Conf - 83037/ -- 1

CONF-830371--1

DES3 014353

U-235 Sample-Mass Determinations and Intercomparisons

by 👘

W. P. Poenitz and J. W. Meadows

Argonne National Laboratory

Argonne, Ill., U.S.A.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NOTICE PORTIONS OF THIS REPORT ARE ILLEGIBLE.

It has been reproduced from the best available copy to permit the broadest possible availability. MN ONLY MASTER

I. Introduction

 $\mathcal{D}_{\mathcal{T}} = \mathcal{N}$

The neutron-induced fission cross section of U-235 is not only one of the most-frequently used references but is also of direct importance in reactor applications. As a consequence, knowledge of this cross section is required with ~ 1 % uncertainty as reflected in corresponding entries in request lists (1,2), which have persisted since the last 10-15 years. Measurements to that level of accuracy require the investigation of the contributing components, one of which the fission mass. The latter is most often determined by others the experimenter who measures the differential cross sections or is than integral reaction-rate ratios in a reactor test facility. The isotopic composition and the sample mass are usually obtained from associated chemistry departments or standard laboratories, however, the experimentor has still the responsibility to assure that the values he uses are adequately described by the quoted uncertainties. This can be achieved by comparing samples from different origins. It was in this spirit that an intercomparison of fission samples obtained from different US laboratories, which were involved in cross section measurements, was carried out in 1979 (3). The notable outcome of this effort was that a bias of ~ 0.7 % was found between the standard laboratory and other contributing laboratories (which was, however, within the stated uncertainty). The National Bureau of Standards (NBS) has since then worked on a redefinition of the mass asignments of its reference samples, has revised its mass scale by 0.8%, and has reduced its uncertainty by a factor of two (to about ± 0.5 %). However, this new mass scale includes values relative to others. In the present work these have been removed in order to compare mass scales as independent from one another as possible. Independence already appears hard to come by. For example, the Los Alamos National Laboratory (LANL) sample mass specifications are mainly determined by the highest-weight entries which are for the isotopic composition from NBS, and for the specific activity (determined by isotopic dilution) from the Central Bureau for Nuclear Measurements (CBNM). The same material, INS-1, is apparently used by LANL and NBS, and samples obtained from the Centre D'Etudes de Bruyeres le Chatel (BRC) and CBNM for the present work were made with the same material originating from NBS.

One of the interesting developments in recent times in the area of precision measurements has been the 14-MeV-neutron fission cross sections of U-235. The praise has surely to go to Cance and Grenier (4) who first observed and reported values which were substantially lower than the data accepted at that time. These new values were subsequently confirmed by Arlt et al. (5) and later by others (6-10).

The 14-MeV values are not of great interest in applied areas at the present time, however, they have substantial importance because of their impact on the normalization of the evaluated U-235 cross section, as will be discussed in Section V. The very precise 14-MeV values affect the evaluated cross sections at much lower neutron energies and as some inconsistencies appear to emerge it was considered interesting to assure that these inconsistencies are not due to discrepant mass scales used in the various experiments. Consequently, the present authors inquired at the 1979 Knoxville

Page 2 one or two of the samples whi

1. 1. 1. 1

conference whether one or two of the samples which were used at the Khlopin Radium Institute in Leningrad (KRI) and at the Technical University of Dresden (TUD) for 14-MeV measurements could be made available for an intercomparison. This sample transfer was subsequently arranged by the International Atomic Energy Agency (IAEA) and the present report describes the comparison which was made at Argonne National Laboratory (ANL).

In order to improve on the validity of possible conclusions, the authors had also asked BRC, the AERE Harwell, and CBNM for contributions to this intercomparison. Samples were obtained from these laboratories and included in the present measurements. All samples are described in Section II.

The measurements consisted of two parts. The first part was the determination of the alpha-decay rates of the samples and the derivation of the absolute sample masses from these data. This is described in Section III. The second part was a set of relative fission-rate measurements and is described in Section IV. Updated data from the 1979 measurements are included in Sections III and IV.

The intercomparison of all the mass scales could only be made after all the reference values became available. This exchange of data took place at the present meeting. The results of the intercomparison are discussed in Section V.

