
Distribution Category:
LMFBR—Physics: Base
Technology (UC-79d)

ANL-83-3

ANIJ"""^3""3

DE83 015740

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

THE UTILITY SUBROUTINE PACKAGE USED BY
APPLIED PHYSICS DIVISION EXPORT CODES

by

C. H. Adams, K. L. Derstine,
H. Henryson II, R. P. Hosteny,*

and B. J. Toppel

Applied Physics Division

April 1983

MASTER

*Reactor Analysis and Safety Division, ANL.

fJSTRIBUTKffl OF IHIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. MODULAR AND STAND-ALONE SYSTEMS 3

A Case-Study Introduction 5

A Simple Standard Path * 5
Calculational Modules . 8
Job Control Language 10
Stand-Alone Form 12

Applied Physics Utility Subroutine Libraries 15
C116.CCCC.MASTER 15
C116.CCCC.SYSLIB 17
C116.CCCC.MODLIB 20
C116.CCCC.SEGLIB 23

Special File and Common Block names 25
Machine-Dependent Coding » 25

Fortran Coding 25
Assembler Coding 34
Generic Overlay Number Assignments 34

3. CCCC STANDARD SUBROUTINES 36

SEEK 36
SNIFF 41
TIMER 41
REED/RITE 43

The Export REED/RITE, Sequential I/O Only 45
REED/RITE with SIO Asynchronous Option 45

DOPC and DRED/DRIT 46
General Implementation Considerations 49
Implementation Considerations on the CDC 7600 49
Implementation Considerations for the CRAY-1 50

CRED/CRIT 50
ECMV 50
LRED/LRIT 51

4. BCD INPUT CONVENTIONS 52

User Considerations 52
BLOCK- 53
DATASET=, UNFORM=, SUBLOCK=, NOSORT- 53

iii

TABLE OF CONTENTS (Cont.)

BLOCK=OLD 55
MODIFY=, REMOVE-, nn=DELETE 55
Sample Input 56
Output from BCD Input Card Preprocessors 58

General Philosophy on Input Data 58
Programming Considerations 59

SCAN and STUFF Input Preprocessors 59
Setting Logical Unit Numbers for BCD Files Via SEKPHL 62
Reading BCD Files Preprocessed by STUFF 62

5. BPOINTER, A DYNAMIC STORAGE ALLOCATION PROGRAM tm

User Considerations • 64
Programming Considerations 65

IGTLCM/IGTSCM/IGTXCM 68
IBM Allocation 70
CDC Allocation 70
CRAY Allocation (CTSS) 72
CRAY Allocation (COS) 74

6. FFORM, A FREE-FORMAT INPUT ROUTINE 75

FFORM Calling Sequence 75
FFORM Usage 76
FFORM Syntax 78

Delimiters . 78
Data Forms 78
Implied Blanks and Zeroes 79
nR, the Repeat Option 79
$, End of Card 79
UNFORM and Card Type Numbers 79

7. REFERENCES 81

APPENDIX A - Utility Subroutine Descriptions 82

LIST OF FIGURES

Page

1. Alternative Structures for a Production Code 4

2. A Sample Driver Module for IBM Machines Only 7

3. The Calculational Module MYMOD 9

4. JCL for Compile-Load-and-Go Execution of the Example » 11

5. Source Code for Stand-Alone Version of the Example 13

6. JCL for Stand-Alone Execution of the Example 14

7. Organization of the Utility Routine SEEK 22

8. An Example of Keyword Usage c 31

9. An Example Using Keyword COVL 32

10. Input Description for the Preprocessor CONVTCD 33

11. SEKPHL Usage 39

12. SEKBCD Usage 40

13. REED/RITE Usage 44

14. DOPC Usage 47

15. DRED/DRIT and CRED/CRIT Usage 48

16. Illustration of Input Conventions 57

17. An Example of the Use of SCAN and STUFF 61

18. A BPOINTER Example 67

19. IGTSCM/FRESCM/LOCFWD Example 69

20. Fast-Core Allocation on IBM and CDC 7600 Machines 71

21. Fast-Core Allocation on a CRAY Machine 73

22. An Example of FFORM Usage 77

LIST OF TABLES

Page

1. Contents of CI16.CCCC.MASTER Library 16

2. Contents of C116.CCCC.SYSLIB 18

3. Contents of C116.CCCC.SYSLIB (from C116.ARC.SYSLIB) 19

4. Utility Modules in C116.CCCC.MODLIB 21

5. Object Code Segments in C116.CCCC.SEGLIB 24

6. Keyword Correspondence for Code Export 27

7. Keyword Usage Summary « 30

8. Generic Overlay Number Assignments 35

9. Options Available in Various Versions of TIMER 42

vi

THE UTILITY SUBROUTINE PACKAGE USED BY
APPLIED PHYSICS DIVISION EXPORT CODES

by

C. H. Adams
K. L. Derstine
H. Henryson II
R. P. Hosteny
B. J. Toppel

ABSTRACT

This report describes the current state of the utility subroutine package used
with codes being developed by the staff of the Applied Physics Division. The
package provides a variety of useful functions for BCD input processing,
dynamic core-storage allocation and management, binary I/O and data manipu-
lation. The routines were written to conform to coding standards which
facilitate the exchange of programs between different computers.

vii

1. INTRODUCTION

The ARC System, a set of reactor physics analysis codes, was developed at
Argonne during the 1960's for the laboratory's IBM computers. Fundamentally,
it is a set of program modules which communicate using precisely defined data
sets and which use a common set of utility subroutines, utility modules and
coding conventions for dynamic storage allocation, file management and BCD
input processing. Reference 1 describes the system characteristics and data
set formats of the ARC System.

More recently reactor analysis codes developed for the Reactor Research and
Technology (RRT) division of the Department of Energy have been subject to a
set of standards defined by the Committee on Compucer Code Coordination
(CCCC). The CCCC standards define coding conventions and interface data sets
which are intended to facilitate the exchange of computer codes between
laboratories. Reference 2 describes the CCCC standards.

The codes currently being developed by Argonne,s Applied Physics Division
are written to CCCC specifications. They are "exportable" (i.e. designed to
travel easily from one computer to another), they use CCCC data sets to commu-
nicate between code modules, and they use the few utility subroutines
specified by CCCC for file management. However, they also use many of the ARC
System features to which Argonne programmers and users have become accustomed.

The evolution from ARC System to CCCC environments has led to a prolifer-
ation of utility subroutines. In several instances there are multiple
versions of the same routine: one for local ARC System use and others for
applications on other machines at other installations.

This report and its likely subsequent revisions will document an "official"
set of utility subroutines and modules that support local ARC System applica-
tions, the export of Argonne codes to other machines, and the implementation
of codes written under CCCC standards at other laboratories. These routines
have been tested on IBM, CDC and CRAY computers. This "official" set is
available in object form for use on Argonne's IBM computers and in source form
for stand-alone applications and for export. The source code will be distri-
buted with reactor analysis codes sent to code centers.

The subroutines in the package provide a diverse set of services. Some of
them can be grouped according to common functions:

1. There is a set of subroutines which satisfy the standard calling
sequences defined by the Committee on Computer Code Coordination >
(CCCC). The functions performed by these routines are described in
Reference 2; the programming details of our implementation of these
standard calls are described in this report.

2. The BPOINTER package (Reference 1) for dynamic core-storage allocation
was developed for ARC System codes and has been rewritten over the
years into an exportable form. This report discusses the implemen-
tation for IBM, CDC and CRAY machines.

3. The FFORM routine reads free-format, BCD card image input.

4. SCAN and STUFF are BCD input preprocessors* This report describes the
use of exportable and modular versions of these routines.

Subroutines in these categories are discussed in four separate chapters of
this report. Not all the subroutines in the package are discussed in the
text, and some that are discussed are referenced in more than one section.
Appendix A is a collection of short writeups of all the routines.

Most are written in Fortran, with machine-dependent syntax set off by
comment cards in a manner that permits the automated translation from one
Fortran dialect to another. For situations where Fortran can not be used
assembler routines appropriate to the host machine are provided.

2. MODULAR AND STAND-ALONE SYSTEMS

The reactor analysis production codes developed by the Applied Physics
Division usually consist of a "driver" (or Standard Path in ARC System termi-
nology) and a number of large, independent code blocks executed by the driver
in some fixed sequence. Typically the set of code blocks includes several
input processors, one or more computational modules and perhaps an output
processor. They communicate with each other, and with the driver, by means of
data sets; no problem data are passed in-core from one code block to another.

The production codes currently being developed are designed to run in two
different environments: modular and stand-alone. In the modular format each
code block, including the driver, is organized as a separate load module.
Each load module contains versions of all the utility subroutines called from
the module and is, in fact, an executable program. At Argonne, and at other
IBM installations at which Argonne staff maintains codes, production codes are
set up in the modular style.

In the stand-alone format the entire production code is a single load
module. Usually the driver and the utility subroutines are contained in a
base overlay; the code blocks executed by the driver are separate overlays.
When production codes are organized for export (e.g. to the National Energy
Software Center) they are set up in stand-alone style.

Figure 1 illustrates the structure of modular and stand-alone systems- The
example is a code consisting of a driver and two code blocks, A and B. In a
modular environment on IBM/370 systems execution is transferred to load
modules A and B via the LINK macro.1 In a stand-alone system A and B are
primary overlays in a single load module.

In addition to sharing a common architecture, all Applied Physics
production codes draw on a common set of utility routines which provide a wide
variety of frequently used services and functions. Most of the utility
routines exist as single Fortran versions, and that version is used in both
modular and stand-alone environments. Some come in more than one version,
however, usually for one of the following reasons:

1. A particular function may call for assembler language coding or for a
system function peculiar to i particular computer or operating system,

2. Some of the routines must themselves be load modules in a modular
environment.

This chapter describes the coding practices, program architecture and
program libraries used by Applied Physics staff in production codes.

load module A

driver
(Standard Path)

utilities for
driver

7
/ via LINK
/ macro

code block
A

utilities for
code block A

driver load
module

load module B

code block
B

utilities for
code block B

overlay A

(a) Modular structure

driver
(Standard Path)

all utilities

I I
primary | code block | code block

I B

(b) Stand-alone structure

main
overlay

primary
overlay B

Figure 1. Alternative Structures for a Production Code

2.1 A CASE-STUDY INTRODUCTION

The traditional method of introduction to a new code or computer system is
by example; a user or programmer starts from an input deck that is known to
work. This is far more efficient than trying to use reference manuals to
construct a job from scratch, and this is the approach we shall take to
describe the programming practices used by Applied Physics Division staff in
their production codes.

In this section we shall follow through the procedures for constructing
both modular and stand-alone versions of an applications code package on the
Argonne computers. The example should serve to illustrate the differences
between stand-alone and modular systems and, perhaps more importantly, to
provide models for programmers to use in setting up their own codes. The
details of the features used in the following example are covered in depth in
later sections of this report.

The example we will use is a very simple job that executes two Applied
Physics Division production load modules (GNIP4C and HMG4C) and one special
purpose load module (MYMOD). GNIP4C is a program that processes BCD data into
binary files defining the geometry and atom number densities for a reactor
model. HMG4C generates macroscopic cross sections from microscopic cross
sections and number densities. Both GNIP4C and HMG4C are in public load
module libraries available to anyone at Argonne. MYMOD is a very short module
written expressly for this example; it reads a few data from a library file
created by GNIP4C.

2.1.1 A Simple Standard Path

Standard Paths are the driver programs for particular calculations. In a
modular system they are load modules which issue initialization calls to some
of the utility routines and execute the applications load modules which
perform all the computations. Figure 2 is a listing of the Standard Path for
this example. The following points explain the important features of the
Standard Path.

1. The common blocks /IOPUT/ and /STFARC/ are needed by certain of the
utility routines. A complete list of the Applied Physics library of
Fortran-callable utility routines, with instructions on their use, is
given in Appendix A.

2. The logical unit numbers for the card-input and printer-output files
are defined and stored in the common block /IOPUT/. Many of the
current generation of codes under development offer the user two
printer-output files, thus the two unit numbers NOUT and NOUT2. The
purpose of this is to permit the user to route selected output to
different output media (e.g. paper, microfiche, or a terminal file).
NOUT2-0 implies there is no second printer-output file for the job.

3. The CCCC utility subroutine SEEK should be initialized in the Standard
Path. SEEK manages the assignments of logical unit numbers for all
files except the card-input and printer-output files* The names of the
files are listed in the DSNAME array. The logical unit numbers of the
files in this example are assigned in the order defined by the DSNAME
array, starting with 11 (see Figure A for a listing of the DD cards for
the execution step). SEEK is described in detail in the chapter on
"CCCC Standard Subroutines" and in the writeups for SEEK, SEEKARC and
SYS003 in Appendix A.

4. Subroutine SCAN ingests the entire BCD card input file (from logical
unit NIN). The functions performed by SCAN are described in detail in
the chapter on "BCD Input Conventions".

5. The call to STUFF processes all the BCD input under the input card
"BL0CK=SAMPLE". STUFF creates individual BCD files from the input
card-image data. The functions performed by STUFF are described ia
detail in the chapter on "BCD Input Conventions".

6. The load modules GNIP4C, HMG4C and MYMOD are executed through calls to
the LINK routine.

IMPLICIT REAL*8(A-H,0-Z)
C
C COMMON BLOCKS REQUIRED BY THE UTILITY ROUTINES.
C

COMMON /IOPUT/ NIN,NOUT,NOUT2
COMMON /STFARC/ STFNAM,BLKNAM(5O),IBLTAB(3,50),NBLOCK,NRET

C
C DSNAME IS THE LIST OF NAMES OF THE FILES THAT THE JOB USES.
C

DIMENSION DSNAME(9)
DATA DSNAME / 6HISOTXS,6HCOMPXS,6HNDXSRF,6HZNATDN,6HSCR001,
1 6HA.NIP3,6HGEODST,6HLABELS,1H$/
DATA GNIP4C/6HGNIP4C/, HMG4C/5HHMG4C/, HMYMOD/5HMYMOD/
DATA SAMPLE/6HSAMPLE/

C
C INITIALIZE THE CARD INPUT FILE NO. (NIN), THE OUTPUT PRINT FILE
C NOS. (NOUT AND NOUT2) AND THE SEEK TABLES.
C

NIN=5
NOUT=6
N0UT2O
CALL SEEK(DSNAME,0,0,3)

C
C SCAN/STUFF PREPROCESSING OF THE BCD INPUT.
C

CALL SCAN
STFNAM=SAMPLE
CALL STUFF
IF (NRET.LT.O) GO TO 20

C
C EXECUTE THE CALCULATIONAL LOAD MODULES.
C

CALL LINK(GNIP4C)
CALL LINK(HMG4C)
CALL LINK(HMYMOD)

20 CONTINUE
PRINT 500

500 FORMAT(2X.3HEND)
STOP
END

Figure 2. A Sample Driver Module for IBM Machines Only

2.1.2 Calculational Modules

Calculational modules are load modules that are executed via calls to LINK
in the Standard Path (e.g. GNIP4C, HMG4C and MYMOD in the sample Standard Path
shown in Figure 2). Figure 3 shows the source code for a very simple calcula-
tional module. In general a calculational module can be any executable code;
it does not have to use any of the utility routines described in this report.
The following points explain the important features of the module listed in
the Figure.

1. The module uses two utility routines, SEEK and REED, that require the
/IOPUT/ common block. The variables in /IOPUT/ must be initialized at
the beginning of each calculational module since that data has not been
passed from the driver.

2. The logical unit number of the GEODST file is determined by a call to
SEEK. The assignments of the logical unit numbers are made in the
Standard Path only.

3. Binary files are written and read through the subroutines RITE and REED
(see Appendix A).

4. Control is returned to the Standard Path via the Fortran RETURN.

COMMON /IOPUT/ NIN,NOUT,NOUT2
DIMENSION IBUFF(27)
DATA GEODST/6HGEODST/

C
C INITIALIZE THE OUTPUT PRINT FILE NOS.
C

NOUT=6
NOUT2=0

C
C DETERMINE THE LOGICAL UNIT NO. FOR THE GEODST FILE, READ THE
C SECOND RECORD, AND REWIND THE FILE.
C

CALL SEEK(GEODST,1,NGEOD,0)
CALL REED(NGEOD,2,IBUFF,27,0)
CALL REED(NGEOD,0,IBUFF,0,0)
PRINT 500,(IBUFF(I),I=l,27)

500 F0RMAT(2X,2713)
RETURN
END

Figure 3. The Calculational Module MYMOD

2.1.3 Job Control Language

Figure 4 shows the Job Control Language required to execute this sample job
in a compile-load-and-go mode. The first step in the job creates a load
module library containing the calculational module MYMOD. The second step
compiles and executes the Standard Path. The following points are important:

1. It is essential that when both the Standard Path and the calculational
modules are created the linkage editor has access to the automatic call
library C116.CCCC.SYSLIB. This library contains all the utility
routines described in this report as well as versions of the Fortran
I/O routines which use a special (and required) version of the 1BC0M
I/O module called ARCIBCOM. Even if a calculational module uses none
of the utility routines it must be linked with

PRELIB='C116.CCCC.SYSLIB'

in order to make sure it uses the proper version of IBCOM.

2. MYMOD and the Standard Path are passed to the GO step in a temporary
partitioned data set (&MODLIB) in this example.

3. The library C116.CCCC.MODLIB must be provided. It contains several
utility modules that are needed for execution as well as the production
modules GNIP4C and HMG4C.

4. Logical unit 9 is a scratch file required by SCAN to store a copy of
the input-card-image file.

5. Logical unit 10, the second printer-output file, is dummied out in this
example

6. Logical units 11 through 18 are the files listed in the DSNAME array in
Figure 2

7. For an explanation of the input to the job see the discussion in the
chapter "BCD Input Conventions".

10

//* CREATE MODULE LIBRARY, MYMOD.
// EXEC FTXCEP,OPTIONS='XREF,,PRELIB=,C116.CCCC.SYSLIB,

//FTX.SYSIN DD *
include here the MYMOD source

code in Figure 3
/*
//EDT.SYSLMOD DD DSN=&MODLIB(MYMOD),DISP=(NEW,PASS),UNIT=SASCR,
// SPACE=(TRK,(5,2,1)),DCB=BLKSIZE=6144
/*
/ / * SECOND STEP. COMPILE AND EXECUTE STANDARD PATH.
/ / EXEC FTXCLG,OPTIONS='XREF,,PRELIB='C116.CCCC.SYSLIB,

//FTX.SYSIN DD *
include here the Standard Path
source code in Figure 2

/*
//GO.STEPLIB DD DSN=&MODLIB,DISP=SHR
// DD DSN=C116.CCCC.MODLIB,DISP=SHR
//GO.FT09F001 DD UNIT=SASCR,SPACE=(CYL,(1,1)),
// DCB=(RECFM=VBS,LRECL=84,BLKSIZE=3064)
//GO.FT10FO01 DD DUMMY
//GO.FT11F001 DD DSN=C116.Bnnnnn.VARIJOB.ISOTXS,DISP=SHR
//GO.FT12F001 DD DSN=&COMPXS,UNIT=SASCR,
// SPACE=(TRK,(10,5)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136)
//GO.FT13F001 DD DSN=&NDXSRF,UNIT=SASCR,
// SPACE=(TRK,(2,1)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136)
//GO.FT14F001 DD DSN=&ZNATDN,UNIT=SASCR,
// SPACE=(TRK,(10,5)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136)
//GO.FT15FOO1 DD DSN=&SCROO1,UNIT=SASCR,
// SPACE=(TRK,(10,5)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136)
//GO.FT16F001 DD DSN=&ANIP3,UNIT=SASCR,
// SPACE=(TRK,(10,5)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136)
//GO.FT17F001 DD DSN=&GEODST,UNIT=SASCR,
// SPACE=(TRK,(1O,5)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136)
//GO.FT18F001 DD DSN=&LABELS,UNIT=SASCR,
// SPACE=(TRK,(2,1)),DCB=(RECFM=VBS,LRECL=X,BLKSIZE=6136)
//GO.SYSIN DD *
BLOCK=OLD
DATASET=ISOTXS
BLOCK=SAMPLE
UNFORM=A.NIP3
02 0 1 500 0 500
03 10
04 3 2
06 REG 0.0 1.0 2
14 COMP PU239 1.0
15 COMP REG
/*

Figure 4. JCL for Compile-Load-and-Go Execution of the Example

11

2.1.4 Stand-Alone Form

Programs that are intended for release to code centers for general distri-
bution are written so that they can be executed either in modular or
stand-alone form. The example shown in Figures 2 and 3 requires only modest
changes to run in a stand-alone mode. Figure 5 shows the source code for the
Standard Path and MYMOD in stand-alone form. The important differences
between the source code for the modular system and Figure 5 are:

1. The source code for the Standard Path and the calculational module
MYMOD can be compiled at the same time for the stand-alone code.

2. The calculational modules (GNIP4C, HMG4C and MYMOD) are now subroutines
and are executed via Fortran CALLs in the stand-alone code.

3. MYMOD requires a SUBROUTINE declaration in the stand-alone code.

4. NOUT and NOUT2 do not have to be reset in MYMOD in the stand-alone
version since there is communication with the Standard Path via the
/IOPUT/ common block.

Figure 6 shows the JCL required to execute the example in stand-alone form.
The important differences between the modular system (Figure 4) and the
stand-alone (Figur. *) are:

1. Several utility routines are pulled explicitly from the library
C116.CCCC.SEGLIB instead of the automatic call library
C116.CCCC.SYSLIB. The differences between the versions of these
utilities in the two libraries are explained in the section in this
chapter entitled "Applied Physics Utility Subroutine Libraries".

2. The object code for GNIP4C and HMG4C in the stand-alone version is
pulled from private libraries (SEGLIB1 and SEGLIB2), and the entire
package is link edited at one time.

3. GNIP4C, HMG4C and MYMOD are primary overlays. GNIP4C is further struc-
tured using secondary overlays. Linkage editor input for Applied
Physics Division production codes is available at Argonne from the
library C116.CCCC.OVERLAY.

12

IMPLICIT REAL*8(A-H,0-Z)
COMMON /IOPUT/ NIN,NOUT,NOUT2
COMMON /STFARC/ STFNAM,BLKNAM(50),IBLTAB(3,5O),NBLOCK,NRET
DIMENSION DSNAME(9)
DATA DSNAME / 6HISOTXS,6HCOMPXS,6HNDXSRF,6HZNATDN,6HSCROO1,
1 6HA.NIP3,6HGEODST,6HLABELS,1H$/
DATA SAMPLE/6HSAMPLE/
NIN=5
NOUT=6
NOUT2=0
CALL SEEK(DSNAME,0,0,3)
CALL SCAN
STFNAM=SAMPLE
CALL STUFF
IF (NRET.LT.O) GO TO 20

C
C EXECUTE THE CALCULATIONAL LOAD MODULES.
C

CALL GNIP4C
CALL HMG4C
CALL MYMOD

20 CONTINUE
PRINT 500

500 FORMAT(2X,3HEND)
STOP
END

C
C MYMOD IN SUBROUTINE FORM
C

SUBROUTINE MYMOD
IMPLICIT REAL*8(A-H,O-Z)
COMMON /IOPUT/ NIN,N0UT,N0UT2
DIMENSION IBUFF(27)
DATA GEODST/6HGEODST/
CALL SEEK(GEODST,l,NGE0D,0)
CALL REED(NGEOD,2,IBUFF,27,0)
CALL REED(NGEOD,0,IEUFF,0,0)
PRINT 500,(IBUFF(I),I=1,27)

500 FORMAT(2X,2713)
RETURN
END

Figure 5. Source Code for Stand-Alone Version of the Example

13

// EXEC FTXCEG,0PTI0NS=,XREF',PRELIB=,C116.CCCC.SYSLIB,,
// EDTOPTS='LIST,MAP,OVLY,,LSIZE='(20QK,40K)'
//FTX.SYSIN DD *

include here the source code shown in Figure 5

/*
//EDT.SEGLIB1 DD DSN=Cl16.Bnnnnn.SEGLIB,DISP=SHR
//EDT.SEGLIB2 DD DSN=Cll6.Brammmm.HMG4C.SEGLIB,DISP=SHR
//EDT.CCCCLIB DD DSN=C116.CCCC.SEGLIP,DISP=SHR
//EDT.SYSIN DD *
ENTRY MAIN
INCLUDE CCCCLIB(ARCBCD,LINES,REED,SEEK,TIMER)
OVERLAY LEVEL1
INCLUDE SEGLIBl(G4C10A)
OVERLAY LEVEL2
INCLUDE SEGLIB1(G4C11A,G4C11B,G4C11C)
OVERLAY LEVEL2
INCLUDE SEGLIB1(G4C12A,G4C12B,G4C12C)
OVERLAY LEVEL2
INCLUDE SEGLIB1(G4C13A,G4C13B,G4C13C,G4C13E)
OVERLAY LEVEL2
INCLUDE SEGLIB1(G4C14A,G4C14C)
OVERLAY LEVEL2
INCLUDE SEGLIB1(G4C15A,G4C15B)
OVERLAY LEVEL2
INCLUDE SEGLIB1(G4C16A)
OVERLAY LEVEL2
INCLUDE SEGLIB1(G4C17A,G4C17B)
OVERLAY LEVEL1
INCLUDE SEGLIB2(HMG00,HMG10,HMG20,HMG21,HMG22,HMG23,HMG30,HMG40)
OVERLAY LEVEL1
INSERT MYMOD
/*
//GO.STEPLIB DD DSN=C116.CCCC.MODLIB,DISP=SHR
//GO.FT09F001 DD UNIT=SASCR,SPACE=(CYL,(1,1)),
// DCB=(RECFM=VBS,LRECL=84,BLKSIZE=3064)
//GO.FTIOFOOI DD DUMMY
//GO.FT11F001 DD DSN=C116.Bnnnnn.VARIJOB.ISOTXS,DISP=SHR
//GO.FT12F001 DD DSN=&COMPXS,UNIT=SASCR,

the remainder of the execution step
is as is shown in Figure 4

Figure 6. JCL for Stand-Alone Execution of the Example

14

2.2 APPLIED PHYSICS UTILITY SUBROUTINE LIBRARIES

A set of libraries exists at Argonne which contain the utility routines in
all the forms that are required to support modular and stand-alone systems.

