ANL/FPP /IM-197

ANL/FPP/TM--197

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

DE85 005791 Argonne, Illinois 60439

SPECTER: NEUTRON DAMAGE CALCULATIONS FOR MATERIALS IRradiations

by
Lawrence R. Greenwood and Robert K. Smither

Fusion Power Program

January 1985

Table of Content:

Page
Abstract 1
I. Introduction 2
II. Theory 4
A. Pre-Processing of Nuclear Data 5
B. Elastic Scattering 6
C. Irelastic Scattering 6
D. ($n, x n$) Reactions 7
E. Charged Particle Reactions 8
F. The (n, y) Reactions 8
G. Beta Decay 15
H. Secondary Displacement Model 17
III. Discussion and Use of Results 19
IV. The SPECTER Computer Code 21
A. SPECTER Input 23
B. SPECTER Output 26
C. Specific Instructions for the NMFECC CRAY Computer 26
D. SPECTER Resul's for Selected Cases 32
Keferences 34
Appendices:
A. Displacement Damage-Energy Cross Section Tables (In order of increasing atomic number.) A-1
B. Graphs of Displacement Damage-Energy Cross Sections (In order of increasing atomic number) B-1

list of Figures

No: Title Page
1 Typical neutron capture recoil event. 10
2 (a) Recoil energy spectrum for three gamma rays (7 Mev, 2 Mev,and 1 MeV) considered as separate events in the ${ }^{57} \mathrm{Fe}(\mathrm{n}, \mathrm{y})^{58} \mathrm{Fe}$reaction. (b) The recoil energy spectrum for a two-step cascade($E_{\gamma}=7 \mathrm{MeV}$ and 2 MeV) which has a rectangular shape followed bya one-step cascade ($E_{Y} * 1 \mathrm{MeV}$) which generated the spike at 9.3eV. (c) The recoil energy spectrum of a chree-step cascade ($E=$Z $\mathrm{MeV}, 2 \mathrm{MeV}$, and 1 MeV) which results in a near trapezoidalShape distribution.12
3 Recoil atom energy spectrum for the beta-decay of ${ }^{28}$ Al ($\mathrm{T}_{1 / 2}=2.24 \mathrm{~m}$). 18
4 Displacement damage energy cross section for nickel showing contributions from each subreaction. 20
5 Recoil atom energy spectrum for nickel averaged over the neutron energy spectrum in the PTP position of HFIR. 24
6 Helium (appm) and dpa rates per week for iron are shown for most of the fusion naterials irradiation facilities 33
B-I Displacement damage-energy cross sections for $\mathrm{H},{ }^{3} \mathrm{He}$, and ${ }^{4} \mathrm{He}, \ldots \mathrm{B}-2$
B-2 Displacement damage-energy cross sections for ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$, and $\mathrm{Be} . . . \mathrm{B}-2$
B-3 Displacement damage-energy cross sections for $C,{ }^{10_{B}}$, and ${ }^{11_{B}}$ B-3
B-4 Displacement damage-energy cross sections for N, O, and F B-3
B-S Displacement damage-energy cross sections for Na, Mg, and Al B-4
B-6 Displacement damage-energy cross sections for Si, P, and S B-4
8-7 Displacement damage-energy crosis sections for Cl, K, and Ca B-5
B-8 Displacement damage-energy cross sections for Ti, V, and Cr B-5
B-9 Displacement damage-energy cross sections for Mn, Fe, and Co B-6
B-10 Displacement damage-energy cross sections for Ni and Cu B-6
B-I Displacement damage-energy cross sections for Zr, Nb, and Mo B-7
B-12 Displacement damage-energy cross sections for ${ }^{107} \mathrm{Ag},{ }^{109} \mathrm{Ag}$ and Ta B-7
B-13 Displacement damage-energy cross sections for W isotopes B-8
B-14 Displacement damage-energy cross sections for Au and Pb B-8

List of Tables

No.TitlePage
I Elements, Reactions, and ENDF/B-V References for SPECTER 3
II Cutoff Energies and (n, γ), β-decay Recoil Energies (eV) 14
III Sample Specter Input 27
'V MACKLIB Output from SPECCER (HFIR-CTR32 Input in Table III) 28
V Sample Gas Production Results from SPECTER (HFIR Input in Table III) 29
VI Displacement Damage Output from SPECTER (HFIR-CTR32 Input in Table III) 30
VII Selected Displacement-Damage Cross Sections from SPECTER 31

Abstract

Neutron displacement damage-energy cross sections have been salculated for 41 isotopes in the energy range from $10-10$ to 20 MeV . Calculations were performed on a 100 -point energy grid using nuclear cross sections from ENDF/B-V and the DISCS computer code, Elastic scattering is treated exactiy including angular distributions from ENDF/B-V. Inelastic scattering calculations consider both discrete and continuous nuclear level distributions. Multiple ($n, x n$) reactions use a Monte Carlo technique to derive the recoil distrim butions. The (n, d) and (n, t) reactions are treated as (n, p) and $\left.n,{ }^{3} \mathrm{He}\right)$ as $(\mathrm{n}, 4 \mathrm{He})$. The (n, y) reaction and subsequent β-decay are Also included, using n new treatment of $\gamma-\gamma$ coincidences, angular correlations, $B-n e u t r i n o$ correlations, and the incident neutron energy. The inndhard model was used to compute the energy available for nuclear displacement at each recoil energy. The SPECTER computer code has been developed to simplify damage calculations. The user need only speaify a neutron energy spectrum. SPECTER will then calculate spectral-averaged displacements, recoil spectra, gas production, and total damage energy (Kerma). The SPECTER computer code paciage is readily accessible to the fusion community via the National Magnetic Fusion Energy Computer Center (NMFECC) at Lawrence Livermore National Laboratory.

I. Introduction

Neutron radiation damage in materials results from nuclear collisions and :eactions which produce energetic recoll atoms of the host material or reaction products. These recoiling atoms then generate electronic excitations in the host macerial (electronic energy loss) and elastic and inelastic collision events (nuclear energy loss) that sometimes result in displacing additional host atoms. This report deals with the calculation of the second type of damage (nuclear energy loss) mentioned above which will be referred to in later discussions as displacement damage. In metals this is the only process that leads to permanent damage and the displacements-per-atom (DPA) is routinely used to characterize neutron irradiations. For insulators the electronic Interactions also lead to permanent damage so the Irradiations are characterized by the total dose in Rads. We use the Lindhard modell to calculate the partition of recoil energy between nuclear and electronic effects for the recoiling atoms.

Calculations of displacement cross sections have been done using the DISCS2 computer code. A complete description of the code is given in Ref. 2 and only a brief summary will be discussed in this report. All nuclear reaction data was obtained from ENDF/B-V3 distributed by Brookhaven National Laboratory. The most important reactions have been treated exactly; however, simplifying approximations have been made for several of the less important reactions. The list of elements and reactions included is given in Table I. Some approximations are required for all elements since nuclear data is simply not available in some cases, especially between $6-13 \mathrm{MeV}$ and above 15 MeV . Nevertheless, most of these approximations do not significantly contribute to the overall errors of the displacement cross sections. Absolute errors are

Table I: Elements, Reactions, and EHDF/B-Y References for SPECTER All elements have ENDF files for elastic scatering. Only Be lacks an inelastic scattering file and He lacks a capture дamma file.

Reactions Included in ENDF/B-V

typically estimated at $10-30 \%$, mainly due to errors in the nuclear data for elastic and inelastic scattering and ($n, x m$) reactions.

It must also be pointed out that the calculated cross sections only describe the initial displacement of atoms from their lattice sites. Naturally, many displaced atoms will recombine with holes in the lattice. especially at elevated temperatures. Hence, some of the displacement damage can always be annealed out of the material. The present cross sections are thus most directly applicable to cryogenic temperatures where defects tend to be "frozen in". On the other hand, the present cross sections are still crucially important in characterizing irradiations since they are measure of the total damage energy deposited in a material, and changes in physical and mechan!cal properties are fundamentally related to the available energy. Furthermore, nuclear displacew ments or damage energy remove the spectral dependence that is inherent in simply quoting neutron fluence. Hence, the DPA unit is now the recommended value to characterize neutron irradiations. 4
II. Theory

The probability of displacing atoms from their lartice sites depends on the incident neutron energy and cross sections, primary recoil atom energy distributions, and secondary recoil atom probabilities. Mathematically this is expressed as follows:

$$
\begin{equation*}
\sigma \text { DIS }(E)=\sum_{i} \sigma_{i}(E) \int_{T 1}^{T 2} k(E, T\rangle_{i} v(T) d T \tag{1}
\end{equation*}
$$

where $\mathrm{E}=$ incident neutron energy (laboratory system), $\mathrm{T}=$ recoil nucleus energy (laboratory system), $\sigma_{i}(E)=$ nulcear cross section for channeliat energy $E, K(E, T)_{i}=$ neutron-atom energy transfer kernel, and $v(T)=$ secondary displacement function.

The kernel K is simply the probability thnt n neutron of enerky f will produco a recoil atom of energy T known as a primary knock-on ntom (IKA). The functon v then describes how many additional or secondary atoms will be knocked aut due to the stopping of t : first recoil atom. The secondary displacement function $v(T)$ is the most uncertain term in Eq. (1) since it requires a detailed knowledge of the nuclear stopping cross section for a recoiling atom as well as the energy required to displace an atom from its lattice site. The Lindhard modell is used to describe nuclear stopping. Experimental and theoretical studies ${ }^{5}$ have been made to determine the effective atomic binding energies or -ia average recoil-energy loss per displacement.

The evaluation of Eq. (1) for various neutron interactions with materials primarily involves the definition of the energy transfer kernel, $K(E, T)$, for each specific reaction. The relationship between neutron energy and recoil energy can be described by one general equation derived from conservation of energy and momentum in the center of mass system:

$$
\begin{equation*}
T\left(E, E_{x}, \theta\right)=U_{3} E_{x}+U_{1} U_{4} E-2\left[E E_{x} U_{2} U_{3} U_{4}\right]^{1 / 2} \cos \theta \tag{2}
\end{equation*}
$$

where $E_{x}=U_{2} E_{1}+Q=$ total energy, $Q=$ energy-mass conversion in the nuclear reaction, $\theta=a n g l e$ between the indicent neutron direction and the recoil atom direction, $U_{i}=m_{i} /\left(m_{1}+m_{2}\right), m=m a s s$, and $i=1,2,3$, or 4 for the neutron, target atom, emitted particle, and recoil atom, respectively, Each reaction will now be considered separately.
A. Pre-Processing of Nuclear Data

In order to use DPA as a neutron exposure unit it is necessary to average the energy-dependent displacement cross sections over the neutron energy spectrum. This requires that the displacement cross sections be groupaveraged, especially in the resonance energy region where sharp, rapid
fluctuations occur, This is most simply accomplished by group-averaging eli nuclear data prior to running the DISCS code. The code INDISC6 wan thus written to read the ENDF/B-V magnetic tapen from BNL and to produce 100-group cross sections and elastic angular distributions. Calculations in the resolved and unresolved resonance regions use the RESCAL7 subroutine which uses integral approximation formulae to evaluate the group cross sections. The RESCAL results are then collapsed without any spectral weighting to the 100-point grid used in this report. We normally perform flux-spectral dosimetry on the same grid to facilitate spectral averaging: however, this is certainly not required.
B. Elastic Scattering

Elastic sattering cross sections and angular distributions are available for most elements. Hence, this process can be treated exactly. Since there is no conversion of mass into energy $(Q=0)$ and the initial and final masses are identical, the transfer kernel can be written simply as follows:

$$
\begin{equation*}
K(E, T) d t=\sum_{\ell} \frac{(2 \ell+1)}{4 \mu_{1 \mu 2} E} a_{\ell}(E) P_{\ell}\left(1-\frac{T}{2 \mu_{1 \mu 2} E}\right) \tag{3}
\end{equation*}
$$

where the P_{ℓ} terms are Legendre polynomials and the energy-dependent coeffic* ients, $a_{\ell}(E)$, are taken from ENDF/B-V. The elastic scattering displacement cross section is usually the dominant process especially at low neutror energies.