II. Sample Descriptions

Six different fissile materials were involved in the 1979 and 1982/83 intercoparisons discussed here. The isotopic compositions and data on the specific activities which were made available or derived in the present work are given in Table I. Values given for the specific activities based upon the isotopic compositions (IC) and half-lives were derived with the reported IC's and the half-lives given in Table 2. The laboratories which contributed the samples may have used different half-lives. The half-lives given in Table II were mainly from the recent evaluation by Holden (11), however, for the so important U-234, his downweigthing of the latest measurement by Geidel'man et al.(12) was not accepted, and the value obtained by Meadows (13) was not used. This, however, changed the result only from 2.455 to $2.456 \cdot 10^5$ ys. The reason for leaving out the value reported by Meadows is that it was concluded that the material M-TH (which figured prominently in the T determination by Meadows) was uncertain to be used further as a reference. It was excluded in too present work and all data measured with the corresponding sample the SST5 were made relative to the first ANL mass scale U5-S-U4.

The isotopic compositions given in Table 1 are as reported, or averages were several values were available. The IC values for the KRI material are as given by KRI. A value for the U-234 content derived from present alpha spectroscopy is in good agreement with the coresponding value from KRI. A material which appears rather similar has been defined in Ref. 10. The coresponding values for the isotopic composition are given in Table 1 in brackets. These values lead to a specific activity which differs by 0.2% from our determination.

The physical descriptions of the samples are sumarized in Table Knowledge of the chemical compound and approximate thickness of 3. fissile deposit is required for the calculation of corrections for the total fission-fragment absorption. Knowledge of the diameter of fissile deposit and the material, diameter and thickness of the the the backing is required for the calculation of the corrections for transmission and scattering effects. The values for the thickness of deposits given in Table 3 (in μ g/cm²) are approximate values used the the calculation of the fission-fragment absorption. Most sample for backings were plain discs, exceptions were the BRC and the KRI samples. The BRC sample backing was a 0.05-cm thick Ta disc with the thickness under the fissile deposit reduced to 0.03cm. The information on the KRI samples given in Table 3 is from Ref. 5, and as obtained during the present meeting. The Cr-Ni ratio and the density of the backing material is unknown. A 50-50% ratio and a density of 7.9g/cm was assumed. The KRI samples were (apparently by soldering) mounted in carrier rings as indicated in Fig. 1. The additional amount of solder was unknown and has been neglected. The material of mounting ring is brass. The mounting procedure had apparently the positioned the samples slightly and unevenly above and below the top surface of the mounting ring, which was important for determining the alpha-counting-geometry factors.

Sector States and States

III. Alpha Counting

The al ha-decay rates of all samples were determined with a low-geometry surface-barrier detector. Samples obtained for the present intercomparison were counted before and after the fission The ANL samples have been counted repeatedly ratio experiments. during the last 10 years. Samples with low decay rates (NBS, KRI, ANL-R5, N3, LANL-S1) and the samples from CBNM were counted with a geometry factor of $\sim 1/220$. Other samples were also counted with a geometry factor of $\sim 1/1000$ (ANL-5-1, 5-2, SST5, LANL-S3, and BRC). Some of the samples were counted in addition in a second low-geometry counter of similar design with a somewhat different aperture and geometry factor (LANL-S3, ANL-R5, 5-2, SST5, AERE-B, KRI-VI). Geometry factors were determined with Monte-Carlo simulations and with a series-expansion approximation. Backgrounds of typically less than 0.3% was subtracted. Decay rates from 1979 were slightly revised for a redetermination of the counter geometry.

The accuracy of the present LG alpha counting has been tested: a) the comparison with the second LG counter shows agreement within 0.1%, b) this second LG counter has been compared with another LG counter at ANL-Idaho (agreement within 0.1%), and c) various uranium, plutonium and neptunium sample counts on different shelves have been compared (1st. shelf/2nd. +0.04%, 2nd./3rd. -0.05%, 1st./3rd. -.16%, and 1st./5th. -0.07%).

Representative alpha spectra obtained with the low-geometry counter are shown in Figs. 2 and 3. The spectra obtained for the KRI samples were used to obtain the contribution from the U-234 decay. A fraction of $3.1\pm0.1\%$ of the total count rate was found. The AERE samples show an 0.8% count-rate contribution from impurities with energies above the U-234-decay alpha energy for one sample and 1.1% for the other. Decay assignments of these impurities indicate the Th-228 decay chain. It is unknown whether additional contributions from impurities are in the U-235 - U-236 - U-234 alpha-energy range.

