A, BTU/hr-sqft */
latHeat = 220.0, /* latent heat avap LNG */
time=0.0, /* seconds , */
timeHrs, /* hours */

timeTable(]={0.001,0.2,0.5,1.0,2.0,5.0,10.0,25.0,50.0,100.0,250.0,500,
1000.0,1500.0,1800.0,2100.0,2400.0,2700.0},/*time
for print,secnnds ~

/ t, / temperature at x, degF */
term,
ts = -260.0, /* boiling point of LNG, degF */
vaporWt = 0.0, /*total weight of LNG vaporized, lbs */
x = 0.005; /* distance in from surface, inches */
int i=0;
term = x / 24.0; /* 24 = 2 * 12 units conversion */

effDikeArea = (dikeArea[0] + dikeArea(l]) / latHeat;
while (time < 2700.0){
timeHrs = (time = timeTable[i++]) / 3600.0;
t = ts + (t0-ts) * erf (term / sqgrt (alpha * timeHrs));
heatFlux = k * (t0-ts) / sgrt (3.14156 * alpha * timeHrs);
boilOffRate = heatFlux * effDikeArea;
cumeFlux = 2.0 * k * (tO-ts) * sqrt (timeHrs / (3.14156 * alpha));
if (time != 0.001){
vaporWt = cumeFlux * effDikeArea;
if(!lodflag) odflag = testVaporvVol(dikeVaporvol, time,

vaporWt, boiloffRate, timeod, dispsT);:
if (time == 0.1 || time == 0.5)({

fprintf (stdprn, "%4.1f $9.1f %$11.1f %10.1f %7.2f\n",

time,heatFlux,boilOffRate, vaporWt, t) ;}
else(

fprintf (stdprn, "%4.0f %¥9.1f %11.1f %10.1f %7.2£f\n",
time,hestFlux,boilOffRate, vaporWt,t) ;)
}

return;
} /* onelLayerBoiloff dike.lib */

[*w%k 09/06/89 prints press any key etc

#include <conio.h>
#include <stdio.h>

/* function prototypes

void barText kint, char []);
vnid pake (int, int);
void splash (int, int, int far *, char(], int);

zoid pake (int x, int y)

int key;
extern int far * videoptr;
splash (x, y, videoptr, "press any key to continue", 0x0700);
barText (30, "alt Q to abort - ");
key = getch ()7
if (key == 0){
key = getch();
if (key == 16) exit (0);}
return;
} /* pake bgen.lib */

pake

*/

*/

[x#%* 06/01/89 to calc flow from pipe in tank as function pipeflow
of time in minutes -

ARGUMENTS:

pipe_i_d, inches

htUllage, height of ullage in tank, ft

ullagePress vapor pressure of ullage in tank, psig

dikeArea, dike floor area, sq ft .

tankArea tank floor area, sq ft

spillTime, duration of spill, minutes

spillRate, initial spill rate, gpm

RETURN: time to empty tank, minutes */

#include <conio.h>
#include <math.h>
#include <stdio.h>

/* function prototypes */

double pipeFlow (double, double, double, doudle, double, double, double *);
double pipeLeak (double, double, double);

double pipeFlow (double pipe_i_d, double htUllage, double ullagePress,
double dikeArea, double tankArea, double spillTime, double *spillRate

{
double flow, /* cuft/min * /
time = 0.0, /* min */
ligHtinDike = 0.0, /* £t */
pressHead; /* £t head equivalent to the ullage pressure */

pressHead = ullagePress / 0.191; :
while ((htUllage+pressHead > ligHtinDike) && (htUllage > 0.0)&&(time <=
, spillTime)) { '
time++;
flow = pipelLeak (pipe_i_d, (htUllage = ligHtinDike), ullagePress) /
. 7.48;
if (time == 1.0) *spillRate = 7.48 * flow;
htUllage -= flow / tankArea;
ligHtinDike += flow / dikeArea;
/* printf ("time =%3.0f, ht in tank=%.0f, ht in dike=%.0f, flow=%.0£f\n",
time, htUllage, ligHtinDike, flow) ; * /

/*printf ("time in minutes to empty tank = $f\n",time) ;*/
return (time);
} /* pipeFlow dike.lib */

[*%k% 03/09/89 ' : pipeleak
return leak rate gpm given pipe size and ligq head based on
AGA report April,78 appendix a, pages 67-68

ARGUMENTS:
pipe_i_d pipe i.d., inches
" htUllage ! height of liq in tank, ft
ullagePress vapor pressure of liquid in tank, psig
RETURN flow, gpm */

#include <math.h>

/* function prototypes */
double pipelLeak (double, double, double);

double pipéLeak (double pipe_i_d, double htUllage, double ullagePress)

double coef,pratio;

pratio = (ullagePress + 14.7 + 0.191 * htUllage) / 14.7;/* 0.191=(rho=27.5)/i44
coef = (pratio < 2.0) ? sqgrt (pratio - 1.0) : sgrt (0.5 * pratio) ;

return 105.2 * coef * pipe_i_d * pipe_i_d;

/* 105.2=0.61*sqrt (64.4*rho*144%14.7)*60%7.48/rho*.786/144 */
} /* pipeleak dike.lib */

[a%u® 03/01/89

'#include <conio.h>
#include <stdio.h>

/* function prototypes
void please (int, int);

void please (int x, int y)

{
mycputs (x, y++, "please input the values requested")

gotoxy (X, Y)i
return;
} /* please

dike.lib

*/

please

*/

*/

/% 06/01/89 to get user response to a question flashed question
on the screen. First response choice returns 1,
second response choice returns 0. Alt-Q aborts

#include <conio.h>;
#define reverseColor textattr(BLACK + (LIGHTGRAY<<4)) ;
#define stdColor textattr (LIGHTGRAY + (BLACK<<4)) ;

/* function prototypes ' */

void drawBorder (int, int, int, int);
int question (int, int, char(], char(]);

int question (int x, int y, char responsel(], char response2(])

{
int loc, x1, width;
char key, key2;

x1 = 3 + strlen (responsel);
width = x1 + 2 + strlen (response2);
X1l += X;

cursoroff ();

drawBorder (x, y, width, 3);
gotoxy (x += 3, y +=1);
reversecolor;

cputs (responsel);

loc = 0;

stdColor; ,
mycputs (x1, y, responsez2);

while ((key = getch ()) != '\r'){
stdr.olor;
if (key == 0){
key2 = getch ();
switch (key2){

case 16: /* abort */

exit (0);

case 77: [* right arrow */
if (loc) break;

loc = 1;

gotoxy (x, Y)i
cprintf (responsel);
reversecColor;

gotoxy (x1, Y);
cprintf (responsel);
break;

case 75: /* left arrow */
if (!loc) break;

loc = 0;

gotoxy (x1,Y);

cprintf (response2);

gotoxy (%, Y)i

reversecColor;
cprintf (responsel);
break;

default: break;}
} }
stdColor;
cursoron (0);
return loc;
} /* question bgen.lib */

[®*%x% 09/25/89 : report
to start the output report of the dike program */

#include <conio.h>
f#include <stdio.h>
#include <time.h>

/* function prototypes ‘ */

void report(int, int, int, double, double, double [], double, double,
double, double (],double, double [][4], double, double, double);

void report(int shape, int style, int typecon,
double tankDia, double tankHeight, double dimension{1, double
htUllage, double ullagePress, double ambientTemp, double thickness(],
double windSpeed,double propts(][4],
double soilMoisture, double’tankVol, double dikeVol)

{
int now, typeconWall;
char #*strnow, /* string holding date and time */
#styles(3] = {"straight sides ",
"gloped sides . ",
n"sloped sides/floor shelf"},
#matl([5] = {"gunite ",
"concrete ",
"concrete ",
"earth v,
"loose rock"},
weacon,words[]="gunite concrete loose-rock";
t.me (&now) ; . ‘
strnow=ctime (&now) ;
typeconWall = typecon; :
if (typecon == 2) typeconWall = 0;
fputs ("\f GAS RESEARCH INSTITUTE\Nn"
" LNG Spill Simulation Program\n"
ryt\E\E\E\E\E page 1 of 2 pages \n",stdprn);)
fprintf (stdprn, "Date/Time:%s \n", strnow);

fputs ("==———===== DIKE===m======ee=ce== os=sosssssss TANK=====—=—m—w=—== \n'"
,stdprn) ;
fprintf (stdprn,"shape %s Diameter %$.1f f£t\n",
(shape==0?"circular m:wrectangular") , tankDia) ;
fprintf (stdprn,"style %s Height $.1f £ft\n",

styles(style], ta
if (style == 1) fprintf (stdprn, "angle from vertical %.1f "
nyolume %.1f cu ft\n",dimension(3]* 57.296, tank
else fprintf (stdprn, "e\t\t\t volume %.1f cu ft\n", tankVol);
fprintf (stdprn, "Height $.1f\n", dimension{0]);
if (shape) {

fprintf (stdprn, "Length $.1f Liquid height %.1f ft\n"
dimension(1], htUllage);
fprintf (stdprn,*Width %$.1£f Vapor pressure %.1f psig\n

dimension([2], ullagePress);
fprintf (stdprn, wyolume %.1f cu ft\n", dikeVol);}

else{

fprintf (stdprn,"Diameter %.1f Liquid height %.1f ft\n",
dimension{1], htUllage);

fprintf (stdprn, "Volume %.1f cu ft Vapor pressure %$.1f psig\n"