C. Inelastic Scattering

Inelastic scattering involves the excitation of the compound nucleus Into either a resolved or unresolved level. Resolved levels can be treated exactly however, engular distributions are not always available. Hence, we
have made the approximation that the reactions are isotopic in the center-ofmass coordinate system. Unresolved levels are treated using the evaporation model, as follows:

$$
\begin{equation*}
P\left(E, E_{x}\right)=C E_{x} \exp \left(-E_{x} / \theta[E]\right) \tag{4}
\end{equation*}
$$

where E_{x} is the excitation energy, θ is the nuclear temperature, defined as [E/AA] ${ }^{1 / 2}$ where $A A$ is the level density parameter, $\left(m_{2} / 10\right)$, and C is a normalization constant. The function P is the probability that an incident neutron of energy E will produce a nuclear de-excitation energy, E_{x}.

If the nucleus is left with sufficient energy to evaporate a second neutron, then the $\left(n, n^{\circ}\right)$ process is treated as an ($n, 2 n$) process, as will be discussed later.
D. (n, xn) Reactions

Multiple particle reactions are more difficult to handle since secondary neutron energy distributions are not generally kiown. We have thus assumed that each neutron emission can be descirbed by the evaporation model, given in Eq. (4) except the E_{x} is now the energy of the first or second neutron and the temperature is adjusted to fit the available excitation energy for each decay. The energy transfer kernel, K, is now developed by a Monte Carlo simulation procedure. Random numbers are selected sequentially from the neutron probability distributions and random angles are chosen between the directions of emission. Conservation of energy and momentum is then applied in a straightforward manner to determine the recoil atom energy which is collected in a histogram. Several thousand events are usually needed to obtain a smooth energy distribution. At present only ($n, 2 n$) events are treated exactly and multiple decay is treated as if it were an ($n, 2 n$) event. This approxi-
mation is not very important in the present case aince the data filea stop at 20 MeV which is below the threshold energy for mozt ($\mathrm{n}, 3 \mathrm{n}$) reactions.

E. Charged Particle Reactions

Charged particle reactions are also treated using the evaporntion model with the important addition of a coulomb barrier, as follows:

$$
\begin{equation*}
P\left(E, E_{x}\right)=\frac{\left.\left(E_{x}-E_{c}\right) \exp \left(-E_{x}-E_{c}\right) / \theta[E]\right)}{C_{p}} \tag{5}
\end{equation*}
$$

where E_{x} is the particle energy and E_{c} is the coulomb barrier height, given by:

$$
\begin{equation*}
E_{c}=C_{k}\left(1.44 \times 10^{-13} Z_{3} Z_{4}\right) /(R o+R c) \tag{6}
\end{equation*}
$$

Where Z_{3} and Z_{4} are the atomic numbers of the particle and recoil nucleus. Ro is the radius of the compound nucleus $\left[1.5 \times 10^{-13}\left(m_{1}+m_{2}\right) 1 / 3\right]$, and R_{c} and C_{k} are correction tertus. 8 The normalization constant " C_{p} " is given by:

$$
\begin{equation*}
C_{P}=\int_{E C B}^{E(\max)} P(E, E x) d E x \tag{7}
\end{equation*}
$$

In the DISCS code we assume that all charged particle angular distributiois are isotropic in the center-of-mass system since nuclear data is generally not available. We further approximate the (n, d) and (n, t) reactions by adding their cross sections to the (n, p) cross section and adding ($n, 3 \mathrm{He}$) reactions cross section to the $(\mathrm{n}, 4 \mathrm{He})$ cross section. None of these approximations are very significant since the charged particle cross sections are generally much less than those for scattering and the ($n, 2 n$) processes. Hence, charged particle displacements are usually less than 10% of the total.
F. The (n, y) Reactions

In previous treatments the reoofl energy calculated for the (n, r) reaction included only the recoil energy associated with the emission of prompt gamma rays. 9 The present program includes the recoil effects associated with
the finite energy of the incoming neutron as woll as the additional recoil energy generated by the 8 -decay process when appropriate (see Section 6), The calculation of all three of theae offects heve been discussed in recent publications. 10,11,12,13 A short aummary of each appears below combined with the discussion of how they are used in the program to calculate displacement darage. A typical (n, r) plus B-decay recoil sequence appears in Fig. 1.

The recoll energy resulting from the emission of an individual gamana ray is given by Eq. (8).

$$
\begin{equation*}
E_{X}(e v)=\frac{E_{Y}^{2}}{(A+1\rangle m_{0} c^{2}}=\frac{536.7 E_{Y}^{2}}{(A+1)} \tag{8}
\end{equation*}
$$

where " E_{γ} " is the gamma-ray energy in MeV and " A " is the atomic weight of the capturing atom. The recoil energy associated with the finite energy of the incoming neutron is given by Eq. (9).

$$
\begin{equation*}
\left.E_{r}(e v)=\frac{E_{n}(e v)}{(A}+\frac{1}{1}\right) \tag{9}
\end{equation*}
$$

where E_{n} is the incident neutron energy in ev. If the capture state is shortlived, then the momentum of the two recoils will add vectorially and the recofl energy will be given by Eq. (10).

$$
\begin{equation*}
E_{Y}=\frac{E_{Y}{ }^{2}}{(A+1) m_{O} c^{2}}+\frac{E_{n}}{A+1}+\frac{2}{A+1}\left(\frac{E_{Y}^{2} E_{n}}{m_{0} c^{2}}\right)^{1 / 2} \cos \theta \tag{10}
\end{equation*}
$$

where θ is the angle between the two momentum vectors (see Fig. 1). The recoil energy generated by two successive gamma rays with a short lifecime for the intermediate state is given by Eq. (11)

$$
\begin{equation*}
E_{r}=\frac{1}{(A+1) m_{0} c^{2}}\left[E^{2} \gamma 1+E^{2} \gamma_{2}+2 E_{\gamma 1} E_{\gamma 2} \cos \theta\right] \tag{11}
\end{equation*}
$$

so the momentum kick received from the incoming neutron acts just like the emission of a gamma ray of the appropriate energy. This means that the neutron

Fig. 1. Typical neutron capture recoil event. The neutron (n) strikes the target nucleus (A) and is captured, producing nucleus (B) which recoils a distance (d_{1}) before emitting a gmma ray (γ_{1}). An additional gama ray is emitted (Y_{2}) after " B " recoils a distance $\left(d_{2}\right)$ and a number of secondary recoil displacements (S) are produced before the nucleus (B) comes to rest. A third gama ray (Y_{3}) is emitted and the recoiling atom (B) produces an additional secondary displacement before coming to rest. A fourth gama ray is emitted and the recoiling atom (B) produces another secondary displacement (S) before coming to rest. $A B$ and a neutrino axe then emitted as nucleus "B" β-decays to form nucleus " C ". The recoiling " C " produces a secondary displacement before coming to rest. A gama ray (Y_{5}) is then emitted and the recoiling atom (C) produces a secondary displacement before coming to rest.
momentum is treated the same way mathematically as the momentum generated by gama ray emission. Figure 2 shows the recoll energy apectrum for three gamma rays emmitted sequentially when (a) both intermedinte states are slow, (1) the first intermediate state is fast and the second is slow, and (c) when both intermediate states have short lifetimes. The gama rays are asaumed to be emitted isotropically.

The average recoil energy for this three gamma cascade is given by Eq. (12).

$$
\begin{equation*}
\bar{E}_{V}(\text { triple cascade })(e v)=\frac{536.7}{A+1}\left[E_{\gamma 1}^{2}+E_{\gamma 2}^{2}+E_{\gamma}^{2}\right] \tag{12}
\end{equation*}
$$

The general expression for "i" gamma cascades plus the incoming neutron energy is given by Eq. (13)

$$
\begin{equation*}
\bar{E}_{v}\left(i_{\gamma}{ }^{\prime} s+n\right)(e v)=536.7\left[E^{2} \gamma 1+E^{2} \gamma^{2} \ldots E_{\gamma}^{2}\right]+\frac{E n}{A+1} \tag{13}
\end{equation*}
$$

where the "Eyis" are in "MeV" and the "En" is in "ev". Note that this result is independent of the lifetime of the intermediate states and also the angular correlation of the gamma rays. This last fact comes about because the $\gamma-\gamma$ angular correlations involve only even powers $0 \leq \cos \theta$ so the effects are symmetric and no shift in the average energy results. This independence of the average recoil energy from both the lifetimes of the intermediate states and the $\gamma^{-\gamma}$ angular correlations makes it possible to calculate the average recoil energy per neutron capture without knowing anything about the level scheme or ganma-ray branching ratios of the product nucleus. All that is needed is the relative intensities of the gama rays produced by the (n, y) reaction. The tabulation of (n, γ) spectra by V.J. Orphan, et al. 14 were used for most of the cases calculated and the relative intensities were normalized so that

$$
\begin{equation*}
I_{\gamma} E_{\gamma}=E_{b} \tag{14}
\end{equation*}
$$

Fig. 2. (a) Recoil energy spectrum for three gama rays (7 MeV, 2 MeV , and $1 \mathrm{MeV})$ considered as separate events in the $57 \mathrm{Fe}(\mathrm{n}, \mathrm{r}) 58 \mathrm{Fe}$ reaction. (b) The recoll energy spectrum for a two-step cascade ($E_{\gamma}=7 \mathrm{MeV}$ and 2 MeV) which has a rectangular shape followed by a one-step cascade ($E_{\gamma}=1 \mathrm{MeV}$) which generated the spike at 9.3 eV . (c) The recofl energy spectrum of a three-step cascade ($\mathrm{E}_{\boldsymbol{\gamma}}=7 \mathrm{MeV}, 2 \mathrm{MeV}$, and 1 MeV) which results in a near trapecoidal shape distribution.

Where E_{γ} is the gamma-ray energy, I_{γ} is the gamma-ray intensity in photons per neutron capture and E_{b} is the neutron binding energy in the final nucleus: The average recoil energy, E_{r}, is then given by Eq. (15)

$$
\begin{equation*}
\bar{E}_{V}(\mathrm{ev})=\frac{537.7}{A+1} \sum_{i} I_{Y i} E^{2} Y_{i}(\mathrm{Mev}) \tag{15}
\end{equation*}
$$

where $I_{Y i}$ is the intensity and $E_{Y i}$ is the energy of the " 1 th" gamma ray. The values of Er listed in Table II are calculated with a low-energy cutoff so that the sum goes from E_{Y} (max) to E_{Y} (cutoff) where

$$
\begin{equation*}
E_{\gamma}(\text { cutoff })=\left[\frac{A+1}{538.7} \cdot E_{v}(m i n)\right]^{1 / 2} \tag{16}
\end{equation*}
$$

Where E_{V} (min) is the minimum energy needed to produce a primary displacement 50\% of the time. These minimum recoll energies are listed in Table II. These cutoff energies are the same as those used in calculations of recoils from nuclear scattering and nuclear reactions in Sections $B-E$. The average recoil energy per neutron capture is multiplied by the Lindhard factorl to obtain the fraction of the recoil energy that produces displacement damage thus eliminating the fraction that produces electron damage. The corrected values of \bar{E}_{Y} are also listed in Table II.

In the above discussion it is important to remember that one is calculating average recoll energies per neutron capture rather than average recoil energy per emitted gama ray. These two numbers can be quite differeric when many gamma-rays are emitted per neutron capture. The use of a cut-off energy in this calculation underestimates the average recoil energy because there will be cases where a low-energy gamma-ray in the cascade with an energy below the cutoff will be emitted soon enough to be part of the cormer recoil event and should have been added to the sum.