2.2.1 CI16.CCCC.MASTER

Most of the source code for the utility subroutine package is contained in
the LIBRARIAN file "C116.CCCC.MASTER". LIBRARIAN is a data storage and
editing system designed specifically for developing and maintaining source
code.

Appendix A of this report consists of brief writeups of all members of this
file. These writeups describe functions, calling sequences and applications.
Table 1 lists the contents of C116.CCCC.MASTER, the system application
(stand-alone or modular) for each member, and the language each member is
written in.

15

TABLE 1

Contents of CI16.CCCC.MASTER Library

Member
Name

ABEND
ARCBCD
CRED
DOPC
DRED
ECMV
ERROR
FEQUAT
FFORM
FLTSET
IEQUAT
IGTLCM
INTSET
IN2LIT
LINES
LINESARC
LRED
MYLCM
POINTR
REED
REEDS 10
SCANARC
SECNDARC
SECOND
SEEK
SEEKARC
SEKPHL
SIO
SIOSUB
SNIFF
SPACE
SQUEZE
SRLAB
STUFFARC
SYS001
SYS002
SYS003
SYS004
SYS005
TIMER
TIME1

System Usage:
Stand-Alone

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X

X
X

X
X
X

X
X
X

X
X

Modular

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
V

X
X
X
X
X
X
X

Language:
Fortran

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X

X
X
X

X
X
X
X
X
X
X
X
X
X
X

Assembler

X (IBM)

X (CD76)

X (IBM)

X (IBM)

X (IBM)
X (IBM)

X (IBM)

16

2.2.2 CU6.CCCC.SYSLIB

The object code routines in this file are in the form required for the
modular system used at Argonne. If the user specifies

PRELIB='C116.CCCC.SYSLIB'

on the EXEC card of the linkage editor step, the linkage editor automatically
includes appropriate versions of required utility routines when it creates
application load modules. Tables 2 and 3 contain lists of the contents of the
library CI16.CCCC.SYSLIB as of April 25, 1983.

As Table 2 shows, most of the members of the library are compiled directly
from source code in CI16.CCCC.MASTER. Excepted from this rule are several
members (see table 3) which have been copied from the ARC System library
CH6.ARC.SYSLIB. The source code for these ARC System routines have not been
included in C116.CCCC.MASTER because they provide functions which are unique
to the ARC System environment at Argonne and which are avoided in export
version of codes.

The third column in Table 2 indicates which of the routines are "module
interface subroutines." These routines are short subroutines which transfer
execution temporarily to a utility load module from the module library
C116.CCCC.MODLIB. Why some utility routines must themselves be load modules
is discussed in the next section.

The last column shows aliases - other entry points - for some of the
members of CI16.CCCC.SYSLIB.

The writeups in Appendix A describe the functions of each of the members
listed in Table 2.

17

TABLE 2

Contents of C116.CCCC.SYSLIB

Corresponding
C116.CCCC.SYSL1B

Member

ABEND
CRED
DOPC
DRED
ECMV
ERROR
FEQUAT
FFORM
FLTSET
IEQUAT
IGTLCM

INTSET
IN2LIT
LINES
LRED
MYLCM
POINTR
REED
SCAN
SECOND
SEEK
SEKBCD
SEKPHL
SIO
SNIFF
SPACE
SQUEZE
SRLAB
STUFF
TIMER
TIME1

C116.CCCC.M/
Source Men

ABEND
CRED
DOrC
DRE. I
ECMV
ERROR
FEQUAT
FFORM
FLTSET
IEQUAT
IGTLCM

INTSET
IN2LIT
LINESARC
LRED
MYLCM
POINTR
REEDS 10
SCANARC
SECNDARC
SEEKARC
SEKBCD
SEKPHL
SIO
SNIFF
SPACE
SQUEZE
SRLAB
STUFFARC
TIMER
TIME1

Module
Interface

Subroutine

yes

Aliases

ABSTOP, TRACER
CRIT
DOPCD, DOPCO
DRIT

IGTSCM, IGTXCM, FRELCM,
FRESCM, FREXCM, LOCFWD

yes

yes
yes
yes

yes
yes

LINES2
LRIT
LOCF
DUMP
RITE

RECFM, SIOTRC

GOWEST

CLOCK, DATE1, JOBID

18

TABLE 3

Contents of C116.CCCC.SYSLIB (from C116.ARC.SYSLIB)

Module
C116.CCCC.SYSLIB Interface

Member Subroutine Aliases

AVAIL
DELETE
FILEID
IBCOM yes IBCOM#, DIOCS#, LDFIO#,

IN#, OUT#, WAIT#,
FRDNL#, FWRNL#, ERRSET,
ERRSAV, ERRSTR, ERRMON,
ERRTRA

LINK
LOAD
OPENDS
TWAIT
USERID

These members were copied directly from C116.ARC.SYSLIB,
The source code is not available from CI16.CCCC.MASTER.

19

2.2.3 C116.CCCC.M0DLIB

In a modular environment most of the utility routines described in this
report are entirely contained within individual applications load modules. A
few cf the utility routines, however, must be in the form of separate load
modules* Table 4 is a list of these utility modules.

The fundamental reasons for making a utility routine a load module are:

1. To save core storage.

2. The routine's function may require that there be only one copy of the
routine available to all applications modules.

An example of the former is SYS002, which includes the BCD input preprocessors
SCAN and STUFF; it is usually called only from drivers, and to include it in
the driver throughout the execution of a job wastes space that could be used
by applications load modules. An example of the latter is SYS004, which
handles pagination for the output print file; pages could not be numbered
consecutively if each load module used its own, independent version of the
routine. A second example of the latter is SEEK, a subroutine which keeps a
table indicating which files exist (i.e. have been written) and which do not
exist. The SEEK table is initialized by the driver module and is updated and
consulted, through subsequent calls to SEEK, by all the other load modules.
It is essential, therefore, that there be only one table; individual load
modules in a modular system cannot each have a copy of SEEK with its own
table.

The top diagram in Figure 7 shows how SEEK is used in a modular system.
The driver and each individual application load module contain a "module
interface subroutine" version of SEEK whose sole function is to LINK to a
utility load module, SYS003. SYS003 contains the SEEK subroutine that
performs bookkeeping on the SEEK table. The version of SEEK in
C116.CCCC.SYSLIB is the module interface subroutine. The lower diagram shows
subroutine SEEK in a stand-alone code; in this case there is only one version
of the routine present.

Programmers working with the libraries described in this section need not
be familiar with the utility modules in C116.CCCC.MODLIB. All of them are
accessed through module interface subroutines in C116.CCCC.SYSLIB that are
automatically included in a load module when

PRELIB=1C116.CCCC.SYSLIB,

is specified on the EXEC card of the linkage editor step. C116.CCCC.SYSLIB
utility routines which access utility modules are indicated in Table 2 in the
column headed "Module Interface Subroutine."

20

TABLE 4

Utility Modules in C116.CCCC.M0DLIB

C116.CCCC.M0DLIB
Member

ARCIBCOM
SIOSUB
SNIFF
SYS001
SYSOO2
SYS003
SYS004
SYSC05

REUSable

yes
yes

yes

yes
yes
yes

Members of
C116.CCCC.SEGLIB

Aliases INCLUDEd

+
SIOSUB
SNIFF
SYS001
SYS002, ARCBCD
SYS003, SEEK
SYS004, LINES
SYS005, SECOND

member was copied directly from C116.ARC.MODLIB.

21

via LINK /
macro /

I
driver |

(Standard Path) |
mm a- ^ HH ^ ,. .^ ^ ^ I

SEEK module
interface subr.

code block
A

SEEK module
interface subr.

I
I via LINK
I macro
I

I I
_ _ „ _ j SYS003 driver [
via LINK | 1
macro | SEEK subroutine |

(a) SEEK in a modular system. SEEK is accessed from
both the driver and code block A.

driver
(Standard Path)

SEEK subroutine |

code block
A

(b) SEEK in a stand-alone system

Figure 7. Organization of the Utility Routine SEEK

22

Most ARC System modules exist in-core only while they are in execution and
are not saved when execution is transferred to another module. The ARC System
REUS capability (see Reference 1) has been used to keep specific utility
modules in-core throughout the execution of a job. Table 4 indicates which
utility modules are REUSable, that is, which are kept in-core for the entire
job.

The REUSable modules ARCIBCOM and SIOSUB are automatically loaded on the
first call to the system I/O routine IBCOM#. SYSOO1, SYS003, SYS004 and
SYSOO5 are automatically loaded on the SEEK initialization call.

Where appropriate, individual writeups in Appendix A show linkage editor
input for utility modules. Many of the linkage editor inputs for utility and
production load modules are available from the file C116.CCCC.OVERLAY.

The one module, ARCIBCOM, that cannot be created from source code in
CI16.CCCC.MASTER was copied from C116.ARC.MODLIB.

2.2.4 C116.CCCC.SEGLIB

The library C116.CCCC.SEGLIB serves one or both of two applications:

1. To contain object code required in the creation of utility and applica-
tions load modules.

2. To make available in stand-alone subroutine form some of the utility
routines represented by module interface subroutines in
C116.CCCC.SYSLIB. A programmer would use the stand-alone form of a
subroutine when running a code at Argonne in a stand-alone environment.

Table 5 lists the members of C116.CCCC.SEGLIB, lists the corresponding
CI16.CCCC.MASTER source members, and indicates which of the applications each
member serves. Ordinarily programmers working in the Argonne modular
environment will not have any use for this library; they will be accessing all
utility routines through members of C116.CCCC.SYSLIB.

In C116.CCCC.SYSLIB SCAN, STUFF, LINES, SECOND and SEEK are module
interface subroutines; they only provide a link to utility load modules. In
C116.CCCC.SEGLIB ARCBCD (which contains SCAN and STUFF), LINES, SECOND and
SEEK are the utility routines which do the actual work. It is the SEGLIB
versions of these routines which are included in the utility modules or in
stand-alone codes.

In C116.CCCC.SYSLIB REED provides an asynchronous I/O option (at the cost
of requiring extra baggage in the form of the assembler routines SIO and
SIOSUB). The version of REED in CI16.CCCC.SEGLIB is simpler and is probably
adequate for most applications. It is also more easily exported because of
the absence of assembler code.

23

TABLE 5

Object Code Segments in C116.CCCC.SEGLIB

C116.CCCC.SEGLIB
Member

Corresponding
CI16.CCCC.MASTER
Source Member

Required for
Load Module

ARCBCD
LINES
REED
SECOND
SEEK
SIOSUB
SNIFF
SYS001
SYS002
SYS003
SYS004
SYS005

ARCBCD
LINES
REED
SECOND
SEEK
SIOSUB
SNIFF
SYS001
SYS002
SYS003
SYS004
SYS005

yes (SYS002)
yes (SYS004)

no
yes (SYS005)
yes (SYS003)
yes (SIOSUB)
yes (SNIFF)
yes (SYS001)
yes (SYS002)
yes (SYS003)
yes (SYS004)
yes (SYS005)

Stand-Alone
Subroutine

yes
yes
yes
yes
yes

yes

24

2.3 SPECIAL FILE AND COMMON BLOCK NAMES

Within the system described in this report there are two file names that a
programmer should avoid. One is "ARC", which is the name of a file onto which
SCAN (see the chapter on "BCD Input Conventions") spools the BCD input. The
other is "$", which is a symbol used in the SEEK initialization procedure to
signal the end of the file name list (see the writeup for SEEK in Appendix A).

Many of the utility routines reference data in labeled common blocks, and
in coding programmers must avoid labels that conflict. One or more of the
routines described in Appendix A use the following labeled common blocks:

/ALLOCS/
/BFLAGS/
/CRALOC/
/INITIO/
/ECMLOC/
/ECMRF1/
/ECMRF2/
/IOPUT/
/LCMSIZ/
/LOCATE/
/PTERR/
/PTITLE/
/RNDMIO/
/SAVMEM/
/STFARC/
/TABLES/

2.4 MACHINE-DEPENDENT CODING

In organizing the source library (C116.CCCC.MASTER) of utility routines we
made a special effort to generalize the coding to run on any machine. Most of
the source code is written in standard Fortran IV (i.e. Fortran '66) and has
been compiled successfully by a number of compilers. This section discusses
approaches taken in those few situations where it is impossible to avoid
machine-dependent code. To date we have considered IBM System/370, CDC Scope
2.1, CRAY-1 under CTSS and CRAY-1 under COS 1.10 (CFT 1.09) systems.

2.4.1 Fortran Coding

Even when a routine is entirely coded in Fortran it may contain machine-
dependent code. For example, subprogram ENTRY statements may have arguments
in IBM Fortran but not in CDC Fortran.

25

We have used the device of surrounding machine-dependent Fortran with pairs
of special "keyword" comment cards. The coding between a keyword pair is
selectively activated or deactivated by a simple preprocessing Fortran program
which places a blank or the letter C in column 1 of the bracketed card images.
Table 6 indicates the set of keywords which must be activated for export to
the large scale scientific computers which have been considered to date.

Keyword syntax permits three basic forms:

1. simple keywords - "CDC*" OR "CIBM"

2. compound keywords - "CDC*-OVL"

3. negated simple or compound keywords - "COVL-" or "CDC*-OVL-"

Simple keywords consist of at most four non-blank alphanumeric characters,
the first character of which must be the letter "C". Compound keywords must
have the initial character "C" in the second keyword replaced by a hyphen;
this hyphen must be positioned in column 5 of the card image. A compound
keyword is activated when its constituent keywords are both activated. A
hyphen suffix with simple or compound keywords toggles the activity state of
the corresponding keyword.

The keywords fall into three general categories:

1. Keywords delineating machine architecture features which can be
considered independent of computer manufacturer (CSW/CLW, C1LV/C2LV).

2. Keywords delineating compiler and loader features unique to classes of
computer manufacturers (CIBM, CDC*, CRAY, CD76, CENT, CTSS, CCOS, COVL,
CSEG).

3. Keywords distinguishing stand-alone and modular environments
(CANL,CSA).

The CSW/CLW keywords delineate coding peculiar to short-word and long-word
machines respectively. A short word machine may require double precision
arithmetic to obtain sufficient numerical accuracy, whereas single precision
arithmetic is sufficient on long-word machines. Typical code delineated here
might be precision specification statements and precision-dependent function
calls. The CSW/CLW keywords are mutually exclusive.

The precision specification for Hollerith variables is usually treated with
CSW/CLW keywords, although it would not be impossible for the conscientious
programmer to treat Hollerith data via the category (2) keywords. The latter
practice would provide the option of exercising either short-word or long-word
arithmetic on the same machine.

The C1LV/C2LV keywords delineate coding peculiar to one-level and two-level
storage hierarchy machines. The IBM and CRAY machines are one-level machines;
they have a single level of fast core memory. The CDC 7600, on the other
hand, has two levels of memory, a small core memory (SCM) and a large,
relatively slower memory (LCM). The C1LV/C2LV keywords are mutually
exclusive.

26

TABLE 6

Keyword Correspondence for Code Export

keyword

CSW
CLW
C1LV
C2LV
CENT
CIBM
CDC*
CRAY
CD76
CUNI
CANL
CLBL
CSA
COVL
CSEG
CTSS
CCOS

IBM
370

X

X

X
X

(X)

CDC
7600

X

X

X

X

(X)
X
(X)
(X)

CRAY

X
X

X

X

X
(X)
(X)
(X)
(X)

CDC
STAR

X
X

X

X

X

UNIVAC

X

X

X
X

X

X

27

The distinction between one-level and two-level machines is kept
independent of computer manufacturer, largely to permit us to exercise both
one-level and two-level logic on either type of machine.

The CIBM/CDC*/CRAY/CUNI keywords are mutually exclusive. Used with the
COVL keyword they delineate miscellaneous compiler differences in the imple-
mentation of overlay calling sequences and system functions including
END-OF-FILE tests and memory address requests.

The CENT keyword addresses the different compiler implementations of ENTRY
points. It is used to delineate the ENTRY point argument list.

Two keywords, CANL and CLBL, are used to demarcate coding to be activated
at two specific installations, Argonne (CANL) and Lawrence Berkeley Laboratory
(CLBL). These keywords are used mostly to take advantage of special features
of the local operating system. In addition, CANLs bracket features peculiar
to the modular system in use at Argonne; CSAs bracket features peculiar to
stand-alone program architecture.

The keyword CDEC is treated differently than the remaining keywords. If
the CDEC keyword is active, then card-images with the characters "CDECK" in
columns 1-5 are changed to "*DECK" in columns 1-5. This feature is primarily
useful for users of the CDC UPDATE utility. The CDECK cards are always
tabulated by the preprocessor program and thereby provide an index of their
associated code blocks or subroutines.

The COVL keyword is intended to bracket card images that are dependent on
whether or not overlay processing has been requested. Concurrent with the
activation of cards bracketed by COVL keywords, a search for card-images with
OVERLAY or CALL OVERLAY text is initiated for the purpose of replacing the
existing overlay file name in these card images with the user-supplied
non-blank file name provided with the control input for the preprocessor
program. The replacement is performed whether or not the COVL keyword is
active. The search is bypassed when the user-supplied name is blank.

The CSEG keyword is used to bracket coding that provides the functional
equivalent of indirect addressing of segment names. Certain segmented loader
inplementations do not permit segment names to be passed as a subroutine
argument.

Keywords CTSS and CCOS are used to bracket coding intended for the CRAY
Timesharing (Operating) System and the standard CRAY Operating System, respec-
tively.

Table 7 summarizes the intended applications for the present list of
keywords. Examples of keyword use are found in Figures 8 and 9 and in the
example given in the chapter on FFORM. The list of keywords is necessarily
open-ended to permit expansion to new machines as they arise.

The implementation of the preprocessor program has purposely been kept
simple. It requires control input (see Fig. 10) which consists of a list of
simple keywords to be activated, the logical unit numbers of the input and
output BCD files, an optional overlay file name to be inserted in OVERLAY

28

directives, and a character code conversion sentinel (0/1/2) which requests:
no conversion, translation of EBCDIC (029) to BCD (026), or vice versa.

29

TABLE 7

Keyword Usage Summary

Keyword Usage

CSW/ Short-word/Long-word machine
CLW 1. precision specifications for floating point numbers

2. precision of function references
3. precision specifications for Hollerith variables
4. word length indicator (MULT=1 or MULT=2)

C1LV/ Coding unique to one- or two-level memory machines
C2LV 1. calls to CRED,CRIT,ECMV,ECZERO,LRED and LRIT (optional)
C1BM/ Machine Manufacturer and Compiler Features
CDC*/ 1. END-OF-FILE tests
CRAY/ 2. overlay calling sequences
CUN1 3. ENCODE/DECODE calls

4. FORMAT statements with the 0 or Z format codes
5. random access I/O

CD76 CDC 7600
1. LEVEL specifications for LCM variables
2. calls to READEC and WRITEC
3. ECM container reference point initialization (JLOC=0)

CENT Entry points
1. arguments of entry points

CANL Local Argonne usage
1. modular system features, modules are executed by "CALL LINK"
2. special features of the Argonne operating system

CLBL Local Lawrence Berkeley Laboratory usage
1. special features of the Berkeley operating system

CSA Stand-alone usage
1. invocation of modules via subroutine "CALLs"

COVL Overlay usage
1. CALL OVERLAY statements
2. OVERLAY directives (CDC*)
3. dynamic replacement of overlay file names (in 1. and 2. above)

by the user-supplied name
CSEG Segmented loader usage

1. simulation of indirect calls to overlay segments
4. RETURN statement in main overlays

CTSS/ Coding unique to CRAY systems with the CTSS operating system
CCOS 1. dynamic memory allocation

2. LOCF/LOC function - machine address of a variable

30

SUBROUTINE XAMPL (A, B, C, N, LLOCA)
CSW

DOUBLE PRECISION A,B,C,STRING
CSW

DIMENSION A(N), B(N), C(N), STRING(5)
DATA STRING/ 6HTHIS I, 6HS A HO, 6HLLERIT, 6HH STRI, 6HNG. /

C
C INITIALIZE WORD LENGTH INDICATOR
CSW

MULT=2
CSW
CLW
C MULT=1
CLW

RETURN
Q***

ENTRY POINT1
CENT

1 (A, B, C, N, LLOCA)
CENT

DO 10 l=1,N
CSW

A(I)=DCOS(B(I)+C(D)
CSW
CLW
C A(I)=COS(B(I)+C(I))
CLW

10 CONTINUE
C
C COPY A TO ECM BEGINNING AT ECM LOCATION LLOCA.
C2LV
C CALL CRIT(A, LLOCA, N*MULT, IER)
C2LV

RETURN
END

Figure 8. An Example of Keyword Usage

31

CDECK SAMPLE
CDC*-OVL
C OVERLAY(OVLNAM,1,0)
C PROGRAM SAMPLE
CDC*-OVL
CDC*-OVL-

SUBROUTINE SAMPLE
CDC*-OVL-

COVL
C CALL OVERLAY(6HOVLNAM,1,1,0)
COVL
COVL-

CALL OVL11
COVL-

CDC*--OVL-
RETURN

CDC*-OVL-
END

Figure 9. An Example Using Keyword COVL

32

CARD 1 N2926,NIN,NOUT,OVNAME (313,A6)
CARD 2 ((WORDIN(I,J),I=1,4),J=1,N) (20A4)

N2926 0/1/2. NO CHARACTER CONVERSION/029 TO 026
(EBCDIC TO BCD)/026 TO 029.

NIN INPUT LOGICAL UNIT NUMBER.
NOUT OUTPUT LOGICAL UNIT NUMBER.
OVNAME 6-CHARACTER OVERLAY NAME,
WORDIN(.,J) THE J-TH 4-CHARACTER KEYWORD. EACH KEYWORD MUST

START WITH THE LETTER C AND MUST BE LEFT
JUSTIFIED IN THE FIELD.

N THE NUMBER OF KEYWORDS TO BE ACTIVATED. THE
CODE DETERMINES THIS NUMBER BY COMPARING EACH
4A1 FIELD WITH AN INTERNAL LIST OF ALLOWED
KEYWORDS. BLANK KEYWORDS ARE IGNORED. KEYWORDS
THAT ARE NOT LISTED IN THE INPUT ARE DEACTIVATED.

Figure 10. Input Description for the Preprocessor CONVTCD

33

2.4.2 Assembler Coding

There are some functions which require assembler coding. In the library
Cil6.CCCC.MASTER the members ABEND, MYLCM, SECOND, SIO, SIOSUB and TIME1 are
all IBM assembler code. Member CRED includes appropriately bracketed Compass
assembler coding for the subroutines WRITEC and READEC.

2.4.3 Generic Overlay Number Assignments

The overlay numbering assignments tabulated in Table 8 have been estab-
lished to expedite the export of large scale Applied Physics production codes
that employ many common utility modules (overlays). Adherence to the
suggested numbering convention combined with the appropriate use of the COVL
keyword cards within user supplied source code blocks should fully automate
the code export process.

34

TABLE 8

Generic Overlay Number Assignments

Overlay
Number
(Decimal)

J
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

Overlay
Number
(Octal)

1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21
22
23
24

NEUTRON1CS

25
26
27
30
31
32
33
34
35
36

SCAN
STUFF
GNIP4C
HMG4C
MODCXS
SRCH4C
CSE010 +
LASIP3 +

SUMMARY

UD0IT6
UD0IT5
UD0IT4
UDOIT3
UD0IT2
UD0IT1

BLOCKS

BCDINP
BIN1NP
SSINIT
SSTATE
DNHSST

DSSTOU

31

SUPER CODE BLOCKS (VARI3D, REBUS3, ETC.)

37

"•"Export of these code blocks is not supported.

35

3. CCCC STANDARD SUBROUTINES

Reference 2 describes a set of subroutine calls defined by the Committee on
Computer Code Coordination (CCCC) which standardizes data management in order
to facilitate the exchange of programs between different computers and labora-
tories. Only the calling sequences and functions are standardized; the actual
coding of each routine is left to individual installations*

The set of routines developed at ANL are designed to operate on machines
with either one level of memory (e.g. IBM and Cray computers) or two levels
(e.g. the CDC 7600). The machine-dependent coding has been kept to a minumum.
Not only does this approach make code export easier, it also permits the
testing of a two-level data-management strategy on a one-level machine.

The calling sequences and functions are defined fully in Reference 2 and
briefly in Appendix A of this report. This section goes into some of the
coding details for the versions of the CCCC subroutines included in the
utility subroutine package.