, dikevol, ullagePress);}

fputs ("Floor surface\n",stdprn);

fprintf (stdprn," material %s = ====—=7 Weather Conditions---=-===-= \n"
,matl(typecon]) ;

fprintf (stdprn," thickness %.2f inches Ambient temperature %.1f de

thickness(0], ambientTemp);

fprintf (stdprn," insulation &.2f inches wind velocity $.1f m
thickness([2],windsSpeed / 1.46666667) ; :

fprintf (stdprn,"Wall surface \n");

fprintf (stdprn, " material %s\n",matl[typeconWall]);

fprintf (stdprn, " thickness %.2f inches\n",thickness(1]);

fprintf (stdprn," insulation %.2f inches\n\n", thickness(3]);

fputs ("==--=———mececcceo-coceo= Material Properties--—--—é-—---------------v-"
Moo e \n",stdprn) ;

fprintf (stdprn,

"

soil insulation %s\n",words);
fprintf (stdprn, ‘
‘ "density,#/cu £t $.2¢ %.2¢ %$.2f $.2f %.2£\n",
propts(2](0], propts(4](0], propts{0][0], propts(1][0], propts([3](0]);
fprintf (stdprn,
"heat capacity,BTU/#,F $.2f %.2f $.2f %$.2f %.2£\n
. propts[2][1], propts[4](1], propts[0][1], propts([1](1], propts(3](1]);
fprintf (stdprn, ‘
"thermal cond,BTU/hr,ft,F %.2f ‘§.2f %.2fF $.2fF %.2f\n
propts({2][2], propts(4](2], propts(0])(2], propts([l](2], propts(3]([2]);
fprintf (stdprn, "Moisture, #/# dry soil $.2f\n\n", soilMoisture);
return; ‘
} /* report dike.lib */

[a*k*% 05/27/89 to add spill description to output report reporto */
#includa.<stdio.h>

/* function prototypes ' | */
void report0 (int, double, double, double);

void report0 (int spillMode, double pipeid,‘double spillRate, double spillTime)

{ ‘
fputs ("= = = = = - = - < - - Spill Description = = = - == === === 77 \n",
stdprn); -
switch (spillMcde) {
case 0:

fprintf (stdprn, "The spill is assumed to be of sufficient"
" gize to cover the dike floor instantaneously but to a very"
" ghallow depth thus allowing most of the dike volume to"
" accumulate the vapor formed. Following the initial spill,"
" the spill rate is the boil=-off rate.");
break;
case 1:
fprintf (stdprn, "The simulation which follows is for a spili’
v of %7.2f gallons per rinute for a total time of %7.2f "
"minutes, after which the leak has stopped but the boil-off"
" may continue.",spillRate, spillTime) ;
break; :
case 2:
fprintf (stdprn, The spill is from a broken pipe %4.1f inches"
" in diameter, and lasts for %7.2f minutes. The. initial spill"
" rate from this pipe is %7.2f gallons per minute.",pipeid,
spillTime, spillRate);
fputs ("\n= = - = = = = Spill Consequences (for dike as i) = = == - = = - ="
"\n\n",stdprn); ' ‘

,s8tdprn);
fputs ("time heat rate to LNG boil off 1lbs LNG surface temp\n",stdprn);
fputs (" sec BTU/hr/sq ft =+ rate #/hr vaporized degF\n",stdprn);
return;
} report0 dike.lib */

[***% 04/30/89 : reportl 4
to print the second part of the dike report ‘ */

#include <conio.h> i
#include <stdio.h>

/* function prototypes ! : */
void reportl (double);
void reportl (double timelOverDike)

{
if(timelOverDike == 0.0){
fputs ("\nFor the original dike, vapor overflow does not occur in\n"

"the first 45 minutes after the spill starts.",stdprn);
mycputs (1, 3, "For the original dike, 45 min passes");
1sa mycputs (1, 4, "without vapor overflow");}
else{ ‘ '
fputs ("\nThe LNG vapor cloud overflowed the uninsulated dike\n", stdprn);
mycputs (1, 1, "The LNG vapor cloud overflowed the uninsulated dike");
fprintf (stdprn, "%.1f seconds after spill started\n", timelOverDike);
gotoxy (1, 2);
printf ("%.1f seconds after spill started”, timelOverDike);}
fputs ("\f GAS RESEARCH INSTITUTE\n"

" LNG Spill simulation Program\n"

LA AR AT AR A8 AN A page 2 of 2 pages \n",stdprn);
fputs ("= - - = Spill Consequenses (for dike with insulation) = = - - - \n"
,stdprn) ; _

fputs ("\n - Simulation Details---—~------n--—-----¥-—\n\n"
fputs("time heat rate to LNG boil off 1lbs LNG surface temp\n",stdbrn);
. fputs (" sec BTU/hr/sq £t . rate #/hr vaporized degF\n",stdprn);
return;

} /* reportl dike.lib */

[*wak 04/30/89 report2
to print the third part of the dike report ‘ * /

#include <conio.h>
#include <stdio.h>

/* function prototypes */
int report2 (double);
int report2 (double time20verDike)

{ ,

if (time20verDike == 0.0){ ‘

fpucs ("\nFor the insulated dike, vapor overflow does not occur in\n"
wgne first 45 minutes after the spill starts.",stdprn);

mycputs (1, 3, "For the insulated dike, 45 min passes");

mycputs (1, 4, "without vapor overflow");}

else(:

fputs ("\nFor the insulated dike, vapor overflow would begin\n", stdprn);

mycputs (1, 3, "For the insulated dike, vapor overflow would begin");

fprintf (stdprn, ngs5.1f seconds after spill started\n", time20verDike) ;

gotoxy (1, 4);

printf ("%5.1f seconds after spill started", time20verDike) ;}

mycputs (10, 12, " ") ;

mycputs (1, 6, "yould you like the downwind dispersion distances 2"y

return (question (10, 8, " yes ", " no"))j;
Yoo/ report2 ‘ dike/lib */

P’zr

[**k%% 09/25/89 to see if a rerun is reqd rerun
#include <conio.h>; ‘

#define reverseColor textattr (BLACK + (LIGHTGRAY<<4));

#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

/* function prototypes

void drawAbox (int, int, int, int, char *, char *);

int getKey (int, int, char *[], int, int);

int rerun (void);

int rerun (void)

{
int x = 19, y = 7;
char *choices[2) = {"run new case", "exit program"};

drawAbox (x, y, 18, 2, "Options", "Choose ocne");
return (getKey (x+2, y+3, choices, 2, 0));
} /* rerun dike.lib »/

*/

*/

/® 09/04/89 question requiring a yes/no response
function prototypes

void mycputs (int, int, char(])/

int question (int, int, char(]., char(]);

int respond (int, int, char(l)s

int respond. (int X, int y, char query[])

{

mycputs (x, Yy, query);j

return (question (x+8, y+1, "yes ", " no "));
} /* respond bgen */

respond

*/

/*%%% 03/10/89 function returns the value of sigy sigyz
: and sigz (based on info in ADL program)

ARGUMENTS: ‘
Xlee - distance from dike, ft
weather - letter B thru F signifying Gifford atmospheric categories
sigy - sigma y
sigz - sigma z */
#include <math.h>
/* function prototypes ' : */

void sigyz (double, char, double *, double *);
void sigyz (doublé xlee, char weather, double #*sigy, double #*sigz)
{

double con, conl, con2, conl, power = 0,919, term,
switch (weather) {
case 'B':
con = 158,.0;
conl = 2,041;
con2 = 1,048§;
conld = 0.041;
power = 0.9;
break;
case 'C':
con = 104.0;
conl = 1,786;
con2 = 0.914;
cond = 0,0;
power = 0.913;
break; :
case 'D': ‘
con = 69.0;
conl = 1,505;
coen2 = 0.737;
con3 = -0,105;
break;
case 'E':
con = 51.0;
conl = 1.332;
con2 = 0.678;
con3d = -0.112;
break;
case 'F':
con = 34.0;
conl = 1,146;
con2 = 0.65;
con3 = -0.113;}
term = xlee / 3280.8;
*sigy = 3.2808 * con * pow (term, power);
term = logl0 (term);
*sigz = 3.2808 * pow (10.0, conl + term * (con2 + term * con3));
return;

} /% sigyz dike.lib */

-

/**i*

08/10/89 to write general

ARGUMENTS:
X

msg to part of screen

smalspla

% location of upper left corner of print area
location of upper left corner of print area

v
videoptr address of start of video ram

msg(]

#include <conio.h>
#include <stdio.h>
#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

the actual message to be printed

/* function prototypes

void smallSplash (int, int, int far *, char(]);

void smallSplash (int X, int y, int far »videoptr, char msg(])

int far #*videonow;
int far #*videostart;

char c,

*ch;

stdColor;
ch = msg;

videonow = videostart

while (*ch != ''){

c = *ch++;
switch (c){
case

case

case

case

case

case

case

case

case

case

case

case

= videoptr + x + 80 * ¥;

(videonow++) = 250 | 0x%0700;
break;

1 te

* (videonow++) = 182 | 0x0700;
break;

[Y
* (videcnow++) = 199 | 0x0700;
brezk;

'\n': .
videonow = (videostart += 80);
break;

[
* (videonow++)
break;

248 | 0x0700;
e

* (videonow++) = 218 | 0x0700;
break;

* (videonow++)
break;

1}
[
O
[¢))

0x0700;

* (videonow++) = 179 | 0x%0700;
break;

[
* (videonow++) = 192 | 0x0700;
break;

1.
* (videonow++) = 217 | 0x0700;
break;

1 -
* (videonow++) = 191 | 0x0700;
break;

L
* (videonow++)
break;

il

197 | 0x0700;

*/

return;

case

* (videonow++)
break;

case '':
* (videonow++)
break;

case '': ‘
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':

‘ * (videonow++)

break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '!':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':

’ * (videonow++)
break;

case '':
* (videonow++)
break;

case '!':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

case '':
* (videonow++)
break;

default:

* (videonow++)

180

193

194

195

214

211

201

205

186

200

187

188

169

170

208

219

222

229

233

215

| 0xo7do;
| 0x0700;
| ox0700;
| 0x0700;
| ox0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0%x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;
| 0x0700;

0x0700;}}

[®**% 05/23/89 to write gieneral msg to video ram

#include <conio.h>
#include <stdio.h>

/* function prototypes

void splash (iht X,

int far *videonow;
int far #*videostart;

char ¢;

char *ch;

ch = msqg;

videonow = videostart = videoptr+x-

while (*ch las ') {

Cc = *ch++;
switch (¢){
case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

if (videonow = videostart < 160)
w = (videostart += 80);

'\n':
videono
break;
l':
* (videonow++)
break; :

* (videonow++)
break;

'.:
* (videonow++)
break;

|':A
* (videonow++)
break;

[I)
* (videonow++)
break;

l':
* (videonow++)
break;

l':
* (videonow++)
break;

":
* (videonow++)
break;

ll:
* (videonow++)
break;

ll:
* (videonow++)
break;

[Y
* (videonow++)
break;

[)
* (videonow++)

break;
| I Y

.