The ANL samples were also counted with a 2π counter for which the calibration factors were known for different thicknesses of uranium on SS backings as determined with the second LG counter. Samples of the same material and on identical backings were also counted with this 2π counter in order to determine the ratios with negligible statistical uncertainties.

The results from the present alpha counting and their total uncertainties are given in Table 4. Statistical uncertainties were 0.2% or less. The systematic uncertainties are determined by the "known" uncertainties of the geometry factor (aperture and sample-deposit diameters, sample to aperture distance) and unknown components: 1) nonuniform area densities, which are probably negligible for all but the electroplated samples, 2) sample-backing warping which affects the sample-to-aperture distance, and 3) alpha impurities within the U-235 - U-236 - U-234 alpha-energy range. Some corrections were applied for sample warping based on measurements with a microscope (BRC, NBS, KRI) and estimates have been made on these

uncertainties and included in the given systematic uncertainties.

The present values for the ANL samples are identical with the quoted values as they include previous counts. The only other direct alpha-decay rates reported so far are those by AERE and KRI. The average difference of between the present values and the AERE decay rates is 0.2%. The values given in Table 4 for the NBS samples were derived from the value quoted by NBS for the alpha-decay rate of its standard-reference sample and relative measurements by NBS between its reference and the sample NBS 25-S-5-2 used in the present experiments. These ratios were obtained by alpha counting (1X) and by fission counting (2X). Our value agrees with NBS within 0.1%. The values quoted for CBNM were derived from the given masses based on alpha counting and the slightly different $T_{\rm syz}$ used. Agreement between the present counts and those from CBNM is within 0.06%.

values for the absolute uranium masses given in Table 4 are The based on the present alpha-decay rates and the specific activities given in Table 1. Also listed in Table 4 are the values quoted by the owners of the samples. The agreement between the values from ANL and is within 0.13% implying agreement between the alpha counting at LANL both laboratories within that uncertainty. The LANL values were recently revised by a minor amount (< 0.1%). Agreement with NBS is very good after the aforementioned revision of the NBS mass scale by The value given in the Table for NBS is as quoted, thus 0.8%. includes measurements relative to LANL samples. The bias of 0.3% between the present values and those quoted by CBNM is due to the high weight of the values based on isotopic dilution. Agreement with the values based on alpha counting is within 0.14%, the difference being mainly due to the different U-234 half-life values used. The value quoted by BRC is based on the U-234 half life of 2.446 10⁵ ys., thus 0.4% of the difference with the present value can be understood with the different half-life values.

VI. Fission Ratio Measurements

It should be clear from the outset that in comparing sample masses of different material and with different backings by fission ratio measurements, one compares a variety of other features of fission-rate measurements besides fission masses. The measured fission rates are proportional to the sample masses, but also to the counting efficiency, e. g. the total fission-fragment absorption is involved.

The present fission-ratio measurements were carried out in a back-to-back ionization chamber (14). Measurements were made at 600 ± 100 -keV-neutron energy utilizing the ⁷Li(p, n)-source reaction and pulsed and bunched proton beam. The samples were located at a a distance of 5 cm from the neutron source. A random-pulser signal which was time correlated with the accelerator pulse was split on an odd-even basis and added to the two preamplifiers. These events were found to be processed by the on-line computer and associated electronics with a better than 0.1% parity. Identifying tags (pulser, detectors 1 and 2) were used to store 8 time-of-flight spectra (TOF) Inspection of these TOF spectra showed some the computer. ำ ก random-coincidence events (~ 0.2 %), which did, however, not affect the ratio results. Different choices of background ranges in the TOF spectra did not affect the result either. Various test measurements (interchange of detector electronics, measurements at different distances from the target, interchange of detectors, proof of reproducebility) were described in the previous report (3).

Measurements were carried out for each of the ratios in two steps: once with one sample facing the target, then with the other sample facing the target. These two sets were obtained with approximately the same statistical uncertainties of typically 0.3%.