3.1 SEEK

In the ANL interpretation of the CCCC standards all data sets except the
output print file and input card image file are given names and version
numbers. Some file formats (e.g. those containing isotopic neutron cross
sections or the neutron flux distributions) are defined by the CCCC, but
others (e.g. the file used by Applied Physics codes to store macroscopic cross
sections) are code-dependent. Subroutine SEEK provides the connection between
file names and file reference numbers, even for scratch files. SEEK is very
similar to the ARC System routine SNIFF.1

The Fortran source code for SEEK is contained in member SEEK of the
LIBRARIAN source file C116.CCCC.MASTER; the corresponding object code is in
member SEEK of the C116.CCCC.SEGLIB library. In a modular environment the
function of SEEK is provided by the utility load module SYS003 in
C116.CCCC.MODLIB. SYS003 is link edited by combining members SYS003 and SEEK
from C116.CCCC.SEGLIB. In a modular environment the version of SEEK which is
built into applications load modules is a "module interface subroutine"; its
sole function is to transfer execution to the load module SYS003. Source code
for the module interface subroutine version of SEEK is in member SEEKARC of
C116.CCCC.MASTER; the corresponding object code is member SEEK of
C116.CCCC.SYSLIB. For further details see the writeups for SEEK and SEEKARC
in Appendix A.

SEEK must create and maintain a table (the "SEEK table") that associates
each unique file name and version number pair with a "file reference number".
The SEEK table must also tell whether a file "exists" (i.e. has had something
written into it) or not. The method of initializing the SEEK table is
entirely up to the individual installation. The ANL version of SEEK permits

36

two different methods for initialization. Both are described in the writeup
of SEEK in Appendix A. One is the same as the procedure required by SNIFF,
the other is more flexible. SEEK must be initialized before any files (binary
or BCD) are read.

A distinction must be made between the "file reference number" used in the
arguments of CCCC routines and the "logical unit number" that a programmer
codes into a Fortran I/O statement. In the Los Alamos implementation of the
CCCC standards the two are not the same. The programmer need not be concerned
with the difference when dealing with binary files since all I/O is performed
through calls to CCCC routines; applications programs should contain no
Fortran I/O statements for binary files. It is a common ANL practice,
however, to employ a number of BCD input files and to manage them with SEEK.
This means that ANL coding contains calls to SEEK which reference file
reference numbers as well as Fortran I/O READs and WRITEs which reference
logical unit numbers. The correspondence between the two numbers is managed
by means of a subroutine, SEKPHL, which is described later.

Because we employ subroutine SEEK with BCD and random access files in
addition to sequential access files, it is instructive to review the following
guidelines to avoid potential portability problems.

1. A call to SEEK with the proper read/write mode flag must be issued
prior to the first read or write to a data set and prior to the first
read or write to a data set that has been rewound. This practice is
necessary for compatibility with implementations that dynamically
assign file reference numbers upon each call to SEEK and dynamically
release file reference numbers after a data set rewind command is
received. A call to the appropriate routine, REED or RITE, with a
record number of zero rewinds the data set.

2. The logical unit number for BCD data sets must be obtained by calling
subroutine SEKPHL following the call to SEEK . SEKPHL returns the
logical unit number corresponding to the file reference numbers
returned by SEEK. SEKPHL must also be used to rewind and close BCD
files. Figure 11 illustrates the usage of SEKPHL. Subroutine SEKBCD
combines the calls to SEEK and to SEKPHL and is an alternative to
calling SEEK and SEKPHL separately. Figure 12 illustrates the usage of
SEKBCD. The calling sequences for SEKPHL and SEKBCD are found in
Appendix A.

3. A set of fifteen generic file names (RNDM01-RNDM15) have been reserved
for random access I/O applications. In order to maintain portability,
calls to SEEK for random access data sets are embedded within our
version of DOPC and DRED/DRIT. Consequently, SEEK calls for random
access files are not otherwise necessary and should never be coded by
the programmer.

4. Successive calls to SEEK (with different read/write mode flags) without
intervening rewinds must be avoided. Such situations may arise when
SEEK is called in a read mode solely to determine file existence. If
the file exists, but the programmer does not intend to read the file,
then REED (for binary files) or SEKPHL (for BCD files) should be called

37

to rewind it. Later, if the file is actually to be read, SEEK must be
called again*

The version of SEEK in the utility package performs no finalizing or
wrap-up function (NOP=2). The other operations specified by the CCCC standard
are all implemented (NOP = 0 , 1, 3, 4, 5).

38

DATA BCDNAM/6HINPUT /, IVER/1/, MODEO/0/, M0DE1/1/
C
C OBTAIN DATA SET REFERENCE NUMBER VIA SEEK
C OBTAIN DATA SET LOGICAL UNIT NUMBER VIA SEKPHL
C

CALL SEEK (BCDNAM, IVER, NREF, MODEO)
IF(NREF.LE.O) GO TO 2
CALL SEKPHL (NREF, LUN, MODEO)
IF(LUN .LE.O) GO TO 1

C
C READ FORMATTED DATA FROM LOGICAL UNIT NUMBER LUN
C

READ (LUN,10) DATA
10 FORMAT(A4)

C
C REWIND DATA SET
C

1 CONTINUE
CALL SEKPHL (NREF, LUN, MODE1)

2 CONTINUE

Figure 11. SEKPHL Usage

39

DATA BCDNAM/6HINPUT /, IVER/1/, MODE0/0/, M0DE1/1/
C
C OBTAIN THE DATA SET REFERENCE NUMBER AND DATA SET LOGICAL
C UNIT NUMBER VIA SEKBCD
C

CALL SEKBCD (BCDNAM, IVER, LUN, MODEO, NREF)
IF(NREF.LE.O) GO TO 2
IF(LUN .LE.O) GO TO 1

C
C READ FORMATTED DATA FROM LOGICAL UNIT NUMBER LUN
C

READ (LUN,10) DATA
10 FORMAT(A4)

C
C REWIND DATA SET
C

1 CONTINUE
CALL SEKBCD (BCDNAM, IVER, LUN, MODE1, NREF)

2 CONTINUE

Figure 12. SEKBCD Usage

3.2 SNIFF

SNIFF is not a CCCC subroutine; it is the ARC System equivalent of SEEK.1

Because of the local requirement that we be able to mix ARC System and CCCC
modules in the same job it is necessary that there be some way to direct CALLs
to both SEEK and SNIFF to the same utility load module.

The version of SNIFF in this utility routine package simply executes the
SEEK utility load module SYS003. It will return file reference numbers prior
to reads or writes, it will execute the "CHANGE" option, and it will set and
erase existence flags. It will not execute the SEEK table initialization
call; that must be done through a direct call to SEEK.

The source code for SNIFF is in member SNIFF of CI16.CCCC.MASTER. The
object code is in both C116.CCCC.SYSLIB and C116.CCCC.SEGLIB. SNIFF is
available as a utility load module in C116.CCCC.MODLIB.

3.3 TIMER

TIMER is a subroutine that provides the programmer access to such
quantities as the elapsed time, the current date and the wall clock time. All
of these quantities must come from somewhere in the operating system, and so
the coding of TIMER is very machine-dependent.

The source code in member TIMER of CI16.CCCC.MASTER is designed for both
local and export applications. Calls to special system routines are demar-
cated by the special comment cards CIBM, CDC*, CRAY, CANL and CLBL as
described in the section in the previous chapter on "Machine-Dependent
Coding." The options available in these two versions are listed in Table 9 .

The IBM export version of TIMER requires tne ssembler routines DATE1,
JOBID, CLOCK, TIME1 and SECOND contained in menbers TIME and SECOND of
Cl16.CCCC.MASTER. The CDC export version requires the generally available
system routines SECOND and DATE. The CRAY export version calls SECOND, DATE
and CLOCK.

At Argonne TIMER calls the system routines TLEFT, TWAIT and USERID in
addition to the routines called in the IBM export version. At Lawrence
Berkeley Laboratory TIMER calls the local routines STATUS, JOBCARD and HOUR in
addition to the CDC system routines SECOND and DATE.

The object code for TIMER is in C116.CCCC.SYSLIB.

41

TABLE 9

Options Available in Various Versions of TIMER

Versions

Sen-
tinel

-1
0
1
2
3
4
5
6
7
8
10

Parameters
Returned

return all+

initialize
elapsed CP time
time left *
elapsed PP time
date (A8)
user ID
user charge no.
user job name
wall clock (A6)
wall clock (A8)

ANL,
SYSLIB

yes
yes

* yes
yes

* yes
yes
yes
yes
yes
yes
yes

IBM,
EXPORT

yes
yes
yes

yes

yes
yes
yes

CDC,
EXPORT

yes
yes
yes

yes

CRAY,
EXPORT

yes
yes
yes

yes

yes

LBL
LOCA

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

time in seconds, elapsed time is time since last call to
TIMER with a sentinel of 0
"all" means all parameters available for a particular
version of TIMER

42

3.4 REED/RITE

The CCCC standards require that all binary I/O operations be executed
through calls to standard subroutines, not through Fortran I/O coded into
applications programs. This practice permits individual installations to take
advantage of locally available, efficient access methods without recoding
programs; all that is needed is a local set of CCCC standard I/O routines.

REED and RITE are the CCCC routines specified for binary sequential data
transfer between fast core (FCM) and external data files (disk). The calling
sequence for REED is:

CALL REED(NREF,IREC,ARRAY(I),NWDS,MODE)

This call transfers NWDS single-precision words from record number IREC of the
sequential file with file reference number NREF to the FCM locations starting
at the address of ARRAY(I). A similar call to RITE performs the inverse
operation. MODE is a sentinel that permits a programmer to code buffered I/O.
When MODEO I/O operations are completed before the return from REED/RITE.
When MODE=1 I/O operations are not necessarily completed before the return to
the calling program; a subsequent call with MODE=2 is required to complete the
outstanding I/O operation.

Figure 13 shows examples of code that use REED/RITE both in the normal mode
(MODE=0) and with buffering (MODE=1).

43

DIMENSION A(NWDS), B(NWDS)
DATA 10/0/

C
C LOOP OVER NRECS RECORDS IN FILE LUNA. READ EACH RECORD.
C

DO 10 IREC=1,NRECS
CALL REED(LUNA,IREC,A,NWDS,10)

C
C COMPUTE B FROM A. WRITE RECORD IREC.
C

CALL CALC(A,B,NWDS)
CALL RITE(LUNB,IREC,13,NWDS,IO)

10 CONTINUE

(a) Conventional sequential use of REED/RITE.

DIMENSION A(NWDS,2), B(NWDS,2)
DATA 11/1/, 12/2/, IBUF1/1/, IBUF2/2/

C
C LOOP OVER NRECS RECORDS IN FILE LUNA. FINISH READING RECORD
C IREC BEFORE STARTING TO READ IREC+1.
C

CALL REED(LUNA,I1,A(1,IBUF1),NWDS,I1)
DO 10 IREC=1,NRECS
CALL REED(LUNA,IREC,A(1,IBUF1),NWDS,12)
IF(IREC.LT.NRECS) CALL REED(LUNA,IREC+1,A(l,IBUF2),NWDS,II)

C
C COMPUTE B FROM A. FINISH WRITING RECORD IREC-1 OF FILE LUNB
C BEFORE STARTING TO WRITE IREC. ROTATE BUFFERS.
C

CALL CALC(A(1,IBUF1),B(1,IBUF1),NWDS)
IF(IREC.GT.l) CALL RITE(LUNB,IREC-1,B(l,IBUF2),NWDS,12)
CALL RITE(LUNB,IREC,B(1,IBUF1),NWDS,II)
I=IBUF2
IBUF2=IBUF1
IBUF1=I

10 CONTINUE

(b) Use of REED/RITE with buffering.

Figure 13. REED/RITE Usage

3.4.1 The Export REED/RITE, Sequential I/O Only

The export version of REED/RITE is a relatively simple routine that uses
ordinary Fortran I/O. Though the records of a sequential file are necessarily
written consecutively, the CCCC standards provide that they may be accessed in
a random fashion. Therefore, the export REED/RITE keeps track of the current
record number on all files, and uses REWINDS and dummy READs, if necessary, to
position a file before reading the next record requested. Calls with MODE=1
are treated the same as M0DE=0; calls with M0DE=2 are ignored.

The source code for this export version of REED/RITE is contained in member
REED of the CI16.CCCC.MASTER library. The corresponding object code is member
REED of C116.CCCC.SEGLIB.

3.4.2 REED/RITE with SIO Asynchronous Option

The source code in member REEDSIO of CI16.CCCC.MASTER is the production
version of REED/RITE that is used at Argonne. The code is intended for IBM
implementation, since special access methods are used which are programmed in
IBM assembler language. In addition to providing the standard sequential I/O
capability of the Fortran language, this version of REED/RITE provides an
asynchronous, random access I/O capability. The SIO program is used to obtain
this capability. In short, SIO uses IBM BSAM macro instructions, along with
internal tables and absolute track addressing, to process the I/O requests.
SIO was originally written for the OS/MVT operating system as a more efficient
and more convenient alternative to IBM Fortran Direct Access. The current
version of the routine runs under both OS/MVT and OS/MVS. The record format
for SIO files must have the undefined attribute (RECFM=U). Since each logical
record requires at least one track of direct access storage, the use of the
SIO access capability for short record transfers is not efficient.

Within the REED/RITE subroutine, the RECFM parameter of a file's JCL is
interrogated by a call to the subroutine RECFM. If the file has an undefined
attribute (RECFM=U) the code will use SIO access methods. Any other record
format (e.g. VBS, VS, FB, etc.) is processed by standard Fortran sequential
I/O. To perform the SIO data transfers, a subroutine SIO is invoked. This
routine in turn invokes the subtask SIOSUB which actually performs the I/O
operations. The MODE parameter which is passed to REED/RITE is used to
determine whether transfer is returned to the calling routine before the I/O
operation is complete. This facility, therefore, provides the user with the
ability to overlap I/O and CPU operations or I/O operations on one file with
those on another. The second example in Figure 13 shows an application of
REED/RITE which takes advantage of the SIO access method.

The object code for this version of REED/RITE is in member REED of
C116.CCCC.SYSLIB. The assembler language routines required by this subroutine
(RECFM, SIO, SIOTRC) are in member SIO of CI16.CCCC.SYSLIB. The module SIOSUB
which is invoked to perform the asynchronous, random access I/O is in member

45

SIOSUB of C116.CCCC.M0DLIB. The assembler source code for RECFM, SIO and
SIOTRC are in member SIOASM of C116.CCCC.MASTER. The Fortran source code for
this version of REED/RITE is in member REEDSIO of C116.CCCC.MASTER. The
assembler source code for SIOSUB is in member SIOSUB of C116.CCCC.MASTER.

3.5 DOPC AND DRED/DRIT

The CCCC standards require that all random access I/O operations be
channeled through calls to standard subroutines, not through Fortran I/O coded
into applications programs. Also specified is the fact that such data should
be transferred between external data files (disk) and extended core memory
(ECM).

The calling sequence for DRED is:

CALL DRED(NREF, IREC, LOCBFU, NWDS, MODE)

This call transfers NWDS single-precision words from record number IREC of the
the random access file with file reference number NREF to the ECM locations
starting LOCBFU words from the (user) ECM reference address. A similar call
to DRIT performs the inverse operations. MODE is a sentinel that permits the
programmer to code asynchronous I/O. When MODE=0 operations are completed
before return from DRED/DRIT. When MODE=1 I/O operations are not necessarily
completed before return from DRED/DRIT; a subsequent call with M0DE=2
completes the outstanding I/O operation.

Prior to calling DRED/DRIT the random access I/O implementation must be
initialized by several DOPC calls. The five DOPC calling options are illus-
trated in Figure 14 and are summarized below:

1. (IOP=0) Initialize DOPC and, in one-level implementations, supply a
pseudo ECM reference location.

2. (IOP=1) Supply file characteristics for reference number NREF.

3. (I0P=2) Conclude the definition of the file group, NGREF. NGREF
includes all files defined with IOP=1 calls since either the last I0P=2
call or the original IOP=O call.

4. (I0P=3) Delete file group NGREF and its constituent files.

5. (I0P=4) Finalize DOPC at the conclusion of the program module. All
file groups are deleted.

Upon completing DOPC initialization options 1,2 and 3 (above), DRED/DRIT may
be used as illustrated in Figure 15.

46

COMMON /ARRAY/ BLK(l)
DIMENSION NREF(3), NGREF(2), MXBLEN(3), MXBLKS(3), LENFIL(3)
DATA 10/0/, 11/1/, 12/2/, 13/3/, 14/4/, IDUM/0/
DATA NREF/11,12,13/, NGREF/1,2/

C
C INITIALIZE DOPC
C ASSUME MXBLEN, MXBLKS AND LENFIL ARRAYS HAVE BEEN INITIALIZED
C

CALL DOPC(IC), IDUM, IDUM, NERR, BLK, IDUM, IDUM, IDUM)
C
C DEFINE FILE GROUP 1 CONSTITUENTS
C

CALL DOPC(I1,, NREF(l), IDUM, NERR, DUM, MXLEN(l), MXBLOK(l),
1 LENFIL(l))
CALL DOPC(I1, NREF(2), IDUM, NERR, DUM, MXLEN(2), MXBLOK(2),
1 LENFIL(2))
CALL DOPC(12, IDUM, NGREF(l), NERR, DUM, IDUM, IDUM, IDUM)

C
C DEFINE FILE GROUP 2 CONSTITUENTS
C

CALL DOPC(I1, NREF(3), IDUM, NERR, DUM, MXLEN(3), MXBL0K(3),
1 LENFIL(3))
CALL DOPC(I2, IDUM, NGREF(2), NERR, DUM, IDUM, IDUM, IDUM)

C
C DELETE A FILE GROUP
C

CALL DOPC(I3, IDUM, NGREF(l), IER, DUM, IDUM, IDUM, IDUM)
C
C FINALIZE DOPC (I.E. DELETE ALL FILE GROUPS)
C

CALL DOPC(I4, IDUM, IDUM, IER, DUM, IDUM, IDUM, IDUM)

Figure 14. DOPC Usage

47

SUBROUTINE DMSMPL (LA, LB, LOCA, LOCB, NREFA, NREFB, NWDS)
COMMON /ARRAY/ BLK(l)

C
C LOOP OVER NRECS RECORDS IN FILE NREF. READ EACH RECORD.
C LOCA AND LOCB ARE STARTING LOCATIONS OF ECM ARRAYS A AND B
C OF LENGTH NWDS. LA AND LB ARE THE STARTING LOCATIONS OF THE
C FCM BUFFER ARRAYS IN WHICH CALCULATIONS ARE PERFORMED ON 2-LEVEL
C MACHINES. ON 1-LEVEL MACHINES LA AND LB DIRECTLY ADDRESS THE
C PSEUDO-ECM ARRAYS.
C
C1LV

LA=LOCA
LB=LOCB

C1LV
DO 10 IREC=1,NRECS
CALL DRED (NREFA, IREC, LOCA, NWDS, 10)

C2LV
C CALL CRED (BLK(LA), LOCA, NWDS, IER)
C2LV
C
C COMPUTE B FROM A, THEN WRITE ARRAY B TO FILE NREFB
C

CALL CALC(BLK(LA), BLK(LB), NWDS)
C2LV
C CALL CRIT(BLK(LB), LOCB, NWDS, IER)
C2LV

CALL DRIT (NREFB, IREC, LOCB, NWDS, 10)
10 CONTINUE

RETURN
END

Figure 15. DRED/DRIT and CRED/CRIT Usage

48

3.5.1 General Implementation Considerations

The connection between a random access file reference number NREF and its
corresponding logical unit number is established in the ANL implementation by
calling subroutine SEEK during the processing of each DOPC (IOP=1) call. The
call to SEEK uses the generic random access file name RNDMnn which by
convention corresponds to the random access file reference number NREF=nn.
Currently NREF must satisfy 0<NREF<16. Codes which use this version of DOPC
and DRED/DRIT need only supply in the SEEK initialization call those generic
file names used by the applications code.

The DOPC initialization call establishes the pseudo ECM reference point for
DRED and DRIT calls on one level machines. Although never explicitly
specified in the CCCC standards, this pseudo ECM reference point initiali-
zation must also apply to CRED and CR1T usage. Consequently, all calls to
DRED, DRIT, CRED and CRIT on one-level machines must be preceded by a DOPC
initialization call. By definition in the CCCC standard, the ECM reference
location on two-level machines is the first word of ECM (e.g. LCM on the CDC
7600). It should be emphasized that the ECM reference point is just that. It
does not necessarily specify the starting location of ECM.

Except for the implementations on the CDC and CRAY computers, DRED/DRIT
call REED/RITE to perform the random access I/O operations. Consequently, the
implementation of DRED/DRIT on IBM 370 systems is simply the REED/RITE imple-
mentation discussed earlier in this section.

3.5.2 Implementation Considerations on the CDC 7600

Random access I/O on the CDC 7600 is implemented using the routines OPENMS,
CLOSMS, READMS and WRITMS found in the Fortran utility library. Auxiliary
storage equal in length to the number of records in the file must be supplied
during the OPENMS call for each file. An auxiliary ECM container named XCM is
allocated directly from DOPC by calling entry point IGTXCM in the IGTLCM
dynamic storage allocation subroutine package. Consequently, DOPC and
DRED/DRIT depend only on IGTXCM for dynamic storage allocation.

The subscript index limitation of 131071 words imposed on CDC 7600 LCM
arrays is effectively raised to 393213 by employing two routines DRED1 and
DRED2 each of which addresses a successively higher block of 131070 words of
ECM. The circumvention is accomplished by passing the initial address of the
next adjacent block of 131070 words of ECM to the appropriate routine, DRED1
or DRED2.

49

3.5.3 Implementation Considerations for the CRAY-1

The CRAY-1 implementation of DOPC and DRED/DRIT employs the random access
I/O capabilities provided by the Fortran '77 standard which is implemented in
the standard CRAY-1 (CFT 1.09) compiler.

3.6 CRED/CRIT

CRED and CRIT are the CCCC routines specified for data string transfer
between ECM and FCM. The calling sequence for CRED is:

CALL CRED (FCM(I), LECM, NWDS, IER)

This call transfers NWDS single precision words starting from ECM location
LECM to the FCM locations starting at the address of FCM(I). IER is an error
sentinel. A similar call to CRIT performs the inverse operation. The example
in Figure 15 illustrates the use of CRED/CRIT.

The implementation of CRED/CRIT on the CDC 7600 employs the COMPASS
assembly language routines WRITEC and READEC to perform the actual data
transfers between ECM and FCM. The three arguments in the calling sequence
for WRITEC are identical in type to the first three arguments in the CRIT
calling sequence (e.g. CALL WRITEC (FCM, LECM-1, NWDS)).

The second parameter LECM in CRIT denotes an ECM location relative to the
ECM reference array, while the second parameter supplied in the WRITEC call
denotes the corresponding ECM address (e.g. LECM-1). On one-level implementa-
tions CRED and CRIT simply transfer data between FCM and pseudo ECM locations
both of which reside in the same memory level. The transfers are performed
via standard Fortran assignment statements.

As noted in the DOPC and DRED/DRIT section, CRED/CRIT are interlocked with
DOPC to ensure that the ECM container reference address pointers have been
initialized by DOPC.

The Fortran source code for CRED/CRIT is in member CRED of
C116.CCCC.MASTER.

3.7 ECMV

ECMV is the CCCC routine specified for transfering data strings between
locations in ECM on two-level machines (e.g. CDC 7600). Transfers are
performed using CRED and CRIT which route data through a 64-word FCM buffer
array local to ECMV. This approach circumvents the compiler restriction
limiting array sizes to 131071 words on the CDC 7600. The calling sequence
for ECMV is:

CALL ECMV (LECM1, LECM2, NWDS)

50

This call transfers NWDS single precision words starting from ECM location
LECM2 to the ECM location starting at LECMl.

3.8 LRED/LRIT

LRED and LRIT are the CCCC routines specified for executing binary
sequential I/O operations that transfer data between external data files
(disk) and ECM. The calling sequence for LRED is:

CALL LRED (NREF, IREC, ECh(I), NWDS, MODE)

This call transfers NWDS single-precision words from record number IREC of the
sequential file with reference number NREF to the ECM locations starting at
the address of ECM(I). A similar call to LRIT performs the inverse opera-
tions. MODE is a sentinel that permits programmers to code buffered I/O as
explained in the REED/RITE description in a previous section. The only
difference between LRED/LRIT and the export version of REED/RITE is the memory
level within which the data array to be transferred is located.

Because LRED/LRIT and REED/RITE can access the same file, a common initial-
ization subroutine (ZEROIO) is used.

The Fortran source code for LRED/LRIT is located in member LRED of
CI16.CCCC.MASTER.

51

4. BCD INPUT CONVENTIONS

The input to major production codes usually consists of both BCD card input
and disk files. The disk files are usually libraries (e.g. cross section
data) or restart files and are created by other jobs. The BCD card input is
prepared by the user and, for complicated models, may run to thousands of
cards containing a variety of types of data.

Applied Physics production codes use input preprocessing routines to break
up a single, BCD card input file into several smaller BCD disk files. These,
in turn, are then read by different applications load modules. These prepro-
cessing routines also provide a convenient method of executing a number of
similar calculations in a single job with a minimum of input. This chapter
discusses input conventions and input preprocessing - first from the stands-
point of the user, and then from the standpoint of the programmer.

We will use the term "ARC System" to identify these input conventions since
they were largely set for the original ARC System. They have evolved with
the new generation of CCCC2 codes, however, and are completely exportable.

4.1 USER CONSIDERATIONS

In the ARC System input convention the input BCD card images are grouped
into "BLOCKs", and the card images within each BLOCK are grouped into
"DATASETs". BLOCKs and DATASETs are identified by cards containing one of the
following phrases:

3L0CK=blknam
DATASET=dsname
SUBLOCK=dsname
UNFORM=dsname
NOSORT=dsname
MODIFY=dsname
REMOVE=dsname

The words to the left of the "=" sign are "keywords"; the words to the right
of the "=" sign are BLOCK or DATASET names. Keywords must start in column 1
of the card, and there can be no imbedded blanks.