Table II. Cutoff Energies and (n, r), B-decay Recodl Energios (eV) $E_{d}=$ Lindhard cutoff; energy requirad to displace atom $T_{G A M}=$ Recoil energy from (n, r), B-decay

Element	TGAM					TGAM	
	Ed	True ${ }^{\text {a }}$	Effectiveb	Elament	Ed	Truea	Effectiveb
H	10	1329	528	Ti	40	367	400
$3^{\text {He }}$	10	56849	3988	v	40	465	447
4 He	10	--		Cr	40	516	554
6 Li	10	3200	1824	Mn	40	363	395
7 lic	10	3.0×10^{6}	7555	Fe	40	404	395
Bed	31	1230	1307	Co	40	327	360
10 B	25	933	711	Ni	40	530	491
11 B	25	6427	4013	Cu	40	403	366
C	31	683	671	Zr	40	112	142
${ }_{1}$	30	2311	1659	Nb	40	102	111
160	30	366	292	Mo	60	132	105
F	30	1544	1207	107 Ag	50	132	143
Na	25	497	618	109 Ag	60	145	166
Mg	25	284	574	Ta	53	107	19
Al	27	696	674	182W	90	114	14
Si	25	335	565	183W	90	118	20
p	30	613	500	184W	90	115	13
s	30	584	473	186W	90	119	15
C1	40	655	532	Au	30	75	66
K	40	218	349	Pb	25	140	126
Ca	40	210	388				

${ }^{\text {a }}$ True average energy of recoil spectra (spike approximation).
${ }^{\text {b }}$ Effective damage energy allowing for cutoff, gamma multiplicity, and lindhard factor.
${ }^{c} 7_{\text {li }}$ capture to 8 Be results in 2α decay.
$d_{\text {Beta-decay not included due to long half-life. }}$

The energy spectra for the primary recoils reaulting from the (n, y) reactions are not available from the present computer program. Detailed knowledge of the level schemes, gamma ray branching ratios and lifetimes of the intermediate states are needed to perform these calculationa. Some individual primary recoil spectra for Ni and Fe isotopes were caiculated during the analysis and reported in DAFS Reports. 11,12
G. Beta Decay

The (n, r) reaction will of ten produce on unstable product nucleus $(A+1)$ whict then B decays to a new nucleus $(A+1,2 \pm 1)$. The combined momentum of the beta-ray and the neutrino produces a recoll event that can result in further displacemenc damage. In some cases this displacement damage is larger than the displacement damage generated by the (n, y) reaction. This β-decay displacement damage has been calculated for all the elements listed in Table I. As noted above, this 8 -decay displacement damage energy is corrected for the lindhard factor and then added to the (n, γ) displacement damage energy so that only one number, the sum, appears in the program.

The average recoll energy for the $B-$ decay process depends not only on the end-point energy but also on the angular correlation between the electron and the neutrons. This correlation is determined by the energy of the electron and by the type of B -decay interaction, i.e., Tensor, axial vector, scaler, etc. In practice the average recoll energy per a_{d} decay is usually between 60% and 80% of the maximum recoil energy. A value of 70% is used to calculate the average damage energies where the form of the a decay is unknown. If any ganma rays are emitted following the β decay the average recoil energy per s-decay for these gamma rays is added to the average recoil energy from
the B-decay process. Thus for the case where the character of the β-decay is unknown the average recoil energy per β decay is given by Eq. (17)

$$
\begin{align*}
& \bar{E}_{r}\left(\beta+\delta^{\prime} s\right)=0.7 E_{r}(\beta \text { max })+\frac{1}{2(A+1) m_{O} c^{2}}\left[E_{\gamma 1}^{2}+E^{2} \gamma_{\gamma}+e t c .\right] \tag{17}\\
& \tag{18}\\
& \quad E_{r}(\beta \max)=\frac{E 2_{\beta}(\operatorname{mar})}{Z(A+1) m_{O} c^{2}}\left[1+\frac{m_{O} c^{2}}{E_{\beta}(\max)}\right]
\end{align*}
$$

The recoil energy generated by an individual s decay is given by
Eq. (19)

$$
\begin{align*}
& E_{v}(\beta+V)=\frac{1}{2(A+1) m_{0} c^{2}}\left\{E_{e}\left(E_{e}+2 m_{o} c^{2}\right)+E_{0}-E_{e}\right)^{2} \\
& +2\left[E_{e}\left(E_{e}+2 m_{o} c^{2}\right)\right] l / 2\left[E_{0}-E_{e}\right] \cos \theta \mid \tag{19}
\end{align*}
$$

where " E_{e} " is the electron energy, " E_{0} " is the end point energy, " m_{0} " is the atomic mass unit, " m_{e} " is the electron mass and " θ " is the angle between the electron and the neutrino emmission, It is convienent to rewrite Eq. (19) in turms of the normalized energy parameter, $a=E_{e} / E_{o}$ and $b=m_{e} c^{2 / E} E_{0}$. Equation (19) then becomes Eq. (20).

$$
\begin{equation*}
E_{V}(b+V)=\frac{E_{0}^{2}}{2(A+1) m_{0} c^{2}}\left\{(a(a+b)]+(1-a)^{2}+[a(a+b)] 1 / 2(1-a) \cos \theta\right\} \tag{20}
\end{equation*}
$$

The number of recoils per electron energy increment, dE_{e} and angular increment $d \theta$ is given by Eq. (21)

$$
\begin{equation*}
F\left(E_{e}, \theta\right) d E_{e} d \theta=(a+b)^{2}(1-a)^{2}\left(1+C \frac{V_{e}}{c} \cos \theta\right) F_{s} \frac{V_{e}}{c} d \theta d E_{e} \tag{21}
\end{equation*}
$$

where " V_{e} / c " is the velocity of the electron divided by the speed of light and " $F_{s}\left(V_{e} / c\right)$ " is a slowly varying function of V_{e} / c which remains close to one in most cases. The coefficient " C " depends on the character of the β-decay Interaction and reflects the angular correlation between the electron and the neutrino. If the coefficient " C " is known then Eq. (20) and Eq. (21) can be
used to calculate the primary recoil energy spectrum for the β-decay process and also the average recoil energy per β decay. Figure 3 shows the racoil spectrum for the B decay of 28 Al ($C_{0}=2.871$, axial vector, $c=-1 / 3$). The average value of the recoil energy for this case is 61% of the maximum value of $E_{r}(B+)$ which occurs when $E_{e}=E_{0}$.
H. Secondary Dispiacement Model

As discussed previously in Section II, DISCS uses a secondary displacement function, $v\langle T\rangle$ to describe the production of secondary recoil atoms as the primary recoil atom stops in the material. This function appears explicitly in Eq. (1). We use the Lindhard theoryl to describe $v(T)$, as follows:

$$
\begin{align*}
& v(T)=\frac{0.8 T_{D A M}}{2 E_{D}}, T \geq 2 E_{d} \tag{22}\\
& v(T)=1, E_{d}<T<2 E_{d} \tag{23}\\
& v(T)=0, T<E_{d} \tag{24}
\end{align*}
$$

where T is the recoil energy and E_{d} is the energy required to remove an atom from its latice site (see Table II).

The function $T_{\text {DAM }}$ in Eq. (22) is defined as the energy available for producing racoils. In the Lindhard model, this is simply the nuclear stopping fraction. If the total recoil energy is T, then:

$$
\begin{equation*}
\frac{T_{\text {DAM }}}{T}=\frac{1}{[1+k g(E)]} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\frac{T}{\left(0.0869 z^{2 / 3}\right)}, T \text { in kev } \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{K}=0.0876 \mathrm{z}^{1 / 6} \tag{27}
\end{equation*}
$$

$$
z=\text { atomic number }
$$

Fig. 3. Recoll atom energy spectrum for the beta-decay of 28 Al ($\mathrm{T}_{1 / 2}=$ 2.24 m). Both the beta and neutrino are taken into account, as described in Refs. 10 and 11.

According to Robinson 15 , the function $g(E)$ can be described by:

$$
\begin{equation*}
g(E)=E+0.402 E^{3 / 4}+3.40 E 1 / 6 \tag{28}
\end{equation*}
$$

For simplicity, it should be noted that the equations above assume that the atomic number 2 is about half the atomic weight. A more generalized equation is found in Ref. (1).
III. Discussion and Use of Results

The calculated displacement damage-energy cross sections are listed in Appendix A and shown in Appendix B. The relative contributions to the total displacement cross section are shown in Fig. 4 for iron. In order to use this data for a given irradiation, the user must multiply these cross sections times his particular neutron energy spectrum. This yields the damage-energy per atom. To get actual displacements, one must also multiply by a fáctor of $0.8 / 2 E_{D}$ where E_{D} is the effective displacement threshold energy listed in Table II. TThe value of 0.8 is an empirical efficiency factor and the factor of 2 corrects for the many nuclear collisions which absorb energy but do not produce a displacement.] The advantage of listing crosis sections in this fashion is that they are relatively independent of the value chosen for E_{D} which ray be changed at the discretion of the user.

The computer code SPECTER (see Section IV) has been developed to routinely provide users with spectral-averaged cross sections and PKA distributions. Each reaction is listed separately and gas production cross sections can also be obtained. This program, as well as all of our data files, are resident at the Magnetic susion Energy Computer Center at Lawrence Livermore Laboratory. Most fusion experimenters thus have easy access to the data. The SPECTER code is also designed to couple with our flux unfolding code STAYSL 16 so that the flux covariance matrix can be used to correctly determine uncertainties in DPA values for a given irradiation.

Fig 4. Displacement damage energy cross section for nickel showing contributions from each subreaction. These cross sections were calculated using the DISCS code (Ref. 2) and the values are stored in the SPECTER master libraries.

IV, The SPECTER Computer Code
The SPECTER computer code has been written to facilitate damage calculations for any specified neutron irradiation. Unlike some older codes, SPECTER relies on master libraries of displacement cross sections, recoll dist.ributions, and other nuclear data. Hence, the DISCS code only needs to be used to generate the master libraries. SPECTER itself is thus a relatively short program however, the library files are rather extensive. In order to run SPECTER, a user need only specify the neutron flux spectrum. The program will then convert the required master library files into the users group structure and proceed to spectral average all quantities. If en irradiation time is specified, then the code will provide absolute displacements, gas production, etc.

In order to provide users with the most complete package of damage information, we have also included the MACKLIB17 library of total damage from Kerma or Rads and the ENDF/B-V Gas Production File (533)l8 for the latest gas production values. It should be noted that iACKLIB was generated using ENDF/B-IV; however, the differences with Version V are quite small, especially concerning total damage energy. As to gas production, the program will actually list two values for a few elements. We assume that the Gas Production File (listed first) is the most accurate and should always be used in preference to the general ENDF files (listed by element).

The SPECTER computer code has several limitations, which are worth noting. The code was originally written to calculate damage from medium weight elenents, such as iron. In these cases only the heavy recoil nuclei need be considered in subsequent damage calculations. Hence, for very light nuclei some error may be introduced when the light charged particle is neglected. In fact, the only significant error occurs for the $6_{L i}(n, \alpha)$ t and $10_{B}(n, \alpha)^{7} \mathrm{Li}$ reactions
where the displacements calculated by the code are incorrect. However, this error is not very important due to a second limitation of SPECTER, mamely, that displacements are always assumed to occur in a pure metallic latefce. Hence, litilium displacements in lithium would only rarely be of interest. In both cases, true displacementa can be casily computed from thermal kinematics and basic Lindhard theory (see Section II-H).

For insulators or other compounds or alloys, we assume that the appropriate displacements or gas production can be determined by aimply adding up the individual contributions from each element weighted by the appropriate atomic fraction. In fact, this approximation is only valid when all elements in the mixture have nearly equal atomic weights (e.g., stainless steel). For other cases, a revised secondary displacement formalism is clearly required. 19 At present, no computer sodes have been writien to do this properly.

It must also be remembered that SPECTER does not account for burnup and neutron self-shielding effects. Both effects are usually only important in regard to the thermal neutron flux. For fast neutrons, both effects are usually quite small for a small sample and, in the case of burnup, it is usually true that the transformed element produces displacements at a rate comparable to the original target element. For thermal neutrons, these effects must be considered since elements with a high thermal cross section can be depleied or produce very nonuniform damage in the sample. For example, if we consider cobalt in mixed reactor like the High Flux Isotopes Reactor at Oak Ridge National Laboratory, SPECTER predicts that the (n, γ) reaction produces 21% of the displacement damage. However, tre large thermal cross section will lead to rapid depletion of the cobalt in thin samples and strongly nonunifurn damage gradients in thick samples. In such cases, users must have access to time-dependent neutronics calculations and then use SPECTER to
predict the damage at aiven location in the sample at a given time in the Irradiation. Burnup effects may be seen in the gas file output, eapecially for ${ }^{6} \mathrm{Li}$ and ${ }^{10} \mathrm{~B}$. In these casea, a burnup correction can be made by replacing the total helium value (α, t) by the expression $1-\exp (-\sigma, t)$.