Corrections were applied for:

1. Sample distances from the target.

The two samples were separated by the sum of their backing thicknesses, and, in some cases, by an additional 0.0127-cm thick center mounting plate. The required corrections were typically 2-3% but substantially larger where the KRI samples were involved (8-10%). However, by averageing the results from the measurements for the two directions of the fission chamber, the uncertainty for this correction becomes negligible.

2. Transmission losses and scattering gains.

Corrections were applied for the transmission losses which occur for the sample facing away from the target by area-weighting the losses through the contributing structural components. Scattering gains for both samples were computed for the various scattering components with the Monte-Carlo technique, taking into account the angular distributions of the elastically scattered neutrons and inelastic processes. The combined effect of transmission losses and scattering gains on the measured ratios was typically less then 1%. Averaging the measurements for the two directions of the fission chamber results in an effective correction factor of 1.0 for a completely symmetrical arrangement of identical samples. The "residual" correction for transmission and scattering effects for the more common case of asymmetric samples was typically $\sim 0.0-0.3$ % and largest for measurements between the ANL 5-2,SST5 and the KRI samples (0.5%), because the large diameter ANL sample deposits overlap the brass mounting rings of the KRI samples. The uncertainty of the corrections for transmission and scattering was assumed to be 50% of the residual corrections.

3. Detection losses below the electronic threshold.

The threshold for the detection of fission events was set close to the alpha (pile-up) pulses in the pulse-height spectrum. The fission-pulse losses below this threshold were determined based upon a linear extrapolation from the pulses above the threshold to zero-pulse height. Though this is probably a good approximation, it is not quite correct as Monte-Carlo calculations for thicker samples show a none-linear shape (15). However, the possible error should be substantially reduced in a ratio measurement and should be negligible if both samples have similar thicknesses.

4. Fission events from isotopes other than U-235

The present measurements were interpreted to yield total uranium-mass ratios. The primary neutron energy was choosen to result in only small contributions from fission in isotopes other than U-235. Thus, the correction depends mainly on the U-235-wt fractions of the materials involved and results in a negligible contribution to the uncertainty of the ratio result.

5. Angular distribution of the sorce neutrons.

A correction was applied for the measurements of ratios between samples of different diameter. The evaluation by Liskin et al. (16) was used for the anisotropy of the ⁷Li(p,n) reaction. This correction was most frequently 1.5% but 3.7% for ratios between samples with the smallest and largest deposit diameters.

6. Total fission-fragment absorption.

This correction is surely the most important as it is the most uncertain. The present procedure of measuring the ratio with the two directions of the fission chamber averages over the effect of the neutron momentum. The effect of the angular distribution of the fission fragments is small. The major remaining effect is determined by the range of the fission fragments, R, in a specific deposit material. Experimental values of R were known for several of the sample materials (ANL 5-2, 5-1, SST5, NBS). Values can also be calculated if the chemical composition is known (e. g. R=6.6 mg U/cm² for UO_2 , 4.7 for UFy, 5.9 for U_3O_8). However, the material of the KRI samples was unknown by the present authors until the present meeting took place. Thus the following consideration was made: the average energy loss of the 4.397 MeV alpha which occurs with 57: probability in the decay of U-235 should indicate to some extend the energy loss of charged particles in an unknown material. The energy loss of these alphas, determined from the energy spead (detector resolution subtracted), in the low-geometry alpha spectra is proportional to the sample thickness, σ , (for thin samples), thus:

AENNO.

.•

The fission—fragment range would be expected to be in some form inversely related to the alpha energy loss, therefore

was considered, searching for an empirical relationship with the help of the many other samples for which the range was known. Fig. 3 shows that the relationship appears to be linear and clearly indicates that the assumption of a range of 7.5 mg U/cm² for the KRI samples was wrong. The fission fragment absorption losses of the KRI samples were finally determined based on the FF ranges which follow from the straight line in Fig. 3. This may not have been the best choice, the dashed line in Fig. 3 represents the majority of the data better and the consequent failure to explain the heaviest sample S3 could be accepted based on the energy dependence of dE_x/ds.