* (videonow++)

break;
uv:

218
196
179
192

217

197
180
193
194
195
214

211

1+80%(y=1);

| colr;
| colr;
| colr;
| colr;
| colr;
| colr;
| colr;
| colr;
| colr;
| colr;
| colr;
| colr;

| coir;

splash

int y, int far *videoptr, char msg[], int colr)

*/

*/

*(vidéonow++)
break;

case '': ‘
* (videonow-++)
break;
case '':
' * (videonow++)
break;
case '':
* (videonow++)
break;
case '':
* (videonow++)
break;
case '':
* (videonow++)
break;
case '':
* (videonow++)
break;
case '':
* (videonow++)
break;
case '': ‘
* (videonow++)
break;
case '':
* (videonow++)
break;
case '':
* (videonow++)
break;
case '': .
* (videonow++)
break;
case '':
* (videonow+)
break;
case '!':
* (videonow++)
break;
case '':
* (videonow++)
break;
default:
* (videonow++)
return;
} /* splash bgen.lib

kA4

201 | colr;
205 | colr;
186 | colr;
204 | colr;
185 | colr;
200 | colr;
187 | colr;
188 | colr;
169 | colr;
170 | colr;
208 | colr;
215 | colr;
219 | éolr;
222 | col;;
249 | colr;

¢ | colr;}}

*/

[*hnek 06/23/89 to write logo screen and disclaimer splasho
directly to videoram

#include <conio.h>
#include <dos.h>
#include <stdio.h>

/* function prototypes ' | ‘ */

void baseLine (void);

void cursorOff(void);

void splash0 (int, int, int far #, int);

void pakec (int, int, int far *, int);

void splash (int, in%x, int far *, char({], int);

void splash0 (int x, int y, int far *videoptr, int colr)

{
char words[] = " "
" . \n"
ne
“\n"
" "
" \n"
"
"\n"
" ‘ "
" \n"
ne '
ll\nll
" 1]
" . \nll
" WELLBORN SYSTEM"
"S \n"
1] 1]
" \n"
11] a "
" \n"
" "
n"n \n"
" division
" o f \nll
1] "
1] \n"
" Robert F. Ben"
"enati Inc. \n"
1] "
" \nu
" 75 Deepdale"
" Drive \n"
" "
" \nu
" ManhassetH™"
" N . Y. 11030 ‘ \n"
" "
" \nu
" 516 Un 9 8440"
” \n"
" "
" \n"

" "
" \n "
nn

nn

" "
” "o
’

char msg [] = "WELLBORN SYSTEMS DISCLAIMER\n\n\nLEGAL NOTICE Wellborn"

clrscr ();

" Systems warrants that this program will substantially\nconform"

" to the specifications described in the documentation provided\n"
"jt is used on the computer hardware and with the operating\n"
"system for which it was designed.\n \nExcept as specifically"

" provided above, Wellborn Systems makes no warranty or\nrepresent"
"ation, either expressed or implied, with respect to this program"

" or\ndocumentation, including their quality, performance, merchan"
"tability, or\nfitness for a particular purpose.\n\nBecause computer"
" programs are inherently complex and may not be completely\nfree "
*of errors, you are advised to verify your work. 1In no event will"
"\nWellborn Systems be liable for direct, indirect, special, incid"
"ental, or\nconsequential damages arising out of the use or inabil"
"ity to use the\nprogram or documentation, even if advised of the "
"possibility of such\ndamages., In particular, Wellborn Systems is"
" not responsible for any costs\nincludind but not limited to those"
" incurred as a result of lost profits\nor revenue, loss of use of"
" the computer program, loss of data, the cost\nof a substitute pro"
"gram, claims by third parties or for other similar costs.";

cursorOff ();

splash (x,

sleep (3);

clrscr ();
splash (x,

splash (1,

pakc (24,
window (1,
clrscr ();
return;

Yy, videoptr, words, colr);

Yy, videoptr, msg, colr);

25, videoptr, " Wellborn Systems "o
" copyright 1989 ", 0x7000);

24, videoptr, colr);

1, 80, 24);

} /* splasho bgen.lib #/

/***‘*

'09/07/89 to write opening screen . splashl */

#include <conio.h>

#include <stdio.h>

/* function prototypes */

void pakc (int, int, int far *, int);
void splash (int, int, int far *, char *, int);
void splashl (int far *, int);

void éplashl (int far *videoptr, int colr)

char msg(] = "

splash (1,

GAS RESEARCH INSTITUTE\n"

" LNG Spills\n"

" Vaporization and Dispersion\n\n"
"This program is intended for evaluation of the"

" effectiveness of LNG storage\ndike insulation material to"
" aid decision making regarding installation of new\ndike"

v jnsulation. Depending on several site-specific conditions"
v and candidate\nmaterials, dike insulation can significantly
" mitigate hazards associated with\naccidental LNG spills"

w within storage dikes by minimizing vaporization rates and\n
"downwind dispersion. The program permits evaluation of"

" dike insulation for\nboth uninsulated dikes and insulated"
" dikes considered for insulation retrofit.\n\nUser-specified
» input regarding a storage tank and its surrounding diked"
'" area\nis used to calculate vaporization rates for a user-"
"defined spill scenario.\nCalculated boil-off rates are'"

" provided for cases with and without the additiocn\nof new"

" dike insulation. Next, the user is provided the option of"
* calculating\nvapor dispersion distances for concentrations"
" of interest using a simple\nGaussian dispersion algorithm.”
"Dispersion calculations are provided for\ncomparative purpos
* only as use of this algorithm for safety evaluation or\n"
nreqgulatory compliance is not recommended by GRI.";

1, videoptr, msg, colr);

pake (24, 24, videoptr, colr);

window (., 1, 80,

clrscr ();
return;
} /* splashl

24);

dike.lib */

JRRR 09/13/89 : tank
to request tank and liquid dimensions and return tank volume */

#include <conio.h>

#include <dos.h>

#include <math.h>

#include <stdio.h>

#define barColor textattr (BLACK + (LIGHTGRAY<<4));
#define stdColor textattr (LIGHTGRAY + (BLACK<<4));

/* function prototypes ‘ */)

void cleanSpace (int, int int);

void cursorOn (int);

double tank (double *, double *, double *, double *, double #, double *);
double getNum (void);

double tank (double *tankHeight, double *tankDia, double *htUllage,
double *ullagePress, double #*ullageVol, double *tankArea)

{
window (1, 1, 80, 25);
barColor;
mycputs (30, 25, " numerics only ")
stdColor; ‘
mycputs (15, 2, "Tank and Liquid Details");
gotoxy (5, 3);
please (10, 22);
mycputs (5, 5, "Diameter, ft = 2?");
mycputs (5, 7, "Height, ft = ?");
mycputs (5, 9, "Height of liquid in tank, ft = 2?%);
mycputs (5, 11, "LNG vapor pressure, psig = ?");
gotoxy (20, 5);
cursoron(0) ;
*tankDia = getNum ();
if (*tankDia == 0.0) {
mycputs(70, 3, "null");
*tankHeight = 0.0;
*htUllage = 0.0;
*ullagePress = 0.0;
goto out;} .
gotoxy (70, 3);
cprintf ("%$.1f", *tankDia);
gotoxy (18, 7);
*tankHeight = getNum();
gotoxy (70, 4);
cprintf ("%.1f", *tankHeight);
redo:gotoxy (36, 9);
*htUllage = getNum ();
if (*htUllage > *tankHeight && error (1)){
cleanSpace (35, 9, 9);
goto redo;}
gotoxy (70, 5);
cprintf ("%.1f", *htUllage);
gotoxy (32, 11);
*ullagePress = getNum ();
gotoxy (70, 6);
cprintf ("%.2f", *ullagePress);
out:*ullageVol = *htUllage * (*tankArea = 0.7854 * *tankDia * =*tankDia);
window (1, 1, 52, 24);
clrscr();
window (1, 1, 80, 25);

. return (*tankHeight * #tankArea) ;

} [/* tank dike.lib */

/****

/t

function prototypes

04/16/89

text

to print text related to input screens */

void text (int);

void text (int line)

{

int x = 2;
gotoxy (x, 16);
switch (line) {

- return;

}

/*

case 0:

*/

cputs ("This condition assumes a spill of sufficient size ");

mycputs (x, 17, "to cover the dike floor instantaneously but to a ");
mycputs (x, 18, "very shallow depth thus allowing most of the dike ");
mycputs (x, 19, "volume to accumulate the vapor formed.Following the");
mycputs (x, 20, "initial spill, the spill rate is the boil-off rate ");
mycputs (x, 21, " ") '

break;

case 1:

cputs ("This condition takes a specified spill rate and ")

mycputs (x, 17, "simulates its spread over the dike floor and the "
mycputs (x, 18, "subsequent vaporization which results therefrom. "y
lastlinae:

mycputs (x, 19, "Since a specified spill time is involved, the "y,
mycputs (x, 20, "vapor cloud is of finite size and may not overflow ");
mycputs (x, 21, "the dike.");

break;
case 2:

cputs ("This condition assumes a ruptured pipe of specified");

mycputs (x,

mycputs (x,

17,
18,

goto lastline;

}
text

"size. The leak rate from the ruptured pipe is "
"calculated and becomes the LNG spill rate. "y

dike.lib */

Jwenk 03/27/89 to control transient conduction calcs transient
ARGUMENTS: ‘
alpha(] - thermal diffusivity earth/liner/insulation

dikeArea[] - floor/walls, sq ft ,

k(] - thermal conductivity earth/liner/insulation,eng units
T[] - temperature at nodes

x[] - node lengths, ft

nc{] - nodes per zone

n - total node count

nodePos[] = node # at zone boundaries

#include <stdio.h>
/* function prototypes | */
void conduction (double, double [], double [], double, double [],
double [], int [], int);
void transient (double [], double (], double [], double [], double [],
int (], int, int []);

void transient (dpuble alpha(], double dikeArea[], double k[],

ok

double Tr], double x[], int nc[], int n, int nod

{
static double

boilOffRate, /* rate at which LNG boils off from entire dike, #/hr */
*

deltime, /* time step, sec
latHeat = 220.0, /* latent heat of evaporation of LNG
prntInterval [] =

{1.0,4.0,5.0,20.0,30.0,50.0,100.0,250.0}, /* seconds
prntTime [] =

/
*/

{1.0, 5.0, 10.0, 30.0, 150.0, 500.0, 1000.0, 1.0el0}, /* seconds

d, /* avg heat flow from surface to LNG */
gc = 0.0, /* rate of heat flow to surface,BTU/hr/sqft &/
gold = 0.0, /* qc at beginning of time step Ly
sumg = 0.0, /* total BTU/sqft at any time */
timeold = 0.0, /* simulation time at which printing occurred . */
ts = =260.0,
ytime, /* simulation time, sec */
vaporWt; /* total weight of LNG vaporized, lbs */
int 1 = 0;
ytime = 0.0;
while (ytime <= 391.0){
if (ytime < 0.1){ deltime = 0.01; goto run;}
if (ytime < 1.0){ deltime = 0.015; goto runj;}
deltime = 0.0225;
run: gc = 2.0 * k(0] * (T[{0] - ts) / x[0];
q = 0.5 * (qc + gold) ;
gold = gc;
/*sumg += q * deltime / 3600.0;*/
boilOffRate = q * dikeArea(0] / latHeat;
vaporWt += boilOffRate * deltime / 3600.0;
conduction (ts, alpha, k, deltime/3600.0, x, T, nc, n);
if (ytime == 0.0) || (ytime - timeold >= prntIntervalli])){
if (ytime >= prntTime(1i]) i++;
goto prnt;}
else goto noprnt;
prnt: fprintf (stdprn, "%4.0f %9.1f %9.1f %8.2€F

ytime, g, boilOffRate, vaporWt, T([(0]);
timeold = ytime;
noprnt: ytime += deltime;}
return;
} /* transient dike.lib */

/*ﬁ** 06/02/89 twolayer

to calculate the near surface temperature, the heat flux, the
boil off rate and the amount evaporated from
a dike composed of two lawyers of different materials based on
dt/dx--(to-ts)/[1+2sum“nexp(n‘21‘2/ see Carslaw & Jaeger p322
ARGUMENTS: t0 ambient temperature, degF :
k[] thermal conductivity [0]=top layer on f£loor
(1]=top layer
[2]=bottom la
alpha(] thermal diffusivity [0]=top layer floor, sqft
© [1l)=top
[2]=bot
dikeArea[] [O]=floor area, sqft
, [(1]=wall area
1[] effective thickness of top layer [O]=on floor, in

#include <conio.h>
#include <math.h>
#include <stdio.h>

/*

function prototypes ’ */

double erfc (double);

double sumFunction (double, double, double *);

double tempFunction (double, double, double, double);

int testVaporVol (double, double, double, double, double *, double *);
void twolLayerBoilOff (double, double [], double [], double, double [],

double [], double *, double *);

void twoLayerBoilOff (double tO, double k[], double alpha(], double
dikeVaporVol, double dikeArea(], double 1[], double *timeod, double *dispST)

{
int i = 0, R
odflag = 0; /* flag = 1 when vapor overflows dike */

double amtEvap = 0.0,/* amount evaporated, #/hr from tntal dike */
beta, /* beta = (sigma - 1)/ (sigma + 1) w/
betawall, /* same as beta but for wall surface */
bcilOffRate, /* rate of evaporation, #/hr from entire dike */
dtolatht, /* (tO-ts)/latent heat ‘ */
effDikeArea, /* dike area available for heat transfer */
heatFlux, /* average q/A, BTU/hr-sqft */
latHeat = 220.0, /* latent heat evaporation of LNG, BTU/# */

ml, mrl, prefix, prefixl, sqraot,

term, terml, ‘ _

time = 0.0, /* seconds */

timeHrs, * hours *

timeTable[]={0.001,0.1,0.5,1.0,2.0,5.0,10.0,25.0,50.0,100.0,250.0,500.
1000.0,1500.0,1800.0,2100.0,2400.0,2700.0},/*time for printout *

t, /* temperature at x, degF * /

ts = =-260.0; /* atmospheric boiling point of LNG, degF * /

dtolatht = (t0 - ts) / latHeat;
effDikeArea = dikeArea[0] + dikeArea(l];

term = sqrt (alpha(l] / alpha{2]); /* calculate gamma for walls */
t = term * k(2] / k[1l]; /* calculate sigma for walls */
petawall = (£t - 1.0) / (t + 1.0); ‘ /* calculate betawall */
term = sqgrt (alpha([0] / alpha(2]); /* calculate gamma for floor */
t = term * k(2] / k(0]; /* calculate sigma for floor */
peta = (t - 1.0) / (¢t + 1.0)7 /* calculate beta */
1[(0] /= 12.0; 1(1]) /= 12.0; /* convert thicknesses to ft */

while (time < 2700.0){

timeHrs = (time = timeTable[i++]) / 3600.0;

sqraot = sqgrt (alpha{0] / timeHrs);
term = alpha[0] * timeHrs;
t = tempFunction (beta, term, 1(0], t0) ;/*calc temp near surface */
terml = 1[0] * 1[0] / term;
prefixl = dtolatht * sgraot * dikeArea[0];
prefix = 2.0 * prefixl * timeHrs;
boilOffRate = sumFunction (beta, terml, &ml) * prefixl;/* floor */
amtEvap = ml * prefix;
term = alpha({l] * timeHrs;
terml = 1[1] * 1[1] / term;
prefixl #= (dikeArea(l] / dikeArea(0]);
prefix *= (dikeArea(l] / dikeArea(0]);
boilOoffRate += (sumFunction (betawall, terml, &ml) * prefixl); /*walls
amtEvap += (ml * prefix);
heatFluxt = boilOffRate * latHeat / effDikeArea,

- if (time == 0,001) amtEvap = 0.0;
if (lodflag) odflag = testVaporVol (dikeVaporVol time, amtEvap,

boiloffRate, ti
if (time == 0.1 || time == 0.5){
fprintf (stdprn, "%4.1f $9.1f %$10.1f %$10.1f %7.2£\n",
time, heatFlux, boilOffRate, amtEvap, t);}
else{
fprintf (stdprn, "%4.0f %9.1f %10.1f %10.1f %¥7.2f\n",
time, heatFlux, boilOffRate, amtEvap, t);}}
} _

double sumFunction (double beta, double terml, double *amtEvap)

{ :
double betan, /* beta“n */
ml, mrl, n, 2, 2s;

for (n = 1.0, betan = 1.0, ml=mrl=0.0; n <= 10.0; n++){
if ((2s = n * n * terml) < 6.76)(
2 = 1.0 / exp (zs); ‘
mrl += (betan *= beta) * z; /* 1.7725 = sqrt (pi) */
anl += betan * (2 - 1.7725 * sqrt (zs) * erfc (sqrt (2s)));}}
*amtEvap = 1.0 + 2.0 * ml; ’
return (1.0 + 2.0 * mrl);
} /* sumFunction */

double tempFuncticn (dwuble alpha, double term, double 1, double t0)
{

double alphan = 1.0, /* alpha’n * /
n,
sum = 0.0,
t, ‘
X;

X = 0.000417 - 1;
term = 0.5 / sgrt (term);
for (n = 0.0; n <= 5,0 n++){
sum += alphan * (erfc (((n + n +
erfc (

1.0) * X) * term) - alpha *

({(n + n .0) * 1 - x) * term));
alphan *= alpha;}

return €0 + (ts - t0) * sum;

} /* temp Function dike.lib */

[*R%% 04/29/89 to test vapor vol relative to dike vol vaporvol

ARGUMENTS: , ,
dikeVapVol - dike (less tank) vapor volume, cu ft
time - time, seconds

vaporwt - total wt vapor generated since time=0, #
boilOffRate - rate of vapor generation at time, #/hr

timeOverDike =~ time when vapor first overflowed dike, sec

dispSourceTerm - rate of overfiow at time, #/hr
(timeOverDike & dispSourceTerm determined by linear
interpolation of two time spots)