Both binary and BCD files are given names and, following the CCCC conven-
tions,2 version numbers. Binary files include CCCC standard interface files,
code dependent interface files for passing data between load modules, and
scratch files used only within particular load modules. BCD files for ARC
System codes are usually given names starting with "A."; for example A.NIP3 is
the BCD file which defines the neutronics input geometry and isotopic number
density data for most of our new codes.

The number of versions permitted for a particular file is established by
individual programs. In references in the BCD card input to one of several
versions of a file, the version number must follow the file name and be

52

separated from it by a comma. Taking examples from the list of keyword
phrases above:

DATASET=A.SAMPLE,2
REMOVE-RTFLUX,1

A version number of unity is implied when no version number is given. Thus,
the second example above could have been written:

REMOVE=RTFLUX

Most files for most programs are permitted only one version, and so version
numbers are required only occasionally.

4.1.1 BLOCK=

The BCD input stream is divided into BLOCKs, and each BLOCK starts with a
card containing

BLOCK=blknam

"blknam" may be the word "OLD" or a name appropriate to the particular code
being executed. The special case of BLOCK=OLD is discussed in a later
section. A BLOCK ends at the last card before the next BLOCK= card or at the
end of the card input file, whichever is encountered first.

As far as the user is concerned, the phrase BLOCK=blknam causes the
execution of a particular sequence of load modules. If the phrase occurs
twice in the input stream the sequence is executed twice. Only data contained
in the first BLOCK are available to the program during the first execution.
Data in the second BLOCK modify or replace the first BLOCK data for the second
execution.

The name of a BLOCK is a convention set by the individual applications
program. It may, for example, be the name of the program itself.

BLOCKs with the same name are processed in the order in which they appear
in the input. BLOCKs with different names may be placed in any arbitrary
order; it will make no difference to the execution of the program.

4.1.2 DATASET=, UNFORM=, SUBLOCK=, NOSORT=

The data within each BLOCK are subdivided into DATASETs, and each DATASET
starts with a card containing one of the phrases:

DATASET-dsname
SUBLOCK=dsname
UNFORM»dsname . -
NOSORT=dsname

53

A DATASET ends at the last card before the next keyword or at the end of the
card input file, whichever comes first. The order of dissimilarly named
DATASETs within a single BLOCK makes no difference to the execution of the
program.

DATASETs designated DATASET=, SUBLOCK= or UNFORM= are expected to contain
cards on which the first two columns contain either

1. a positive, 2-digit, nonzero
"card type number," or

2. blanks, zeros or non-numeric characters.

The type numbers (01, 02, 99) are used in ARC System input to identify
the type of data on each card. For example, in the BCD input file named
A.NIP3 mesh data are supplied on "type 09 cards" (cards that have "09" punched
in columns 1-2).

Before individual load modules read cards in a particular DATASET specified
by DATASET=, SUBL0CK= or UNF0RM=, the cards with card type numbers are
rearranged in order of ascending card type number. When more than one card of
a particular card type is present the relative order of those similarly
numbered cards is unchanged.

At the same time as numbered cards are reordered, unnumbered cards (those
with blanks, zeros or non-numeric characters in cols. 1-2) are repositioned
after all numbered cards. Some users use unnumbered cards as "comment cards"
to annotate their decks of numbered cards; before the data are read by appli-
cations load modules the unnumbered comment cards are swept to the back of the
DATASET where they may not be seen by the load module. A listing of the input
deck before sorting is printed on the user's output medium so that the
comments are available for documentation.

DATASETs designated NOSORT= are not reordered in any way. NOSORT DATASETs
are normally used for data required by a load module which was written at
another installation but which was incorporated as a load module in an Applied
Physics production code.

Applications programs reading data specified by DATASET= or SUBLOCK= expect
the data cards to be formatted; the cards will be read using formatted,
Fortran I/O. Programs reading data specified by UNFORM= will process unfor-
matted data (in cols. 3-72; cols. 1-2 are still reserved for card type
numbers). The conventions for unformatted data are given in the section on
the free-format routine FFORM. The user should be aware that some applica-
tions programs may not permit free-format input. The format rules for NOSORT
DATASETs depend on the individual load modules which read them.

When BLOCK=blknam appears twice in the input - specifying two executions of
the same sequence of load modules - DATASETS in the first BLOCK are automati-
cally preserved for the second execution unless the user deliberatly redefines
a DATASET in the second BLOCK. For example,

54

BLOCK=TEST
DATASET=A.SAMPLE
01 data ...
02
07
BL0CK=TEST
DATASET=A.SAMPLE
01 new data
02
06

The first DATASET is entirely replaced by the second before the second
execution. A later section discusses how one can make selective changes to
DATASETs.

4.1.3 BLOCK=OLD

The special BLOCK "OLD" permits the user to tell a program which files
already exist on disk and are being input to the calculation. Input disk
files must be listed under BLOCK=OLD in the following manner:

BLOCKOLD
DATASET=dsname
DATASET=dsname

etc

BLOCK=OLD may be placed anywhere in the BCD card input file.

These BLOCKOLD files are usually binary library or restart files.
Occasionally it may be convenient to create and save a BCD file in one job and
then pass it to a second job on disk rather than in the BCD card input file.
In such a situation the DATASET name should appear under BL0CK=0LD in the
second job and not in any other BLOCK processed by the second job.

4.1.4 M0DIFY=, REMOVE=, nn=DELETE

MODIFY=dsname permits the user to replace cards of a particular card type
in an old DATASET without affecting the rest of the data. Type numbered cards
following MODIFY=dsname replace the cards of that type (or those types) in a
previously defined DATASET. For example, if a DATASET in one BLOCK contains
seven type 09 cards and five new type 09 cards are provided in a second BLOCK
under MODIFY=dsname, then the seven original cards are deleted and the five
new cards substituted before the second execution.

It is not necessary for a DATASET to be defined in one BLOCK and MODIFYed
in another. Some users like to define a reference DATASET with DATASET=dsname
and then make changes in the same BLOCK before execution with M0DIFY=dsname.
Subsequent use of MODIFY will operate on the most recent version of the
DATASET.

55

REMOVE=dsname deletes the entire DATASET. This option is frequently used
with binary data sets to force applications load modules, for one reason or
another, to rewrite a data set.

nn=DELETE, where nn is a card type number, after a MODIFY=dsname will cause
all of the type nn cards to be deleted from the DATASET.

4.1.5 Sample Input

Figure 16 shows a BCD card input file for a fictitious program. The input
is designed to exercise most of the options described above. Three input
DATASETs are defined; they are two separate versions of a file named A.SAMPLE
and one named A.XAMPLE. Below the listing of the input, Figure 16 shows the
contents of each file after preprocessing and before the imaginary program is
executed. There are two BLOCKs (i.e. two executions in the job).

MODIFY= is used in the first BLOCK to modify a DATASET defined in the same
BLOCK (A.SAMPLE,2). It is used in the second BLOCK to modify a DATASET
defined in the first BLOCK (A.SAMPLE,1).

Note that A.SAMPLE,1 and A.SAMPLE,2 are defined with DATASET= and UNFORM=;
the cards are reordered according to card type with unnumbered cards placed
last. A.XAMPLE is defined with NOSORT= and is unaffected by the prepro-
cessing.

56

BLOCK=TEST
DATASET=A.SAMPLE

A.SAMPLE,1
09 09 CARD
05 1ST 05 CARD
5 2ND 05 CARD To the left is a sample

UNNUMBERED input file illustrating
07 07 CARD many of the input processing
5 3RD 05 CARD options. There are two
UNF0RM=A.SAMPLE,2 BLOCKs and three DATASETs
XX A.SAMPLE referenced.
XX VERSION 2
08 08 CARD
MODIFY=A.SAMPLE,2
08 REPLACE 08
BLOCK=TEST
MODIFY=A.SAMPLE,1
09=DELETE
05 REPLACE 05
REMOVE=A.SAMPLE,2
NOSORT=A.XAMPLE

A.XAMPLE
NOSORT

07 TYPE 07 CARD
NO NUMBER

07 ANOTHER 07

Contents of each of the three DATASETs after the
first BLOCK is processed.

05
5
5
07
09

A.SAMPLE
version 1

1ST 05 CARD
2ND 05 CARD
3RD 05 CARD
07 CARD
09 CARD
A.SAMPLE,1
UNNUMBERED

08
XX
XX

A.SAMPLE
version 2

REPLACE 08
A.SAMPLE
VERSION 2

A.XAMPLE

not defined in
the first BLOCK

Contents of each of the three DATASETs after the
second BLOCK is processed.

05
07

REPLACE 05
07 CARD
A. SAMPLE,1
UNNUMBERED

not
the

Figure 16

defined in
second BLOCK

. Illustration

07

07

of

A.XAMPLE
NOSORT
TYPE 07 CARD
NO NUMBER
ANOTHER 07

Input Convent

57

4.1.6 Output from BCD Input Card Preprocessors

The BCD input preprocessing routines normally produce two kinds of edits*
At the beginning of the job the user's input is listed on both the regular and
auxiliary output print files by the routine SCAN. In addition, all data sets
processed under each BLOCK=blknam are edited by the routine STUFF. Users have
control over the STUFF edits for each BLOCK through an integer sentinel, n,
that can be added to the BLOCK* card:

BLOCK=blknam,n

n = 0 , edits given on both regular and
auxiliary output files (default).

= 1, edits on regular output file only.
= 2, edits on auxiliary output file only.
= 3, no edits for the current BLOCK.

4.2 GENERAL PHILOSOPHY ON INPUT DATA

A number of principles have guided the design of BCD card input for ARC
System codes. We have continued to observe them in the development of CCCC
codes.

1. Data that are not essential to the problem should not be required in
the BCD card input. In particular, no redundant data should be
required.

2. Card input files should be easy to create and to modify.

3. Whenever possible, labels and names should be used instead of numbers
for descriptive data.

The BCD input conventions defined in the previous section support these
principles.

The convention of numbered cards containing very specific types of data
helps to eliminate nonessential and redundant data. The preprocessing
routines pass to the applications programs the number of cards of each type
contained in a particular DATASET. The user never has to tell a code how many
data of a particular type are input; the code can figure it out by itself.
Default values can be provided not only when a particular datum is missing,
but also when whole card types are missing.

About forty different card types are defined for the geometry and isotope
number density file A.NIP3. Rarely are more than a dozen used for a parti-
cular job. Instead of user supplied sentinels, the presence or absence of
particular card types signals options. Explicit sentinels would be redundant.

58

Numbered cards and the free-format option make it relatively easy to create
and modify DATASETs. Long strings of input data and tables are convenient to
the programmer but not to the user. ARC System input has always tended
towards requiring only a few pieces of data per card, with the format of the
card designed for the convenience of the user. In some cases cards of a
particular type may be shuffled without affecting the definition of a problem.
In other cases the order of cards has significance; the data on one card may
overlay, in some way, data defined on a previous card. Modifications to input
can frequently be made simply by adding or changing the order of cards; no
changes to existing cards are required.

If nothing else, the use of labels instead of numbers for input quantities
makes the BCD card input file more readable to users. In the A.NIP3 DATASET
compositions and geometric regions are given labels, and isotopes are referred
to by name.

4. 3 PROGRAMMING CONSIDERATIONS

The two subroutines which preprocess the BCD card input file are SCAN and
STUFF. This section discusses their use in a program.

4.3.1 SCAN and STUFF Input Preprocessors

SCAN must be called before any BCD input is read and before the first call
to STUFF; it is called only once in a job. The initialization call to SEEK
must precede the call to SCAN. SCAN reads the entire BCD card input file from
logical unit NIN (NIN is the first variable in the labeled common block
/IOPUT/) and copies it to another file which is either the file named ARC or,
if ARo is not in the SEEK tables, logical unit 9. In the process it sets up a
table of pointers to the beginning of each BLOCK. The call to SCAN also
processes the data in BLOCK=OLD if it is present in the input file.

All BLOCKs other than BLOCKOLD are processed by calls to STUFF. Before
each call to STUFF the variable STFNAM (the first variable in the labeled
common block /STFARC/) must be set equal to the name of the BLOCK to be
processed. STUFF returns a flag (NRET in /STFARC/) which permits the program
to test for end of input. STUFF writes, or rewrites, each BCD disk file
referenced under the particular BLOCKsSTFNAM according to the instructions in
the input (DATASET=, MODIFY=, etc.). It is STUFF that reorders, replaces and
deletes ?.umbered cards. Since the STUFF processing follows the processing of
BLOCK=OLD by SCAN, a new DATASET input on cards would destroy the data already
in an existing file of the same name referenced under BLOCK=OLD.

Figure 17 shows a simple driver that uses SCAN and STUFF to preprocess BCD
card input. In fact, this driver could be used with the input shown in Figure
16 since the BLOCK and DATASET names are consistent. The driver starts by
setting card and printer file numbers and by initializing SEEK, TIMER and
LINES. Following the single call to SCAN it goes into a loop containing a
call to STUFF and an execution of a program (PROG). Execution terminates when

59

the last BLOCK-TEST has been processed. Figure 17 is a simplified, but
otherwise typical, driver; a calculation is performed for each BLOCK in the
input.

Additional details about SCAN and STUFF, and their use, may be found in the
writeups of ARCBCD, SCANARC, STUFFARC, SYSOO1 and SYS002 in Appendix A.

The source code for SCAN and STUFF is in member ARCBCD of CI16.CCCC.MASTER;
the object code is in member ARCBCD of C116.CCCC.SEGLIB. In a modular
environment the module interface subroutines are in members SCAN and STUFF of
C116.CCCC.SYSLIB.

60

csw
IMPLICIT REAL*8(A-H,0-Z)

CSW
COMMON /PTITLE /TITLE(66), TIME(IO), HNAME(4), KOUT, KOUT2, NTITLE
COMMON / IOPUT / NIN, NOUT, NOUT2
COMMON / STFARC / STFNAM, BLKNAM(50), IBLTAB(3,50), NBLOCK, NRET
DIMENSION DSNAME(6)
DATA DSNAME / 8HA.SAMPLE, 8HA.SAMPLE, 8HA.XAMPLE, 6HRTFLUX,
1 6HIS0TXS, 1H$ /
DATA BL0CK/4HTEST/, BLANK/6H /
DATA IM1/-1/, 10/0/, 11/1/, 13/3/, 14/4/, 111/11/

C
NIN=5
NOUT=6
KOUT=NOUT
N0UT2=I0
KOUT2=NOUT2
NTITLE=0
CALL FLTSET(TITLE,BLANK,111)
CALL FLTSET(HNAME,BLANK,14)

C
N=0
CALL SEEK(DSNAME,I1,N,I3)
CALL TIMERdO,TIME)
CALL TIMER(IM1,TIME)
CALL LINTS(IO,I>
CALL SCAN

C
STFNAM=BLOCK

10 CONTINUE
CALL STUFF
IF(NRET.LE.O) GO TO 20
CALL PROG
GO TO 10

C
20 CONTINUE

RETURN
END

Figure 17. An Example of the Use of SCAN and STUFF

61

4.3.2 Setting Logical Unit Numbers for BCD Files Via SEKPHL

The ANL convention of using more than one BCD file is not covered in the
CCCC rules, and it caused problems when codes were exported to Los Alamos. It
is not necessarily true that the file reference number for a BCD file returned
by SEEK is identical to the logical unit number used in Fortran I/O coding.
The relationship between the two numbers is always hidden behind subroutine
calls (SEEK, REED, etc.) for binary files.

Because of the potential for a problem a subroutine, SEKPHL, is used to
return a logical unit number given a SEEK file reference number- SEKPHL is
also used to rewind (and close if required) BCD files, a function REED and
RITE perform for binary files.

The calling sequence for SEKPHL is defined in Appendix A. An example of
its use with SEEK was given in the chapter entitled 'CCCC Standard
Subroutines". The Argonne export SEKPHL simply sets the logical unit equal to
the file reference number obtained from a call to SEEK. Other installations
(e.g. LANL) may use a different correspondence. Figure 11 illustrates SEKPHL
usage.

4.3.3 Reading BCD Files Preprocessed by STUFF

As it writes or rewrites a BCD card image file STUFF inserts a few
formatted records at the beginning which contain information about the
structure of the file. These lead records may be read:

READ(M,99)ANAME,MAXTYP,NONUM,NOFORM,(N(I),I=1,MAXTYP)
99 F0RMAT(A8,315/(1615))

M file logical unit number
ANAME file name
MAXTYP highest card type number in file
NONUM number of unnumbered cards
NOFORM 0/1, cards are to be read

formatted/free-format
N(I) number of type I cards in the file

The logical unit number, M, should be obtained through calls to SEEK and
SEKPHL:

CALL SEEK(ANAME,IVER,1,0)
CALL SEKPHL(I,M,0)

IVER file version number
I file reference number

62

There are always at least two of these lead records in a BCD file written by
STUFF; Fortran I/O expects a second record even if MAXTYP=0. Indeed, for
NOSORT DATASETs MAXTYP is zero.

The NOFGKM sentinel is 0 for files designated DATASET= or SUBLOCK=; it is 1
for files designated UNFORM=.

These lead records permit applications modules reading BCD files to make
decisions based on the presence or absence of particular card types. The
user's input card images follow the lead records and can be read as if they
were cards - one 80-column card per record.

63

5. BPOINTER, A DYNAMIC STORAGE ALLOCATION PROGRAM

Small, single-purpose codes can afford to be programmed with fixed-
dimension arrays for storage. Such a practice imposes rigid limits on the
size of a problem a code can solve, but those limits can be made large or can
be changed by rewriting the DIMENSION statements.

In the case of large production codes the problem size limitations imposed
by fixed-dimension arrays may be intolerable. Running small problems on codes
designed for large ones can be needlessly expensive. Code changes may be
awkward and, from a quality asmrance standpoint, risky. Most large codes,
therefore, use some sort of dyi amic storage allocation system to manage the
core storage of data during execution. Core storage is reserved for a parti-
cular dimensioned array only during the time the corresponding data are
required to be in-core; at other times the space is made available for the
storage of other data.

The ARC System dynamic storage allocation routines are contained in the
BPOINTER package. BPOINTER is a collection of subprograms which was developed
to alleviate bookkeeping chores associated with the use of dynamic storage
allocation techniques. These chores are separated into two functional
categories:

1. The highly machine-dependent functions of obtaining/releasing large
blocks of workspace called "containers" from/to the operating system.

2. The largely machine-independent bookkeeping functions associated with
managing array allocations within a given container

Category 1 tasks are performed by the IGTLCM package, a self-contained set of
subroutines that may be used independently of BPOINTER. Consequently, in
situations requiring only the IGTLCM functions (e.g. dynamic container
allocation for codes imported by Argonne), inclusion of the BPOINTER routines
is unnecessary.

5.1 USER CONSIDERATIONS

The user needs to know nothing about the BPOINTER routines themselves, only
that they require one or two large blocks of workspace called "containers" for
data storage during the execution of a job. The container sizes are usually
input quantities, and the choice of sizes is entirely code and problem
dependent.

The first container, the FCM (fast-core memory) container, is always in
fast memory. Fast memory is called SCM (small-core memory) on the CDC 7600
computer. The second, the ECM (extended-core memory) container, is in LCM
(large-core memory) on CDC 7600 machines and in fast memory on other,
one-level computers. The pseudo-ECM container used on one-level machines
unifies the code from an applications and programming standpoint.

64

The terms SCM and LCM are usually used only in the context of CDC 7600
systems. We will occasionally use them interchangeably with their generic
counterparts FCM and ECM, respectively.

In IBM/370 systems the user must be sure that the job or step REGION size
is large enough to accomodate the program, file buffers and containers.
BPOINTER will print an error message if the requested containers are too large
for the REGION.

On the CDC 7600 system the user should request field lengths only large
enough to execute the code without the BPOINTER containers. BPOINTER requests
additional memory for the containers (i.e. increases the field length during
execution) and returns an error flag if that space cannot be allocated.

On the CRAY system the user should request a field length in the JOB
control statement large enough to accomodate the program, file buffers and
containers. BPOINTER will print an error message if the requested containers
cannot be allocated. Most programs that use BPOINTER return the field lengths
to their original values upon normal termination.

5.2 PROGRAMMING CONSIDERATIONS

Programs which use the BPOINTER capability tend to be structured in
subroutine form. A control routine is used to define one or two blocks of
storage (the containers) and to make the appropriate calls to BPOINTER to
control the allocation of space within these containers. Calls to calcula-
tional subroutines transmit pointers corresponding to array locations through
the calling sequences. All BPOINTER capabilities are accessed through an
appropriate call to an entry point, subroutine or function subprogram. The
following capabilities are available in the BPOINTER system:

1. Storage of data in and retrieval of data from the container array via
user defined variable arrays.

2. Purge of variable arrays stored in the container array.

3. "Cleanup" of the container array when more storage is required (to
avoid fragmentation).

4. Redefinition of array sizes without loss of data already stored in the
array.

5. Dump of selected integer, floating point or Hollerith arrays in an
appropriate format.

6. Trace edits of BPOINTER activities.

7. Status reports of the BPOINTER tables.

Detailed program documentation including flow charts, common block infor-
mation and subprogram descriptions is available in Reference 1. A shorter,

65

functional writeup is included in Appendix A of this report (member POINTR)
and gives calling sequences for the BPO1NTER routines. This section is
intended to provide a brief description of how the program package operates.

The short example shown in Figure 18 illustrates the structure of a program
using the BPOINTER package. This example demonstrates the manner in which a
container is allocated, pointers defined and used, and the container released.

The letters M and B are used as mnemonics within BPOINTER to designate
routines which operate on the FCM and ECM containers, respectively. Thus PUTM
allocates an array in the FCM container while PUTB allocates an array which
must be referenced on a CDC 7600 as either a LEVEL 2 or a LEVEL 3 array.
According to CCCC conventions,2 arrays allocated in ECM are referenced through
the standard subroutines CRED/CRIT and DRED/DRIT in exportable source code
intended for two-level computers.

On IBM equipment without HIARCHY support (e.g. the 370/195) the two
containers are both in fast core. The distinctions noted above between the
two dynamic containers are important on the CDC 7600 where the containers are
addressed quite differently and on IBM equipment with HIARCHY support where
access to the LCM container (HIARCHY 1, subpool 1) is significantly slower
than access to the MAIN core container (HIARCHY 0, subpool 2).

In the example all dynamically allocated FCM arrays are addressed relative
to the labeled common block /ARRAY/ which contains a single array element,
BLK(l). In the short-word version of the code the element must be declared
REAL*8. In the two-level (CDC 7600) version of BPOINTER the ECM container is
addressed relative to the first word of LCM. The pseudo ECM container on IBM
equipment is a second container which may be given a HIARCHY 1 location but is
addressed in precisely the same manner as the first (FCM) container. The one
word assigned to the container by the applications program provides a
reference address. At execution time the function routines IGTLCM and IGTSCM
are used to obtain the addresses of core which are available to the program
for the allocation of data arrays.

A few codes at the same time use BPOINTER and directly address ECM on
two-level machines. In these programs the "LEVEL 2" BPOINTER reference common
block must start at the first word of LCM. BPOINTER calculates address
offsets based on that assumption. Most cocas currently under development do
not address ECM directly; they employ CRED and CRIT to transfer blocks of data
between the two levels of memory.

Occasionally we find it convenient to exercise the two-level implementation
on a one-level machine. In such cases it is necessary to precede the BPOINTER
initialization call by the DOPC initialization call so that the user reference
address of the BPOINTER ECM container is initialized prior to the first call
to CRED/CRIT (BPOINTER employs CRED/CRIT in its two-level implementation). A
discussion of IGTLCM/IGTSCM and the associated assembler routines that
allocate these blocks of core follows.

66

CSW
IMPLICIT REAL*8(A-H,0-Z)
REAL*4 BLK4

CSW
COMMON/ARRAY/BLK(1)
COMMON/IOPUT/NIN,NOUT,NOUT2
DIMENSION BLK4(1)
EQUIVALENCE (BLK(1),BLK4(1))
DATA FLUX/4HFLUX/, POWER/5HPOWER/, MAXSIZ/I0000/, NG/27/,
1 14/4/, 18/8/, 10/0/
NOUT=6

C ALLOCATE CONTAINER WITH MAXSIZ WORDS OF FCM AND NO ECM.
CALL BULK(IO)
CALL POINTR(BLK,MAXSIZ,10)

C ALLOCATE SPACE FOR ARRAYS POWER AND FLUX. DETERMINE THE
C POINTER FOR SUB-ARRAY CURRENT WHICH FOLLOWS THE FIRST NG
C SINGLE-PRECISION WORDS FOR THE ARRAY FLUX. THEN CHECK FOR
C A BPOINTER ERROR.