The fission-fragment range alone is not what determines the total The structure or smoothness of the backing affects in absorption. addition the total absorption to be accounted for. Consideration of geometry of the ionization chamber leads to the understanding of the the observed pulse-height spectrum: the sharp drop from the maximum in the pulse-height spectrum toward lower pulse heights comes from a "geometrical" cut-off of the FF due to the collector plate. Smaller pulses are from FF's emmitted with angles close to 90° , thus loosing most of their energy. Because total FF losses are caused by those emmitted extremely close to 90° , one would expect that the number of pulses below the geometric cut-off are in first order proportional to total FF losses -- for a perfect backing. However, an imperfect the backing would cause additional pulses in the low energy part of the spectrum and additional FF losses not explained by the FF range of the This would be specifically expected for thinner samples. material. ratio between the fraction of pulses below the geometrical cut-off The the fraction of total FF losses calculated with the ranges for the ous materials is shown in Fig. 4. Some features are as expected, and various example, the KRI samples appear to have the best polished backing for (based on qualitative inspection under a microscope) and the ratio in Fig. 4 is consequently low. The backings of the ANL samples SST5 and 5-2 has not been polished but appear to be smooth though a few larger scratches can be observed. The backing of the sample R5 has been polished, but polishing marks are visible, thus it is not surprising find a high ratio as it is a very thin sample. In most other to cases, however, the ratio does not clearly correspond to the merely qualitative nature of the microscope observation and the figure seems to be inconclusive as to required additional corrections. No further action was taken, but measurements are planned for the ANL samples in 277-ionization-chamber count rates will be compared with LGwhich the FF counting.

Page 8

Page 9

V. Results and Discussion

Fifteen samples were involved in the present intercomparison, thus measurements of 14 ratios would be sufficient to obtain the ratio between any two sample masses. A sensible 105 ratios could be measured between the 15 samples, however, one of the ratio measurements took about an average of 6 hours and a total of 28 ratios was measured. This overdetermines the number of unknowns by a factor of 2. A consistent set of 14 unknowns can be derived with least-squares adjustments

$$S = (A^T C^{-1}A)^{-1} A^T C^{-1}M$$

where A is the coefficient matrix, and C is the variance-covariance matrix of the measurement vector M. This has been simlified with C - I, the identity matrix, thus neglecting the correlations:

$$\delta = (A^{T} A)^{-1} A^{T} M.$$

The corresponding results are given in Table 6. Measured values are identified by the % difference between the measured and the consistent value. Besides the 28 fission ratio measurements (round brackets) additional 10 ratios derived from the alpha counting were included in the consistency fit (winged brackets). The latter were confined to ratios between samples of the same material with the exception of two ratios where materials were involved for which the isotopic composition was exceptionally well known.

The uncertainties of the input data were typically 0.3-0.5%. The uncertainties of the results from the present measurements given in Table 6 are typically 0.2-0.3%. The results from the present ratio measurements can be used to determine absolute sample masses either based upon the values derived from the present alpha counting or with masses quoted by the owners of the samples. Both types of data are given for each sample in the Appendix.

Comparison of all four values which can be obtained for the mass of each sample from:

 The mass quoted by the owners of the sample,
The mass determined from the present alpha counting,
The mass determined from the present ratio measurements relative to all other sample masses and the masses determined by the present alpha counting
The mass determined as under 3), but using the masses quoted by the owners of the samples,

are typically within a range of ± 0.33 or better, thus indicate a better knowledge of the sample masses than the quoted uncertainties. Knowledge of the U-235 sample mass in a cross section measurement or reaction-rate-ratio measurement in a reactor within 0.3% is considered sufficient.

One of the conclusions of the 1979 intercomparison was that the U-234 half life may be the source of some of the inconsistencies noted

Page 10

at that time. Very accurate values were available for the isotopic compositions of two of the fissile materials involved in the present intercomparison (AERE, CBNM). The ANL, LANL, NBS, and CBNM mass scales are mainly determined by independent isotopic dilution measurements (though the isotopic dilution measurement for the LANL samples was done at CBNM, this was quite some time ago). Thus, the half life of U-234 can be determined from the present alpha decay rates for the AERE and CBNM samples and their masses based on the ratio measurements and the quoted masses for the ANL, LANL, NBS, and CBNM samples. The value is

T (U-234) = (2.4595+0.00) 10 yrs.

which is in very good agreement with the latest measurement by Geidel'man et al. (12):

T (U-234) = (2.459 + 0.007) 10 yrs.

