NENF- 5701-134--3

The submitted manuscript has been authored to a contract of the U-S conventionent and the state of the U-S conventionent and the state of convention of the U-S and the state of the state of the publish of object the state of the term of the object of the state of the state of the object of the state of the state of the object of the state of the state of the object of the state of the state of the object of the state of the state of the object of the state of the state of the object of the state of the state of the state of the object of the state of the state of the state of the object of the state of the state of the state of the state of the object of the state of the s

Measurement of Long-Lived Isotopes in Fusion Materials

L. R. Greenwood and D. L. Bowers

CONF-8706134--3

Chemical Technology Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 USA

DE88 003063

Sixth ASTM-EURATOM Symposium on Reactor Dosimetry Jackson Hole, Wyoming, USA June 1-5, 1987

The submitted manuscript has been authored by a contractor of the U.S. Government. Accordingly, the U.S. Government retains a monexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposts.

^{*}Work supported by the U. S. Department of Energy.

ISTROQUED TO THE AND REPORT OF A

Measurement of Long-Lived Isotopes in Fusion Materials

L. R. Greenwood and D. L. Bowers Argonne National Laboratory, Argonne, Il. 60439 USA

Abstract

Neutron cross section measurements are reviewed for the production of longlived isotopes in fusion reactor materials. Samples were irradiated at 14.5-14.8 MeV at the RTNSII facility. Long-lived reaction products were detected using gamma and x-ray spectroscopy, liquid scintillation spectrometry, and accelerator mass spectrometry. Radiochemical separations were performed for many samples prior to analysis. Results are summarized for reactions leading to ²⁶Al (720,000 y), ⁵³Mn (3,700,000 y), ⁵⁵Fe (2.73 y), ⁶³Ni (100 y), ⁵⁹Ni (76,000 y), ⁹¹Nb (700 y), and ⁹⁴Nb (20,300 y).

Introduction

The production of long lived isotopes in fusion reactor materials is of concern due to restrictions which may be placed on the disposal of such radioactive materials. Such activation data are also useful for neutron dosimetry, plasma diagnostics, and reactor maintenance applications. Unfortunately, the necessary neutron activation cross sections are generally not well-known. Although in principle measurements are needed at all neutron energies up to 14 MeV, many of the most important long-lived products are formed by (n,2n) reactions which have thresholds of 10 MeV or higher. Hence, for fusion reactor spectra of interest, it is usually sufficient to measure the production cross sections near 14 MeV. Consequently, we have irradiated a wide range of materials with high fluences of 14 MeV neutrons and have used a variety of techniques to detect the long-lived activation products. By including dosimetry materials with each irradiation, neutron cross sections have been measured relative to well-known reactions. The measured cross sections can then be used to predict activity levels in fusion reactors in order to evaluate restrictions which may have to be placed on the use of various materials.

Irradiation and Dosimetry

The reactions which we are studying are listed in Table I. Samples consisted of the pure metals Al, Fe, Mo, Cu, Zr, Ni, and Nb and separated isotopes of ⁵⁶Fe, ⁶⁰Ni, ⁶⁴Ni, ⁹⁴Zr, and ⁹⁴Mo. All of the separated isotopes were obtained from Oak Ridge National Laboratory in the form of metallic powder which was then pressed into discs or placed in thin aluminum tubing for irradiation. Samples measured 1.5-3.0 mm diameter and 1-14 mm long, depending on the amount of material available and the expected strength of the activation product.

The samples were irradiated during several different runs over a period of several years at the Rotating Target Neutron Source (RTNS II) at Lawrence Livermore National Laboratory. Some of the smaller samples were irradiated very close to the source allowing us to obtain fluences of about 10^{17} n/cm² in about one week of operation. Larger samples were irradiated at much larger distances from the source by piggybacking with different irradiations over periods up to 7 months. In this way we were able to obtain fluences up to $2 \times 10^{18} n/cm^2$. In each case, dosimetry materials were included with each irradiation and neutron fluence maps were generated. Shorter irradiations used the ${}^{93}Nb(n,2n){}^{92m}Nb$ (10 d) reaction which has a nearly flat energy response near 14 MeV with a cross section of 463 mb $(\pm 4\%)$.¹ For the long irradiations, the ⁵⁴Fe(n,p)⁵⁴Mn (312 d) reaction was used to determine the fluence. The cross section for this reaction drops from 331 mb at 14.5 MeV to 303 mb at 14.8 MeV, with an uncertainty of $\pm 7\%$ ¹ The mean neutron energy at each sample is determined by the deuteron beam energy, energy loss in the tritium targets, and reaction kinematics. Calculations of the neutron spectra as a function of angle were recently published.² Careful measurements of the geometry for each irradiation, as well as the neutron dosimetry mapping, permitted us to determine the average neutron energy and fluence for each sample; more detailed results have been published previously.³