CALL PUTM(P0WER,NG,I8,IP0WR)
CALL PUTM(FLUX,2*NG,I4,IFLUX)
ICURNT=IPT2(IFLUX,NG,10)
IF(IPTERR(DUMMY).LE.O) GO TO 10
PRINT 500

500 FORMAT(15H0BPOINTER ERROR)
STOP

10 CONTINUE
C CALL SUBROUTINE INIT TO USE THESE ARRAYS. THEN FREE THE
C CONTAINER AND STOP.

CALL INIT(BLK(IFLUX),BLK(IPOWR),BLK4(ICURNT),NG)
CALL FREE
STOP
END

C
< - » _ _ . . t I i r — - ~ ' — I II I ' • • M I M i l — - I ~ - I I I I I II H I I I I I I • M I • III

c
SUBROUTINE INIT(PH1,POWER,CURENT,NG)

CSW
REAL*8 POWER

CSW
DIMENSION PHI(l), POWER(l), CURENT(l)
DO 10 l=1,NG
PHI(I)=1.0
POWER(I)=3.1E+06
CURENT(I)=.333

10 CONTINUE
RETURN
END

Figure 18» A BPOINTER Example

67

5.2.1 IGTLCM/IGTSCM/IGTXCM

Function IGTLCM and its associated entry points IGTSCM and IGTXCM manage
the allocation of the ECM, FCM and XCM containers, respectively. The FCM
container always resides in fast memory (e.g. the FCM storage pool). The ECM
container and the auxiliary ECM container named XCM both reside in the same
storage pool. On single-level machines they reside in the FCM storage pool
along with the FCM container; on two-level machines like the CDC 7600 they
reside in LCM. If the C1LV language flag is activated in a CDC 7600 implemen-
tation then the ECM and XCM containers will be allocated in the FCM storage
pool along with the FCM container.

IGTLCM, IGTSCM and IGTXCM route all memory allocation requests through
function subroutine JGT which calls the appropriate assembler, Fortran or
system routines. The calling sequence for IGTLCM is:

LOCECM = IGTLCM(NWORDS)

This call returns the (REAL*4) word address of the requested block of NWORDS
which constitutes the ECM container. A similar call to IGTSCM or IGTXCM
allocates the appropriate container. The function value of -1 is returned if
the container allocation fails. Subroutine FRELCM with associated entry
points FRESCto and FREXCM release the corresponding containers. The example in
Figure 19 illustrates the use of the IGTLCM package. The function LOCFWD
provides the (REAL*4) word address of the reference variable used to address
the container.

68

COMMON /REFFCM/ BLK(l)
C
C ALLOCATE FCM CONTAINER
C

LOCFCM = IGTSCMC NWORDS)
IF (LOCFCM .EQ. -1) GO TO 10

C
C DETERMINE WORD OFFSET OF CONTAINER FROM REFERENCE ARRAY BLK(l)
C

LFCREF = LOCFCM - LOCFWD (BLK(l))
C
C INITIALIZE CONTAINER
C

DO 1 I=1,NWRDS
BLK(LFCREF+I)=0.0

1 CONTINUE

C
C FREE CONTAINER
C

CALL FRESCM

C
C ERROR EXIT
C

10 CONTINUE

Figure 19. IGTSCM/FRESCM/LOCFWD Example

69

5.2.2 IBM Allocation

The assembler routine MYLCM with entry point MYSCM, FREELC and FREESC
(called by JGT or FRELCM) uses the standard IBM macro instructions GETMAIN and
FREEMAIN to allocate and free consecutive words of core which are available to
the program. The designations subpool 1 and 2 are assigned to the ECM and FCM
containers, respectively. Since allocations are performed in units of 256
(eight byte) words, it is most efficient to request blocks of core in such
multiples.

Figure 20 shows a schematic diagram of a program and SCM container.

5.2.3 CDC Allocation

The COMPASS assembler routine JGTSCM with entry point JGTLCM (called by
JGT) uses the standard CDC macro instruction MEMORY to determine and to change
the job's SCM and LCM field lengths.

The FCM container is placed at the end of the user's SCM field length, as
shown in Figure 20. The ECM container is placed at the end of the user's LCM
field. The last word of each container is four words short of the user's SCM
or LCM field length; this is done to avoid I/O problems in systems that
attempt to read ahead.

BPOINTER releases containers when they are no longer needed by returning
field lengths to their original values.

70

load
module program |

/ARRAY/BLK(1) |

1
more I
program |

j

subpool I ECM
1 I container

subpool
2

(a) on IBM machines

start of SCM
field length

program

/ARRAY/BLK(1)

more
program

free space

FCM
container

(b) on CDC 7600 machines

end of SCM
field length

Figure 20. Fast-Core Allocation on IBM and CDC 7600 Machines

71

5.2.4 CRAY Allocation (CTSS)

Two subroutines LASTMEM and MEMORY from the CRAY Time Sharing System (CT5S)
Fortran Library at Los Alamos National Laboratory are called by JGT to
determine and change a job's field length, respectively. JGT establishes the
user program length (i.e. the high limit of user code, JCHLM) by an initial
call to LASTMEM. Each time a new container is requested JGT allocates space
in one of two ways:

1. If another container has been previously allocated, and there is enough
free space between it and the program, the new container is established
in the free space. The field length is not changed.

2. If adequate free space is not available MEMORY is called to increase
the field length, and the new container is placed such that the address
of its last word is the new value of JCHLM.

Figure 21 shows a schematic diagram of fast core of a CRAY machine containing
a program and two containers.

JGT reduces the field length by an appropriate amount when the container
ending at address JCHLM is released.

72

start of FCM
field length

JCHLM

program

/ARRAY/BLK(1)

more
program

FCM
container

ECM
container

system tables
and buffers

Figure 21. Fast-Core Allocation on a CRAY Machine

73

5.2.5 CRAY Allocation (COS)

Dynamic memory allocation on machines using the standard CRAY Operating System
(COS) is implemented in a manner that is functionally equivalent to the CTSS
implementation. CTSS subroutines MEMORY (2 arguments) and LASTMEM are
simulated on COS installations by the Fortran subroutine MEMGET and its entry
point LASTMEM, respectively. A blank common array of length 1 must be located
as follows in order for it to provide a reference point (JCHLM) for the
dynamic memory allocation:

1. Non-overlayed COS systems - place it after all object code (the CFT
compiler does this by default).

2. Segmented loading on COS system - assign it to a second memory level
above all overlays.

3. COS overlay loading types 1 or 2 - assign it (via the SBCA overlay
directive) to a specified address larger than any address used in the
overlay structure (this number is installation dependent and must be
determined upon completion of loading.

Subroutine MEMGET calls the COS system routine MEMORY (5 arguments) which
issues calls to the CAL assembler MEMORY macro to increment or decrement
JCHLM, the length of the user code area. A corresponding field length change
occurs simultaneously.

6. FFORM, A FREE-FORMAT INPUT ROUTINE

Subroutine FFORM enables programmers to implement free-format input in a
relatively simple manner. The design of the routine and its usage were
dictated by the following goals and constraints:

1. The syntax had to be consistent with ARC System data set descriptions.
ARC System input data sets consist of sets of type-numbered cards with
an arbitrary number of cards allowed of each type. Individual cards
contain a limited number of data, and the data may be a mix of fixed
point numbers, floating point numbers and literals.

2. The applications should not be restricted to ARC System input.

3. Implementation should not force an abrupt conversion from formatted
input to free-format, if only in order not to obsolete existing,
formatted input decks. This argues for a scheme that works in parallel
with conventional, formatted Fortran READ's. Free-format input can
then be coded into programs without disturbing the Fortran READ's
already there.

4. All coding must be exportable. This requirement precludes the use of
IBM list-directed READ's. It encourages the development of a Fortran
callable subroutine.

5. Whatever syntax is available must be consistent with CCCC (Committee on
Computer Code Coordination) standards.

The convenience of free-format input is not without some cost. On a
formatted card a blank field is interpreted as a zero. Users cannot leave a
blank on a free-format cnrd, however, and expect the input processor to
interpret it as a blank or a zero (zeroes and blanks must be specified expli-
citly). Users who are new to free-format input processors will find they make
this mistake a few tiraes as they adapt to the system.

6.1 FFORM Calling Sequence

CALL FFORM(DATA,NDATA,MAXDTA,NFL,IFLAG.NOUT)

DATA an array (REAL*8 on IBM machines) into which FFORM is to
place the data found on a card.

NDATA the number of words of data encountered by FFORM on the
card.

MAXDTA the length of the array DATA (REAL*8 words on IBM
machines). If NDATA is greater than MAXDTA the extra words
are not returned, (input)

NFL the logical unit number of the BCD file to be read.
(input)

IFLAG error flag returned by FFOEM. 0, an end of file was
encountered. 1, a card was read and data transferred
successfully. -1, an input error (an unrecognized format)
was encountered.

75

NOUT the logical unit number for the output error messages. If
NOUT=0 no messages are printed, (input)

Each call to FFORM causes a single card image record (the next record) to
be read from logical unit NFL. FFORM scans the first 72 columns of the card
image, interprets the data and translates the BCD representation into the
appropriate variable type. The user must provide an array, DATA in the
calling sequence shown above, into which the data on the card are to be
placed. If a card contains more data than there is space for (i.e. if, on
return, NDATA is greater than MAXDTA) only MAXDTA words are transfered to the
DATA array. Hollerith data are stored six characters to the word.

On IBM machines the word length difference between INTEGER*4 and REAL*8
variables causes a small problem. If the Nth datum on an input card is an
integer, FFORM places it in the first half (the first 4 bytes) of DATA(N). In
the routine that calls FFORM, the array DATA must be equivalenced with an
INTEGER*4 array dimensioned 2*MAXDTA when a mix of integer and floating point
data is to be read. On CDC machines integer, floating point and literal data
are all stored in single words.

6.2 FFORM Usage

Figure 22 is an example of how FFORM can be used in parallel with formatted
Fortran READ's. This style of coding has been used in most of our current
input processors. The example shows one way to cope with INTEGER*4 data on
IBM machines. A REAL*8 one-dimensional array DATA is equivalenced with an
INTEGER*4, two-dimensional array IDATA. On IBM systems IDATA is dimensioned
(2,MAXDTA); on CDC systems IDATA is dimensioned (1,MAXDTA). In the previous
section it was noted that on IBM machines FFORM places INTEGER*4 words in the
first half of the appropriate 8-byte element of the DATA array. With DATA and
IDATA dimensioned as shown in Figure 22 an integer which is the Nth datum on
an input card returns from FFORM in IDATA(1,N) on both IBM and CDC machines.

In order that ARC System codes can identify the input style chosen by the
user a new data set designation, UNFORM=dataset, has been added to the STUFF
input preprocessor, and an additional parameter has been added to the first
record of BCD data sets produced by STUFF. The lead records of BCD data sets
produced by STUFF must now be read:

READ(M,99)ANAME,J,K,NOFORM,(NI),I=1,J)
99 FORMAT(A8,315/(1615))

(see Reference 1, pg. 53 for the old format). NOFORM=0 if the data set is in
the formatted style (DATASET=dataset or SUBLOCK=dataset), NOFORM=1 for free-
format datasets (UNFORM=dataset). When MODIFY=dataset is used the
modifications must be in the same style as the original data set.
NOSORT=dataset situations are usually special cases and, as such, are exempt
from ARC System conventions. Stuff always sets NDFORM=0 for NOSORT data sets;
the programmer may choose to ignore the ISOFORM parameter if his application
permits. Note that some data sets may be supplied in formatted style
(DATASET=) and others in free-format style (UNIFORM*) within the same job.

76

csw
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION DATA(12),IDATA(2,12)

CSW
CLW
C DIMENSION DATA(12),IDATA(1,12)
CLW

DIMENSION FLPT(4), INT(4), HOL(4)
EQUIVALENCE (DATA(l),IDATA(1,1))
DATA BLANK/6H /
MAXDTA=12

C
C FORMATTED READ.
C

IF(NOFORM.EQ.l) GO TO 20
12 FORMAT(2X,4(F6.1,I6,A6))

CIBM
READ (NIN,12,END=100) (FLPT(I),INT(I),HOL(I),1=1,4)
GO TO 30

CIBM
CDC*
C READ (NIN.12) (FLPT(I),INT(I),HOL(I),1=1,4)
C IF(EOF(NIN)) 100,30
CDC*
CRAY
C READ (NIN.12) (FLPT(I),INT(I),H0L(I),1=1,4)
C IF(IEOF(NIN)) 100,30
CRAY
C UNFORMATTED READ.
C

20 CONTINUE
DO 22 1=1,10,3
DATA(I)=0.0
IDATA(1,I+1)=O
DATA(I+2)=BLANK

22 CONTINUE
CALL FFORM(DATA,NDATA,MAXDTA,NIN,IFLAG,NOUT)
DO 24 1=1,4
J=3*(I-1)+1
FLPT(I)=DATA(J)
INT(I)=IDATA(1,J+1)
HOL(I)=DATA(J+2)

24 CONTINUE
IF(IFLAG.EQ.O) GO TO 100

30 CONTINUE
100 CONTINUE

Figure 22. An Example of FFORM Usage

77

6.3 FFORM SYNTAX

The rules for writing free-format card images are given below, The first
five must be observed in any application of FFORM; the sixth applies to ARC
System input only.

6.3.1 Delimiters

Data (integers, floating point numbers and Hollerith words) must be separated
either by blanks or by combinations of one or more of the four special delim-
iters:

, comma
(left parenthesis
) right parenthesis
/ slash

6.3.2 Data Forms

Integer and real numbers must be written according to the usual Fortran rules
and may not have imbedded blanks. Hollerith data can be supplied in any of
the following three ways:

1. A string of letters and numbers, beginning with a letter, with no
imbedded blanks.

e.g. U238 PU239

2. A string of symbols surrounded by asterisks or apostrophes. In the
current version of FFORM for CDC machines only the asterisk can be used
to set off Hollerith data; the apostrophe has not been implemented.

e.g. *NA 23* 'REG11

3. A string preceded by the Hollerith prefix nH, where n is an integer
constant.

e.g. 3H016

On IBM machines an asterisk may be part of a Hollerith string only when
that string is surrounded by apostrophes (e.g. 'X*Y') or defined by the nH
convention (e.g. 3HX*Y). Similarly an apostrophe may be a part of a Hollerith
string only when that string is surrounded by asterisks (e.g. *ED'S*) or
defined by the nH convention (e.g. 4HED'S). On CDC machines (where FFORM
currently does not recognize apostrophes) an asterisk may be part of a
Hollerith string only when that string is defined by the nH convention.

When a single asterisk (or apostrophe) is encountered the remaining data on
the card are treated as Hollerith data. This does not apply, of course, to an
asterisk that is clearly a part of a Hollerith string.

78

When FFORM passes the data it has read to the calling program, it has
stored Hollerith data six characters to the word. Therefore, if the input
description calls for one or more separate Hollerith words, each word must be
six characters or less.

6.3.3 Implied Blanks and Zeroes

Pairs of commas, slashes, or left and right parentheses in consecutive columns
of the card image will be interpreted as integer zeroes. Pairs of asterisks
(or apostrophes) in consecutive columns of the card image imply Hollerith
blanks.

e.g. , , = () = / / = 0
* * = • • = 1H

6.3.4 nR, the Repeat Option

nR causes the previous datum to be repeated n-1 times, n is an integer
constant. When several pieces of data are enclosed by slashes or parentheses
and are followed by a repeat instruction, the entire string of data will be
repeated. Repeats can be nested by the use of slashes and parentheses, but
each pair of symbols (// or ()) can be used only once per nest. This limits
the depth of the nest to two levels.

e.g. 1.0,3R/2.0,l/2R = 1.0 1.0 1.0 2.0 1 2.0 1
/(WORD 2R) 3R/ 4R = WORD 24R

6.3.5 $, End of Card

All data including and following a $ will be ignored. This will permit the
user to include comments on a card. The symbol $ between asterisks (or
apostrophes) or somewhere in an nH field is not affected.

6.3.6 UNFORM and Card Type Numbers

ARC System BCD data sets that are input in free-format form must be specified
by "UNFORM=dataset" instead of the usual "DATASET=dataset". Card type numbers
must continue to appear in columns 1-2, but all subsequent data can be punched
without regard to field definitions.

e.g. UNFORM=A.NIP3
01 title
02 0 1 0 7R

etc.

79

Title cards in ARC System BCD data sets (the type 01 cards for several data
sets) will continue to be read by ARC System input processors in the formatted
mode.

80

7. REFERENCES

1. L. C. Just, H. Henryson II, A. S. Kennedy, S. D. Sparck, B. J. Toppel
and P. M. Walker, "The System Aspects and Interface Data Sets of the
Argonne Reactor Computation (ARC) System," ANL-7711, Argonne National
Laboratory (1971).

2. R. Douglas O'Dell, "Standard Interface Files and Procedures for Reactor
Physics Codes, Version IV," LA-6941-MS, Los Alamos Scientific
Laboratory (1977).

3. LIBRARIAN Software Product, Applied Data Research, Inc., Princeton, New
Jersey.

81

Appendix A

UTILITY SUBROUTINE DESCRIPTIONS

82

SOURCE MEMBER NAME. ABEND

USER ENTRY POINTS. ABEND, ABSTOP, TRACER
================3=

FUNCTION. HANDLE ABNORMAL EXITS ON IBM MACHINES. ABEND AND ABSTOP
======== LINK TO THE ABEND MACRO. ABEND TRIGGERS A DUMP, ABSTOP

DOES NOT. TRACER IS A TRACEBACK ROUTINE.

THESE ROUTINES ARE FORTRAN CALLABLE.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL ABEND
CALL ABSTOP
CALL TRACER(SUBNAM,ISN)

SUBNAM NAME OF PREVIOUS SUBROUTINE IN TRACEBACK.
ISN ISN IN PREVIOUS SUBROUTINE FROM WHICH CURRENT

SUBROUTINE WAS CALLED.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

=============
LANGUAGE. IBM ASSEMBLER

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. ABEND, TRACER
========================

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(ABEND)

RELATED MEMBERS. ERROR

REFERENCES. NONE

83

SOURCE MEMBER NAME. ARCBCD

USER ENTRY POINTS. SCAN, STUFF

FUNCTION. SCAN READS THE ENTIRE CARD-IMAGE INPUT FILE (LOGICAL UNIT
======== NUMBER NIN) AND SPOOLS THE CARD IMAGES ONTO A FILE NAMED ARC

(IF ARC IS NOT A FILE NAME IN THE SEEK TABLE, THE DEFAULT
LOGICAL UNIT NUMBER IS 9). AT THE SAME TIME SCAN LOOKS
FOR THE BLOCK KEYWORD (BLOCK=) AND DEFINES THE VARIABLES
BLKNAM.IBLTAB AND NBLOCK IN /STFARC/.

STUFF PROCESSES THE INPUT DATA ASSOCIATED WITH THE NEXT
UNPROCESSED DATA BLOCK NAMED STFNAM (STFNAM IS A VARIABLE
IN /STFARC/). STUFF CREATES OR MODIFIES BCD DATASETS AND
SETS THE VARIABLE NRET IN /STFARC/.

NRET = 1, THE NFXT DATA BLOCK NAMED STFNAM WAS PROCESSED.
-3, THERE IS NO DATA BLOCK NAMED STFNAM IN THE INPUT.
-5, ALL DATA BLOCKS NAMED STFNAM WERE PROCESSED PRIOR

TO THIS CALL TO STUFF.

THESE VERSIONS OF STUFF AND SCAN SHOULD BE USED IN A
STANDALONE ENVIRONMENT AND FOR EXPORT. THE INTERFACE
SUBROUTINE VERSIONS (SEE SOURCE MEMBERS STUFFARC AND
SCANARC) SHOULD BE USED IN A MODULAR ENVIRONMENT. IN A
MODULAR ENVIRONMENT THE FUNCTIONS OF SCAN AND STUFF ARE
PERFORMED BY THE MODULE SYSOO2.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SCAN
CALL STUFF

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
NOUT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.
NIN INPUT CARD FILE LOGICAL UNIT NUMBER. APPLIES FOR

CALLS TO SCAN ONLY.
STFNAM NAME OF THE DATA BLOCK TO BE PROCESSED BY STUFF.

APPLIES FOR CALLS TO STUFF ONLY.

COMMON BLOCKS.

COMMON/STFARC/STFNAM,BLKNAM(50),IBLTAB(3,5O),NBLOCK,NRET
COMMON/IOPUT/NIN,NOUT,NOUT2

(continued)

84

LANGUAGE. FORTRAN

FILES REFERENCED. INPUT CARD FILE, SPOOLED INPUT FILE (THE FILE NAMED
================ ARC, OR LUN 9), OUTPUT FILES NOUT AND NOUT2.

VARIOUS BCD DATA SETS.

ACCOMPANYING SUBPROGRAMS. SCAN, STUFF, STUFF1, CODECD
~ = = = ̂ 2 = ?S===^« = =: = wS==5S = ===22

LIBRARY. C116.CCCC.SEGLIB(ARCBCD)

RELATED MEMBERS. STUFFARC, SCANARC, SYSOO1, SYSOO2

REFERENCES. L.C. JUST, H. HENRYSON, II, A.S. KENNEDY, S.D. SPARCK,
========== B.J. TOPPEL, AND P.M. WALKER, THE SYSTEM ASPECTS AND

INTERFACE DATA SETS OF THE ARGONNE REACTOR COMPUTATION
(ARC) SYSTEM, ANL-7711, ARGONNE NATIONAL LABORATORY
(1971).

35

SOURCE MEMBER NAME. CRED
j7̂ ?7II *-*w2C3 ̂ 3^3iiw3 " ^ 7 M I m7"1 T^3^?pj^| j ^

USER ENTRY POINTS. CRED, CRIT

FUNCTION. CRED/CRIT HANDLES DATA TRANSFER BETWEEN EXTENDED CORE (ECM)
======== AND FAST CORE (FCM) ACCORDING TO CCCC SPECIFICATIONS.

CRED TRANSFERS DATA FROM ECM TO FCM. CRIT TRANSFERS DATA
FROM FCM TO ECM.

CRED/CRIT IS INTERLOCKED WITH DOPC TO ENSURE THAT COMMON
BLOCK /ECMLOC/ HAS BEEN INITIALIZED BY SUBROUTINE DOPC
PRIOR TO THE FIRST CRED/CRIT CALL.

ON SHORT-WORD MACHINES (E.G. IBM) THE DATA TRANSFER STARTING
LOCATION (LCM) MUST BE IN UNITS OF SHORT (REAL*4) WORDS,
(E.G. OBTAINED THROUGH A CALL TO IPT2 OR ITS EQUIVALENT
IN BPOINTER APPLICATIONS).

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL CRED(SCM,LCM,NSWDS,NERR)
CALL CRIT(SCM,LCM,NSWDS,NERR)

SCM STARTING FCM ADDRESS FOR DATA TRANSFER
LCM STARTING ECM LOCATION FOR DATA TRANSFER
NSWDS NO. OF SINGLE-PRECISION WORDS TO BE TRANSFERRED
NERR ERROR FLAG

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT OUTPUT PRINT FILE LOGICAL UNIT NUMBER
/ECMLOC/ ENTIRE ECMLOC COMMON BLOCK MUST BE INITIALIZED

BY A CALL TO DOPC PRIOR TO FIRST CRED/CRIT CALL
ON ONE-LEVEL MACHINE IMPLEMENTATIONS.

COMMON BLOCKS.

COMMON/ECMLOC/MCHLEV,NDXECM,LCMUSR,LCMSYS,LOCKEC
COMMON/ECMRF/BLK(1)
COMMON/IOPUT/NIN, NOUT, NOUT2.

LANGUAGE. FORTRAN

(continued)

86

FILES REFERENCED. NONE
c: u » = =. W ZS = S Μ S3 = S ra — ̂a

ACCOMPANYING SUBPROGRAMS. NONE

r====3=:===:============;===*-= =

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(CRED)

RELATED MEMBERS. DOPC

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES

========== FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

87

SOURCE MEMBER NAME. DOPC

USER ENTRY POINTS. DOPC, DOPCO, DOPCD

FUNCTION. DOPC DEFINES AND RELEASES RANDOM ACCESS DISK FILES WHICH
======== ARE USED FOR MULTILEVEL DATA TRANSFERS ACCORDING TO CCCC

SPECIFICATIONS. DOPC ALSO INITIALIZES THE PSEUDO-ECM
CONTAINER REFERENCE POINTERS IN COMMON BLOCK /ECMLOC/
WHICH ARE USED BY DOPC, DRED/DRIT AND CRED/CRIT. DOPC
MUST BE CALLED PRIOR TO DRED/DRIT AND CRED/CRIT CALLS.
THIS ROUTINE INITIALIZES PARAMETERS WHICH ARE NEEDED
FOR RESERVING SPACE ON DISK AND IN CORE.

THE CDC VERSION OF DOPC CALLS IGTXCM TO ALLOCATE AN
AUXILIARY ECM CONTAINER NAMED XCM. WITHIN XCM IS
ALLOCATED DIRECTORIES FOR EACH RANDOM ACCESS I/O FILE.

ENTRY POINTS DOPCO AND DOPCD PROVIDE THE /ECMLOC/
INITIALIZATION INTERLOCK FOR CRED/CRIT AND DRED/DRIT,
RESPECTIVELY.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL DOPC(IOP,NREF,NGREF,IERRCS,ARRAY,MXLEN,MXBLOK,LENFIL)

IOP 0/1/2/3/4. INITIALIZE DOPC/DEFINE FILE/
FILE GROUP COMPLETE/DELETE GROUP/WRAP-UP DOPC

NREF FILE REFERENCE NO. (IOP=1)
NGREF FILE GROUP NO. (IOP=2,3)
IERRCS ERROR FLAG
ARRAY STARTING ADDRESS OF ECM CONTAINER ON ONE-LEVEL

MACHINES (IOP=0)
MXLEN MAX. BLOCK LENGTH IN SINGLE-PRECISION WORDS

(IOP=1)
MXBLOK MAX. NO. OF BLOCKS (IOP=1)
LENFIL TOTAL FILE LENGTH. LENFILO IMPLIES MXBLOK

BLOCKS OF MXLEN WORDS EACH

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT OUTPUT PRINT FILE LOGICAL UNIT NUMBER

(continued)

88

COMMON BLOCKS.