It is concluded from the present investigations, that U-235 sample masses are well enough known for future measurements and have not been a source of errors in recent high accuracy measurements. However, corrections for total ff absorption may have been too low. The U-234 half life is now known with sufficient accuracy to determine sample masses of spiked U-235 material to within 0.3%.

References

- "Compilation of Requests for Nuclear Data", compiled and edited by the National Nuclear Data Center for the Department of Energy Nuclear Data Committee, DOE/NDC-22U (1981).
- 2. "World Request List for Nuclear Data", N. DayDay, Editor, WRENDA 81/82, International Atomic Energy Agency, INDC (SEC)-78/URSF (1981).
- W. P. Poenitz, J. W. Meadows, and R. J. Armani, "U-235 Fission Mass and Counting Comparison and Standardization", Argonne National Laboratory Report ANL/NDM-48 (1979).
- 4. M. Cance and G. Grenier, Nucl. Sci. Eng. 68, 197 (1978).

1

- 5. R. Arlt et al., Kernenergie 24, 48 (1979).
- 6. I. D. Alkhazov et al., Atom. Energ. <u>47</u>, 416 (1979).
- O. A. Wasson, A. D. Carlson and K. C. Duvall, Nucl. Sci. Eng. <u>80</u>, 282 (1982).
- 8. M. Mahdavi, G. F. Knoll, and J. C. Robertson, "Measurements of the 14 MeV Fission Cross Sections for U-235 and Pu-239", Proc. Conf. on Nuclear Data for Technology, Antwerp (1982), to be published.
- 9. LiLingwen et al., Proc. Conf. on Nuclear Data for Technology, Antwerp (1982), to be published.
- M. Varnagy, S. Juhasz, and J. Csikai, Proc. Conf. on Neutron Physics, Vol. 3, 13, Kiev (1980).
- N. E. Holden, "The Uranium Half-lives: A Critical Review", Brookhaven National Laboratory Report BNL-NC5-51320 (1981).
- 12. A M. Geidel'man et al., Izv. Aead. Nauk. SSSR, Ser. Fiz. 44, 927 (1980).
- J. W. Meadows, "The alpha half-life of U-234", Argonne National Laboratory Report ANL-7610, 44 (1970).
- 14. J. W. Meadows, Nucl. Sci. Eng. 68, 360 (1978).
- 15. K. Kari, Nuclear Research Center Karlsruhe Report, KFK 2673 (1977).
- H. Liskien and A. Paulsen, "An Evaluation for Cross Sections of the Reaction ⁷Li(p,n)", EANDC(E) - 159 "L" (1973).

Table 1. Isotopic Compositions and Specific Activities

Isotopic Compositions/wt%

Specific Activities/apmpug

					Isotopic	Isot. Comp.			1
Material	U-234	U-235	U-236	U-238	Dílution	Half-L.(b)	Colorim.	Others	Average(c)
LANL (a)	0.0607	99.7457	0.0655	0.1277	13.338	13.26		13.30	13.33
INS-1					± .024	± .13		±.08	± .02
NBS					13.412	13.26		13.38	13.38
INS-1					± .067	± .13		±.16	± .07
ANL	1.027	98.397	0.450	0.125	146.24	147.2	146.1		146.3
U5-S-U4					± .25	± •7	±.9		± .3
ANL ter	0.852	93.244	0.334	5.570		122.6 (L)	124.1 (e)		
M-Th	(d)					± .7	± .7		
	0.00	72	n op IT			.4			
KRI ±d)=	0.00111	99.99889	2.00251(5)			4.952			
05-1	(0.0010	33.3200	0.0035)(I)	t		(4.941)			
IFOF									
AEKE	1 1104	92 /09	0 315	6 165		158 3			
U5-92	1,1104	92.409	0.315	0.105		1.0.5 ±.5			
CBNM/	1.6582	97,663	0,1497	0.5296		233,9			
BRC				005270		±.7			
U5-97									
			l	1			1	· · · · · · · · · · · · · · · · · · ·	I

'N

(a) Isotopic composition is an average of CBNM, NBS and LASL determinations.

(b) Present values.

(c) Uncertainty limited to lowest uncertainty of individual values.

(d) From present alpha spectroscopy.

(e) Values not used. Mass defined relative to ANL U5-S-U4.

(f) From Ref. 10. Wt% assumed. It is not sure that this is the same material.