/* function prototypes */
int testVoporVol (double, double, double, double, double *, double *);

int testVaporVol (double dikeVaporVol, double time, double vaporWt, double
boiloffRate, double *timeOverDike, double *dispSourceTerm)

{
double factor,
vaporVvol;
static double vaporVvoll,
timel,
sourcel;
vaporVol = 9,121 * vaporWt; /* 9.121=359%(460+=260)/492/16 */
if (vaporVol < dikeVapVol) {
vaporVoll = vaporVol;
timel = time;
sourcel = boilOffRate;
return 0;}
factor = (dikevapVol - vaporVoll) / (vaporVol - vaporVoll);
*timeOverDike = timel + factor * (time - timel);
*dispSourceTerm = sourcel + factor * (boilOffRate - sourcel);
return 1; :
} /* testVaporVol dike.lib */

JALA L 04/07/89 warning
to flash warning on screen and await response * /

#include <conio.h>
#include <stdio.h>
#define brightColor textatt:r (WHITE + (BLACK<<4)):;
#define stdColor textattr (LICHTGRAY + (BLACK<<4));

/* function prototypes */

void bleep (void);

void pakec (int, int);

int question (int, int, char(], char(]);
int warning (int, double, double);

int warning (int no, double dikeVol, double tankVol)

int action;
char buffer[60%7%2];
bleep() ;
gettext (1, 18, 52, 24, buffer);
window (1, 18, 52, 24);
clrscr ();
switch (no){
case 0:
gotoxy (1, 1);
printf ("Dike volume (%.1f cuft) is less than",dikeVol);
gotoxy (3,2);
printf ("110%% of tank volume (%.1f cuft)®,tankVol);
pak:pakec (8, 5); -
puttext (1, 18, 52, 24, buffer);
window (1, 1, 52, 24);
clrser ();
brreak;
case 1:
brightColor;
mycputs (12, 1, "Serious Warning");
stdColor;
gotoxy (1, 2);
printf ("The dike volume (%.1f cuft) is inadequate to",dikeVol);
gotoxy (1,3); ‘
printf ("contain the total tank volume (%.1f cuft)",tankVol);
goto pak;
case 2:
mycputs (2, 1, "You have entered 0.0");
mycputs (2, 2, "an improbable value!");
act:action = question (2, 3, " accept ", " retry ");
puttext (1, 18, 52, 24, buffer);
window (1, 1, 80, 24);
return action;}
window (1, 1, 80, 24);
return (0);
} /* warning dike.lib * /

[RRiR 09/25/89 weather
to get weather category for transient calcs

#include <stdio.h>
/* function prototypes ‘ | : */

void barText (int, char #*);

void cursoroff (void);

void cursoron (int);

void drawAbox (int, int, int, int, char *, char *);
int getKey (int, int, char *(], int, int);

char weather (void);

char weather ()
{
char line(53]af=========c==- = e e o 2 e e e 0 2 2 o e —— \o";
'char weacon; ‘
char letter[] = {'B','C','D','E','F'};
char *categories(5] = { " E moderately unstable',
» ¢ clightly unstable",
" D neutral",
" E slightly stable",
" F moderately stable"};

int 1i;

barText (30, "selection keys only");

window (1, 1, 52, 24);

clrscr();

cputs("To calculate downwind dispersion, you must specify");
mycputs(1l, 2, "the weather conditions by choosing from categories") ;
mycputs (1, 3, "B - F. See table below of meteorological categories");
mycputs (1, 4, line);

mycputs (1, S, wgurface");

mycputs (32, 5, "nighttime conditions");

mycputs (2, 6, "wind");

mycputs (9, 6, "daytime insolation");

mycputs (34, 6, " (amount overcast)");

mycputs (2, 7, "speed");

line[45] = '\0';

line(22] = line[23) = ' ';

mycputs (8, 7, line);

mycputs (2, 8, "mi/hr");

mycputs (8, 8, "strong moderate slight");

gotoxy (34, 8)
putch (‘'\xf2')
cputs ("1/2 ");
gotoxy (44, 8);
putch ('\x£3');
cputs ("3/8");

.
’
.
’

mycputs (2, 9, "< 4.5 A A-B B");

mycputs (2, 10, " 4.5 A-B B C E F");
mycputs (2, 11, " 9 B B-C c D E");
mycputs (2, 12, " 13.5 c Cc-D D D D") ;
mycputs (2, 13, "> 13.5 C D D D D");

cursorOff ()

drawAbox (16, 14, 26, 5, "Weather Conditions", "Select category");
weacon = letter[getKey (19, 17, categories, 5, 0)1];

clrscr ()

window (1, 1, 80, 24);

gotoxy (69, 21);

putch (weacon);

return weacon;

} /* weather dike.lib */

*/

[RRER 04/30/89 to get wind speed and ambient temperature, windtemp
and to put ambient temp into tempture vector for transient calcs */

#include <stdio.h>
/* function prototypes | , */

void cursorOff (void);

void cursoroOn (int);

double getNum (void);

void windTemp (double *, double [])7;

void windTemp (double *windSpeed, double tempture [])

{
double ambientTemp;
int i;

window (1, 1, 52, 24);
clrscr();
window (1, 1, 80, 24);
mycputs (15, 1, "weather conditions");
mycputs (5, 5, "wind speed, miles/hr = 2%y ;
mycputs (5, 7, nambient temperature, degF = ?2");
cursoron (0);
gotoxy (28,5)7
*windSpeed = getNum ();
gotoxy (72, 22);
cprintf ("%.1f",*windSpeed) ;
windSpeed #= 1.466666667; /*1.46667 = 5280/3600 */
gotaxy (33,7);
ambientTemp = getNum ();
for (1 = 0; 1 < 507 i++) {
tempture(i] = ambientTemp;}
gotoxy (71,21);
cprintf ("%.1f",ambientTemp);
window (1, 1, 52, 24);
clrscr () s
return;
} /* windTemp dike.lib */

[***% 10/08/89 to write scrollable text to a window writetxt

ARGUMENTS:
ptext pointer to text to be written
e
X,y screen coordinates of ul corner of window
w width of window
h height of window
colorl color attribute of main portion of text
color2 color attribute of accented text
function prototypas ‘ */

writText (char *, int *, int, int, int, int, int, int);
#include <global.h>
writText (char *ptext, int *e, int x, int y, int w, int h, int colorl, int color2

{

register int i = 0, j = 0;
int atend = FALSE;

int color = colorl;

int far *vP;

int len = 0;

int m = 0;

int more = TRUE;

vP = OA(X,Y++);

if ((w == NULL) && (h == NULL)){

w = strlen (ptext);

h=1;} /* end 1£ */
else { W == 4; h == 2; } :

while ((j < h) && (atend == FALSE)){
*e += (len = getlen (ptext + m, w));
for (i = 0; i < len; i++){
switch (*(ptext + m++)){
case '' : color = color2; break;

case '' : color = colorl; break;

case '' : color = color2; break;

case '' : color = colorl; break;

case '' : *(vP++) = 174 color; break;
case ''! : *(vP++) = 175 color; break;
case '' : *(VP++) = 176 color; break;
case '' : *(VvP++) = 177 color; break;
case '' : *(VvP++) = 178 color; break;
cagse '' : *(VvP++) = 192 color; break;
case '' : *(vP++) = 194 color; break;
case '' ¢ *(vP++) = 196 color; break;
case '' : *(vP++) = 205 color; break;
case '' : *(VP++) = 217 color; break;
case '! * (VP++) = 219 color; break;
case '' * (VP++) = 220 color; break;
case '! * (yP++) = 223 color; break;
case '! * (vP++) = 248 color; break;
case '! * (VP++) = 249 color; break;
case '' : *(vP++) = 254 color; break;
case '\n'

case '\r' :@: break;

case '' : more = FALSE; atend = TRUE; continue;
default : *(vP++) = *(ptext + m - 1) | color; break;

} /* end switch */
} /* end for */

vP=mOA (X, Y++) }

| 447 } /* end while */
/* *@=cumu+*e;*/
return (more);
bgen.lib */

} /* writText

" #include <string.h>
#include <keys.h>
#include <global.h>

void drawClear (int, int, int, int, int, int);

writeText (char txt[],int col,int row,int wid,int hit,int cl,int c2)
{

int i;

int size;

int more=FALSE;

int str=0, end=0, tmpend=0;

int maxlines=0;

int adjwid=wid=4;

int line=0, ret;

char *pbuf;

if ((strchr(txt,233)) == NULL) strcat(txt, "");
size = strlen (txt);
pbuf = txt; '
more = writText (pbuf, &end, col+2, row+l, wid, hit, cl, c2);
tmpend = end;
while (tmpend < size) ({ :
tmpend += getLen (pbuf+tmpend, adjwid) ;
maxlines ++;