Previous Measurements

Activation cross sections for 22 reactions to shorter-lived reaction products measured at the RTNS II were recently published.¹ Measurements were reported previously for the ²⁷Al(n,2n)²⁶Al reaction to the ground state (720,000 y) and isomeric state (6.34 s)⁴ and for the ⁵⁴Fe(n,2n)⁵³Fe(β)⁵³Mn (3.7x10⁶ y)⁵. These reactions have thresholds near 14 MeV and have been shown to be very useful for plasma diagnostics.⁶ Due to the steep energy dependence near threshold, fusion activation calculations are very dependent on the plasma temperature and the presence of neutral beams. We have recently published results for the production of ⁹¹Nb (700 y) and ⁹⁴Nb (20,400 y) from natural Mo and ⁹⁴Mo.² All of these measurements were performed by gamma spectroscopy, although ²⁶Al was also measured using the relatively new technique of accelerator mass spectrometry.

Liquid Scintillation Measurements

Several new measurements have been completed using liquid scintillation spectrometry to detect radioisotopes which decay by electron capture or lowenergy beta decay. In most cases, the desired long-lived activities cannot be easily detected due to the presence of other shorter-lived activities from the sample or impurities. Hence, radiochemistry was used to separate the desired activities prior to analysis. Gamma and x-ray spectroscopy was used to monitor the separations. Samples were generally dissolved in acid and separated using ion-exchange reactions. Complete chemical procedures have been published elsewhere.⁷ Identification of the desired activity was confirmed by analysis of the liquid scintillation energy spectrum. Standard solutions of ⁵⁵Fe and ⁶³Ni were prepared to match the concentration (quenching) expected for the samples. In the case of ⁵⁹Ni, the spectrum was assumed to be similar to that of ⁵⁵Fe since the x-rays and conversion electrons only differ in energy by about 1 keV. The ⁵⁹Ni x-rays were counted using a thin, intrinsic Ge detector which was calibrated using ⁵⁴Mn, ⁵⁵Fe, ¹³⁷Cs, and ²⁴¹Am standards.

⁵⁵Fe Measurements

⁵⁵Fe has a halflife of $2.73\pm.03$ y and decays by electron capture producing Auger electrons and x-rays near 6 keV.⁸ ⁵⁵Fe was produced by the ⁵⁶Fe(n,2n) reaction from natural Fe and isotopically separated ⁵⁶Fe(99.87%). The principal unwanted activities in the samples were ⁵¹Cr, ⁵⁴Mn, ⁵⁷Co, and ⁵⁸Co. The first two were produced by reactions on ⁵⁴Fe, principally in the natural Fe target whereas the Co activities were observed from Co and Ni impurities in the ⁵⁶Fe samples. All of these undesirable activities were easily removed by ion-exchange.⁷

Figure 1 shows the liquid scintillation spectra for 55 Fe both from our samples and the standard solution. The data are given in Table II. As can be seen, our results for the 56 Fe(n,2n) 55 Fe cross sections near 14.8 MeV have a standard deviation of only 2.6%.

⁶³Ni Measurements

⁶³Ni has a halflife of 100.1±2.1 y and decays by β^- emission with an endpoint energy of 66 keV (average energy = 17 keV).⁸ ⁶³Ni was produced by the ⁶⁴Ni(n,2n) and ⁶³Cu(n,p) reactions. The ⁶⁴Ni was enriched to 93.57% and the copper had the natural abundance of 69.17% for ⁶³Cu. The ⁶⁴Ni samples contained undesirable activities of ⁵⁴Mn, ⁵⁷Co, ⁵⁸Co, and ⁶⁰Co, whereas the Cu samples contained mainly ⁶⁰Co. All of these unwanted activities were easily removed by ion-exchange separations.⁷

For both reactions, no residual activities were detected by gamma spectroscopy. Samples were prepared from the ion-exchange column wash and all of the unwanted activites could be accounted for within a few percent. Figure 2 shows the liquid scintillation spectra for each case, both before and after chemical separations, as well as the spectra from the standard solutions. As can be seen, the spectra from the separated materials closely match that of the standards. The neutron cross section data for each sample are listed in Table II. Again we note that the scatter in the data is only 1.5% for both the Ni and Cu samples.