COMMON/ECMLOC/MCHLEV,NDXECM,LCMUSR,LCMSYS,LOCKEC
COMMON/ECMRF1/BLKO)
CCMMON/ECMRF2/BLKECS(1)
COMMON/IOPUT/NIN,NOUT,NOUT2
COMMON/RNDMIO/IDXDF(99),IDXGRP(25),LENIDX(25),LOCIDX(25),

X LOPENF(25),LSTLOC,MAXLOC,MAXRDM,MAXREF,NRNDOM,LOCBAS

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(DOPC)

RELATED MEMBERS. IGTXCM, DRED, CRED

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
======^=== FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

89

SOURCE MEMBER NAME. DRED

USER ENTRY POINTS. DRED, DRIT

FUNCTION. DRED/DRIT HANDLES RANDOM ACCESS I/O BETWEEN ECM AND DISK
=«=^==== ACCORDING TO CCCC SPECIFICATIONS. DRED READS DATA FROM

DISK. DRIT WRITES DATA TO DISK.

DRED/DRIT IS INTERLOCKED WITH DOPC TO ENSURE THAT COMMON
BLOCK /ECMLOC/ HAS BEEN INITIALIZED BY SUBROUTINE DOPC
P1IOR TO THE FIRST DRED/DRIT CALL.

ON SHORT-WORD MACHINES (E.G. IBM) THE DATA TRANSFER STARTING
LOCATION (LOCBUF) MUST BE IN UNITS OF SHORT (REAL*4) WORDS.
(E.G. AN ECM POINTER OBTAINED THROUGH A CALL TO IPT2 OR
ITS EQUIVALENT IN BPOINTER APPLICATIONS).

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL DRED(LUN,IREC,LOCBUF,NWDS,MODE)
CALL DRIT(LUN,IREC,LOCBUF,NWDS,MODE)

LUN DISK FILE LIGICAL UNIT NUMBER
IREC FILE RECORD NUMBER
LOCBUF STARTING ECM LOCATION FOR DATA TRANSFER
NWDS NO. OF SINGLE-PRECISION WORDS TO BE TRANSFERRED
MODE 0/1/2. INITIATE NON-ASYNCHRONOUS TRANSFER/

INITIATE ASYNCHRONOUS TRANSFER/COMPLETE PREVIOUS
ASYNCHRONOUS TRANSFER

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT OUTPUT PRINT FILE LOGICAL UNIT NUMBER
/ECMLOC/ ENTIRE ECMLOC COMMON BLOCK MUST BE INITIALIZED

BY A CALL TO DOPC PRIOR TO FIRST DRED/DRIT CALL
ON ONE-LEVEL MACHINE IMPLEMENTATIONS.

COMMON BLOCKS.

COMMON/ECMRF1/BLK(i)
COMMON/ECMRF2/BLKECS(1) (CDC ONLY)
COMMON/ECMLOC/MCHLEV,NDEECM.LCMUSR,LCMSYS,LOCKEC
COMMON/IOPUT/NIN,NOUT,N0UT2
COMMON/RNDMIO/IDXDF(99),IDXGRP(25),LENIDX(25),LOCIDX(25),

X LOPENF(25),LSTLOC,MAXLOC,MAXRDM,MAXREF,NRNDOM,LOCBAS

(continued)

90

LANGUAGE. FORTRAN
ss=====s=

FILES REFERENCED. VARIOUS BINARY, RANDOM ACCESS DATA SETS
sassssssssssssssssss

ACCOMPANYING SUBPROGRAMS. DRED1, DRED2 (CDC VERSION ONL")

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(DRED)

RELATED MEMBERS. DOPC

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
========== FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

91

SOURCE MEMBER NAME. ECMV

USER ENTRY POINTS. ECMV

FUNCTION. ECMV TRANSFERS DATA BETWEEN LOCATIONS IN EXTENDED CORE
======== (ECM) ACCORDING TO CCCC SPECIFICATIONS.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL ECMV(LCM1,LCM2,NSWDS)

LCM1 ECM LOCATION TO WHICH DATA IS TO BE TRANSFERRED
LCM2 ECM LOCATION FROM WHICH DATA IS TO BE TRANSFERRED
NSWDS NO. OF SINGLE-PRECISION WORDS

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. ECMV
= = = = = = = = = s s = = = = = ss = = = = = 5 5= ssss

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(ECMV)
= = = = = = = = = = = = = = = = ii = = = = = = =

RELATED MEMBERS. CRED

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
========== FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

92

SOURCE MEMBER NAME. ERROR

USER ENTRY POINTS. ERROR

FUNCTION. ERROR IS A UTILITY SUBROUTINE WHICH KEEPS STATISTICS ON
======== ERRORS DETECTED BY AN APPLICATION PROGRAM AND WHICH

LOCALIZES THE HANDLING OF ABNORMAL TERMINATIONS. THE
ROUTINE SHOULD BE CALLED EVERY TIME AN ERROR IS DETECTED.
WHEN ERROR IS CALLED WITH THE FIRST ARGUMENT = 5HFATAL
A TABLE OF ENCOUNTERED ERRORS IS PRINTED, AND, IF ANY
OF THE ERRORS WERE FATAL, THE JOB TERMINATES ON AN
ABNORMAL EXIT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL ERROR(SUBNAM,IERR)

SUBNAM EITHER THE NAME OF A SUBROUTINE FROM WHICH AN
ERROR WAS DETECTED, OR 5HFATAL. WHEN
SU3NAM.NE.(5HFATAL) THE ERROR IS NOTED BUT NO
OTHER ACTION IS TAKEN. WHEN SUBNAM.EQ.(5HFATAL)
A LIST OF ERRORS IS PRINTED, AND, IF ANY FATAL
ERRORS HAVE BEEN ENCOUNTERED, THE JOB TERMINATES.

IERR ERROR NUMBER. NEGATIVE NUMBERS INDICATE FATAL
ERRORS. POSITIVE NUMBERS INDICATE NONFATAL
ERRORS (WARNINGS).

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT OUTPUT PRINT FILE LOGICAL UNIT NUMBER
NOUT2 AUXILIARY OUTPUT PRINT FILE LOGICAL UNIT NUMBER

COMMON BLOCKS.

COMMON/IOPUT/NIN.NOUT,NOUT2

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

(continued)

93

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(ERROR)
========================

RELATED MEMBERS,, NONE

REFERENCES. NONE

94

SOURCE MEMBER NAME. FEQUAT

USER ENTRY POINTS. FEQUAT

FUNCTION. FEQUAT TRANSFERS ILEN FLOATING POINT FULL WORDS FROM XB TO XA.
======== ON IBM MACHINES XB AND XA ARE 8-BYTE VARIABLES.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL FEQUAT(XA,XB,ILEN)

XA OUTPUT ARRAY
XB INPUT ARRAY
ILEN NO. OF ELEMENTS IN XA

VARIABLES IN COMMON WHICH MUST BE DEFINED IK THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(FEQUAT)

RELATED MEMBERS. NONE

REFERENCES. NONE

95

SOURCE MEMBER NAME. FFORM

USER ENTRY POINTS. FFORM

FUNCTION. FFORM READS THE NEXT CARD IMAGE IN A FREE-FORMAT BCD
======== FILE, INTERPRETS THE TYPE OF DATA FOUND, AND RETURNS THE

DATA TO THE CALLING PROGRAM.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL FFORM(DATA,NWORD,MAXDTA,NFL,IFLAG,NOUT)

DATA AN ARRAY (REAL*8 ON IBM MACHINES) INTO WHICH
FFORM IS TO PLACE THE DATA FOUND ON A CARD

NWORD THE NUMBER OF DATA ENCOUNTERED BY FFORM ON THE CARD
MAXDTA THE LENGTH OF THE ARRAY DATA (REAL*8 ON IBM MACHINES)
NFL THE LOGICAL UNIT NUMBER OF THE BCD FILE TO BE READ
IFLAG 0, AN END OF FILE WAS ENCOUNTERED,

1, A CARD WAS READ AND DATA TRANSFERRED SUCCESSFULLY,
-1, AN INPUT ERROR (AN UNRECOGNIZED FORMAT) WAS

ENCOUNTERED
NOUT THE LOGICAL UNIT NUMBER FOR THE OUTPUT ERROR

MESSAGES. IF NOUT = 0 NO MESSAGES ARE PRINTED.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. VARIOUS BCD DATASETS

ACCOMPANYING SUBPROGRAMS. FFORM1, FFORM2

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(FF0RM)

RELATED MEMBERS. NONE

REFERENCES. NONE

96

SOURCE MEMBER NAME. FLTSET

USER ENTRY POINTS. FLTSET

FUNCTION. FLTSET SETS ALL THE ELEMENTS OF A LONG-WORD ARRAY (XA) EQUAL
==,====== TO A CONSTANT (XSET). ON IBM MACHINES XA AND XSET ARE

8-BYTE WORDS.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL FLTSET(XA,XSET,ILEN)

XA ARRAY TO BE INITIALIZED
XSET CONSTANT TO BE USED
ILEN NO. OF ELEMENTS IN XA

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(FLTSET)

RELATED MEMBERS. NONE

REFERENCES. NONE
==========

97

SOURCE MEMBER NAME. IEQUAT

USER ENTRY POINTS. IEQUAT

FUNCTION. IEQUAT TRANSFERS ILEN INTEGER WORDS FROM IB TO IA.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL IEQUAT(IA,IB,ILEN)

IA OUTPUT ARRAY
IB INPUT ARRAY
ILEN NO. OF ELEMENTS IN IA

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(IEQUAT)

RELATED MEMBERS. NONE

REFERENCES. NONE

98

SOURCE MEMBER NAME. IGTLCM

USER ENTRY POINTS. IGTLCM, IGTSCM, IGTXCM, FRELCM, FRESCM, FREXCM,
LOCFWD

FUNCTION. IGTLCM AND IGTSCM ALLOCATE MEMORY IN BULK AND MAIN CORE,
======== RESPECTIVELY. IGTXCM ALLOCATES AN AUXILIARY ECM CONTAINER

NAMED XCM. FRELCM, FRESCM AND FREXCM RELEASE ALLOCATED
SPACE.

ON IBM MACHINES THE STANDARD IBM MACRO INSTRUCTIONS
GETMAIN AND FREEMAIN ARE USED TO ALLOCATE AND FREE
CONSECUTIVE BLOCKS OF WORDS OF CORE. THE DESIGNATIONS
SUBPOOL 1 AND 2 ARE ASSIGNED TO THE LCM AND SCM
CONTAINERS, RESPECTIVELY. THE MACROS ARE EXECUTED
THROUGH THE ASSEMBLER ROUTINES MYLCM, MYSCM, FREELC
AND FREESC.

ON CDC MACHINES THE CONTAINERS ARE ESTABLISHED BY CALLS TO
THE MEMORY MACRO WHICH INCREASES LCM AND/OR SCM FIELD
LENGTH. THE MACRO IS EXECUTED THROUGH THE COMPASS
ROUTINES JGTLCM AND JGTSCM. THE CONTAINER IS PLACED
AT THE END OF THE NEWLY ACQUIRED SPACE. THERE IS A SMALL
MARGIN BETWEEN THE CONTAINER AND THE END OF THE FIELD
LENGTH FOR THOSE SYSTEMS ON WHICH SYSTEM TO ROUTINES
MAY READ AHEAD.

ON THE CRAY MACHINE WITH THE CTSS OPERATING SYSTEM TWO
LIBRARY SUBROUTINES LASTMEM AND MEMORY RESPECTIVELY
DETERMINE AND CHANGE A JOB'S FIELD LENGTH.
LASTMEM DETERMINES JCHLM THE HIGH LIMIT OF THE USER CODE
AREA. SUBROUTINE MEMORY INCREMENTS AND DECREMENTS JCHLM
CAUSING A CORRESPONDING CHANGE IN THE JOB FIELD LENGTH.
THE RELEASE OF A CONTAINER WIiH LAST WORD ADDRESS EQUAL TO
JCHLM CAUSES JCHLM TO BE REDUCED. THE RELEASE OF OTHER
CONTAINERS SIMPLY FREES THE SPACE FOR POTENTIAL USE IN THE
NEXT IGTLCM CALL.

AT INSTALLATIONS WITH THE STANDARD CRAY OPERATING SYSTEM
(COS), FORTRAN SUBROUTINE MEMGET WITH ENTRY POINT LASTMEM
ARE FUNCTIONALLY EQUIVALENT TO THE CTSS ROUTINES MEMORY
AND LASTMEM. MEMGET INVOKES THE COS LIBRARY ROUTINE
MEMORY (5 ARGUMENTS) WHICH IN TURN INVOKES THE CAL
ASSEMBLER MEMORY MACRO TO INCREMENT AND DECREMENT JCHLM.

(continued)

99

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

ILOCM-IGTSCM(NWDS)
ILOCB=IGTLCM(NWDS)
ILOCX=IGTXCM(NWDS)
CALL FRESCM
CALL FRELCM
CALL FREXCM
LOCWRD=LOCFWD(BLK(1))

ILOCM ADDRESS OF ALLOCATED MAIN MEMORY (BYTES).
ILOCB ADDRESS OF ALLOCATED BULK MEMORY (BYTES).
ILOCX ADDRESS OF ALLOCATED XCM CONTAINER (BYTES).
BLK VARIABLE FOR WHICH ADDRESS IS REQUIRED.
LOCWRD SHORT (REAL*4) WORD ADDRESS OF VARIABLE.
NWDS NO. OF 4-BYTE WORDS TO BE ALLOCATED OR FREED.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

NOUT OUTPUT PRINT FILE LOGICAL UNIT NUMBER

COMMON BLOCKS.

COMMON /IOPUT/ NIN,NOUT,NOUT2
COMMON /ALLOCS/ INI(3),NEW(3),NPT(3),MAXNU,MCHLEV,NBYTEW
COMMON /SAVMEM/ INIT,FLMAX,JCHLMO,JCHLM.LENFLD

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. JGTSCM (CDC), JGTLCM (CDC), MEMGET (CRAY),
FRELCM, JGT, LOCFWD, LASTMEM (CRAY)

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(IGTLCM)
ssassssassasssasissssasssissc

RELATED MEMBERS. POINTR, MYLCM, DOPC

REFERENCES. NONE

100

SOURCE MEMBER NAME. INTSET

USER ENTRY POINTS. INTSET

FUNCTION. INTSET INITIALIZES AN INTEGER ARRAY (IA) TO THE VALUE OF AN
======== INPUT INTEGER CONSTANT (ISET). ON IBM MACHINES IA AND ISET

ARE 4-BYTE WORDS.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL INTSET(IA,ISET,ILEN)

IA ARRAY TO BE INITIALIZED
ISET CONSTANT TO BE USED
ILEN NO. OF ELEMENTS IN IA

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(INTSET)

RELATED MEMBERS. NONE

===============

REFERENCES. NONE

101

SOURCE MEMBER NAME. IN2LIT

USER ENTRY POINTS. IN2LIT

FUNCTION. IN2LIT CONVERTS AN INTEGER VARIABLE (INTEGER*4 ON IBM
======== MACHINES) INTO A 6-CHARACTER LITERAL, LEFT JUSTIFIED.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
=====::£=======::

CALL IN2LIT(INT,WORD)

INT THE INPUT INTEGER
WORD THE OUTPUT LITERAL

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN
as=n :====

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(IN2LIT)

—===========:=:==:========:=

RELATED MEMBERS. NONE

REFERENCES. NONE

102

SOURCE MEMBER NAME. LINES

USER ENTRY POINTS. LINES, LINES2

FUNCTION. LINES HANDLES PAGE EJECTS, HEADINGS, AND NUMBERING FOR THE
======== OUTPUT FILE NOUT. LINES2 DOES THE SAME FOR THE AUXILIARY

OUTPUT FILE NOUT2.

LINES KEEPS COUNT OF OUTPUT LINES PRINTED AND PAGE EJECTS
IF THE NEXT BLOCK OF OUTPUT WILL NOT FIT ON THE CURRENT
PAGE.

THIS VERSION OF LINES SHOULD BE USED IN A STANDALONE
ENVIRONMENT AND FOR EXPORT. THE INTERFACE SUBROUTINE
VERSION IN C116.CCCC.SYSLIB (SEE SOURCE MEMBER LINESARC)
SHOULD BE USED IN A MODULAR ENVIRONMENT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL LINES(NUMLIN,IFLAG1)
CALL LINES2(NUMLIN,IFLAG1)

NUMLIN GT.O, THE NUMBER OF LINES ABOUT TO BE PRINTED
(ON LOGICAL UNIT NOUT FOR LINES, NOUT2 FOR LINES2),
EQ.O, SKIP TO THE TOP OF THE NEXT PAGE»
LT.O, THE LINE COUNT IS REDUCED. CONSECUTIVE
CALLS TO LINES WITH FIRST POSITIVE, THEN NEGATIVE
LINE COUNTS CAN BE USED TO AVOID PRINTING A
TABLE HEADING, BUT NO DATA, AT THE BOTTOM OF A
PAGE.

IFLAG1 RETURNED FLAG. 0/1, SAME PAGE/NEW PAGE.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

TITLE ARRAY OF HOLERITH WORDS USED FOR PAGE HEADING
TITLE (A6). TITLE IS PRINTED UP TO A MAXIMUM OF
6 LINES USING 11 WORDS PER LINE.

TIME SUBROUTINE TIMER VARIABLES (REAL*8 WORDS).
HEAD PAGE HEADING LEAD (PRINTED 4A6).
NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
NOUT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.
NTITLE NO. OF WORDS OF THE ARRAY TITLE TO BE PRINTED.

NTITLE IS LESS THAN OR EQUAL TO 66.

(continued)

103

COMMON BLOCKS.

COMMON /PTITLE/ TITLE(66),TIME(10),HEAD(4),NOUT,NOUT2,NTITLE

LANGUAGE. FORTRAN

FILES REFERENCED. OUTPUT FILES NOUT AND NOUT2

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY. C116.CCCC.SEGLIB(LIKES)

RELATED MEMBERS. LINESARC, SYS004
s—s=s==ssssssss

REFERENCES. NONE

104

SOURCE MEMBER NAME. LINESARC

USER ENTRY POINTS. LINES, LINES2

FUNCTION. THIS IS AN INTERFACE SUBROUTINE WHICH LINKS TO THE SYS004
======== MODULE TO EXECUTE THE LINES SUBROUTINE.

LINES HANDLES PAGE EJE-CTS, HEADINGS, AND NUMBERING FOR THE
OUTPUT FILE NOUT. LINES2 DOES THE SAME FOR THE AUXILIARY
OUTPUT FILE NOUT2.

LINES KEEPS COUNT OF OUTPUT LINES PRINTED AND PAGE EJECTS
IF THE NEXT BLOCK OF OUTPUT WILL NOT FIT ON THE CURRENT
PAGE.

THIS INTERFACE SUBROUTINE SHOULD BE USED IN A MODULAR
ENVIRONMENT. THE VERSION IN C116.CCCC.SEGLIB (SEE SOURCE
MEMBER LINES) SHOULD BE USED IN A STANDALONE ENVIRONMENT
AND FOR EXPORT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL LINES(NUMLIN,IFLAG1)
CALL LINES2(NUMLIN,IFLAG1)

NUMLIN GT.O, THE NUMBER OF LINES ABOUT TO BE PRINTED
(ON LOGICAL UNIT NOUT FOR LINES, NOUT2 FOR LINES2).
EQ.O, SKIP TO THE TOP OF THE NEXT PAGE.
LT.O, THE LINE COUNT IS REDUCED. CONSECUTIVE
CALLS TO LINES WITH FIRST POSITIVE, THEN NEGATIVE
LINE COUNTS CAN BE USED TO AVOID PRINTING A
TABLE HEADING, BUT NO DATA, AT THE BOTTOM OF A
PAGE.

xFLAGl RETURNED FLAG. 0/ls SAME PAGE/NEW PAGE.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

TITLE ARRAY OF HOLERITH WORDS USED FOR PAGE HEADING
TITLE (A6). TITLE IS PRINTED UP TO A MAXIMUM OF
6 LINES USING 11 WORDS PER LINE.

TIME SUBROUTINE TIMER VARIABLES (REAL*8 WORDS).
HEAD PAGE HEADING LEAD (PRINTED 4A6).
NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
NOUT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.
NTITLE NO. OF WORDS OF THE ARRAY TITLE TO BE PRINTED.

NTITLE IS LESS THAN OR EQUAL TO 66.

(continued)

105

COMMON BLOCKS.

COMMON /PTITLE/ TITLE(66),TIME(10),HEAD(4),NOUT,NOUT2,NTITLE

LANGUAGE. FORTRAN

FILES REFERENCED. OUTPUT FILES NOUT AND NOUT2

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY. C116.CCCC.SYSLIB(LINES)

RELATED MEMBERS. LINES, SYS004

REFERENCES. NONE

106

SOURCE MEMBER NAME. LRED

USER ENTRY POINTS. LRED, LRIT

FUNCTION. LRED/LRIT HANDLES DATA TRANSFER BETWEEN EXTENDED CORE
======== (ECM) AND SEQUENTIAL DATA SETS ACCORDING TO CCCC

SPECIFICATIONS.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
======:======:==============================

CALL LRED(LUN,IREC,B,NWDS,MODE)
CALL LRIT(LUN,IREC,B,NWDS,MODE)

LUN FILE REFERENCE NO.
IREC RECORD NO.
B ECM ARRAY
NWDS NO. OF SINGLE-PRECISION WORDS TO BE TRANSFERRED
MODE 0/1/2. COMPLETE I/O BEFORE RETURN/START I/O BEFORE

RETURN/COMPLETE I/O STARTED BY PREVIOUS CALL

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NO. OF OUTPUT PRINT FILE

COMMON BLOCKS.

COMMON/IOPUT/NIN,NOUT,N0UT2
COMMON/INIT10/ NREC(99)

LANGUAGE. FORTRAN

FILES REFERENCED. VARIOUS SEQUENTIAL DATA SETS

ACCOMPANYING SUBPROGRAMS. NONE
S52===:s:zs===:=;s5=::==ss5zi2s= :===:=

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(LRED)

RELATED MEMBERS. REED

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
======«== FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

107

SOURCE MEMBER NAME. MYLCM

USER ENTRY POINTS. MYLCM, MYSCM, FREELC, FREESC, LOCF

FUNCTION. MYLCM AND MYSCM ALLOCATE MEMORY IN BULK AND MAIN CORE,
======== RESPECTIVELY, IN IBM 370 SYSTEMS. FREELC AND FREESC

RELEASE ALLOCATED SPACE. LOCF RETURNS THE MACHINE

ADDRESS OF A VARIABLE.

THESE ROUTINES ARE FORTRAN CALLABLE.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

ILOCM=MYSCM(NWDS)
ILOCB=MYLCM(NWDS)
CALL FREESC(NWDS,ILOCM)
CALL FREELC(NWDS.ILOCB)
ILOC=LOCF(BLK)

ILOCM ADDRESS OF ALLOCATED MAIN MEMORY (BYTES).
ILOCB ADDRESS Otl ALLOCATED BULK MEMORY (BYTES).
NWDS NO. OF 4-BYTE WORDS TO BE ALLOCATED OR FREED.
BLK VARIABLE FOR WHICH ADDRESS IS REQUIRED.
ILOC ADDRESS OF VARIABLE (BYTES).

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE
—========== = =

LANGUAGE. IBM ASSEMBLER
========

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. LOCF

========================

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(MYLCM)

RELATED MEMBERS. POINTR, IGTLCM

REFERENCES. NONE

108

SOURCE MEMBER NAME. POINTR

USER ENTRY POINTS. POINTR, PUTPNT, PUTBLK, BULK, FREE, WIPOUT, CLEAR,
================= GETPNT, GETN, DUMP, IGET, IPT2, PUTM, PUTB, IPTERR,

NNAMSF, ILAST, ILASTB, REDEF, REDEFM, REDEFB, PURGE,
PURGEB, STATUS, PRTIl, PRTI2, PRTR1, PRTA1, PRTR2,
PRTA2, PRTECM, ECZERO

FUNCTION. THESE ROUTINES, PLUS A FEW OTHERS LISTED UNDER RELATED
======== MEMBERS, COMPRISE THE BPOINTER PACKAGE USED FOR

DYNAMIC CORE STORAGE MANAGEMENT. IN THE DESCRIPTION THAT
FOLLOWS FCM REFERS TO FAST CORE AND ECM TO EXTENDED
CORE (E.G. LCM ON A CDC 7600).

POINTR INITIALIZES THE PACKAGE AND ALLOCATES THE FCM DATA
CONTAINER. BULK ALLOCATES THE ECM DATA CONTAINER AND MUST
BE CALLED BEFORE POINTR. FREE RELEASES THE FCM AND ECM
CONTAINERS.

PUTM AND PUTPNT RESERVE SPACE IN THE FCM CONTAINER FOR
A PARTICULAR DATA ARRAY. PUTB AND PUTBLK PERFORM THE SAME
FUNCTION IN ECM. WIPOUT RELEASES THE CONTAINER SPACE
FOR A PARTICULAR ARRAY. CLEAR INITIALIZES AN
ARRAY TO ZERO.