}
while ((ret = getch()) != ESC) {
if (ret == 0) {
ret = getch();
switch (ret) {
case END :
if (more == FALSE) {
bleep();
break;} /*
if (line <= (maxlines-(hit=-2))) {

while (end < size) { /* set vars to las
str += getlen (pbuf+str, adjwid)
tmpend = end += getlen (pbuf+end

line ++;} /*

end while

drawClear (col+l, row+l, wid-2, hit-2, c

more = writText (pbuf+str,

&tmpend,

wid, hit, ci,

break;} /*

else { /* partial rewrit
int nrow = ((row+hit-1) - (maxlines-line

tmpend=end;

movetext (col+l, row+1+(maxlines-line),

row+hit=-2,

drawClear (col+l, row+(hit-(maxlines=-lin
wid-2, maxlines-line,

while (end < size) {

str+ = getLen (pbuf+str, adjwid)
end += getLen (pbuf+end, adjwid)

end while
&tmpend,

wid,

line ++;} | *
more = writText (pbuf+tmpend,
break;} /*
case PGUP
if (line == 0){
bleep() ;
break;} ' /*
if (line >= hit-2){ /* full rewrite

tmpend = end;

end else

line -= hit=3; ‘
for (i=0, str=0; i<line; i++) str+=getle
drawClear (col+l, row+l, wid-2, hit-2, c
more = writText (pbuf+str, &tmpend, col+
' wid, hit, ecl,
for (i=0, end=0; i<(hit-2)+1line; i++) en
break;} /* end if *
else { /* partial re
movetext (col+l, row+l, col+wid=-2, row+h
col+l, row+l+line);
drawClear (col+l, row+l, wid-2, line, cl
more = writText (pbuf+0, &end, col+2, roO
2+line, c1, c2
str = line = 0;
for (i=0, end=0; i<=(hit-3); i++) end+=g
break;} YA end else
case HOME :
if (line == 0) {

bleep() ;

break;} /* end if
if (line> = hit-2){ /* full rewri

str = end = line = 0; /* reset tr

drawClear (col+l, row+l, wid-2, hit-2, c
more = writText (pbuf+str, &end, col+2,

hit, ci, c2);
break;} /* end if
else ({ . /* partial

movetext (col+l, row+l, col+wid=2, row+h
col+l, row+l+line);
drawClear (col+l, row+l, wid-2, line, cl ~
more. = writText (pbuf+0, &end, col+2, ro
2+line, cl1, c2
str = line = 0;
for (i=0, end=0; i<=(hit=3); i++) end+=g

break;} /* end else
case PGDN :
if (more == FALSE) {
bleep();
break;} /* end if */
if (line <= (maxlines=-(hit-2))){ /* full
line += hit-3;
for (i=0, str=0; i<line; i++) str+=getle
movetext (col+l, row+hit-2, col+wid=-2, r
col+l, row+l);
drawClear (col+l, row+2, wid-2, hit-3, c
more = writText (pbuf+end, &end, col+2,
hit-1, cl, c2)
break;} /* end if */
else { /* partial rewrit

int nrow = ((row+hit-1)-(maxlines~line))
{mpend=end;
movetext (col+l, row+1l+(maxlines-line),
row+hit-2, col+l, row+l)
drawClear (col+l, row+(hit-(maxlines-1lin
wid-2, maxlines-line, c
while (end < size){
str += getLen (pbuf+str, adjwid)
end += getLen (pbuf+end, adjwid)
line ++;} /* end whil
more = writText (pbuf+tmpend, &tmperd, ¢
wid, 2+line, ¢
break;} /* end else

case DNARROW @

if (more == TRUE) {

alse {

case UPARROW :

line++;
for (i=0, str=0; i<line; i++) str+=getle

movetext (col+l, row+2, col+wid-2, row+h
. row+l);
drawClear (coi+l, row+hit-2, wid-2, 1, ¢
more = writText (pbuf+end, &end, col+2,
wid, 3, c1, c2

break;} /* end if */
bleep() ;
break;} /* end else */

if (line > 0){

else {

}

return;

}

line--;

movetext (col+l, row+l, col+wid-2, row+h
col+l, row+2);

drawClear (col+l, row+l, wid-2, 1, cl, O

for (i=0, str=0; i<line; i++) str += get

more = writText (pbuf+str, &end, col+2,
wid, 3, c1, <2
for (i=0, end=0; i<=(hit-3)+line; i++) e

break;} /* end 1f */
bleep();
break;} /* end else */

}

L ' ' " o

APPENDIX 2

USER MANUAL:
GRI LNG Dike Vaporization Program (DIKE)

(Version 1)

March 31, 1989

Robert F. Benenati Inc. . Manhasset,

N.Y.

Proloque

The computer program DIKE will run on any IBM PC/XT/AT or true
compatible, equipped with the 8087 math co-processor chip and with
an 80 column printer connected to the parallel port LPT-1.

Before attempting to run the program, it is recommended that vyou
make a back-up copy of the disk and that you store the original in
a safe place. Next you should examine the file CONFIG.SYS in the
root directory. This file must contain the ANSI.SYS driver. If it
does not, check that the file ANSI.SYS is in the root directory and
' use your favorite editor program to add the lines

device = ANSI.SYS

to the CONFIG.S5YS file. Be sure you store the modified CONFIG.SYS
file in the root directory then reboot the machine. You are now
ready to run the DIKE program, which you do by just typing the word
DIKE (uppmer or lower case) fallowed by the <ENTER> key.

INTRODUCTION

This personal computer-based program is dewmigned to provide the
user with vaporization rate data for LNG spills within a user-—
defined LNG storage dike or other impoundment. By calculating
solid conductive heat transfer up thru up to three layers of dike
floor and wall materials, the praogram can be used for evaluating
the effectiveness of dike insulating alternatives in mitigating
rapid vaporization of spilled LNG. Vaporization rates and volumes
are provided to assist the user in determining hazard zones as-
sociated with downwind dispersion of the resulting LNG vapor cloud.
Ideally, the user would use calculated vaporization rates as input

to an appropriate heavy gas vapor dispersion model or laboratory
‘" experiment.

In addition, the program provides the user with the aption of
calculating vapar dispersion distances directly from the program,
which includes a simple Gaussian passive dispersion procedure.
However, this dispersion calculation should be used for comparative
purposes only since, as typical of Gaussian disgpersion models, it
neglects important LNG vapor properties. Dispersion calculations
produced by the program should not be used for hazard evaluation or
for regulatory compliance evaluation purposes.

The objective of this User Manual is to provide program users with
information on program organization and operation as well as
underlying calculation approaches employed. User questions regard-
ing specific aspects of the program can be addressed to either
Brookhaven National Laboratory or to.GRI.

PROGRAM ORGANIZATION

Two basic types of screens are employed, the selection screen and
the data input screen. The selection screen will display a short
list of items from which the user may choose. One of the items
will be highlighted. There may be notes displayed to elaborate on
the highlighted item. The arrow keys (up/down or right/left) can
be used to move the highlight bar from one item to another. The
RETURN key (ENTER key on some keyboards) will cause gselection of
the highlighted item. Once an item has been selected by pressing
the RETURN key, the program will continue with the next sacreen.
There is no provision for backing up to previous screens; use the
RETURN key cautiously.

The data entry screens are for the the entry of numeric data. Each
screen is self explanatory and will show all of the data required
and the units expected. Generally all non-numeric keys will be
deactivated while such a screen 1is active. The cursor will be
positioned at the first data item. As numeric keys are pressed,.
the number represented by the kev will appear on the screen. The
back arrow key can be used to erase characters entered in error.
Pressing the RETURN key causes acceptance of the date and moves the
cursor to the next item on the screen. Once again there is no
provision for backing up to praviocusly accepted items so treat the
RETURN key with respect. When the last item on a screen has been
accepted, the program moves ahead to the next screen.

Whenever sufficient data has been entered, computation proceeds.
That is to say computations are going on between presentation of
each data screen, and in some instances, between the entry of
different data items on a single screen.

On some data entry screens, with the request for specific data,
reasonable default values are displayed, along with a guestion as
to the suitability of the values presented. The question will be
accompanied by a selection box with the ’'yes’ response highlighted.
1 ' these values are acceptable, the user may simply press RETURN
and go on to the next screen. Alternatively, the user may move the
highlight bar to the ’no’ response before pressing RETURN and the
displayed data values will disappear, the cursor will move to the
first data field, and the user must then enter data values of his
choosing in the usual way.

Throughout the data input process, a column of model properties is
maintained on the right of the display screen. At the outset, this
coluwn of model properties is empty, but as data is accepted from
the data input screens by the program, this data is inserted in _.he
moled praoperties table. Thus the user has a continuous reminder of
all the data already entered and accepted. This display of model
properties is for information purposes only.

Occasionally, the program will detect a fateal error in the input
data (such as a dike diameter smaller than the tank diameter) in
time for the error to be corrected, in which case the user will be
offered an oppertunity to correct the error or to abaort the

program. In such cases, a selection screen may overlay a data
entry sacreaen. Whenever both acreen types are displayed simul-~-
taneously, the selection screen takes precedence. Incidentally,

the user can abart the program at any time during the model speci-

fication phase by pressing alt—-q, ie, pressing and holding the alt
kay then pressing the ’qg’ (for quit) key.

DETAIL SCREENS

Data input or problem defination is accomplished via a sequence
of screens designed to simplify to the maximum extent possible the

physical procesas of entering the data required to

initialize a

calculation. This chapter describes each of these input screens

and provides specific instructions for their use.

The opening screen prasents a very brief description of the
purpose for the prograam and displays a table entitled Problem

Description, which is reproduced as fiqure

1 at the right. This table indicates all [~ RORLEM DESGRIFTION—
of the arbitrary user input data required TANkKs .
to adentify a particular problem. Also diameter .- - .. ft
shoown are the units employed for each | D®lght------ fe
data item. All of the data items start | -104id height. fro
out blank and are filled in later as the . Pressure. pet
user progresses thru the subsequent scree- | PlMEishape..-.rectangle
ns. ‘This table remains on the display Stylf"'"
throughout the data input process to con- construction.
tinuously remind the user of the specific hg{ght----«~- e
data values which have been entered. This diaslength- .. F#
can be particularly usefull if part way Width: """"" fe
thru the data entry process some incompat- W:Ii angle- - ?th
ability is detected and you are offered an ?Ie Fovrrers ‘. AHCF
oppertunity to reenter the latest data wa?ff:::::::: 1:§r
ttem. IPC—-flnar. - inct
Screen 2 shown in figure 2 below refers SéTE;w“ii""" Lne
to the dike shape and is a simple selec- :T“E"' aRm
tion menu. The uppermost box is a title WEQTHE#ITE“--“ dmlg
box indicating the overall screen purpose. i nd " é """ ??
The lowermost baox, shown accented, indi- Win speed- - - - m/ne
cates the user action required. The mid- Dawnwind dist. fe

dle box indicates the selections available figure 1
to the user. One of the selections is

highlighted. The user can change the highlighted item by pressing
the up or down arrow keys at the right of the keyboard. When the
RETURN key (or ENTER key) is pressed, the

highlighted item is selected
o : things happen, 1) the selected item

and twa

Dike Shapes appears in the program description table
on the display and 2) the screen changes
Circular ! | to the next screen in the sequence. There
Rectangul ar 5 is no provision for backing up to the
previous screen in the sequence so treat

Select Shape the enter key with some respect.
For this screen and the two to follow,
figure 2 the highlight bar at the base of the
screen will rend "selection keys only",

indicat;ng that all other keys are tempor-—

arily inactive.