⁵⁹Ni Measurements

⁵⁹Ni has a halflife of $7.5\pm1.3\times10^4$ y and decays by electron capture emitting about 6 keV Auger electrons and 7 keV x-rays.⁸ ⁵⁹Ni was produced from the ⁶⁰Ni(n,2n) reaction using separated isotopes of ⁶⁰Ni (99.81%). The principal unwanted activities were ⁵⁴Mn, ⁵⁷Co, ⁵⁸Co, and ⁶⁰Co.

The chemical procedures were initially the same as for 63 Ni. Although the Co activities were readily separated by ion-exchange, we were only able to remove about 99.7% of the 54 Mn which left a residual activity comparable to that from 59 Ni. Furthermore, the spectrum may contain a contribution from 63 Ni. In spite of the low 64 Ni content (less than 0.02%), our present measurements of the (n.2n) reactions indicate that the 63 Ni activity could be comparable with that of 59 Ni.

Consequent's, we decided to count the 7 keV x-rays from the decay of ⁵⁹Ni which have an intensity of $33.1\pm1.7\%$.⁸ Samples were prepared from the purified Ni elutant by evaporating several milligrams of Ni onto an aluminum counting plate. Net corrections on the order of 10% were applied for self-absorption and scattering. In this case ⁶³Ni does not interfere since the β^- decay produces no Co x-rays. Data are listed in Table II. Uncertainites are larger for this reaction due to poorer counting statistics and the large (17%) uncertainty in the halflife.⁸

Comparison With Previous Data

All of the measured neutron cross sections are summarized in Table III, where they are also compared with previous data. In the case of the ⁵⁶Fe(n,2n)⁵⁵Fe reaction, our data are seen to agree quite well with previous data by Wenusch⁹, Frehaut¹⁰, Molla¹¹, and Kozyr¹². The measurement by Joensson et al.¹³ is clearly much lower. Our ⁶³Cu(n,p)⁶³Ni cross sections are somewhat lower than previous measurements.^{14,15} However, these are measurements of the total proton production cross section which includes other possible reactions and hence are expected to be larger than our measurement. The measurement by Molla et al.¹¹, is directly comparable to ours since they measured the β^- activity from ⁶³Ni. However, their cross section has a relatively large uncertainty (40%) compared to our measurement (6.7%). No previous data were found for the ⁶⁰Ni(n,2n)⁵⁹Ni or ⁶⁴Ni(n,2n)⁶³Ni reactions.

Discussion and Conclusions

The measured neutron cross sections can be used to calculate the production of long-lived isotopes in fusion reactor materials, as shown in Table IV. These calculations are for the STARFIRE¹⁶ fusion reactor design for a six year operating time (21.6 MW-y/m²); however, effects due to thermal neutrons have been neglected due to uncertainties in shielding calculations. In most cases, the activation is mainly due to the interaction with 14 MeV neutrons since there is no significant neutron flux above the typical threshold energies of 7-13 MeV. However, in the case of the 63 Cu(n,p) reaction, lower energy neutrons increase the production of 63 Ni significantly. Since we do not know the energy-dependent cross section for this reaction, we assumed that the relative contribution from lower energy neutrons would be about equal to that from the 14 MeV neutron flux, as reported previously.¹⁷ Calculations were not included for the 27 Al and 54 Fe(n,2n) reactions since the activities are crucially dependent on the plasma temperature and neutral beam heating parameters.⁶

The fusion reactor activities reported in Table IV can be compared to previous estimates.¹⁷ This comparison is not straightforward since we have neglected effects due to thermal neutrons. However, it is not certain that the relatively high thermal fluxes given for the STARFIRE¹⁶ first-wall spectrum should be used for bulk materials due to neutron shielding effects. If we compare our measurements with the 14 MeV cross sections used in that study, we find that the ⁶³Cu(n,p) values are 80% higher, the ⁶⁰Ni(n,2n) values are 3.0 times higher, and the ⁹⁴Mo(n,p) values are about 50% lower. Values for the other reactions are quite similar. Hence, we would expect that the activity levels would scale accordingly if we included secondary effects due to thermal neutrons and side reactions as done in reference 17. The implications of these activities for fusion reactor design depend crucially on the details of the design as well as our assumptions regarding future regulations for the disposal of waste materials.