Due to tha large sixe of the PKA recoil files, SPECTER may be run without them (see Section $I V-A$). If they are needed, then the user must select one of four groupings of elements to be calculated. Concatenation of these files is possible, but not recommended due to disk storage limitations on most computers. In severe cases, users may be forced to run SPECTER with the PKA files on magnetic tape. Far such users, smaller version of SPECTER exists which only retains the total recoil spectra rather than recoils for each type of nuclear reaction, A sample spectral-averaged recoil spectrum is shown in Fig. 5. The contribution from each reaction type is shown on the figure.

SPECTER does not include the two-step thermal reaction, $58 \mathrm{Ni}(\mathrm{n}, \boldsymbol{\gamma}) 59 \mathrm{Ni}$ $(n, a)^{56 F e}$, whlch is used to simulate fusion-like helium-to-dpa ratios in siainless steel in mixed-spectrum reactors. This reaction has been diacussed in recent publications. 20,21 The energetic (340 keV) 56 Fe recolls from this reaction produce significant extra displacement damege in the ratio of 1 dpa for every 567 appm He generated.
A. SPECTER Input

Formats listed below are only required by the CRAY version of SPECTER at the NMFECC. Versions watten for the IBM and wix computers have no fornat restrictions.

Input File <Unit 5):

1. TITLE $40 \wedge 2$ Title of job (full line).
2. ITYP, ISIG, IGP, IPKA, ACNM, TIME, (4I2, 2F10.4).

ITYP = 0 if no flux covariances; 2 otherwise

Fig. 5. Recoil atom energy spectrum for nickel averaged over the neutron energy spectrum in the PTP position of UFIR. Each subreaction calculated by SPECTER is shown separately.

ISIG $=1$ to print dpa cross sectiona 0 otherwise
IGP - O for group-averaged differential flux

- 1 for point differential flux
- 2 for group flux

IPKA = O to calculate PKA distributions

- 1 to calculate only dpa's
$A C N M=1.0$ unless file is generated by other codes (STAY'SL) TIME = Time in seconds (for fluence, dpa, etc.)

3. NPT (I3) $=$ number of flux points or groups.
4. Energies (7E10.3) = energies starting at lowest (MeV).
5. Fluxes ($7 \mathrm{E} 10,3$) $=\mathrm{flux}$ values (note if IGP=2, there shouid be one extra upper energy listed).

Optional

6. Flux covariance matrix (7E10.3), only half need be listed since matrix is symmetric. First entry of each line is the diagonal variance. (This file is normally generated by STAY'SL.)

Logical Unit Assignments:
5 Input file
6 Output File
10 PKA File (one of four groups)
15 DPA File (one of four groups)
17 MACKLIB File
18 Gas Production File
23 (n, γ), B-decay File
If IPKA $=1$, then file 10 is not needed. If IPKA $=0$, then files 10 and 15 must match (i.e., PKA2 with SIGD2. etc.).

Grouping of Elements:

File $1 \quad H$ to F
File 2 Na to Ca
File 3 Ti to Mo
File 4 Ag to Pb
A sample SPECTER input file is shown in Table III.
B. SPECTER Output

1. List of input spectrum in group-differential form (E in MeV, flux in $n / \mathrm{cm}^{2}-\mathrm{s}-\mathrm{MeV}$).
2. List of Kerma factors (MACKLIB), Rads $=$ Kerma x neutron fluence.
3. List of gas production from ENDF File 533, Gas (appm) = cross section \times neutron fluence.
4. Detailed output by element:
dpa, He, $H=$ cross section \times neutron fluence
Displacement cross sections (barns)
Displacement-damage cross sections (keV-barns)
Ordinary nuclear cross sections (barns)
Capture gamma and β-decay damage
5. PKA files (IPKA = 0)

Differential Recoil Spectra
Integral Recoil Spectra (Norm = 1.0)
Average Damage Energy
Average PKA Energy
A sample output is shown in Tables XV-VI.
C. Specific Instructions for the NMFECC CRAY Computer

Users with access to the National Magnetic Fusion Energy Computer
Center can imediately run SPECTER by copying public files from user $=15060$

Table III: Sample Specter Input

Table IV: MACKIIB Output From SPECTER (HEIR-CIR32 Input in Table III)

SPECTRAL AVERAGED KERMA (MACKLIB)

KEV-BARNS RADS (4.78E+22)
HYDROGEN
DEUTERIUM
HELIUM
LITHIUM 6
LITHIUM 7
BERYIIUM
BORON 1O
BORON 11
CARBON 1a
NITROGEN
OXYGEN
FLOURINE
SODIUM
MAGNESIUM
ALUMINUM
SILICON
CHLORINE
POTASSIUM
CALCIUM
TITANIUM
VANADIUM
CHROMIUM
MANGANESE
IRON
COBALT
NICKEL
COPPER
ZIRCONIUM
NIOBIUM
MOLYBDENUM
TIN
TANTALUM
TUNGSTEN 182
TUNGSTEN 183
TUNGSTEN 184
TUNGSTEN 186
LEAD
THORIUM 232
PROTACTINIUM
URANIUM 233
URANIUM 234
URANIUM 235
URANIUM 236
URANIUM 238
NEPTUNIUM
PLUTONIUM 238
PLUTONIUM 239
PLUTONIUM 240
PLUTONIUM 241
PLUTONIUM 242
AMERICIUM 241
AMERICIUM 243

$6.1958 \mathrm{E}+02$	$2.8602 \mathrm{E}+14$
$4.2973 \mathrm{E}+02$	$9.9188 \mathrm{E}+13$
$3.5032 \mathrm{E}+02$	$4.0404 \mathrm{E}+13$
$1.5566 \mathrm{E}+06$	$1.1977 \mathrm{E}+17$
$2.8416 \mathrm{E}+02$	$1.8740 \mathrm{E}+13$
$1.7247 \mathrm{E}+02$	$8.8344 \mathrm{E}+12$
$3.1076 \mathrm{E}+06$	$1.4345 \mathrm{E}+17$
$1.2387 \mathrm{E}+02$	$5.1985 \mathrm{E}+12$
$1.1110 \mathrm{E}+02$	$4.2741 \mathrm{E}+12$
$5.4035 \mathrm{E}+02$	$1.7809 \mathrm{E}+13$
$9.6357 \mathrm{E}+01$	$2.7802 \mathrm{E}+12$
$1.1791 \mathrm{E}+02$	$2.8651 \mathrm{E}+12$
$1.7774 \mathrm{E}+02$	$3.5689 \mathrm{E}+12$
$6.6489 \mathrm{E}+01$	$1.2625 \mathrm{E}+12$
$1.5652 \mathrm{E}+02$	$2.6780 \mathrm{E}+12$
$6.1526 \mathrm{E}+01$	$1.0113 \mathrm{E}+12$
$4.2339 \mathrm{E}+03$	$5.5129 \mathrm{E}+13$
$2.0186 \mathrm{E}+02$	$2.3831 \mathrm{E}+12$
$1.5160 \mathrm{E}+02$	$1.7461 \mathrm{E}+12$
$1.3873 \mathrm{E}+02$	$1.3370 \mathrm{E}+12$
$1.9190 \mathrm{E}+03$	$1.7390 \mathrm{E}+13$
$6.3946 \mathrm{E}+01$	$5.6772 \mathrm{E}+11$
$3.6924 \mathrm{E}+03$	$3.1026 \mathrm{E}+13$
$3.7253 \mathrm{E}+01$	$3.0793 \mathrm{E}+11$
$3.9908 \mathrm{E}+01$	$3.1260 \mathrm{E}+11$
$1.1319 \mathrm{E}+02$	$8.8997 \mathrm{E}+11$
$6.9447 \mathrm{E}+02$	$5.0455 \mathrm{E}+12$
$2.4555 \mathrm{E}+01$	$1.2427 \mathrm{E}+11$
$2.6752 \mathrm{E}+01$	$1.3292 \mathrm{E}+11$
$3.5935 \mathrm{E}+02$	$1.7291 \mathrm{E}+12$
$1.9910 \mathrm{E}+01$	$7.7439 \mathrm{E}+10$
$1.8129 \mathrm{E}+01$	$4.6251 \mathrm{E}+10$
$1.7285 \mathrm{E}+01$	$4.3843 \mathrm{E}+10$
$1.6182 \mathrm{E}+01$	$4.0820 \mathrm{E}+10$
$1.4577 \mathrm{E}+02$	$3.6824 \mathrm{E}+11$
$9.0611 \mathrm{E}+03$	$2.2489 \mathrm{E}+13$
$2.3218 \mathrm{E}+01$	$5.1730 \mathrm{E}+10$
$4.8211 \mathrm{E}+03$	$9.5929 \mathrm{E}+12$
$1.4967 \mathrm{E}+04$	$2.9910 \mathrm{E}+13$
$3.3954 \mathrm{E}+07$	$6.7271 \mathrm{E}+16$
$4.3370 \mathrm{E}+04$	$8.5560 \mathrm{E}+13$
$3.3628 \mathrm{E}+07$	$6.6059 \mathrm{E}+16$
$1.9563 \mathrm{E}+04$	$3.8266 \mathrm{E}+13$
$1.0099 \mathrm{E}+04$	$1.9588 \mathrm{E}+13$
$5.2736 \mathrm{E}+04$	$1.0272 \mathrm{E}+14$
$1.1091 \mathrm{E}+06$	$2.1513 \mathrm{E}+15$
$6.5438 \mathrm{E}+07$	$1.2639 \mathrm{E}+17$
$6.5751 \mathrm{E}+04$	$1.2647 \mathrm{E}+14$
$7.1867 \mathrm{E}+07$	$1.3766 \mathrm{E}+17$
$4.6266 \mathrm{E}+04$	$8.8255 \mathrm{E}+13$
$3.9403 \mathrm{E}+05$	$7.5476 \mathrm{E}+14$
$3.7071 \mathrm{E}+04$	$7.0424 \mathrm{E}+13$
10	

* Caution: Burnup effects not included.

Table V. Sample Gas Production Results from SPECTER (HFIR Input in Table III)

SPECTRAL AVERAGED GAS PRODUCTION (ENDE 533)