The next screen, shown in fiqure 3, refers to the style of

construction of the dike. Three choices are available namely a
dike with vertical walls, a dike with sloping :
walls, and a dike with sloping walls and a shelf Dike Styles

at the junction between the dike +flcor and the - .
dike walls. The floor of ali dikes is assumed Straight Sides

to be flat and level without either a drainage | Sloped Sides

sSump Or an access ramp. Sloped Sides w/shelr

Having decided on the general shape of the | Select Style
dike, the next screen, shown in figure 4, deals figure 3
with the manner of construction of the dike.

The simplest construction being just packed :
earth, and the more complicated being packed earth with some form
of surface coating (not including the insulation). Surface coat-
ings ¢¥ crushed stone, gunite, or poured concrete are allowed. It
is also possible to select a case with poured concrete on the dike
floor and gurite on the dike walls, or tc select a case both
concrete and preexisting insul-

ation on the dike <flour and
Dike Constructiaon ~ walls. If in the previous
screen, a dike with straight
Tamped Earth + Gunite walis was selected, a plain
Earth + Poured Concrete tamped earth dike will not be
Earth,concrete flaoor,gunite wall|l allowed nor will one with a
Tamped Earth loose rock liner be allowed
Tamped Earth + Loose Rock 'since in each of these cases,
: - . the wall angle exceeds the
Select Construction Type |angle of repose of the top
figure 4 layer of material.

. All qualitative character-—
istics of the dike having been settled, the next screen deals with
the tank and is the first screen that requires input by the user of
specific numeric data. Tank and Liquid Details

This screen is shown
in figure 3 at the
right. The highlight
bar at the base of the
screen indicates
"numerics only" and
infacc, pressing any
key other than a
;E?S;L: keyfey,or :2: I.NG vapor pressure, psig =
backspace key wili be

rejected, a short beep Flease input the values requested.

will be heard, and you follawing each with ¢RETURM®
will have a second: :

chance to enter the
data item.

Diameter, ft =

Height, ft =

Height of liquid in tank, ft =

Gas Research Institute rumerics only

figqure S

For this screen, the cursor is positioned at the beginning of
the +first data field. After keying in the value of the tank
diameter and pressing RETURN, the value entered appears in the
problem description table and the cursor moves to the start of the
next data field. If vyou key in 0.0 (see below for haow to onter

such a value) for the tank diameter to simulate a tankless dike,
the remainder of the screen will be skipped automatically.

Prior to pressing the RETURN key, the backspace key could have
been used to erase and correct values that had been keved
improperly. Once the RETURN key has been pressed and the cursor
has moved to the next data field, the numeric value keyed in has
been accepted; and there is no way to change that value shaort of
restarting the entire program. Pressing the RETURN key without
first having keyed numeric values into the data field is always an
evror. The program traps this error and provides an cpportunity to
re~enter a numeric value or to abort the program. It is also
possible to deliberately abort the program at any data entry point
by typing ALT q (i.e., holding down the ALT key and typing q).

There are very few circumstances when a data value of 0.Q
constitutes an acceptable data entry, hence such an entry results
in a warning and an opportunity to re-enter a new value. If
hawever 0.0 is really what you wanted to enter, the program will
accept it and move on. To key in a value of 0.0, press the decimal
point first which will result in O. appearing in the data field.
Follow this with the trailing zero and the RETURN key.

The next screen refers to specific dike dimensions and takes
di fferent forms depending on the shape and style of dike selected
on earlier screens. For example with rectangular dikes. the length

and width will be
requested, as shown on
figure 4 to the right.
For circular dikes,
the diameter will be .

requested. If a dike Height, ft
with sloped walls had

Rectangular Dike Dimensions -

been indicated Length, ft
previously, the angle . =
of the wall from the Width, ft
vertical will be \ i =
requested at this Angl e (degrees from vertical)
time. The example
shown in figure 6 1is Please input the values requested,
for a rectangular dike following each with <RETURND
with sloped sides.
Gas Research Institute numerics only
The next screen asks :
figure &

for dike liner dimens-—
ions as well as new
insulation dimensions. The request for liner information will only
appear if a lined dike had been specified. The request for new
insulation thickness will always appear for it is assumed that the
user is interested in comparing the effects of boiloff both with
and without insulation. Figure 7 at the top of the next page shows
the screen for a dike which has been designated as having a
concrete liner.

Dike lirner Informatiar

i

Lhd chkness of conarate on dlooe . e mas w0

arn welle, inches = 7
new insuelation thickness on flaar, inches = 7
on walls, drnches = 7
\

figure 7

There follows a series of screens, one far each of the materials
of which the dike is constructed, showing values +for density, heat
capacity, and thermal conductivity. The ’tamped earth” screen is
shown in fiqure 8 at the right. VYou will notice that this screen
shaows numerical values : :

for each of the physical [N o N
properties indicated, but ;2: :zp:g¥ig::e properties of tamped sart!
asks for the users .) e e
approval of these values. density R3. 000 #/cu ft
At this point the screen | . __ .o o _____ e
is a aelection type heat capacity Q200 BTU/ #~-deqgF
screen since the user can Lo .]

th -, 85 —_ -
only select between the ermal conductivity-=0.850 BTU/hr—ft—~de
choices ’vyes? or 'ne’. |hoisture content————— . , -
1 - the wvalues displayed sture content-- 0.1 B/#dry soil
for these properties are Are these values acceptable?
acceptable, you would
select ‘yes’ from the ves na
small selection box shown figure 8
on the screen.
Alternately you may

select ’no” in which case, the displayed property values would
disappear, the cursor will appear at the beginning of the first
data field, and from this point on, the screen functions in the
normal manner of a data input screen. The final screen in this

series is for the insulation material used or intended to be used
in the dike.

Having descrihed
| the dike in quan-—
. titative detail,
we turn our
attention to the
nature aof the LNG
spill. The next
screen, shown at
the left, refers
to the character
of the NG spill
being simulated.
Three selection

Spill Facts

instantaneous spill
finite spill rate ¥ time
ruptured pipe spill

chaoose one

This cordition assumes & spill of sufficient =iz
to cover the dike floor instantanecusly but to a
very shallow depth thus allowing most of the dike

volume to accumulate the vapor formed.Following the
initial spill, the spill rate is the boil-off rate

=

figure 9

; choices are
Weather conditions available. High-
lighting each
chaice results in
a brief descript-

 wind speed, miles/hr = S ' ion of the spill
' ‘ being displayed

ambient temperature, degF = 78 to aid in under-
standing the

choice you are
about to make.
The most severe
case is the inst-
antaneous spill

Gas Research Institute numerics only which assumes
that the entire
figure 10 contents of the

tank flows into

the dike within a

second, and a partion of it flashes instantly into vapor.

Frequently this results in an instantaneous flow of vapor over
the dike wall followed by the subsequent downwind dispersion.

The remaining two selectian cateqories involve spills of a
specific rate which last +for a- specific time. The spill is
assumed to spread outward from the tank in every direction, with
flashing and then evaporation occurring while the liquid is
spreading. The rate of flow of the spill is user specified.

In the last selection offered, the leak is assumed to be
from a rulptured pipe at the base aof the tank. The pipe diameter
is wuser specified and the leakage rate from the pipe is
calculated and depends on the height of the LNG in the tank. The
leakage rate is most rapid at the start and slows down as the
tank empties. The duration of the spill is either for the time
indicated by the user or the time necessary to empty the tank,
whichever occurs first.

If calculation of the boiloff rates for both the dike, as
built and for the insulated dike are completed, if vapar overflow
occurred within the first fifteen minutes from the start of the
leak, the user is asked if downwind disdpersion calculations are
desired. A vyes response results in yet another selection screen
to appear. This screen is shown as figure 11 on the following
page. It sho.s the weather conditions used by Gifford to
identify six different categories which roughly indicate the
degree of turbulence in the air. The user must select one of
these weather categories after which the program will indicate
the minimum distance at which safe concentrations of methane will
be found.