Acknowledgements

This work was supported by developmental funding from the Analytical Chemistry Laboratory at Argonne and by the Office of Fusion Energy, U. S. Department of Energy. We would also like to thank the staff of the RTNS II facility, D. W. Kneff (Rockwell International, Canoga Park, CA), and D. G. Doran and H. L. Heinisch (Hanford Engineering Development Laboratory)for assisting with the neutron irradiations.

References

1. L. R. Greenwood, Recent Research in Neutron Dosimetry and Damage Analysis for Materials Irradiations, Symp. on Effects of Rad. on Mater., Seattle, June 1986, ASTM-STP956, in press.

2. L. R. Greenwood, D. G. Doran, and H. L. Heinisch, Phys. Rev. 34C,76-80(1987).

3. D. W. Kneff, B. M. Oliver, H. Farrar IV, and L. R. Greenwood, Nucl. Sci. Eng.

92,491-524(1986).

4. R. K. Smither and L. R. Greenwood, J. Nucl. Mater. 122, 1071-1077(1984).

5. R. K. Smither and L. R. Greenwood, Damage Analysis and Fundamental Studies Prog. Rep. DOE/ER-0046/17,11-13 (1984).

6. R. K. Smither, L. R. Greenwood, and H. Hendel, Rev. Sci. Instrum. 56,1078-1080(1985).

7. D. L. Bowers and L. R. Greenwood, Analysis of Long-Lived Isotopes by Liquid Scintillation Spectrometry, Proc. Int. Conf. on Meth. and Appl. of Radioanalytical Chem., Kona, Hawaii, April 1987, to be published.

- 8. E. Browne and R. B. Firestone, Table of Radioactive Isotopes, V. S. Shirley, Ed., John Wiley, New York (1986).
- 9. R. Wenusch and H. Vonach, Oesterr. Sci. Acad. 99,1(1962).
- J. Frehaut, A. Bertin, R. Bois, and J. Jary, Symp. on Neutron Cross Sections from 10-50 MeV, BNL/NCS-51245,399(1980).
- 11. N. I. Molla and S. M. Qaim, Nucl. Phys. 283A, 269 (1977).
- 12. Yu E. Kozyr and G. A. Prokopets, Sov. Nucl. Phy. 27,329(1978).
- 13. B. Joensson, K. Nyberg, and I. Bergqvist, Arkiv for Fysik 39,295(1969).
- 14. D. L. Allan, Nucl. Phys. 24,274(1961).
- 15. R. S. Storey, Proc. Phys. Soc. 75,526(1960).

 STARFIRE - A Commercial Tokamak Fusion Power Plant Study, ANL/FPP-80-1, September 1980.

17. H. L. Heinisch, F. M. Mann, and D. G. Doran, Fusion Technol. 8,2704-2707(1985).

Figure Captions

1. Liquid scintillation spectra for ⁵⁵Fe from the ⁵⁶Fe(n,2n) reaction: The initial dissolution (DS); the ion-exchanged solution (IX); and the ⁵⁵Fe standard (STD).

2. Liquid scintillation spectra for 63 Ni from the 63 Cu(n,p) and 64 Ni(n,2n) reactions:

The initial dissolutions (DS); ion-exchange products (IX); and 63 Ni standard (STD).

Isotope	Half-life,y	Reactions	Status
¹⁴ C	5730	$^{14}N(n,p)$	in progress
²⁶ Al	7.2x10 ⁵	²⁷ Al(n,2n)	Ref 4
⁵³ Mn	3.7x10 ⁶	⁵⁴ Fe(n,2n)β ⁵⁴ Fe(n,d+np)	Ref 5 Planned
⁵⁵ Fe	2.73	⁵⁶ Fe(n,2n)	This work
⁶³ Ni	10 0.	⁶³ Cu(n,p) ⁶⁴ Ni(n,2n)	This work This work
$^{59}\mathrm{Ni}$	7.6x10 ⁴	⁶⁰ Ni(n,2n)	This work
⁹³ Zr	1.5x10 ⁶	⁹⁴ Zr(n,2n) ⁹³ Nb(n,p)	In progress In progress
⁹² Nb	3.2x10 ⁷	$^{93}Nb(n,2n)$	In progress
91Nb	7 00.	$^{92}Nb(n,2n)$	Ref. 2
⁹⁴ Nb	2.0x10 ⁴	⁹⁴ Nb(n,p)	Ref. 2
⁹³ Mo	3 500.	$^{94}Mo(n,2n)$	In progress