	SICMA (MB)	$\begin{gathered} \text { GAS (APPM) } \\ (4.78 \mathrm{E}+22) \end{gathered}$
LI6 (N. HYDROGEN)	9.7882E-01	4.6824E+01
LI6 (N, DEUTERIUM)	$2.3394 \mathrm{E}+01$	$1.1191 \mathrm{E}+03$
LI6 ($\mathrm{N}, \mathrm{TRITIUM}$)	3.1126E+05	$1.0000 \mathrm{E}+06$
LI6 (N.HELIUM)	$3.1128 \mathrm{E}+05$	$1.0000 \mathrm{E}+06$
LI 7 (N, DEUTERIUM)	3.4531E-03	$1.6519 \mathrm{E}-01$
LI7 (N, TRITIUM)	$4.5686 \mathrm{E}+\infty$	2.1855E+02
LI 7 (N, HELIUM)	$2.8447 \mathrm{E}+01$	1.3608E+03
BE9 (N, HYDROGEN)	4.6710E-06	2.2345E-04
BE9 (N,DEUTERIUM)	5.0308E-06	$2.4066 \mathrm{E}-04$
BE9 (N, TRITIUM)	6.1720E-04	$2.9525 E-02$
BE9 (N, HELIUM)	$4.8723 \mathrm{E}+01$	$2.3308 E+03$
B10 (N, HYDROGEN)	$1.7095 \mathrm{E}+\infty$	8.1780E+01
B1O (N, DEUTERIUM)	2.7667E-01	$1.3235 \mathrm{E}+\mathrm{O1}$
B10 (N, HELIUM)	1.2753E+06	$1.0000 \mathrm{E}+06$
B11 (N. HYDROGEN)	4.7018E-05	2.2492E-03
B11 (N, TRITIUM)	4.5617E-04	2.1822E-O2
B11 (N, X) HELIUM	9.8452E-03	4.7097E-01
C12 (N, HYDROGEN)	$3.5266 \mathrm{E}-05$	$1.6870 \mathrm{E}-03$
C12 (N, HELIUM)	4.5151E-01	$2.1599 \mathrm{E}+01$
N14 (N, HYDROGEN)	$6.1271 E+02$	2.9310E +04
N14 (N, HELIUM)	1.5503E+01	7.4162E+02
F19 (N,HYDROGEN)	2,2115E-01	$1.0579 \mathrm{E}+01$
E19 (N, HELIUM)	$4.6436 \mathrm{E}+\infty$	$2.2214 \mathrm{E}+02$
AL27 (N, HYDROGEN)	8.0259E-01	$3.8394 E+01$
AL27 (N. HELIUM)	1.7148E-01	$8.2029 \mathrm{E}+00$
SI28 (N, HYDROGEN)	$1.1873 \mathrm{E}+\infty$	$5.6796 \mathrm{E}+\mathrm{O} 1$
SI 28 (N, HELIUM)	5.7668E-O1	2.7587E+01
TI (N, HYDROCEN)	5.1671E-01	2.4718E+01
TI (N.HELIUM)	1.1246E-01	$5.3798 \mathrm{E}+\infty 0$
V ($\mathrm{N}, \mathrm{HYDROGEN}$)	9.8645E-02	$4.7189 \mathrm{E}+\infty$
\checkmark (N, HELIUM)	$5.7802 \mathrm{E}-03$	2.7651E-01
CR ($\mathrm{N}, \mathrm{HYDROGEN}$)	$7.9783 \mathrm{E}-01$	$3.8166 \mathrm{E}+01$
CR (N, DEUTERIUM)	1.8507E-05	8.8531E-04
CR (N, TRITIUM)	2.8279E-05	1.3528E-O3
CR (N, HELIUM3)	$9.0368 \mathrm{E}-07$	4.3230E-05
CR (N,HELIUM4)	$3.9193 \mathrm{E}-02$	$1.8749 \mathrm{E}+\infty$
MN55 (N.HYDROGEN)	1.4163E-01	$6.7752 \mathrm{E}+\infty$
MN55 (N, HELIUM)	3.4704E-02	$1.6602 \mathrm{E}+\infty$
FE (N,HYDROGEN)	$1.0707 \mathrm{E}+00$	$5.1222 \mathrm{E}+\mathrm{O} 1$
FE (N, HELIUM)	6.9787E-02	3.3384E+ +0
CO59 (N, HYDROGEN)	2.8617E-01	1.3690E+01
COS9 (N,HELIUM)	$3.4375 \mathrm{E}-02$	$1.6444 \mathrm{E}+\infty$
NI (N,HYDROGEN)	$1.2970 \mathrm{E}+01$	$6.2044 \mathrm{E}+02$
NI (N, DEUTERIUM)	2.5831E-03	1.2357E-O1
NI (N, HELIUM)	9.1864E-01	4.3945E+01
CU (N, HYDROGEN)	$2.2322 \mathrm{E}+\infty$	$1.0678 \mathrm{E}+02$
CU (N,HELIUM)	6.3302E-02	$2.9804 \mathrm{E}+\infty$

*Caution: Burnup effects not considered.

RITANIUM 1322

EDL $=0.40000 \mathrm{E}-04 \mathrm{MEV} \quad$ TOTAL ELUENCE $=4.78373 \mathrm{E}+22+/-3.70 \%$
$D P A=1.0464 E+01$ HRLIUM (APPM) $=5.3709 E+00$ HYDROCEN (APPM) $=2.4627 E+01$
ELASTIC INELST
($\mathrm{N}, 2 \mathrm{~N}$)
($\mathrm{N}, 2 \mathrm{~N}$) P
($\mathrm{N}, 2 \mathrm{~N}$) SUM
CH1
CH2
SUM

IRON - ${ }_{\text {EDL }}^{1326}=0.40000 \mathrm{E}-04$ MEV TOTAL ELUENCE $=4.78373 \mathrm{E}+22+/-3.70 \%$
$D P A=9.1455 E+\infty \quad$ HELIUM $(A P P M)=3.1944 E+\infty \quad$ HYDROCEN $(A P P M)=5.0028 E+01$

$1.2978 \mathrm{E}+025.7071 \mathrm{E}+011.8712 \mathrm{E}-02 \quad 5.7735 \mathrm{E}-027.6442 \mathrm{E}-026.6229 \mathrm{E}-018.9148 \mathrm{E}-021.8768 \mathrm{E}+02$ $+j-6.99 \%+j-5.64 \%+i-12.08 \%+j-12.15 \%+i-12.00 \%+i-5.91 \%+i-19.66 \%+/-6.23 \%$
 $+/-3.68 \%+/-7.08 \%+/-12.09 \%+/-12.17 \% \quad+/-4.61 \%+/-6.99 \%+j-3.63 \%$
CAPTURE GAMMA DAMAGE $=3.5033 E-01 \mathrm{KEV}-\mathrm{B}+/-\quad 4.04 \% \mathrm{CS}=8.5700 \mathrm{E}-01$ BARNS, \quad TCAM $=395.0 \mathrm{EV}$ TOTAL DPA CROSS-SECTION $=1.9118 E+01 \mathrm{KEV}-\mathrm{B}$; OR $1.9118 \mathrm{E}+02$ BARNS

```
COPPER - }\mp@subsup{}{\mathrm{ EDL }}{1329}=0.40000E-04 NEV TOTAL ELUENCE = 4.78373E+22 +/- 3.70 %
    DPA = 8.9212E + O HELIUN (APPM) = 2.8999E + O HINDROGEN (APPM) = 1.0298E+02
ELASTIC INELST (N, 2N) (N,2N)P (N,2N)SUM CH1 CH2 SUM
1.2490E+02 5.4999E+01 9.0949E-02 4.8554E-01 5.7643E-0I 7.5308E-01 3.2401E-02 1.8127E+02
1.2490E+01 5.4999E+OO 9.0949E-03 4.8554E-02 5.7643E-02 7.5308E-02 3.2401E-03 1.8127E+01
7.6410E+\infty 1.3669E-01 7.8463E-05 4.0682E-04 2.1526E-03 6.0621E-05 7.7804E+00 NUCLEAR - BNRNS
4/- 3.89% +/- 7.25% +/- 10.78% +/- 11.04%
+/- 5.65% j+/- 7.71% +/- 3.82%
CAPTURE GAMMA DAMAGE = 5.2225E-O1 KEV-B +/- 3.85% CS = 1.3295E*OO BARNS, TCAM = 366.0 EV
TOTAL DPA CROSS-SECTION = 1.8649E+O1 KEV-B; OR 1.8649E+02 BARNS
```

Table VII: Selected Displacement-Damage Cross Sections from Specrir To obtain displacement cross sections, multiply by 0. R/ $2 E_{d}$, where E_{d} is taken from Table II or a value of your choire. Values below are in keV-b.

Element	Theoretical			Reactors ${ }^{\text {d }}$			
	Thermala	Fission ${ }^{\text {b }}$	$14 \mathrm{MeV}{ }^{\text {c }}$	HFIR	EBR-II	FFTF	Fusion
Be	0.010	35.3	23.1	11.1	36.1	28.9	27.5
C	0.002	52.0	39.0	14.6	46.8	34.1	36.1
Na	0.328	97.1	140.	24.1	67.2	42.3	74.1
Mg	0.029	92.8	160.	24.4	73.7	52.3	81.5
Al	0.156	96.3	177.	23.2	65.1	41.5	83.2
Si	0.097	96.0	191.	22.7	64.4	38.8	85.0
K	0.733	89.3	257.	19.2	44.4	24.1	95.1
Ca	0.167	95.4	273.	20.2	47.2	25.5	101.8
Ti	2.44	92.8	244.	21.9	47.8	30,4	93.7
v	2.27	101.	270.	24.5	58.2	37.3	105.5
Cr	1.70	94.8	278.	21.6	52.0	30.6	104.0
Mn	5.25	94.6	260.	23.8	54.2	34.6	101.4
Fe	1.01	84.4	290.	19.1	46.3	27.3	101.8
Co	13.38	81.7	294.	24.1	49.0	30.4	102.9
Ni	2.20	85.0	300.	20.6	51.0	32.2	109.4
Cu	1.38	79.2	296.	18.6	46.6	28.5	103.8
2 r	0.026	86.0	259.	20.1	54.3	32.9	98.3
Nb	0.128	79.5	271.	18.5	49.9	29.8	96.9
Mo	0.268	83.5	259.	20.6	53.6	35.4	100.1
Ag	10.06	71.1	230.	23.0	42.0	24.9	83.0
Ta	0.401	53.5	216.	12.4	29.5	16.9	72.5
W	0.275	50.8	197.	11.6	28.6	16.5	68.0
Au	6.51	50.2	218.	15.8	27.7	16.4	72.5
Pb	0.021	59.6	203.	13.0	31.3	18.1	71.4

${ }^{\text {a }}$ Thermal (n, y). Value equals TGAM (Table 2) $\times \sigma_{0}(2200 \mathrm{~m} / \mathrm{s}$).
${ }^{6} 235 \mathrm{U}$ fission spectrum.
CAverage value of SPECTER energy group from $14-15 \mathrm{MeV}$.
dHFIR = High Flux Isotope Reactor (ORNL) - PTP position. EBR-II = Experimental Breeder Reactor II (ANL-W) - Row 2.
FFTF = Fast flux Test Facility (HEDL) - MOTA
Fusion = First Wall Fusion Spectrum (UWMàK design).
All values are averages over the entire spec:rum.
(L. Greenwood). Tha procedure for running SPECHER is contained in a aingle COSMOS file named COSPECT. This file will automatically do a FILEM to retriave the necessary files from disk, run SPECTER, and NETOUT the resulta to your location. The files needed by SPECTER are contained in my directory, . 111. Before running, copy both COSPECT and the directory . 111 to your space. Add to your FILEM space for a permanent record.

To run SPECTER, create an input file named SPIN (see sample in my directory as well as output SPOUT). Then simply type in: COSMOS COSPECT SITE = XXX BOX $=\mathrm{YYY}$ SPECTER will create an output file named SPOUT and do a NETOUT to your box.
D. SPECTER Results for Selected Cases

Table VII Lists ame selected spectral-averaged dpa cross sections for various neutron spectra, Figure 6 shows the calculated range of hellum and dpa values for typical irradiations in fusion materials facilities. Detailed examples of SPECTER results have also been published in many recent Damage Analysis and Fundamental Studies and Alloy Development for Irradiation Performance Quarterly Progress Reports published by the U.S. Department of Energy.

Fig. 6. Hellum (appm) and dpa rates per week for iron are shown for most of the fusion materials irradiation facilities. Note that fission reactors produce high dpa but lot helium (relative to fusion) whereas accelerators have a high helium-to-dpa ratio but low flux.

References

1. J. Lindhard, V. Nielsen, M, Scharff, and P, V. Thomeen, Mat. Phys. Mcdd. Dar, V. D. Selk, 22 \#10 (1963).
2. G. R. Odette and D. R, Dorian, Nucl. Technol. 29, 346 (1976).
3. Evaluated Nuclear Data File, National Neutron Cross Section Center, Brookhaven National Laboratory, 1979.
4. Recommendations of IAEA Working Group on Reactor Radiation Measurements, Nuc1. Eng. Des. 33, 92 (1975).
5. P. Vejda, Rev. Mod. Phys. 49, 481 (1977).
6. INDISC = A Computer Code to Process Resolved and Unresolved Resonance Data from ENDF/B-V, L. R. Greenwood, to be published.

7 RESCAL - A Computer Code so Process Resolved and Unresolved Resonance Data from ENDF/B-V, L, R, Greenwood, to be published.
8. K. Kikuchi and M. Kawai, Nuclear Matter and Nuclear Reactions, p. 135. (1968).
9. D. G. Doran, Nuc1. Sci. Eng. 49, 130 (1972).
10. R. K. Smither and L. R. Greenwood, 'Description of Neutron Capture and Beta-Decay Processes Leading to Displacement Production," DAFS Report DOE/ER0046/5, P. 29, May (1981).
11. R. K. Smither and L. R. Greenwood, "Primary Recoil Energy Spectra for the (n, γ) Reaction," DAFS Report DOE/EROO46/9, p. 55, May (1982).
12. R. K. Smither and L. R. Greenwood, "Damage Energy for (n, γ) and BetaDecay," DAFS Report DOE/ER0046/10, p. 28, August (1982).
13. R. K. Smither and L. R. Greenwood, Proc. Fourth ASTM-EURATOM Symp. on Reactor Dosimetry, NUREG/CP-0029, pp. 793-805, NBS, March (1982).