Isotope	Half-life, Y	Atomic weight, g/mol
U-234	2.456 • 10^5	234.0409
V-235	7.037 · 10 ⁸	235.0439
U-236	$2.342 \cdot 10^7$	236.0456
U-238	4.468 • 10 ⁹	238.0507

•

.

Table 2. Constants used for the Present Specific-activity Determinations.

•

1 mol = 0.60225 · 10²⁴ 1 year = 235.25 days *365*

۲ ،

Table 3. Sample Specifications.

Fissile Sample Deposit

Backing

Sample	Material	Compound	Dep. Techn.	Diam. cm	Approx. Thickness µg/cm ²	Material	Thickness Cm	Diameter Cn
ANL-R5	U5-S-U4	U308	EP	2.22	20.6	SS	0.0127	4.445
ANL-N3	U5-S-U4	U ₃ 0 ₈	EP	1.27	41.1	SS	0.0254	1.905
ANL-5-1	U5-S-U4		EP	2.49	210.4	SS	0.0254	6.985
ANL-5-2	U5-S-U4	002 1120	EP	2.50	164.2	SS	0.0254	6.985
ANL-SST5	U5-Th	UF4	EV	2.54	81.2	SS	0.0254	6.985
LANL-S1	INS-1	0308	EV	2.00	95.1	Pt	0.0127	4.763
LANL-S3	INS-1	0308	EV	2.00	537.9	Pt	0.0127	4.763
NB S2 5-S-52	INS-1	UO2	EV	1.27	182.0	Pt	0.0127	1.905
KRI VI	U5-P	U 308	HF S	2.1	220.7	Cr-Ni	0.010+	2.100+
KRI XV	V5-7	U 30g	HF S	2.1	260.2	Cr-Ni	0.010+	2.100+
BRC	U5-NBS	030 ⁸	?	1.2945	85.8	Та	0.03	2.771
AERE-A HAR-A-	บ 5 - บห	υ ₃ 0 ₈	EV	2.0	110.4	SS	0.0394	2.699
MAR-B-	V5-UK	0308	EV	2.0	110.6	ss	0.0394	2.699
CBMN-33	U5-NBS	UF4	EV	1.27	96.0	SS	0.015	1.905
CBMN-36	U5-NBS	UF ₄	EV	1.27	197.0	SS	0.015	1.905

EV = Evaporation, EP = Electroplating, HFS = High Frequency Sputtering,

ss = Stainless Steel + = Additional Material due to the Bran hounding Ring

cm

	Alpha Decay Rate, o	ips	Sample Masses,	µg Uranium
Sample	Quoted	Present	Quoted	Present
ANL R5		194.1 ± 0.6		79.60 ± 0.29
ANL N3		127.2 ± 0.4		52.17 ± 0.19
ANL 5-1		2602 ± 6		1067 ± 4
ANL 5-2		2035 ± 5		834.6 ± 2.7
ANL SST5		847.8 ± 1.7		418.1 ± 1.6
LANL SI		66.52 ± 0.2	298.7 ± 0.3	299.4 ± 1.2
LANL S3		375.1 ± 1.1	1688.3 ± 3.0	1688.6 ± 5.7
NBS	50.66 ± .25 (al) 51.00 ± .25 (a2)	50.97 ± .13	228.5 ± 1.2	228.6 ± 1.3
KRI VI	62.6±2.0	62.94 ± 0.2 (b)	758 ± 25 757.9 ± 7.6 (e)	762.7 ± 3.3
KRI XV	74. 4 ± 2.2	73.97 ± 0.2 (b)	901 ± 30 $901.0 \pm 9.0(c)$	896.2 ± 3.9
BRC AFRE A	1	454.9 ± 1.4	115.6	116.7 ± 0.5
HAR A	971.2 ± 4.6	914.1 ± 3.2 (c)	343.4 ± 2.7 (d)	346.5 ± 1.6
HAR-B	9 27.3 ± 4.6	914.9 ± 3.2 (c)	345.1 ± 2.8 (d)	346.8 ± 1.6
CBNM 33	476.3±4.1	476.7 ± 1.2	122.1	122.3 ± 0.5
CBNM 36	976.9±8.5	977.3 ± 2.5	$\frac{250.4 \pm 2.1}{249.6} \pm \frac{3}{249} (4)$	250.7 ± 1.0

Table 4. Results from the Present Alpha Counting.