,

Table I: Long-lived Activities in Fusion Materials

	النكار المرجع بمحافظت فالبنطالة بتجينا وبمناو	فالباب ويستحد فببسا والمنافات ويبيسان			
Sample	Energy ^a MeV	Fluence 10 ¹⁷ n/cm ²	At. Ratio 10 ⁻⁸	σ mb ^b	
⁵⁶ Fe-1	14.83	1.88	8.58	456.	
⁵⁶ Fe-2	14.82	1.61	7.34	456 .	
⁵⁶ Fe-3	14.85	1.31	5.86	44 8.	
Fe-1	14.68	10.30	48.6	47 2.	
Fe- 2	14.81	4.53	19.9	44 0.	
Results for ${}^{63}Cu(n,p){}^{63}Ni$					
	Energy ^a	Fluence	At. Ratio	σ	
Sample	MeV	$10^{17} n/cm^2$	10^{-8}	mb ^c	
Cu-1	14.65	1.17	6.40	54.7	
Cu-2	14.65	1.14	6.16	54.0	
Cu-3	14.82	0.462	2.45	53.0	
Results for ⁶⁴ Ni(n,2n) ⁶³ Ni					
	Energy ^a	Fluence	At. Ratio	σ	
\mathbf{Sample}	MeV	$10^{17} n/cm^2$	10^{-7}	mb ^c	
⁶⁴ Ni-1	14.85	1.96	1.90	967.	
⁶⁴ Ni-2	14.83	1.65	1.57	94 8.	
Results for ⁸⁰ Ni(n,2n) ⁵⁹ Ni					
	$Energy^{a}$	Fluence	At. Ratio	σ	
Sample	MeV	$10^{17} n/cm^2$	10^{-8}	mb ^d	
⁶⁰ Ni-1	14.81	1.26	1.57	124 ± 9	
⁶⁰ Ni-2	14.83	1.78	1.73	97±6	
⁶⁰ Ni-3	14.82	1.34	0.95	84±9	

Table II: Results for ⁵⁶Fe(n,2n)⁵⁵Fe

^aMean energy; width ≈ 0.5 MeV

^bUncert.: Stat. 1%, eff. 3%, std. 5%, $T_{1/2}$ 1.1%, fluence 5%, net 7.8% ^cUncert.: Stat. 1%, eff. 3%, std. 2.5%, $T_{1/2}$ 2.0%, fluence 5%, net 6.7% ^dUncert.: Stat. above, eff. 4%, $T_{1/2}$ 17%, fluence 5%, net 19-23%

		Present			
Reaction	\mathbf{E}_{n}	σ, mb	\mathbf{E}_n	σ, mb	Ref.
⁵⁶ Fe(n,2n) ⁵⁵ Fe	14.8	454±35	14.0	440±90	9
			14.3	410 ± 33	10
			14.7	440 ± 40	11
			14.6	480 ± 50	12
			15.1	190 ± 40	13
${}^{63}Cu(n,p){}^{63}Ni$	14.7	54±4	14.7	125±5 0	11
$^{63}Cu(n,px)^a$			14.0	105 ± 9	14
			14.1	149±3 0	15
$^{64}{ m Ni}({ m n},{ m 2n})^{63}{ m Ni}$	14.8	958±64		none	
⁶⁰ Ni(n,2n) ⁵⁹ Ni	14.8	104±25		none	
94 Mo(n,p) 94 Nb	14.7	55±6		none	
$^{Nat}Mo(n,x)^{94}Nb$	14.7	7.8±0.8		none	
$^{Nat}Mo(n,x)^{91}Nb$	14.7	≈45		none	

Table III: Summary and Comparison of Results with Previous Data

^aTotal proton yield from ⁶³Cu includes other reactions

Material	Isotope	Activity,mCi/cc
Iron	⁵⁵ Fe	25,000.
Copper	⁶³ Ni	1795.
Nickel	⁶³ Ni	227.
	⁵⁹ Ni	0.99
Molybdenum	⁹¹ Nb	122.
	⁹⁴ Nb	0.77

Table IV: Fusion	Reactor Activation Calculations
(STARFIRE design)	$, 21.6 \text{ MW-y/m}^2, 3000 \text{ day cooling})$

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.