14 V. J. Orphan, N. C. Rasmussen, and T. L. Hayser. GA-10248, DASA-2500. Gulf General Atomic Report (1970).
15. M, Robinson, AEC Symp, Ser. 26, 397 (1971).
16. F, G. Perey, Least Squares Dosimetry Unfolding: The Program STAY'SL, ORNL/TM-5062 (1977); modified by L. R. Greenwood (1979).
17. Y. Gohar and M. A. Abdou, MACKLIB-IV, A Library of Nuclear Reaponse Functions Generated with the MACK-IV Computer Program from ENDF/B-IV, ANL/FPP/TM-106, March 1978.
18. ENDF/B-V Gas Production File (533), Brookhaven National Laboratory, March 1984.
19. D. M. Parkin and C. A. Coulter, J. Nucl. Mater. 103, 1315-1318 (1981).
20. L, R. Greenwood, J. Nucl. Mater. 115, 137-142 (1983).
21. L. R. Greenwood, D. W. Kneff, R, P. Skowronski, and F. M. Mann, J. Nucl. Mater. 122, 1002-1010 (1984).

APRENDIX A
Displacement Damage-Energy Crosi Section Tables

Displacement damage-energy cross aections are liated in unita of
keV-b. The displacement datiage cross sections can be obtained by multiplying times the factor $0.8 / 2 E_{d}$, where E_{d} is the cutoff energy in Table II (or a value of your choice). The cross sections are listed in order of increasing atomic number (except for Be which is included with H).

 wヵm

ENERGY	3-Ho	4-He	ENERGY	3-He	4-Ha
1.00E-10	124950,000	$0 . \infty$	0.088	10.22	2.12
1.00E-09	39425,000	0.00	0.110	9.84	2.26
1.00E-08	20630,000	0.00	0.135	9.55	2.38
2.30E-08	13835.000	0.00	0.160	9.36	2.51
5.00E-08	10397.000	0.00	0.190	9.23	2.64
7.60E-08	8445.000	0.00	0.220	9.08	2.79
1.15E-07	6912.500	0.00	0.255	8.95	2.98
1.70E-07	5662.500	0.00	0.290	8.88	3.16
2.55E-07	4635.000	0.00	0.320	8.81	3.41
3.80E-07	3827.500	0.00	0.360	8.73	3.74
5.50E-07	3137.500	0.00	0.400	8.66	4.20
8.40E-07	2545.000	0.00	0.450	8.61	4.84
1.28E-06	2078.000	0.00	0.500	8.58	5.67
1.90E-06	1709.200	0.00	0.550	8.53	6.72
2.80E-06	1398.700	0.00	0.600	8.52	8.18
4,25E-06	1144.700	0.00	0.660	8.53	10.22
6.30E-06	944.250	0.00	0.720	8.60	12.91
9.20E-06	779.500	0.00	0.780	8.69	15.53
1.35E-05	633.250	0.00	0.840	8.85	19.38
2.10E-05	520.500	0.00	0.920	9.02	23.19
3.00E-05	429.250	0.01	1.000	9.32	26.25
$4.50 \mathrm{E}-05$	348.500	0.01	1.200	9.70	24.41
6.90E-O5	285.750	0.01	1.400	10.08	20.41
1.00E-04	242.020	0.02	1.600	10.25	17.19
1.35E-04	212.200	0.02	1.800	10.25	14.96
1.70E-04	187.620	0.03	2.000	10.10	13.13
2.20E-04	165.350	0.04	2.300	9.92	11.70
2.80E-04	146.000	0.05	2.600	9.67	10.77
3.60E-04	129.750	0.06	2.900	9.35	10.04
4.50E-04	115.420	0.07	3.300	8.95	9.45
5.75E-04	101.220	0.09	3.700	8.60	9.02
7.60E-04	89.150	0.12	4.100	8.27	8.65
$9.60 \mathrm{E}-04$	78.350	0.15	4.500	7.91	8.28
1.28E-03	69.200	0.18	5.000	7.55	7.91
1.60E-O3	61.825	0.22	5.500	7.22	7.56
2.00E-03	53.800	0.28	6.000	6.84	7.17
2.70E-03	46.325	0.34	6.700	6.41	6.75
3.40E-03	40.200	0.42	7.400	6.02	6.33
$4.50 \mathrm{E}-03$	35.300	0.50	8.200	5.63	5.93
5.50E-03	31.075	0.59	9.000	5.27	5.51
7.20E-03	27.100	0.70	10.000	4.87	5.11
$9.20 \mathrm{E}-03$	23.707	0.83	11.000	4.53	4.75
1. 20E-O2	20.950	0.95	12.000	4.24	4.43
1.50E-O2	18.720	1.08	13.000	3.97	4.14
1.90E-O2	16.520	1.24	14.000	3.74	3.88
2.55E-02	14.725	1.39	15.000	3.55	3.65
$3.20 \mathrm{E}-\mathrm{O2}$	13.415	1.52	16.000	3.34	3.44
$4.00 \mathrm{E}-02$	12.227	1.67	17.000	3.15	3.26
5.25E-O2	11.287	1.82	18.000	3.00	3.10
6.60E-02	10.577	1.97	19.000	2.87	2.95

DISPLACEMENT DAMAGE-ENERGY CROSS SECTIONS, keV-b

ENERGY	6-Li	7-L1	ENERGY	6-Li	7-Li
1.00E-10	65176.000	1. 96	0.088	9.68	3.91
1.00E-09	20635.000	0.64	0.110	11.14	4.24
1.00E-08	10775.000	0, 34	0.135	14.37	4.85
2.30E-08	7230.100	0.23	0.160	22.56	6.11
5,00E-08	5432.500	0.17	0.190	43.47	9.39
7.60E-08	4412.500	0.14	0.220	72.38	35.58
1.15E-07	3610.000	0.12	0.255	59.47	43.85
1.70E-07	2957.500	0.10	0.290	39.97	18.81
2.55E-07	2418.800	0.08	0.320	27.08	11.52
3.80E-07	1997.000	0.06	0.360	20.40	9.29
5.50E-07	1635.800	0.05	0.400	16.71	8.70
8.40E-07	1326.300	0.04	0.450	14.44	8.28
1. 28E-06	1082.000	0.03	0.500	13.15	8.10
1,90E-06	889.010	0.03	0.550	12.27	8,18
2.80E-06	726.510	0.02	0.600	11.63	8.49
4.25E-06	593.500	0.02	0.660	11.14	8.99
6.30E-06	489.500	0.02	0.780	10.77	9.62
9.20E-06	404.500	0.01	0.780	10.56	10.21
1.35E-05	328.750	0.01	0.840	10.33	11.22
2.10E-05	269.750	0.01	0.920	10.16	12.53
3.00E-05	222.830	0.02	1.000	10.02	14.16
4.50E-05	180.900	0.02	1.200	9.92	14.92
6.90E-O5	148.430	0.02	1.400	10.02	14.77
1.00E-04	125.750	0.03	1.600	10.39	14.88
1,35E-04	110.300	0.03	1.800	11.17	15.23
1,70E-04	97.626	0.04	2.000	12.21	15.94
2.20E-04	86.251	0.04	2.300	13.35	16.97
2.80E-04	76.226	0.06	2.600	14.50	17.75
3.60E-04	67.701	0.07	2.900	16.04	18.33
4.50E-04	60.201	0.08	3.300	17.29	19.08
5.75E-04	52.800	0.11	3.700	18.04	20.79
7.60E-04	46.525	0.14	4.100	18.03	22.35
9.60E-04	40.900	0.17	4.500	17.79	22.09
1.28E-03	36.050	0.22	5.000	17.35	19.70
1.60E-03	32.275	0.27	5.500	17.09	19.01
2.00E-03	28.375	0.34	6.000	16.69	18.42
2.70E-03	24.968	0.43	6.700	16.40	17.20
3.40E-03	22.080	0.54	7.400	15.89	16.34
4.50E-03	19.753	0.66	8.200	15.35	16.10
5.50E-03	17.720	0.82	9.000	14.82	15.61
7.20E-03	15.823	1.01	10.000	14.16	15.04
9.20E-03	14.205	1.24	11.000	13.59	14.63
1.20E-02	12.898	1.48	12.000	13.05	14.25
1.50E-O2	11.853	1.74	13.000	12.51	13.75
1.90E-02	10.853	2.07	14.000	12.01	13.25
$2.55 \mathrm{E}-02$	10.088	2.41	15.000	11.57	12.86
3.20E-02	9.583	2.72	16.000	11.14	12.54
$4.00 \mathrm{E}-02$	9.185	3.06	17.000	10.75	12.21
5.25E-02	8.990	3.38	18.000	10.42	11.86
6.60E-02	9.080	3.67	19.000	10.13	11.58

DISPLACEMENT DAMAGE-ENERGY CROSS SECTIONS, keV-b

ENERGY	10-8	11-B	ENERGY	10-B	11-B
1.00E-10	725630.000	0.15	0.088	66.56	27.71
1.00E-09	231310.000	0.05	0.110	66.00	30.70
1.00E-08	121250.000	0.03	0.135	66.44	33.11
2.30E-08	81188.000	0.02	0.160	67.50	35.26
5.00E-08	61056.000	0.01	0.190	68.82	37.36
7.60E-08	49563.000	0.01	0.220	70.00	39.31
1.15E-07	40544.000	0.01	0.255	70.50	40.02
1.70E-07	33238.000	0.01	0.290	70.82	40.53
2.55E-07	27175.000	0.01	0.320	70.50	41.33
3.80E-07	22444.000	0.00	0.360	70. 32	44.90
5.50E-07	18381.000	0.00	0.400	70.25	76.56
8.40E-07	14906.000	0.00	0.450	69.69	59.78
1.28E-06	12156.000	0.00	0.500	67.63	48.72
1.90E-06	9993.800	0.00	0.550	64.50	46.32
2.80E-06	8162.500	0.00	0.600	61.17	45.06
4.25E-06	6668.800	0.00	0.660	58.12	44.05
6.30E-06	5503.100	0.00	0.720	55.42	43.53
9.20E-06	4548.800	0.00	0.780	53,63	43.26
1.35E-05	3695.600	0.00	0.840	51.26	42.42
2.10E-05	3033.800	0.00	0.920	49.31	41.03
3.00E-05	2505.000	0.00	1.000	46.49	41.74
4.50E-05	2034.400	0.00	1.200	42.58	62.42
6.90E-05	1670.000	0.00	1.400	39.63	45.70
1.00E-04	1413.800	0.08	1.600	40.49	43.95
1.35E-O4	1236.900	0.13	1.800	44.76	40.50
1.70E-04	1092.500	0.16	2.000	40.53	35.35
2.20E-04	963.750	0.18	2.300	42.64	37.99
2.80E-C14	851.250	0.22	2.600	47.97	35.51
3.60E-04	756.250	0.26	2.900	40.36	31.89
4.50E-04	671.250	0.31	3.300	33.92	34.24
5.75E-04	587.750	0.40	3.700	34.45	32.39
7.60E-04	517.060	0.50	4.100	36.47	29.42
9.60E-04	453.310	0.64	4.500	32.31	37.35
1.28E-03	398.440	0.81	5.000	27.83	36.88
1.60E-03	355.690	1.00	5.500	27.19	36.73
2.00E-03	310.940	1.29	6.000	29.35	35.26
2.70E-O3	272.310	1.64	6.700	30.98	33.04
3.40E-03	239.190	2.09	7.400	30.78	33.68
4.50E-03	212.190	2.60	8.200	30.09	30.69
5.50E-03	188.500	3.24	9.000	29.94	30.47
7.20E-03	166.000	4.10	10.000	30.59	30.42
9.20E-03	146.440	5.18	11.000	31.06	30.52
1.20E-02	130.380	6.46	12.000	30.98	31.23
$1.50 \mathrm{E}-02$	117.060	7.96	13.000	30.86	33.18
1.90E-02	103.880	11.42,	14.000	30.86	33.42
2.55E-02	93.126	12.22	15.000	30.90	33.20
3.20E-02	85.314	14.39	16.000	30.84	32.83
4.00E-02	78.251	17.16	17.000	30.83	32.46
5.25E-02	72.814	20.24	18.000	30.81	32.09
6.60E-02	68.814	23.88	19.000	30.77	31.70