GETPNT AND IGET RETURN POINTERS TO PARTICULAR ARRAYS IN
THE CONTAINERS. IPT2 RETURNS POINTERS TO SUBARRAYS
WITHIN A PARTICULAR ARRAY. ILAST AND ILASTB RETURN THE
FIRST AVAILABLE (I.E. NOT YET ALLOCATED TO AN ARRAY)
LOCATION IN THE FCM AND ECM CONTAINER, RESPECTIVELY.

IPTERR RETURNS THE NUMBER OF ERRORS THAT HAVE OCCURED IN
BPOINTER ROUTINES SINCE THE LAST CALL TO IPTERR. DUMP
PROVIDES EDITS OF ARRAYS WHEN THE DUMP FLAG IS ON.

REDEF AND REDEFM REDEFINE THE FCM SPACE RESERVED FOR A
PARTICULAR ARRAY. REDEFB PERFORMS THE SAME FUNCTION FOR
ARRAYS IN ECM.

PURGE AND PURGEB ELIMINATE UNUSED SPACE BETWEEN ARRAYS
(FCM AND ECM, RESPECTIVELY) BY TAMPING DOWN THE
CONTAINERS. AFTER A PURGE THE NEW POINTERS MUST BE
OBTAINED FROM CALLS TO GETPNT OR IGET.

STATUS PRINTS THE CURRENT STATUS OF THE BPOINTER TABLES
WHEN THE PRINT FLAG IS SET. NNAMSF RETURNS THE NUMBER
OF NAMES IN THE BPOINTER TABLES. MAXWMF AND MAXWBF
RETURN THE MAXIMUM FCM AND ECM SPACE USED.

(continued)

109

AFTER SPACE IS RELEASED (WIPOUT) OR ALTERED (REDEF) THE
PROGRAMMER SHOULD CALL PURGE TO TAMP THE CONTAINER.
BPOINTER IS PROGRAMMED TO DO AUTOMATIC (AND THEREFORE
UNEXPECTED) PURGES WHEN REQUESTED SPACE IS
UNAVAILABLE AS A CONTIGUOUS BLOCK BECAUSE OF
CONTAINER FRAGMENTATION.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL POINTR(BLK,MAXSIZ,IPRINT)
CALL BULK(MAXBLK)
CALL FREE
CALL PUTPNT(ANAME,LEN,LWD)
CALL PUTM(ANAME,LEN,LWD,IPT)
CALL PUTBLK(ANAME,LEN,LWD)
CALL PUTB(ANAME,LEN,LWD,IPT)
CALL WIPOUT(ANAME)
CALL CLEAR(ANAME)
CALL GETPNT(ANAME,IPT)
IPT=IGET(ANAME)
JPT=IPT2(IPT,N4,N8)
NEXT=ILAST(DUMMY)
NEXT=ILASTB(DUMMY)
NERR=IPTERR(DUMMY)
NNAM=NNAMSF(DUMMY)
MAXWB=MAXWMF(DUMMY)
MAXWB=MAXWBF(DUMMY)
CALL DUMP(ANAME,IFORMT)
CALL REDEF(ANAME,LEN,LWD)
CALL REDEFMCANAME.LEN.LWD.IPT)
CALL REDEFB(ANAME,LEN,LWD,IPT)
CALL PURGE(NEXT)
CALL PURGEB(NEXT)
CALL STATUS

BLK LABELED COMMON VARIABLE USED AS A REFERENCE LOCATION
FOR THE FCM CONTAINER. BLK IS A LONG WORD VARIABLE.

MAXSIZ FCM CONTAINER SIZE (IN 8-BYTE WORDS ON
SHORT-WORD MACHINES)

IPRINT PRINT FLAG. 0/1/2/3 » NO PRINT/DUMPS ONLY/
TRACE ONLY/DUMPS AND TRACE

MAXBLK ECM CONTAINER SIZE
ANAME DATA ARRAY NAME
LEN DATA ARRAY LENGTH
LWD DATA ARRAY WORD LENGTH. 4/8 - SHORT WORD/LONG WORD
IPT DATA ARRAY POINTER. ARRAY STARTS AT BLK(IPT)

(continued)

no

JPT POINTER TO A SUBARRAY. SUBARRAY STARTS AT
IBLK(JPT) WHERE IBLK IS A SHORT WORD VARIABLE
EQUIVALENCED WITH BLK

N4 NO. OF SHORT WORD DATA PRECEDING SUBARRAY IN ARRAY
N8 NO. OF LONG WORD DATA PRECEDING SUBARRAY IN ARRAY
NEXT FIRST AVAILABLE CONTAINER LOCATION POINTER
DUMMY DUMMY VARIABLE
NNAM NO. OF NAMES IN THE BPOINTER TABLE
MAXWM MAXIMUM FCM CONTAINER USED

. MAXWB MAXIMUM ECM CONTAINER USED
IFORMT DUMP FORMAT. 1/2/3 = INTEGER/REAL/BCD

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

==============================:

NOUT

COMMON BLOCKS.

LOGICAL UNIT NO. OF OUTPUT PRINT FILE

COMMON/IOPUT/NIN,NOUT,N0UT2
COMMON/LOCATE/LSTM,MAXM,LSTB,MAXB,INDXM,INDXB,IPRINT
COMMON/TABLES/NAMLST(200),LENLST(200),IPTLST(200),LEN(2O0),

MLT(200),NNAMS
COKMON/PTERR/NPTERR
COMMON/LCMSIZ/ILOCM,ILOCB,MAXBLK,MAXFM)MAXFB,MULT,MAXNAM,

MULT3,JLOCM,JLOCB,MAXWM,MAXWB
COMMON/BFLAGS/IFLAG(200)

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. POINTR, PUTPNT, BULK, FREE, WIPOUT, GETPNT,
======================== IGET, IPT2, PUTM, IPTERR, ILAST, REDEF,

REDEFM, PURGE, STATUS, PRTI1, PRTI2, PRTR1,
PRTR2, PRTECM, ECZERO

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(POINTR)

=============

RELATED MEMBERS. IGTLCM
-ssssss:

REFERENCES. L.C. JUST, H. HENRYSON, II, A.S. KENNEDY, S.D. SPARCK,
B.J. TOPPEL, AND P.M. WALKER, THE SYSTEM ASPECTS AND
INTERFACE DATA SETS OF THE ARGONNE REACTOR COMPUTATION
(ARC) SYSTEM, ANL-7711, ARGONNE NATIONAL LABORATORY
(1971).

Ill

SOURCE MEMBER NAME. REED

USER ENTRY POINTS. REED, RITE

FUNCTION. REED/RITE HANDLES DATA TRANSFER BETWEEN FAST CORE
(FCM) AND SEQUENTIAL DATA SETS ACCORDING TO CCCC
SPECIFICATIONS.

=====

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL REED(LUN,IREC,B,NWDS,MODE)
CALL RITE(LUN,IREC,B,NWDS,MODE)

LUN FILE REFERENCE NO.
IREC RECORD NUMBER, =0 FOR REWIND
B FCM ARRAY
NWDS NO. OF SINGLE-PRECISION WORDS TO BE TRANSFERRED
MODE 0/1/2. COMPLETE I/O BEFORE RETURN/START I/O BEFORE

RETURN/COMPLETE I/O STARTED BY PREVIOUS CALL

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NO. OF OUTPUT PRINT FILE

COMMON BLOCKS.

COMMON/IOPUT/NIN,NOUT,NOUT2
COMMON/INITIO/NREC(99)

LANGUAGE. FORTRAN

FILES REFERENCED. VARIOUS SEQUENTIAL DATA SETS

ACCOMPANYING SUBPROGRAMS. ZEROIO

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(REED)

RELATED MEMBERS. LRED

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
========== FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

112

SOURCE MEMBER NAME. REEDS10

USER ENTRY POINTS. REED, RITE

FUNCTION. REED/RITE HANDLES DATA TRANSFER BETWEEN FAST CORE
======== (FCM) AND SEQUENTIAL DATA SETS ACCORDING TO CCCC

SPECIFICATIONS.

THIS VERSION OF REED INCLUDES THE ANL SIO ACCESS OPTION
FOR IBM MACHINES. SIO IS USED ONLY FOR THOSE FILES WITH
RECFM*U.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL REED(LUN,IREC,B,NWDS,MODE)
CALL RITE(LUN,IREC,B,NWDS,MODE)

LUN FILE REFERENCE NO.
IREC RECORD NUMBER, =0 FOR REWIND
B FCM ARRAY
NWDS NO. OF SINGLE-PRECISION WORDS TO BE TRANSFERRED
MODE 0/1/2. COMPLETE I/O BEFORE RETURN/START I/O BEFORE

RETURN/COMPLETE I/O STARTED BY PREVIOUS CALL

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NO. OF OUTPUT PRINT FILE

COMMON BLOCKS.

COMMON/IOPUT/NIN,NOUT,N0UT2
COMMON/INITIO/NREC(99)

LANGUAGE. FORTRAN

FILES REFERENCED. VARIOUS SEQUENTIAL DATA SETS

ACCOMPANYING SUBPROGRAMS. SIOERR, SI0WU6, ZEROIO

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(REED)

(continued)

113

RELATED MEMBERS. LRED, SIOASM, SIOSUB

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,
LOS ALAMOS NATIONAL LABORATORY (1977).

=====

114

SOURCE MEMBER NAME. SCANARC

USER ENTRY POINTS. SCAN

FUNCTION. THIS IS AN INTERFACE SUBROUTINE WHICH LINKS TO THE
======== SYSOO1 AND SYSOO2 MODULES TO EXECUTE THE SCAN SUBROUTINE.

SCAN READS THE ENTIRE CARD-IMAGE INPUT FILE (LOGICAL UNIT
NUMBER NIN) AND SPOOLS THE CARD IMAGES ONTO A FILE NAMED ARC
(IF ARC IS NOT A FILE NAME IN THE SEEK TABLE, THE DEFAULT
LOGICAL UNIT NUMBER IS 9). AT THE SAME TIME SCAN LOOKS
FOR THE BLOCK KEYWORD (BLOCK=) AND DEFINES THE VARIABLES
BLKNAM.IBLTAB AND NBLOCK IN /STFARC/.

THIS INTERFACE SUBROUTINE SHOULD BE USED IN A MODULAR
ENVIRONMENT. THE VERSION IN C116.CCCC.SEGLIB(ARCBCD) (SEE
SOURCE MEMBER ARCBCD) SHOULD BE USED IN A STANDALONE
ENVIRONMENT AND FOR EXPORT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SCAN

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
NOUT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.
NIN INPUT CARD FILE LOGICAL UNIT NUMBER. APPLIES FOR

CALLS TO SCAN ONLY.

COMMON BLOCKS.

COMMON/STFARC/STFNAM,BLKNAM(50),IBLTAB(3,50),NBLOCK,NRET
COMMON/IOPUT/NIN,NOUT,NOUT2

LANGUAGE. FORTRAN

FILES REFERENCED. INPUT CARD FILE, SPOOLED INPUT FILE (THE FILE NAMED
> » » . » . « » » » . » ARC, OR LUN 9), OUTPUT FILES NOUT AND NOUT2.

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY. C116.CCCC.SYSLIB(SCAN)

(continued)

115

RELATED MEMBERS. ARCBCD, SYS001, SYSOO2

REFERENCES. L.C. JUST, H. HENRYSON, II, A.S. KENNEDY, S.D. SPARCK,
========== B.J. TOPPEL, AND P.M. WALKER, THE SYSTEM ASPECTS AND

INTERFACE DATA SETS OF THE ARGONNE REACTOR COMPUTATION
(ARC) SYSTEM, ANL-7711, ARGONNE NATIONAL LABORATORY
(1971).

116

SOURCE MEMBER NAME. SECNDARC

USER ENTRY POINTS. SECOND

FUNCTION. THIS IS AN INTERFACE SUBROUTINE WHICH LINKS TO THE
======== SYS005 MODULE TO EXECUTE THE SUBROUTINE SECOND.

SECOND RETURNS ELAPSED CP TIME.

THIS INTERFACE SUBROUTINE SHOULD BE USED IN A MODULAR
ENVIRONMENT. SEE MEMBER SECOND FOR THE STAND-ALONE VERSION.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SECOND(ELAPSE)

ELAPSE ELAPSED CP TIME (SEC)

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SECOND)
========================

RELATED MEMBERS. SECOND, TIMER
===============

REFERENCES. NONE

117

SOURCE MEMBER NAME. SECOND

USER ENTRY POINTS. SECOND

FUNCTION. SECOND RETURNS ELAPSED CP TIME. THIS ROUTINE IS FORTRAN
======== CALLABLE.

THIS SUBROUTINE IS USED IN A STAND-ALONE ENVIRONMENT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
==

CALL SECOND(ELAPSE)

ELAPSE ELAPSED CP TIME (SEC)

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. IBM ASSEMBLER

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. CI16.CCCC.SEGLIB(SECOND)

RELATED MEMBERS. SECNDARC, TIMER, SYS005

REFERENCES. NONE

118

SOURCE MEMBER NAME. SEEK
s==:zsi3asr====s=====

USER ENTRY POINTS. SEEK

FUNCTION. SUBROUTINE SEEK PERFORMS FILE MANAGEMENT SERVICES
======== ACCORDING TO CCCC SPECIFICATIONS AS DOCUMENTED IN

LA-6941-MS. FOR THE MOST PART IT IS CALLED FROM
APPLICATIONS PROGRAMS TO ESTABLISH THE LOGICAL UNIT
NUMBERS OF NAMED DATA SETS.

THIS VERSION OF SEEK SHOULD BE USED IN A STANDALONE
ENVIRONMENT AND FOR EXPORT. THE INTERFACE SUBROUTINE
VERSION IN C116.CCCC.SYSLIB (SEE SOURCE MEMBER SEEKARC)
SHOULD BE USED IN A MODULAR ENVIRONMENT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SEEK(FILE,IVER,NREF,ISEEK)

FILE THE HOLLERITH NAME OF A DATA SET
IVER DATA SET VERSION NUMBER
NREF DATA SET REFERENCE (LOGICAL UNIT) NUMBER
ISEEK 0/1/2/3/4/5. PRIOR TO READING A FILE/PRIOR TO

WRITING A FILE/WRAP-UP/INITIALIZATION/
DELETE FILE/RETURN FILE NAME GIVEN NREF

INITIALIZATION OF SEEK (ISEEK=3) IS PERFORMED IN THE
FOLLOWING MANNER. FILE IS AN ARRAY OF NAMES, AND SEEK
ASSIGNS A LOGICAL UNIT NUMBER TO EACH NAME. THE UNIT
NUMBERS ASSIGNED ARE THOSE INPUT IN THE ARRAY NREF -
LOGICAL UNIT NUMBER NREF(I) IS ASSIGNED TO THE FILE NAME
FILE(I). IF NREF(l) IS ZERO THEN LOGICAL UNIT NUMBERS
ARE ASSIGNED SEQUENTIALLY STARTING AT FILE IOFF (SET TO
10) PLUS 1. A MAXIMUM OF 89 FILE NAMES IS PERMITTED, AND
THE LIST IS TERMINATED BY A FILE NAME $. THE FIRST TIME
A PARTICULAR NAME APPEARS IN THE FILE ARRAY IT IS
ASSIGNED VERSION NUMBER 1. THE SECOND OCCURANCE IS
VERSION 2, ETC.

IF FILE-6HCHANGE TWO FILE REFERENCE NUMBERS INPUT IN
NREF AND ISEEK ARE INTERCHANGED WITH RESPECT TO THEIR
NAMES AND VERSION NUMBERS.

RETURN ERROR CONDITIONS:
NREF-0, SEEK TABLE NOT INITIALIZED OR FILE NAME NOT IN

THE SEEK TABLE
— 1 , FILE HAS NOT BEEN INITIALIZED BY A CALL TO SEEK

WITH ISEEK-1

(continued)

119

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NUMBER OF OUTPUT FILE

COMMON BLOCKS.

COMMON IOPUT/NIN,NOUT,NOUT2/

LANGUAGE. FORTRAN

FILES REFERENCED. NONE
================

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(SEEK)

RELATED MEMBERS. SEEKARC, SYS003

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
========== FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

120

SOURCE MEMBER NAME. SEEKARC

USER ENTRY POINTS. SEEK

FUNCTION. THIS IS AN INTERFACE SUBROUTINE WHICH LINKS TO THE SYS003
======== MODULE TO EXECUTE THE SEEK SUBROUTINE.

SUBROUTINE SEEK PERFORMS FILE MANAGEMENT SERVICES
ACCORDING TO CCCC SPECIFICATIONS AS DOCUMENTED IN
LA-6941-MS. FOR THE MOST PART IT IS CALLED FROM
APPLICATIONS PROGRAMS TO ESTABLISH THE LOGICAL UNIT
NUMBERS OF NAMED DATA SETS.

THIS INTERFACE SUBROUTINE SHOULD BE USED IN A MODULAR
ENVIRONMENT. THE VERSION IN C116.CCCC.SEGLIB (SEE SOURCE
MEMBER SEEK) SHOULD BE USED IN A STANDALONE ENVIRONMENT
AND FOR EXPORT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SEEK(FILE,IVER,NREF,ISEEK)

FILE THE HOLLERITH NAME OF A DATA SET
IVER DATA SET VERSION NUMBER
NREF DATA SET REFERENCE (LOGICAL UNIT) NUMBER
ISEEK 0/1/2/3/4/5. PRIOR TO READING A FILE/PRIOR TO

WRITING A FILE/WRAP-UP/INITIALIZATION/
DELETE FILE/RETURN FILE NAME GIVEN NREF

INITIALIZATION OF SEEK (ISEEK=3) IS PERFORMED IN THE
FOLLOWING MANNER. FILE IS AN ARRAY OF NAMES, AND SEEK
ASSIGNS A LOGICAL UNIT NUMBER TO EACH NAME. THE UNIT
NUMBERS ASSIGNED ARE THOSE INPUT IN THE ARRAY NREF -
LOGICAL UNIT NUMBER NREF(I) IS ASSIGNED TO THE FILE NAME
FILE(I). IF NREF(l) IS ZERO THEN LOGICAL UNIT NUMBERS
ARE ASSIGNED SEQUENTIALLY STARTING AT FILE IOFF (SET TO
10) PLUS 1. A MAXIMUM OF 89 FILE NAMES IS PERMITTED, AND
THE LIST IS TERMINATED BY A FILE NAME $. THE FIRST TIME
A PARTICULAR NAME APPEARS IN THE FILE ARRAY IT IS
ASSIGNED VERSION NUMBER 1. THE SECOND OCCURANCE IS
VERSION 2, ETC.

(continued)

121

IF FILE-6HCHANGE TWO FILE REFERENCE NUMBERS INPUT IN
NREF AND ISEEK ARE INTERCHANGED WITH RESPECT TO THEIR
NAMES AND VERSION NUMBERS.

RETURN ERROR CONDITIONS:
NREF=0, SEEK TABLE NOT INITIALIZED OR FILE NAME NOT IN

THE SEEK TABLE
=-1, FILE HAS NOT BEEN INITIALIZED BY A CALL TO SEEK

WITH ISEEK=1

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NUMBER OF OUTPUT FILE

COMMON BLOCKS.
S3=2S£SS=.Z£S=5S=2=5=2=±

COMMON IOPUT/NIN,NOUT,NOUT2/

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE
:==:=:= =s====:=:==;==:=:= s= ====; =2==5

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SEEK)

RELATED MEMBERS. SEEK, SYS003

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,
LOS ALAMOS NATIONAL LABORATORY (1977).

=========

122

SOURCE MEMBER NAME. SEKBCD

USER ENTRY POINTS. SEKBCD

FUNCTION. SEKBCD IS AN INTERFACE BETWEEN THE FILE REFERENCE NUMBER
======== RETURNED BY SEEK FOR A BCD FILE AND FORTRAN READS AND WRITES

FOR THAT FILE. THE USE OF THIS ROUTINE (OR SOMETHING
LIKE IT) IS REQUIRED ON CERTAIN SYSTEMS (E.G. LANL) WHERE
THE SEEK REFERENCE NUMBER AND THE LOGICAL UNIT NUMBER
USED IN FORTRAN I/O ARE NOT THE SAME. SEKBCD IS ALSO USED
TO REWIND BCD FILES.

SEKBCD COMBINES CALLS TO SEEK AND SEKPHL AND PROVIDES AN
ALTERNATIVE TO USING SEKPHL DIRECTLY.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SEKBCD(FILE,IVER,LUN,MODE,NREF)

FILE THE HOLLERITH NAME OF A DATA SET
IVER DATA SET VERSION NUMBER
LUN LOGICAL UNIT NUMBER FOR FORTRAN I/O (RETURNED)
MODE 0/1, GIVEN NREF RETURN LUN/REWIND FILE NREF
NREF FILE REFERENCE NUMBER FROM SEEK (RETURNED)

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SEKBCD)
S3====333SS3SaSSS==SSSSS

RELATED MEMBERS. SEEK,SEKPHL

REFERENCES. NONE

123

SOURCE MEMBER NAME. SEKPHL
X3atS33=3aXS=33S33X

USER ENTRY POINTS. SEKPHL

FUNCTION. SEKPHL IS AN INTERFACE BETWEEN THE FILE REFERENCE NUMBER
======== RETURNED BY SEEK FOR A BCD FILE AND FORTRAN READS AND WRITES

FOR THAT FILE. THE USE OF THIS ROUTINE (OR SOMETHING
LIKE IT) IS REQUIRED ON CERTAIN SYSTEMS (E.G. LANL) WHERE
THE SEEK REFERENCE NUMBER AND THE LOGICAL UNIT NUMBER
USED IN FORTRAN I/O ARE NOT THE SAME. SEKPHL IS ALSO USED
TO REWIND BCD FILES.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
=3S SZSCSS 553=3 3ESS2 22 31 S

CALL SEKPHL(NREF,LUN,MODE)

NREF FILE REFERENCE NUMBER FROM SEEK (INPUT)
LUN LOGICAL UNIT NUMBER FOR FORTRAN I/O (RETURNED)
MODE 0/1, GIVEN NREF RETURN LUN/REWIND FILE NREF

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SEKPHL)
g — = = = = = = = =£ = =S = g = g = = = = = = = =

RELATED MEMBERS. SEEK

REFERENCES. NONE

124

SOURCE MEMBER NAME. SIO

USER ENTRY POINTS. RECFM, SIO

FUNCTION. SIO IS A FORTRAN-CALLABLE PROGRAM PACKAGE WHICH PERFORMS
======== UNBUFFERED, RANDOM ACCESS, ASYNCHRONOUS I/O FOR FILES ON

DIRECT ACCESS DEVICES. SIO PROVIDES AN EFFICIENT ACCESS
METHOD FOR SCRATCH FILES WHICH CONTAIN LARGE (.GT. 1 TRACK)
LOGICAL RECORDS. RECFM RETURNS THE RECFM PARAMETER
DEFINED ON A DD CARD.

THESE ROUTINES ARE FOR IBM MACHINES ONLY.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL RECFM(LUN,ITYPE)
CALL SIO(IOC,LUN,IBUF,IREC,ILEN,IERCDE)

LUN LOGICAL UNIT NO.
ITYPE RETURNED RECFM FLAG. 1/2/3/4/5/6. U/VS OR VT/

VBS OR VBST/OTHER/NOT A DA DEVICE/NO DD CARD
IOC 1/2/3/A/5. READ/WRITE/WAIT FOR COMPLETION OF 10/

CLOSE FILE/UPDATE INDEX RECORD ON DISK
IBUF STARTING LOCATION IN CORE FOR DATA TO BE

TRANSFERRED
IREC RECORD NO.
ILEN NO. OF SINGLE-PRECISION (REAL*4) WORDS TO BE

TRANSFERRED
IERCDE ERROR FLAG

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. IBM ASSEMBLER
========

FILES REFERENCED. VARIOUS BINARY FILES

ACCOMPANYING SUBPROGRAMS. RECFM, SIO, SIOTRC

(continued)

125

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SI0)
SS==SSSS:aS2SS323SS33S333

RELATED MEMBERS. REEDSIO, SIOSUB

REFERENCES. NONE

126

SOURCE MEMBER NAME. SIOSUB

USER ENTRY POINTS. SIOSUB

FUNCTION. THE SUBTASK SIOSUB IS RESPONSIBLE FOR PERFORMING ALL I/O
======« OPERATIONS ON DATA SETS ACCESSED THROUGH SIO, AND DOING

ALL THAT IS REQUIRED TO INTERFACE WITH THE BSAM SYSTEM
ROUTINES WHICH ACTUALLY ISSUE THE EXCP'S.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
r - SB==as== scssa

SIOSUB IS CALLED BY THE SUBROUTINE SIO THROUGH AN ATTACH
MACRO INSTRUCTION. SIO THEN COMMUNICATES WITH SIOSUB
THROUGH A COMMON AREA IN SIO AND FILE CONTROL BLOCKS
(ONE PER OPEN FILE).

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. IBM ASSEMBLER

FILES REFERENCED. VARIOUS BINARY FILES

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(SIOSUB)
CI16.CCCC.MODLIB(SIOSUB)======================

RELATED MEMBERS. REEDS10, SIOASM
zs3sais33s=ssax

REFERENCES. NONE

SOURCE MEMBER NAME. SNIFF

USER ENTRY POINTS. SNIFF

FUNCTION. THIS IS A VERSION OF THE SNIFF ROUTINE THAT IS
======== USED IN THE ARC SYSTEM TO PROVIDE FILE MANAGEMENT

SERVICES. ITS ONLY FUNCTION IS TO PROVIDE A LINK TO THE
SEEK MODULE FOR THOSE OLDER (PRE-CCCC) APPLICATIONS
MODULES WHICH WERE CODED WITH CALLS TO SNIFF.