To calowlabte downwind disporsian, ol auel
the weabthar conditions by chooslimg feom mace
B - F, Ges table below of meteorclogical ca

surface nighttime condibians
wind daytime insolation Camert overis @
speed ——-—- - ——— - S e
mi/shr strong moderate slight 172 Rt
DO A S~H o .
4.5 A-E H C =

rr':

3 5 B-C c D 3
13.5 C o-n D D D
17.5 € DD D

Weather Condibionsa

9 omoderastely warnstabla
slightly unetabzls

reslidne sl

slichhly staiole

BRtEeED

mipd@ratel v ol gl e
Relect category

figure [}

TECHNICAL DISCUSSION

The computer program, DIKE, attempts to simulate the
consequences of a spill of LNG into an impounding dike. The LNG
is assumed to be in a suitable tank at a modest gage pressure
(the exact pressure being supolied by the user). When a spill
occurrs, some fraction of the spilled liquid is flashed to vapor
due to the excess enthalpy possesed by the liquid under pressure,
relative to saturated liquid at atmospheric pressure. The cold
liquid spills onto the dike floor which is assumed to be at
ambient temperature, i.e., mare than several hundred degrees
Fahrenheit above the boiling point of LNG at atmospheric
pressure. The LNG recieves heat from the dike floor and bails,
cooling the dike floor in the process. This cooling occurrs
quite rapidly at the surface of the floor material and, as it
does, the rate of heat flow into the LNG and consequently the
rate of boil off of the LNG falls, Ultimately the rate of heat
flow into the LNG is limited by the rate at which heat can be
conducted thru the dike materials from regions belaw.

1

CONDUCTION MODEL

Heat transfer to the boiling LNG has been modeled as a one-
dimensional conduction problem with a constant surface
temperature boundary condition at the boiling surface and a zero
temperature gradient (i.e., infinite medium) at the opposite
boundary. Possible occurance of the Liedenfrost phenomena
(blanketing of the surface by an insulating vapor film) has been
ignored, and the surface of the dike floor is assumed to come
instantly to the boiling paint of the LNG, i.e., equivalent to an
infinite film coefficient at the surface.

The dike construction is presumed to corisist of from one to
three material zones, thus up to three different material zones
are permitted at the cold end of the model. The underlying
material is always assumed to be tamped earth. This may or may
not be caovered by a liner of concrete or aother suitable material,
which in turn may or may not be covered by a layer of insulation.
Alternately, the insulation may be applied directly to the tamped
earth. The thickness of the insulation zone and of the liner
zone are independantly specified by the user. The thickness af
the tamped earth zone is treared as infinite. It is assumed that
there exists na contact resistance between zomes at their contact
planes, thus at the interface between zones the Lemperature an
each side of the interface is the same and the heat flux across
the interface is identical on each side of the interface.

All dike structures modeled are assumed to be at ambient
temperatur at the start of the spill. The temperature of the
surface in contact with the spill is assumed to fall instantly
to the LNG boiling point. The temperature immediately under the
surface and indeed the temperatures throughout the dike
construction materials fallow the laws of conduction heat
transfer.

There are three specific cases of interest in the present
situation, namely:

i) An unlined, uninsulated dike, e.g., a dike composed
of a single homogeneous material.

ii) An insulated, unlined dike or a lined, uninsulated
dike, 2.9., a dike composed of two layers of
di fferent materials.

iii) An insulated, lined dike, e.g., a dike composed of
three layers of different materials.

i) Single Material Semi-infinite Thickness Case

The dike is considered to be a semi-infinite solid bounded
by the xy plane aonly and extending to infinity in the positive x
direction. The initial temperature, TO, is assumed to be uniform
in the solid and to be at the ambient temperature. At time = O,
the temperature of its surface at x = 0 is suddenly changed to
and maintained at Ts, the boiling temperature of LNG.

This is a classical c¢onduction problem which is described
extensively in the literature. The temperature at a depth x into
the structure at any time following the spill is given by <&’

(T - Ts) /7 (TO — Tsg) = erfc (X

where erfc stands for the error function or probability integral
and X = x / 2Ja8. The instantaneous.heat flux at the surface 1is
then given by

Q/ A=K (TO - Ts) / a8
and the surface cumulative heat flux is given by

Q@ /7 A= 2k (TO - Ts) J8/wa
ii) The Composit Solid or Lined Dike Case

The dike is considered to be a semi~infinite solid as hefore
but now the distance x = 0 and x%x = 1 i3 assumed ta be a material
different from the bulk of the solid, as for example a layer of
concrete over tamped earth. As before, the temperature 1isd
everywhere assumed to be the ambient temperature and at time = 0O,
the surface temperature at x = 0 is suddenly changed to the
temperature of the boiling LNG.

It is assumed that there is no contact resistance between
the two materials at x = 1. This results in the requirement that
at x =1, T1 = Tz (subscripts 1 and 2 refer to the two different
materials), and kidT./dx%, = kadéTz/Sx= for all time > O.

This case too has been studied extensively and is described
in the literature ‘2’, The local temperature in each of the two
materials is givan bys

(1u¢4>i ,‘)

(2 H)Qr’{ QQ
:o—T.s }_ % e.r':CQ ?n.\)o(‘@ —% LV, 5

"=
0
T -Ts 2 5 a o (aretdr XX
Ta-Ts 1+ S0 LT =
\ n;/ d‘—-’ |
MILVJ & = (/04,;«}_ ST~ = ’A‘" ‘ ?» = o= \
The temperature gradient at the surface is given by.
L/‘ A
DT (T;) - =< C

< |+ avzz:;] 37727 1
J X X=o V—;ro(le ’\:l% _/

and the cumulative heat flux is g:ven by"’

~yoe

N .
n}_ 2 N ?1
T. —7}) ,(ea A ‘ e
G- AT £ 55 g5
r \)l A n=t
iii) Multi-Layered Solid or Insulated Lined Dike Case

Here too the dike is considered to be a semi-infinite solid
but now there are two layers of finite thickness, each composed
of a different material, an top , of the semi-infinite earth zone
as shown schematically below:

Ts ©,0o

U

A»}Q&Jc,“)

x=Lr

—_— A T

\

K:w\/ | /

This case is not treated in the literature aon conduction
heat transfer, but it can be handled readily using the classical

techniques of numerical analysis wherein the model geametry is
discretized and conduction equations and energy balance equations
are solved at each node resulating from the discretization.

While this problem solving technique 1is well known, it
posseses a well known shortcoming which makes it less desirable
than the closed-form solutions presented above. To accurately
follow the rapid tempaerature changes occurring close to the
aurface, very small nodal distances must be chaosen in that regian
and the small distances mandate a very small time step else the
calculations become wildly unstable. Solutions in this mode
becaome quite time consuming to the point of trying ones patience.

In the specific case where this made of calculation is
called for, the first two nodes closest to the boiling 1liquid
have been taken to be only 0.01 inch thick. The next two nodes
have been taken to be 0.02 inches thick. In this way a total of
eight nodes have been crammed into the first Q.1 inch. Node
dimensians increase as the distance from the boiling 1liquid
increases but it is the two closest to the surface that mandate
the time step used ip the calculations and which cause this
calculation to proceed very slowly.

The program DIKE uses whichever of the above described
procedures is appropriate at each phase of its calculations.

DOWNWIND DISPERSION

The portion aof this program which deals with the dispersion
of the vapor cloud resulting from the LNG spill calculates the
farthest downwind distance at which a methane concentration at or
above 2.5% will be found. The calculation 1is based on the
cantinuous 1line source model and uses the maximum rate of
evaporation found in the dike heat transfer section together with
a user specified set of atmospheric conditions.

The degree of dispersion of the vapor cloud as it moves
downwind depends on the stability of the atmosphers, i.e., the
degree of turbulence or gustiness in the atmosphere. Dispersion
is maximized, and therefore the methane concentration reduced,
when the atmosphere 1is unstable. The mast popular atmospheric
dispersion model is derived by considering statistical variations
around the mean concentration value and results in the so called
Gaussian distribution model which gives the downwind
concentration as:

C=0Q_ % Z* x Y* / V
I® = 1/NTTL @~ Z=R) /A (N2eZ)Rpg—(Z+h) / (S2eZ) 2
Y* = Y(erf(dikewidth — y)/2J20y + erf (dikewidth+y)/242aqy) 3

In this program, the crosswind distance, y, is taken as zero
thus maximizing the methane concentration at anyplace downwind.

The dispersion parameters, ¢z and oy, depend on both the
atmospheric conditions and the downwind distance. They are
herein calculated from:

ov = conl ¥ 3.2808 % (xlea/3280.0)c=ena

Oz = Xe 2808+ 10mon3+aanatln (nlee/3RWO0) +aanBsln (Hleoe/3200) ~22

whare the five coefficients are different for each atmospheric
condition as given in the table below. The atmospheric
categories listed in this table are those of Gifford‘#’ and the
specific constants as well as the form of the correlations have
been taken from the report entitled "LNG Safety Program Fhase Il
Consequences of LNG Spills on Land<¢*?’,

Table of Dispersion Constants

Weather

Categaory conti con2 con3 con4 cong
B 158.0 0.9 2.041 1.048 0.041
c 104.0 0.913 1.786 0.914 0.0
D 49.0 0.919 1.505 0.737 -, 105
E 51.0 0.919 1.332 0.4678 -.112
F 34.0 0.919 1.144 0.65 =, 113

‘0 +
/o |

3o

e L e~ HTBL 1 DBRARHY

—

1.<E§3/ﬁépmrt, LMGE Satfety FProgram Pharse II CQournegquencee of

NG Spille on Land, Mav 19277, Appendis D

Carslaw, H.8. % Jasgar, J.C.,Conduction of Heat irm Sollds,
Onford University press, 1947 p321-T2E

Forntamay, J. et al, Development mf an Insulating Folymer
Comcraete Qverlay for Dike Insulation &t lerng Tsland
Lighting Company®s ILNG Staorage Facility, BNL Feport Dec
1987

Bifferd, F.A., Use of Routine Meteorogicai Observations
for Estimating Atmospheric Dispereion, Macleae Safebs 5, A7
(1961)

Neville, A.M., Hardened Concrete Fhvelcsl & Mechanical
Azpects, lowa Stats University Fress, Ames lowsa., L3971

Schnelider, F.J., Conduction Hmat Transfemr, Addiaon-bealey
Fublishing CO., S8 p240-242

FILMED