田日月而
Nートルー
中 OWWH M JGH WNNHHHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
ヘNトトトト

ートト

男
$1 \rightarrow 1$ ○○¿ニ
$0100 \times \infty$ 中ـнの中心NHENGNWNNHFHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

 のजwNowm

DISPLACEMENT DAMAGE-ENERGY CROSS SECTIONS, keV-b

ENERGY	Al	Si	P	ENERGY	A1	Si	P
1.00E-10	1.20	0.69	0.67	0.088	35.15	5.21	13.90
1.00E-09	0.38	0.22	0.23	0.110	18.19	3.39	10.71
1.00E-08	0.20	0.11	0.12	0.135	61.45	2.55	17.65
2.30E-08	0.13	0.08	0.09	0.160	35.39	62.91	19.64
5.00E-08	0.10	0.06	0.06	0.190	42.91	91.10	22.34
7.60E-08	0.08	0.05	0.05	0.220	31.51	61.52	20.61
1.15E-07	0.07	0.04	0.04	0.255	34.40	51.46	28.01
1.70E-07	0.05	0.03	0.03	0.290	57.59	49.28	23.69
2.55E-07	0.04	0.03	0.03	0.320	36.47	48.04	28.25
3.80E-07	0.04	0.02	0.02	0.360	51.76	49.33	48.71
5.50E-07	0.03	0.02	0.02	0.400	68.19	50.69	46.70
8.40E-07	0.02	0.01	0.02	0.450	63.65	52.81	54.62
1.28E-06	0.02	0.01	0.01	0. .500	68.52	63.84	37.14
1.90E-06	0.02	0.01	0.01	0.550	70.95	67.60	57.32
2.80E-06	0.01	0.01	0.01	0.600	74.12	52.20	46.96
$4.25 \mathrm{E}-05$	0.01	0.01	0.01	0.660	63.56	56.30	46.94
6.30E-06	0.01	0.01	0.01	0.720	80.87	69.21	46.17
9.20E-06	0.01	0.00	0.01	0.780	99.23	118.80	45.48
1.35E-05	0.01	0.00	0.01	0.840	83.64	81.91	63.79
2.10E-O5	0.00	0.00	0.01	0.920	70.27	110.29	87.87
3.00E-05	0.00	0.00	0.00	1.000	87.82	65.23	77.97
4,50E-05	0.00	0.00	0.00	1. 200	86.54	87.85	89.60
6.90E-05	0.00	0.00	0.00	1.400	100.11	101.59	96.73
1.00E-04	0.00	0.00	0.00	1.600	103.96	104.84	104.76
1.35E-04	0.00	0.00	0.00	1.800	104.50	145.53	115.33
1.70E-04	0.00	0.00	0.00	2.000	122.32	98.29	120.21
2.205-04	0.02	0.03	0.00	2.300	114.42	121.04	126.06
2.80E-04	0.03	0.05	0.07	2.600	118.27	123.86	140.98
3.60E-04	0.05	0.07	0.12	2.900	122.86	113.56	151.03
4.50E-04	0.05	0.08	0.16	3.300	125.76	101.87	134.54
5.75E-04	0.06	0.09	0.18	3.700	128.93	121.76	151.27
7.60E-04	0.07	0.11	0.21	4.100	126.71	135.32	162.52
9.60E-04	0.09	0.13	0.26	4.500	129.27	155.64	149.33
1.28E-03	0.11	0.17	0.32	5.000	134.94	138.03	150.08
1.60E-03	0.14	0.21	0.38	5.500	136.77	147.78	141.84
2.00E-03	0.18	0.26	0.49	6.000	139.54	134.67	155.87
2.70E-03	0.23	0.34	0.63	6.700	139.55	131.43	166.22
3. $40 \mathrm{E}-03$	0.29	0.43	0.80	7.400	143.34	169.06	165.25
4.50E-O3	0.37	0.56	1.00	8.200	144.17	165.45	168.18
5.50E-03	0.88	0.68	1.33	9.000	145.81	168.46	170.36
7.20E-03	0.58	0.86	2.04	10.000	151.97	171.66	169.99
9.20E-03	0.70	1.07	2.46	11.000	160.57	176.48	172.39
1.20E-02	0.84	1.33	3.19	12.000	168.63	181.37	177.64
1.50E-O2	0.82	1.64	3.43	13.000	172.71	191.19	186.93
1.90E-02	0.80	2.03	3.84	14.000	177.07	191.57	186.63
2.55E-02	2.26	2.45	5.25	15.000	180.42	194.15	192.86
3.20E-02	32.80	3.00	7.20	16.000	181.77	196.03	192.03
$4.00 \mathrm{E}-02$	8.20	2.63	9.43	17.000	182.03	195.91	192.11
5.25E-02	5.27	14.34	11.44	18.000	181.23	199.86	190.76
6.60E-02	24.45	6.31	14.19	19.000	179.89	200.24	192.79

DISPLACEMENT DAMAGE-EINERGY CROSS SECTIONS, keV-b

ENERGY	S	Cl	K	ENERGY	S	Cl	K
1.00E-10	1.34	133.59	5.60	0.088	31.93	7.33	8.92
1.00E-09	0.50	43.67	1.77	0.110	55, 25	8.00	8.36
1.00E-08	0.28	22.74	0.93	0.135	28.31	12.51	11.12
2.30E-08	0.20	14.82	0.62	0.160	21.08	11.93	8.22
5.00E-08	0.16	11.14	0.47	0.190	27.29	14.97	9.31
7.60E-08	0.13	9.05	0.38	0.220	20.60	14.46	11.86
1.15E-07	0.11	7.45	0.31	0.255	28.20	16.55	17.07
1.70E-07	0.09	6.16	0.25	0.290	28.00	19.65	23.45
2.55E-07	0.08	5.08	0.21	0.320	18.66	24.26	19.57
3.80E-07	0.07	4.22	0.17	0.360	34.62	23.54	21.97
5.50E-07	0.06	3.47	0.14	0.400	32.36	27.58	28.43
8.40E-07	0.05	2.84	0.11	0.450	30.17	30.57	26.92
1. 28E-06	0.05	2.26	0.09	0.500	30.92	31.95	24.93
1.90E-06	0.05	1.82	0.08	0.550	46.14	29.57	30.25
2.80E-06	0.05	1.45	0.06	0.600	29.19	35.01	31.96
4.25E-06	0.05	1.14	0.05	0.660	35.85	35.34	34.85
6.30E-06	0.04	0.92	0.04	0.720	51.33	38.47	37.76
9, 20E-O6	0.04	0.74	0.03	0.780	44.50	41.36	40.69
1.35E-05	0.04	0.58	0.03	0.840	36.78	46.79	43.99
2,10E-O5	0.04	0.45	0.02	0.920	51.72	47.02	48.31
3.00E-05	0.04	0.34	0.02	1.000	49.17	54.82	58.16
4.50E-05	0.04	0.23	0.02	1,200	67.65	65.31	67.01
6.90E-05	0.04	0.16	0.01	1.400	67.23	75.92	80.31
1.00E-04	0.04	0.11	0.01	1,600	85.73	86.57	88.95
1.35E-04	0.04	0.08	0.01	1.800	81.38	94.82	103.51
1.70E-04	0.04	0.06	0.01	2.000	91.21	108.00	108.81
2.20E-04	0.04	0.04	0.01	2.300	98.93	118.20	121.11
2.80E-04	0.06	0.13	0.01	2.600	123.83	126.80	138.11
3.60E-04	0.07	0.36	0.01	2.900	124.58	134.80	152.31
4.50E-04	0.08	0.22	0.03	3.300	115.28	139.40	157.61
5.75E-04	0.08	0.14	0.05	3.700	161.18	139.10	161.01
7.60E-04	0.09	0.1 .4	0.07	4.100	158.48	141.80	160.41
9.60E-O4	0.10	0.14	0.07	4.500	153.01	146.90	156.11
1.28E-03	0.11	U. 14	0.08	5.000	146.34	147.80	185.11
1.60E-03	0.13	0.17	0.09	5.500	160.89	153.60	192.01
$2.00 \mathrm{E}-03$	0.15	0.17	0.11	6.000	183.91	173.40	211.41
2.70E-03	0.18	0.25	1.26	6.700	178.21	176.70	214.61
$3.40 \mathrm{E}-03$	0.21	0.37	1.77	7.400	178.21	188.00	227.61
$4.50 \mathrm{E}-03$	0. 26	0.31	0.47	8.200	186.46	194.70	233.11
5.50E-O3	0.32	0.54	0.35	9.000	189.54	200.70	239.11
7.20E-03	0.42	1.60	1.11	1.0 .000	193.96	208.40	245.51
9.20E-03	0.57	0.91	2.08	11.000	195.84	219.20	248.11
1. 20E-02	0.76	2.04	0.66	12.000	194.94	229.20	255.11
1.50E-02	0.79	2.27	1.36	13.000	190.89	237.50	254.51
1.90E-O2	0.80	3.53	1.59	14.000	192.99	243.30	256.71
2.55E-02	1.21	5.02	2.90	15.000	191.19	244.70	258.81
3.20E-02	0.97	3.29	2.80	16.000	207.91	244.90	261.61
4.00E-02	1.09	4.86	4.83	17.000	212.11	247.70	266.21
5.25E-02	1.24	6.00	7.16	18.000	216.08	249.80	271.81
6.60E-02	4.50	7.02	7.80	19.000	216.61	258.70	275.51

WNNートゥ -10001

NNNNNNNNNNNートートトゥトートートトートート

以NNNNNNNNNNN

anan
мn

DISPLACEMENT DAMAGE-ENERCY CROSS SECTIONS, keV-b

ENERGY	Co	Ni	Cu	ENERGY	Co	Ni	Cu
1,00E-10	102.42	17.15	10.59	0.088	21.91	14.01	14.13
1.00E-09	32.35	5.42	3.35	0.110	20.38	11:13	16.02
1.00E-06	16.94	2.84	1.75	0.135	14.89	23.21	20.21
2.30E-08	11.36	1.90	1.18	0.160	16.61	26.95	21.06
5.00E-08	8.54	1.43	0.88	0.190	24.15	36.35	20.34
7.60E-08	6.94	1.16	0.72	0.220	21.13	33.71	23.92
1.15E-07	5.68	0.95	0.59	0.255	24.68	33.61	25.21
1.70E-07	4.66	0.78	0.48	0.290	28.27	37.17	30.31
2.55E-07	3.81	0.64	0.39	0.320	32.95	39.38	29.74
3.80E-07	3.15	0.53	0.32	0.360	34.18	32.00	31.76
5,50E-07	2.59	0.43	0.27	0.400	34.20	35.15	31.85
8.40E-07	2.11	0.35	0.21	0.450	45.18	40.79	39.75
1.28E-06	1.73	0.28	0.17	0.500	40.53	39.84	40.95
1.90E-O6	1.43	0.23	0.14	0.550	43.63	34.26	41.35
2.80E-06	1.18	0.19	0.12	0.600	47.50	48.93	44.91
4.25E-06	0.99	0.16	0.09	0.660	55.05	42.08	46.78
6.30E-06	0.84	0.13	0.08	0.720	48.94	40.10	49.16
9.20E-06	0.72	0.11	0.06	0.780	53.23	52.49	51.37
1.35E-05	0.63	0.09	0.05	0.840	59.64	54.98	53.35
2.10E-05	0.58	0.07	0.04	0.920	61.59	54.00	55.43
3.00E-05	0.59	0.06	0.03	1.000	62.67	59.75	58.77
4.50E-O5	0.73	0.05	0.03	1.200	73.11	80.38	65.96
6.90E-O5	1,52	0.04	0.02	1.400	77.00	80.69	66.37
1.00E-04	58,43	0.03	0.02	1.600	82.11	77.53	72.07
1.35E-04	16.31	0.03	0.02	1.800	86.65	82.03	79.20
1.70E-04	0.63	0.03	0.02	2.000	92.59	91.54	86.43
2.20E-04	0.15	0.02	0.34	2.300	103.13	102.03	95.25
2.80E-04	0.06	0.02	0.01	2.600	100.24	113.83	103.48
3.60E-04	0.03	0.02	0.02	2.900	108.04	113.04	112.88
4.50E-04	0.02	0.02	0.27	3.300	118.35	127.34	122.79
5.75E-04	0.03	0.16	2.00	3.700	124.36	132.14	132.50
7.60E-04	0.08	0.49	0.15	4.100	133.47	160.45	146.71
9.60E-04	0.09	0.76	0.23	4.500	148.67	168.66	157.72
1.28E-03	0.10	0.88	0.25	5.000	162.48	179.88	164.63
$1.60 \mathrm{E}-03$	0.08	0.98	0.40	5.500	170.69	186.99	172.04
2.00E-03	0.09	1.21	3.62	6.000	178.00	207.51	180.85
2.70E-O3	0.24	1.59	0.63	6.700	186.09	218.93	186.77
3.40E-03	7.53	2.99	0.99	7.400	194.81	223.75	198.38
4.50E-03	23.45	4.09	2.85	8.200	202.88	231.66	209.10
5.50E-03	6.12	2.61	1.60	9.000	208.49	256.66	223.02
7.20E-03	3.33	2.02	4.35	10.000	215.21	269.45	245.64
9.20E-O3	3.43	5.49	4.08	11.000	227.22	281.94	260.36
1. 20E-O2	1.92	17.72	4.72	12.000	244.24	289.52	272.08
1.50E-O2	4.68	30.59	6.22	13.000	268.95	296.51	284.80
1.90E-O2	12.38	10.23	7.60	14.000	294.26	300.19	296.41
2.55E-02	11.43	10.41	9.96	15.000	313.97	303.49	306.43
3.20E-02	11.30	8.74	8.16	16.000	333.36	309.09	313.75
4.00E-O2	11.19	7.02	7.59	17.000	345.34	324.69	321.76
5.25E-02	16.08	14.68	11.88	18.000	351.92	333.60	332.88
6.60E-O2	16.00	16.90	14.33	19.000	361.71	337.61	347.39