THIS VERSION OF SNIFF COMES IN BOTH SUBROUTINE AND
MODULAR FORM.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL LINK(SNIFF,HNAME,NREF,NOP)
CALL SNIFF(HNAMF,NREF,NOP)

SNIFF 5HSNIFF
HNAME FILE NAME
NREF FILE REFERENCE NO.
NOP 0/1/2. PRIOR TO READING A FILE/PRIOR TO WRITING

A FILE/DELETE A FILE

IF HNAME=6HCHANGE TWO FILE REFERENCE NUMBERS INPUT
IN NREF AND NOP ARE INTERCHANGED WITH RESPECT TO
THEIR NAMES.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

========

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

(continued)

128

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLTB(SNIFF)
,..»..».».>...»—<.«»». c 116. CCCC. SEGLIB(SNIFF)

//EDT.SYSLMOD DD DSN-C116.CCCC,MODLIB(SNIFB),DISP»(OLD,KEEP)
//EDT.SEGLIB DD DSN-C116.CCCC.SEGLIB,DISP-SHR
//EDT.SYSIN DD *
ENTRY SNIFF
INCLUDE SEGLIBCSNIFF)

RELATED MEMBERS. SEEK
SKS3S3S3S3S3SX3

REFERENCES. NONE

129

SOURCE MEMBER NAME. SPACE

USER ENTRY POINTS. SPACE

FUNCTION. SPACE IS A UTILITY ROUTINE USED TO SKIP PAST CARD IMAGE
======== RECORDS IN A BCD DATA SET. THERE MUST BE SEPARATE CALLS

FOR EACH BATCH OF CARDS WITH A PARTICULAR CARD TYPE
NUMBER.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SPACE(IRECNO,NUMCDS,ITYPNO.NWHERE)

IRECNO LOGICAL UNIT NO.
NUMCDS NO. OF CARDS TO BE SKIPPED
ITYPNO CARD TYPE NOf OF CARDS BEING SKIPPED
NWHERE RETURN ERROR FLAG. 1 = BAD CARD TYPE NO.

ENCOUNTERED

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT OUTPUT PRINT FILE LOGICAL UNIT NUMBER
NOUT2 AUXILIARY OUTPUT PRINT FILE LOGICAL UNIT NUMBER

COMMON BLOCKS.

COMMON/IOPUT/NIN.NOUT,NOUT2

LANGUAGE. FORTRAN

FILES REFERENCED. VARIOUS BCD DATASETS

ACCOMPANYING SUBPROGRAMS. NONE
35 35 35 35 55 35 35 55 35 35 35 35 35 55 35 £5 35=35=S5S 53 35 53

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SPACE)

RELATED MEMBERS. NONE

REFERENCES. NONE

130

SOURCE MEMBER NAME. SQUEZE
«K3S38XSaSS3H>BS3S

USER ENTRY POINTS. SQUEZE, GOWEST

FUNCTION. SQUEZE LEFT JUSTIFIES HOLERITH (A8) WORDS AND SQUEEZES OUT
======== IMBEDDED BLANKS. GOWEST LEFT JUSTIFIES BUT RETAINS IMBEDDED

BLANKS.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SQUEZE(WORD,NUM)
CALL GOWEST(WORD,NUM)

WORD AN ARRAY OF HOLERITH WORDS (A8)
NUM THE NUMBER OF HOLERITH WORDS (A8) IN THE WORD ARRAY

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

========

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SQUEZE)

RELATED MEMBERS. NONE

REFERENCES. NONE

131

SOURCE MEMBER NAME. SRLAB

USER ENTRY POINTS. SRLAB

FUNCTION. SRLAB SEARCHES THE FIRST LEN ELEMENTS OF THE LIST
======== HNAME2(OR MAX ELEMENTS IF MAX.LT.LEN) FOR THE LABEL

HNAME1. IF HNAME1 IS FOUND ITS POSITION IS RETURNED
IN IPOS. IF HNAME1 IS NOT FOUND AND LEN.LT.MAX HNAME1
IS ADDED TO THE LIST, ITS POSITION IS RETURNED IN IPOS
AND LEN IS INCREMENTED BY ONE. IF HNAME1 IS NOT FOUND
AND LEN.GE.MAX, IPOS IS SET TO ZERO.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL SRLAB(HNAME1,HNAME2,LEN,MAX,IPOS)

HNAME1 SEARCH LABEL
HNAME2 ARRAY TO BE SEARCHED
LEN NO. OF ELEMENTS OF HNAME2 FILLED
MAX MAX. NO. OF ELEMENTS OF HNAME2 PERMITTED
IPOS POSITION OF HNAME1 IN HNAME2 ARRAY

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(SRLAB)

RELATED MEMBERS. NONE

REFERENCES. NONE

132

SOURCE MEMBER NAME. STUFFARC

USER ENTRY POINTS. STUFF

FUNCTION. THIS IS AN INTERFACE SUBROUTINE WHICH LINKS TO THE
======== SYS001 AND SYS002 MODULES TO EXECUTE THE STUFF SUBROUTINE.

STUFF PROCESSES THE INPUT DATA ASSOCIATED WITH THE NEXT
UNPROCESSED DATA BLOCK NAMED STFNAM (STFNAM IS A VARIABLE
IN /STFARC/). STUFF CREATES OR MODIFIES BCD DATASETS AND
SETS THE VARIABLE NRET IN /STFARC/.

NRET - 1, THE NEXT DATA BLOCK NAMED STFNAM WAS PROCESSED.
-3, THERE IS NO DATA BLOCK NAMED STFNAM IN THE INPUT.
-5, ALL DATA BLOCKS NAMED STFNAM WERE PROCESSED PRIOR

TO THIS CALL TO STUFF.

THIS INTERFACE SUBROUTINE SHOULD BE USED IN A MODULAR
ENVIRONMENT. THE VERSION IN C116.CCCC.SEGLIB (SEE SOURCE
MEMBER ARCBCD) SHOULD BE USED IN A STANDALONE ENVIRONMENT
AND FOR EXPORT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
£ 5 ^̂ * 5 5 ^5* 5 5 5 5 52» 2̂ 5 315 ̂ 5> 5 5 5 5 222 225 2.5 5 5 ^5* S5» 55 52» 25 222 22E £ 5 ^5] ̂ 5» 25B 522 B22> 22E 22* 25* £̂v 3 5 5̂2 5 5 55 25* 55S5J 55 222

CALL STUFF

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM.

NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
N0UT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.
STFNAM NAME OF THE DATA BLOCK TO BE PROCESSED BY STUFF.

SPECIAL NOTE. SCAN MUST BE CALLED BEFORE STUFF TO SET
THE VARIABLES BLKNAM, IBLTAB AND NBLOCK
IN /STFARC/.

COMMON BLOCKS.

COMMON/STFARC/STFNAM,BLKNAM(50),IBLTAB(3,50),NBLOCK,NRET
COKMON/IOPUT/NIN,NOUT,N0UT2

LANGUAGE. FORTRAN

(continued)

133

FILES REFERENCED. VARIOUS BCD FILES

ACCOMPANYING SUBPROGRAMS. STUFF1

LIBRARY. C116.CCCC.SYSLIB(STUFF)

=======
RELATED MEMBERS. CODECD, SCAN, SYS002

REFERENCES. L.C. JUST, H. HENRYSON, II, A.S. KENNEDY, S.D. SPARCK,
========== B.J. TOPPEL, AND P.M. WALKER, THE SYSTEM ASPECTS AND

INTERFACE DATA SETS OF THE ARGONNE REACTOR COMPUTATION
(ARC) SYSTEM, ANL-7711, ARGONNE NATIONAL LABORATORY
(1971).

134

SOURCE MEMBER NAME. SYS001

USER ENTRY POINTS. SYS001

FUNCTION. SYS001 IS AN INTERMEDIATE STEP IN CALLS TO SCAN AND STUFF
======== IN A MODULAR ENVIRONMENT. SYS001 IS A REUSABLE MODULE

WHICH PROVIDES A PERMANENT, COMMON AREA OF STORAGE FOR THE
SCAN/STUFF TABLES.

SYS001 IS CALLED FROM APPLICATIONS PROGRAMS THROUGH THE
INTERFACE SUBROUTINES SCAN AND STUFF. IN TURN, SYS001
CALLS THE NON-REUSABLE MODULE SYS002 WHICH EXECUTES THE SCAN
AND STUFF SUBROUTINES.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL LINK(SYS001,SUBNAM,BLKNAM,NRET,NIN,NOUT,NOUT2)

SYS001 6HSYS001
SUBNAM 4HSCAN/5HSTUFF. CALL TO SCAN/STUFF.
BLKNAM BLOCK NAME. STUFF ONLY.
NRET 1, BLOCK=STFNAM FOUND AND PROCESSED.

-3, BLOCK=STFNAM NOT FOUND.
-5, ALL BLOCK=STFNAM DATA HAS BEEN PROCESSED DURING

PREVIOUS CALLS TO STUFF.
NIN INPUT CARD FILE LOGICAL UNIT NUMBER.
NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
NOUT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE
=:==:==============================:=========-=====:=================

COMMON BLOCKS.

COMMON/STFARC/STFNAM,BLNAM(50),IBLTAB(3,50),NBLOCK,NRET
COMMON/IOPUT/NIN,NOUT,NOUT2

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE
===S=3SSSS=S=SS=========S

(continued)

135

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(SYS001)

//EDT.SYSLMOD DD DSN-C116.CCCC.MODLIB(SYS001),DISP=(OLD,KEEP)
//EDT.SEGLIB DD DSN=C116.CCCC.SEGLIB,DISP=SHR
//EDT.SYS IN DD *
ENTRY SYS001
INCLUDE SEGLIB(SYSOOl)
/*

RELATED MEMBERS. SYS002, ARCBCD, SCANARC, STUFFARC

REFERENCES. NONE

136

SOURCE MEMBER NAME. SYS002

USER ENTRY POINTS. MAIN

FUNCTION. SYSOO2 IS THE MODULE DRIVER FOR SUBROUTINES SCAN AND STUFF
======== IN A MODULAR ENVIRONMENT. SYS002 IS NORMALLY ACCESSED

FROM THE REUSABLE MODULE SYSOO1.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
==

CALL LINK(SYS002,SUBNAM,STFNAM,BLNAM,IBLTAB,NBLOCK,NRET,
X NIN,NOUT,NOUT2)

SYS002 6HSYS002
SUBNAM 4HSCAN/5HSTUFF. CALL SCAN/STUFF.
STFNAM NAME OF THE DATA BLOCK TO BE PROCESSED BY STUFF.
BLNAM BLOCK NAME ARRAY. DIMENSIONED BLNAM(50).
IBLTAB BLOCK TABLE ARRAY. DIMENSIONED IBLTAB(3,50).
NBLOCK NO. OF DATA BLOCKS. ESTABLISHED BY SCAN.
NRET 1, BLOCK=STFNAM FOUND AND PROCESSED.

-3, BLOCK=STFNAM NOT FOUND.
-5, ALL BLOCK=STFNAM DATA HAS BEEN PROCESSED DURING

PREVIOUS CALLS TO STUFF.
NIN INPUT CARD FILE LOGICAL UNIT NUMBER.
NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
NOUT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS.

COMMON/STFARC/STFNAM,BLNAM(50),IBLTAB(3,50),NBLOCK,NRET
COMMON/IOPUT/NIN,NOUT,NOUT2

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

(continued)

137

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(SYS002)

//EDT.SYSLMOD DD DSN»CH6.CCCC.MODLIB(SYS002),DISP»(OLD,KEEP)
//EDT.SEGLIB DD DSN-C116.CCCC.SEGLIB,DISP=SHR
//EDT.SYSIN DD *
ENTRY SYS002
INCLUDE SEGLIB(SYS002,ARCBCD)
/*

RELATED MEMBERS. SYS001, ARCBCD, SCANARC, STUFFARC

REFERENCES. NONE

138

SOURCE MEMBER NAME. SYS003

USER ENTRY POINTS. MAIN

FUNCTION. SYS003 IS THE MODULE DRIVER FOR SUBROUTINE SEEK IN A
======== MODULAR ENVIRONMENT. THE MODULE SYS003 MAY BE ACCESSED

THROUGH A CALL LINK (SEE BELOW) OR BY USE OF THE
INTERFACE SUBROUTINE SEEK (SEE SEEKARC).

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL LINK(SYS003,FILE,IVER,NREF,ISEEK,NOUT,NOUT2)

SYS003 6HSYS003
FILE THE HOLLERITH NAME OF A DATA SET
IVER DATA SET VERSION NUMBER
NREF DATA SET REFERENCE (LOGICAL UNIT) NUMBER
ISEEK 0/1/2/3/4/5. PRIOR TO READING A FILE/PRIOR TO

WRITING A FILE/WRAP-UP/INITIALIZATION/
DELETE FILE/RETURN FILE NAME GIVEN NREF

NOUT LOGICAL UNIT NO. OF OUTPUT PRINT FILE
NOUT2 LOGICAL UNIT NO. OF AUXILIARY OUTPUT PRINT FILE

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE
;=:====;====== ===;ss=rs========:r=:=:=i=5S=:==:»X2:==:=:=:=== = : = = = » = = = = = = = ==========

COMMON BLOCKS. NONE
=:============

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

(continued)

139

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(SYS003)

//EDT.SYSLMOD DD DSN-C116.CCCC.MODLIB(SYS003),DISP«(OLD,KEEP)
//EDT.SEGLIB DD DSN-C116.CCCC.SEGLIB,DISP-SHR
//EDT.SYSIN DD *
ENTRY SYS003
INCLUDE SEGLIB(SYS003,SEEK)

/*

RELATED MEMBERS. SEEK, SEEKARC

REFERENCES. NONE

140

r •

SOURCE MEMBER NAME. SYS004

USER ENTRY POINTS. MAIN

FUNCTION. SYS004 IS THE MODULE DRIVER FOR SUBROUTINE LINES IN A
««==== MODULAR ENVIRONMENT. THE MODULE SYS004 MAY BE ACCESSED

THROUGH A CALL LINK (SEE BELOW) OR BY USE OF THE INTERFACE
SUBROUTINE LINES (SEE LINESARC).

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL LINK(SYS004,NUMLIN,IFLAG1,IENTRY,TITLE,NTITLE,TIME,HEAD,
X N0UT.N0UT2)

SYS004 6HSYS004
NUMLIN GT.O, THE NUMBER OF LINES ABOUT TO BE PRINTED

(ON LOGICAL UNIT NOUT FOR LINES, NOUT2 FOR LINES2).
EQ.O, SKIP TO THE TOP OF THE NEXT PAGE.

IFLAG1 RETURNED FLAG. 0/1, SAME PAGE/NEW PAGE.
IENTRY 1/2, CALL TO LINES/LINES2.
TITLE ARRAY OF HOLERITH WORDS USED FOR PAGE HEADING

TITLE (A6). TITLE IS PRINTED UP TO A MAXIMUM OF
6 LINES USING 11 WORDS PER LINE.

NTITLE NO. OF WORDS OF THE ARRAY TITLE TO BE PRINTED.
NTITLE IS LESS THAN OR EQUAL TO 66.

TIME SUBROUTINE TIMER VARIABLES (REAL*8 WORDS).
HEAD PAGE HEADING LEAD (PRINTED 4A6).
NOUT LOGICAL UNIT NUMBER OF OUTPUT PRINT FILE.
NOUT2 LOGICAL UNIT NUMBER OF AUXILIARY OUTPUT PRINT FILE.

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS.

COMMON /PTITLE/ TITLE(66),TIME(10),HEAD(4),NOUT,NOUT2,NTITLE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

(continued)

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(SYS004)

//EDT.SYSLMOD DD DSN-C116.CCCC.MODLIB(SYSO04),DISP-(OLD,KEEP)
//EDT.SEGLIB DD DSN-C116.CCCC.SEGLIB.DISP-SHR
//EDT.SYSIN DD *
ENTRY SYS004
INCLUDE SEGLIB(SYS004,LINES)

/*

RELATED MEMBERS. LINES ARC, LINES
aasssaas sssxsaa

REFERENCES. NONE

142

SOURCE MEMBER NAME. SYS005

USER ENTRY POINTS. SYS005

FUNCTION. SYS005 IS THE MODULE DRIVER FOR SUBROUTINE SECOND IN A
» . » . » MODULAR ENVIRONMENT.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL LINK(SYS005,ELAPSE)

SYS005 6HSYS005
ELAPSE ELAPSED CP TIME (SEC)

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE

ACCOMPANYING SUBPROGRAMS. NONE

========================

LIBRARY, LINK EDIT INPUT. C116.CCCC.SEGLIB(SYS005)

//EDT.SYSLMOD DD DSN-C116.CCCC.MODLIB(SYS005),DISP»(OLD,KEEP)
//EDT.SEGLIB DD DSN-C116.CCCC.SEGLIB,DISP-SHR
//EDT.SYSIN DD *
ENTRY SYS005
INCLUDE SEGLIB(SYS005,SECOND)

/*

RELATED MEMBERS. TIMER, SECOND, SECNDARC

REFERENCES. NONE

143

SOURCE MEMBER NAME. TIMER

USER ENTRY POINTS. TIMER

FUNCTION. TIMER IS A GENERAL TIMING ROUTINE SPECIFIED BY THE CCCC.
======== THIS VERSION IS INTENDED FOR BOTH LOCAL AND EXPORT

APPLICATIONS.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.

CALL TIMER(I.T)

I .LT.O, RETURN ALL ITEMS IN THE T ARRAY
0, INITIALIZE
1, ELAPSED CP TIME
2, TIME LEFT
3, ELAPSED PP TIME
4, DATE, MM/DD/YY (A8)
5, USER ID (A6)
6, USER CHARGE NO. (A6)
7, USER JOB NAME (A8)
8, WALL CLOCK, HHMM.TT (A6)
10, WALL CLOCK, HH.MM.TT (A8)

T A FULL-WORD ARRAY OF 10 WORDS FOR THE
REQUESTED DATA

SEE THE SOURCE CODE FOR LISTS OF WHICH OPTIONS
ARE AVAILABLE ON DIFFERENT MACHINES

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. FORTRAN

FILES REFERENCED. NONE
================

ACCOMPANYING SUBPROGRAMS. NONE

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(TIMER)
========================

(continued)

144

RELATED MEMBERS. TIME, SECOND, SECNDARC

REFERENCES. R. D. O'DELL, STANDARD INTERFACE FILES AND PROCEDURES
«»*:»*«=: FOR REACTOR PHYSICS CODES, VERSION IV, LA-6941-MS,

LOS ALAMOS NATIONAL LABORATORY (1977).

145

SOURCE MEMBER NAME. TIMEl

USER ENTRY POINTS. TIMEl, CLOCK, DATE!, JOBID

FUNCTION. TIMEl RETURNS THE CURRENT WALL CLOCK TIME IN THE
======== FORMAT HH.MM.SS. CLOCK RETURNS THE WALL CLOCK TIME IN

HUNDRETHS OF A SECOND. DATE1 RETURNS THE CURRENT DATE
IN THE FORMAT MM/DD/YY. JOBID RETURNS THE USER JOB NAME.

THESE ROUTINES ARE FORTRAN CALLABLE.

CALLING SEQUENCE, DEFINITIONS OF ARGUMENTS.
==

WCLK1=TIME1(DUMMY)
CALL CLOCK(WCLK2)
DATE=DATE1(DUMMY)
CALL JOBID(USER)

WCLK1 WALL CLOCK IN A8 FORMAT, HH.MM.SS.
DUMMY DUMMY VARIABLE.
WCLK2 WALL CLOCK AS FLOATING POINT VARIABLE.
DATE DATE IN A8 FORMAT, MM/DD/YY.
USER RETURNED JOB NAME (REAL*8).

VARIABLES IN COMMON WHICH MUST BE DEFINED IN THE CALLING PROGRAM. NONE

COMMON BLOCKS. NONE

LANGUAGE. IBM ASSEMBLER

FILES REFERENCED. NONE
~S5 — • • SB =5»..JS£S=—=5=5=55— £5

ACCOMPANYING SUBPROGRAMS. TIME, CLOCK, DATE, JOBID

LIBRARY, LINK EDIT INPUT. C116.CCCC.SYSLIB(TIME1)

RELATED MEMBERS. TIMER

REFERENCES. NONE
==========

146

Distribution for ANL-83-3

Internal:

P. B. Abramson
C. H. Adams
P. I- Amundson
C. L. Beck
E. S. Beckjord
J. C. Beitel
S* K. Bhattacharyya
H. Bigelow
R. N. Blomquist
M. M. Bretscher
S> B. Brumbach
R. G. Bucher
J. E. Cahalan
S. G. Carpenter
B. R. Chandler
Y. I. Chang
P. J. Collins
R. J. Cornelia
D. C. Cutforth
T. A. Daly
J. R. Deen
K. L. Derstine
D. R. Ferguson
K. E. Freese
E. K. Fujita
P. L. Garner
J. M. Gasidlo
E. M. Gelbard
G. L. Grasseschi

G. M. Greenman
H. Henryson
R. Hosteny
H. H. Hummel
R. N. Hwang
R. E. Kaiser
Kalinullah
H. Khalil
R. D. Lawrence
W. K. Lehto
R. M. Lell
L. G. LeSage
J. R. Liaw
M. J. Lineberry
D. J. Malloy
J. E. Matos
H. F. McFarlane
R. D. McKnight
D. Meneghetti
L. E. Meyer
F. Moszur
A. Olson
Y. Orechwa
E. M. Pennington
P. J. Persiani
P. A. Pizzica
R. B. Pond
J. R. Ross
R. R. Rudolph

G. K. Rusch
R. W. Schaefer
J. E. Schofield
D. Shaftman
D. M. Smith
K. S. Smith
J. L. Snelgrove
D. R. Snider
C. G. Stenberg
W. J. Sturm
S. F. Su
C. E. Till
B. J. Toppel
A. Travelli
R. B. Turski
A. J. Ulrich
R. Vilim
D. C. Wade
D. P. Weber
W. L. Woodruff
S. T. Yang
B. S. Yarlagadda
ANL Patent Dept.
ANL Contract File
ANL Libraries (2)
TIS Files (6)
AP Division Files (10)

External:

DOE-TIC, for distribution per UC-79d (123)
Manager, Chicago Operations Office, DOE
Director, Technology Management, DOE-CH
Deputy Asst. Secy., Breeder Reactor Programs, DOE-Wash. (2)
Applied Physics Division Review Committee:

P. W. Dickson, Jr., Clinch River Breeder Reactor Project, Oak Ridge
K. D. Lathrop, Los Alamos National Laboratory
D. A. Meneley, Ontario Hydro
J. E. Meyer, Massachusetts Inst. Technology
R. Sher, Stanford U.
D. B. Wehmeyer, Detroit Edison Co.
A. E. Wilson, Idaho State U.

147

Other External;

H. Alter, Office of Breeder Technology, DOE
Advanced Reactor Library, Westinghouse Electric Co., Madison, Pa
M. Becker, Rensselaer Polytechnic Inst.
R. A. Bennett, Westinghouse Hanford Co.
F. W. Brinkley, Los Alamos National Laboratory
S. P. Congdon, General Electric Co.
C. Cowan, General Electric Co.
H. L. Dodds, Technology for Energy Corp.
R. Doncals, Westinghouse Electric Corp.
J. J. Doming, University of Illinois
M. J. Driscoll, MIT
C. Durston, Combustion Engineering
R. Ehrlich, General Electric Co.
H. Farrar IV, Atomics International
Fast Breeder Dept. Library, General Electric Co.
G. F. Flanagan, Oak Ridge National Laboratory
N. M. Greene, Oak Ridge National Laboratory
D. R. Harris, Rensselaer Polytechnic Inst.
P. B. Hemmig, Reactor Development and Demonstration, DOE
A. F. Henry, MIT
J. Kallfelz, Georgia Institute of Technology
R. Karam, Georgia Institute of Technology
W. Y. Kato, Brookhaven National Laboratory
R. J. LaBauve, Los Alamos National Laboratory
J. Lewellen, Reactor Development and Demonstration, DOE
E. E. Lewis, Northwestern University
M. D. Libby, NUSCO
R. MacFarlane, Los Alamos National Laboratory
F. C. Maienschein, Oak Ridge National Laboratory
D. R. Marr, Los Alamos National Laboratory
D. R. Mathews, GA Technologies
D. R. McCoy, Los Alamos National Laboratory
H. A. Morowitz, Tarzana, CA
J. Naser, Electric Power Research Inst.
R. J. Neuhold, Reactor Development and Demonstration, DOE
R. D. O'Dell, Los Alamos National Laboratory
D. Okrent, University of California
K. Ott, Purdue University
0. Ozer, Electric Power Research Inst.
A. M. Perry, Oak Ridge National Laboratory
C. Porter, Wentinghouse Electric Corp.
J. Prabulos, Combustion Engineering
R. Protsik, General Electric Co.
A. B. Reynolds, University of Virginia
W. A. Rhoades, Oak Ridge National Laboratory
P. Rose, Brookhaven National Laboratory
D. H. Roy, Babcock and Wilcox Co.
R. Schenter, Westinghouse Hanford Co.
P. Soran, Los Alamos National Laboratory
E. R. Specht, Atomics International
S< Stewart, General Electric, Co.
L. E. Strawbridge, Westinghouse Electric Corp.

148

R. J. Tuttle, Atomics International
0. R. Vondy, Oak Ridge National Laboratory
J. E. Vossahlik, GRP Consulting, Inc.
C. Weisbin, Oak Ridge National Laboratory

149