 ол $\boldsymbol{\sigma} \boldsymbol{\sim}$ 2
いにト ．

 N
NNNNNートート
トムトムムトムトトト羄

苟
WWNNNNNNNNNにートトートートートート$-\infty 0006$ Ј

NNNNNNNHートリートゥトゥト

DISPLACEMENT DAMAGE-ENERGY CROSS SECTIONS, keV-b

ENERGY	182W	183W	184W	ENERGY	182W	183W	184W
1.00E-10	2.19	1.53	0.17	0.088	6.62	7.43	4.87
1.00E-09	0.69	0.48	0.06	0.110	8.33	8.41	8.45
1.00E-69	0.36	0.25	0.03	0.135	9.32	9.40	9.34
2.30E-08	0.24	0.17	0.02	0.160	10.39	10.47	10.28
5.00E-08	0.18	0.13	0.01	0.190	11.51	11.53	11.30
7.60E-08	0.15	0.10	0.01	0.220	12.70	12.53	12.42
$1.15 \mathrm{E}-07$	0.13	0.08	0.01	0.255	13.87	13.48	13.60
1.70E-07	0.10	0.07	0.01	0.290	14.95	14.44	14.68
2.55E-07	0.09	0.06	0.01	0.320	16.14	15.57	15.94
3.80E-07	0.08	0.05	0.01	0.360	17.54	16.88	17.27
5.50E-07	0.07	0.04	0.00	0.400	19.19	18.38	18.90
8.40E-07	0.06	0.03	0.00	0.450	20.93	19.96	20.72
1.28E-06	0.06	0.03	0.00	0.500	22.72	21.63	22.49
1.90E-06	0.09	0.03	0.00	0.550	24.51	23.30	24.33
2.80E-06	12.48	0.03	0.00	0.600	26.53	25.18	26.39
4.25E-06	0.81	0.05	0.00	0.660	28.57	27.30	23.74
6.30E-06	0.03	4.72	0.00	0.720	30.84	29.22	31.06
9.20E-06	0.02	0.03	0.00	0.780	33.16	31.12	33.62
1.35E-05	1.28	0.03	0.00	0.840	35.67	33.08	36.68
2.10E-05	6.15	6.89	0.00	0.920	38.92	35.19	39.45
3.00E-05	0.01	0.42	0.00	1.000	43.22	38.67	43.07
4,50E-05	0.00	3.55	0.00	1.200	46.69	43.30	46.44
6.90E-05	0.00	0.02	0.00	1.400	47.93	47.09	48.36
1.00E-04	0.74	0.35	0.05	1.600	50.30	50.54	52.10
1.35E-04	0.00	0.98	0.01	1.800	53.51.	53.57	55.65
1.70E-04	0.00	0.39	0.36	2.000	57.97	57.30	59.70
2.20E-04	0.24	0.44	0.00	2.300	62.46	61.15	63.46
2.80E-04	0.02	0.39	0.07	2.600	66.61	64.88	66.74
3.60E-04	0.16	0.25	0.05	2.900	71.02	68.99	70.48
4.50E-04	0.06	0.18	0.00	3.300	76.63	74.03	75.81
5.75E-04	0.08	0.27	0.04	3.700	81.39	78.61	81.00
7.60E-04	0.04	0.18	0.06	4.100	86.36	83.63	86.45
9.60E-04	0.06	0.16	0.07	4.500	92.79	89.43	92.80
1.28E-03	0.05	0.14	0.04	5.000	99.72	95.89	99.75
1.60E-03	0.02	0.12	0.03	5.500	106.74	102.07	106.69
2.00E-03	0.04	0.10	0.03	6.000	114.93	103.59	114.77
2.70E-03	0.03	0.09	0.02	6.700	124.24	120.57	123.73
$3.40 \mathrm{E}-03$	0.03	0.08	0.02	7.400	132.96	133.05	123.25
$4.50 \mathrm{E}-03$	0.74	0.82	0.79	8.200	141.85	143.53	144.02
$5.50 \mathrm{E}-03$	1.38	1.46	1.52	9.000	157.93	156.66	157.00
7.20E-03	1.79	1.94	1.99	10.000	168.28	169.50	166.15
$9.20 \mathrm{E}-03$	1.93	2.06	2.08	11.000	176.77	177.60	173.74
1.20E-O2	2.11	2.29	2.25	12.000	182.41	184.45	182.38
$1.50 \mathrm{E}-02$	2.35	2.55	2.45	13.000	190.70	192.57	190.08
1.90E-O2	2.75	2.99	2.74	14.000	200.48	200.99	196.83
$2.55 \mathrm{E}-02$	3.18	3.49	3.04	15.000	209.73	209.74	205.15
3.20E-02	3.63	4.03	3.28	16.000	222.25	222.39	216.43
4.00E-O2	4.20	4.70	3.46	17.000	235.66	234.09	228.93
5.25E-02	4.79	5.46	3.48	18.000	247.17	244.47	243.13
6.60E-02	5.40	6.42	3.21	19.000	256.66	258.46	253.07

$\stackrel{N}{\mathbf{N}}$

JGANNNHHFOOO

лजッ

NNNNNNN以

\＆ $\boldsymbol{\sim}$

APPENDIX :

Graphs of Displacement Dampe-Energy Cross Sections

Displacement damage-energy cross sectiona are ohown for all elementa in order of increasing atomic number. The linear plots emphasise the fast neutron region which is usually the moat important for fuaion materiala irradiations.

Fig. B-1. Displacement damage-energy cross sections for $H,{ }^{3} \mathrm{He}$, and ${ }^{4} \mathrm{He}$.

Fig. B-2. Displacenent damage-energy cross sections for ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$, and Be.

Fig. B-3. Displacenent damage-energy cross sections for $C,{ }^{10} B$, and 1_{B}.

Fig. B-4. Displacement danage-energy cross sections for N, O, and F.

Fig. B-5. Displacement damage-energy cross sections for Na, Mg, and Al ,

Fig. B-6. Displacement damage-energy cross sections for $S i, P$, and S.

Fig. B-7. Displacement damage-energy cross sections for Cl, K, and Ca .

Fig. B-8. Displacement damage-energy cross sections for Ti, V, and Cr .

Fig. B-9. Displacement damage-energy cross sections for Mn, Fe, and Co .

Fig. B-10. Displacement damage-energy cross sections for Ni and Cu .

Fig. B-Il. Displacement damage-energy cross sections for $\mathbf{Z r}, \mathrm{Nb}$, and Mo.

Fig. B-12. Displacement danage-energy cross sections for $107 \mathrm{Ag}, 109 \mathrm{Ag}$, and Ta .

Fig. B-13. Displacement damage-energy cross seccions for \mathbf{W} isotopes.

Fig. B-14. Displacement damage-energy cross sections for Au and Pb .

Internal:

	J. Jung	D. Saith
C. Baker	S. Kim	D. Smith
R. Benedek	W. King	R, Saither (5)
R. Birtcher	M. Kirk	H. Stevens
J. Brooks	R. Kustom	M. Steindler
B. Brown	Y. Liu	D. Sze
L. Burris	S. Majumdar	L. Turner
Y. Cha	V. Maroni	H. Wiedersich
R. Clemmer	R. Mattas	R. Zeno
D. Ehst	D. Meneghetti	ANL Patent Dept.
K. Evans	B. Misra	FP Program (15)
P. Finn	J. Norem	ANL Contract File
L. Greenwood (5)	W. Praeg	ANL. Lihraries
Y. Gohar	J. Roberts	TLS Files (6)
A. Hassanein	J. Rosenherg	
C. Johnson	W. Sha	

External:

DOE-TIG, for distribution per UC-20 (112)
Manager, Chicago Operations Office, DOE
Special Committee for the Fusion Program:
S. Baron, Brookhaven National Laboratory
H. K. Forsen, Bechtel Group, Inc., San Francisco, CA
J. Maniscalco, TRW, Inc., Redondo Beach, CA
G. H. Miley, University of Illinois, Urbana
P. J. Reardon, Brookhaven National Laboratory
P. H. Rutherford, Princeton Plasma Physics Laboratory
D. Steiner, Rensselaer Polytechnic Institute
K. R. Symon, University of Wisconsin-Madison
K. Thomassen, Lawrence Livermore National Laboratory
M. Abdou, University of California-Los Angeles
A. Alberman, CEA/EAR, CEN-Saclay, France
W. G. Alberts, PTB, Brannschwelg, West Germany
T. Armstrong, Science Applications, Inc.
K. Boning, Technical University, Munich, West Germany
J. Bialek, Princeton Plasma Physics Laboratory
R. Boyd, Sandia National Laboratory
J. Cecchi, Princeton Plasma Physics Laboratory
F. Clinard, Los Alamos National Laboratory
J. C. Corelli, Rensselaer Polytechnic Institute
C. A. Coulter, Los Alamos National Laboratory
D. R. Davidson, Los Alamos National Laboratory
G. DeRaedt, CEN/SCK, Mol, Belgium
R. Dierckx, JRC, Ispra, Varese, Italy
D. G. Doran, Hanford Engineering Development Laboratory
M. Grossbeck, Dak Ridge National Laboratory
M. W. Gulnan, Lawrence Livermore National Laboratory
P. Hahn, Atomic Institute of Austrian Universities, Vienna, Austria
H. L. Heinisch, Hanford Engineering Development Laboratory
R. H. Jones, Brookhaven National Laboratory
A. Kumar, University of Missouri-Rolla
C. M. Logan, Lawrence Livermore National Laboratory
F. M. Mann, Hanford Engineering Development Laboratory
R. Mannhart, PTB, Braunnschweig, West Germany
P. Mas, CEA, CEN-Grenoble, France
M. Nakazawa, University of Tokyo, Tokai-Mura, Japan
G. R. Odette, University of California, Santa Barbara
D. M. Parkin, Los Alamos National Laboratory
M. Petilli, CNEN, CSN-Casaccia, Rome, Italy
V. Piksaikin, IAEA, Nuclear Data Section, Vienna, Austria
M. T. Robinson, Oak Ridge National Laboratory
W. Schneider, KFA, Julich, West Germany
W. F. Sormer, Los Alamos National laboratory
A. Thomas, Rolls Royce Ltd., Derby, England
M. S. Wechsler, Iowa State University
H. Weber, Atomic Institute of Austrian Universities, Vienna, Austria
F. W. Wiffen, Oak Ridge National Laboratory
W. L. Zijp, ECN, Petten, The Netherlands
E. Zsolnay, Technical University, Budapest, Hungary