(a) Obtained from NBS ratio measurement relative to NBS standard by (1) alpha counting, (2) fission counting.

Including the 3.1% contribution from U-234. (b)

Excluding contributions from impurities with alpha-energies above 4.77 MeV. (c) (d) Preliminary.

(c) Based on given areal density and total area. 13) Based on Alpha counting and specific activity. (g) Based on isotopic dilution

Sociator

Denominator	R5	N3	5-1	5-2	SST5	S 1	<u>s</u> 3	NBS	KRI VI	KRI XV	BRC	HAR A	HAR B	CRIM33	CBMM36	1 ·
ANL R5		0.6562	13.461	10.515	5.2576	3.765	21.231	2.8828	9.5904	11.249	1.4700	4.3725	4.3791	1.5421	3.1656	1
ANL N3	1.5240	-	20.53	16.033	8.0128	(+.3) 5.738	32.357	4.3934	14.616	17.143	2.2404	6.6627	6.6739	2.3502	4.8245	
ANL 5-1	0.0743	0.0487	-	0.7816	0.3906	0.2797	1.5773	0.2142	0.7125	0.8357	0.1092	0.3248	0.3253	0.1146	0.2352	
ANL 5-2	0.0951	0.0624	1.2795 (+.1)	-	0.4998	0.3579	2.0182	0.2740	0.9117	1.0693	0.1397	0.4156	0.4163	0.1466	0.3009	
ANL SSTS	0.19/12	0.1248	2.5602	2.0009	-	0.7161	4.0382	0.5483	1.8241	2.1395	0.2796	0.8315	0.8329	0.2933	0.6021	
LANL SI	(0) 0.2652	(5) 0.1743	3.5752	(1) 2.7941	1.3965	(+.1) -	(0) 5.6402	(1) 0.7657	2.5473	(+.2) 2.9877	(1) 0.3904	1.1612	(+.3) 1.1631	0.4096	0.8408	
LANL S3	0.0471	0.0309	0.6340	0.4955	0.2476	0.1773	-	0.1358	0.4517	0.5298	0 .069 2	0.2059	0.2063	0.0726	0.1491	
NBS	0.3469	0.2276	4.6693	3.6496	1.8238	1.3060	7.3649	-	3.3256	3.9021	0.5099	1.5165	1.5191	0.5349	1.0981	
KRI VI	0.1043	0.0584	1.4035	1.0969	0.5482	0.3926	2.2138	0.3007	-	1.1729	0.1533	0.4558	0.4566	0.1608	0.3306	
KRI XV	0.0839	0.0583	1.1966	(+.1) 0.9352	0.4674	0.3347	1.8875	(6) 0.2563	0.8526	(-,2) (+.3)	0.1307	0.3886	0.3893	0.1371	(+.8) 0.2814	
BRC	0.6803	0.4464	9.1567	7.1563	3.5765	2.5612	14.443	1,9612	6.5247	7.6520	-	2.9742	2.9789	1.0490	2.1538	
HAR A	0.2287	0.1501	3.0790	2.4063	1.2026	0.8612	4.8565	0.6594	2.1938	2.5731	0.3362	-	1.0017	0.3527	0.7242	
HAR B	0.2284	0.1498	3.0738	2.4023	1.2006	0.8598	4.8484	0.6583	2.1901	2,5687	0.3357	0.9933		0.3521	0.7229	
CBNM 33	0.6485	0.4255	8.7289	6.8212	3.4095	2.4415	13.768	1.8694	6.2192	7.2946	0.9533	2.8350	2.8398	-	2.0527	
CBNM 36	0.3159	0.2073	4.2521	3.3230 (+.3)	1.6609	1.1893	6 . 7069	0.9106	3.0248	3.5534	0.4643 { +.2}	1.3809	1.3833	0.4872	-	

34735

4

,

ŝ

Fig. 1. Schematic of the KRI, BRC, ANL SST5+5-2 Samples.

Fig. 2. Representative LG Alpha Spectra.

Fig. 3. Representative LG Alpha Spectra.

Fig. 4. Alpha Energy Loss Multiplied with the FF Range as a Function of the Sample Thickness. The Values for the KRI Samples is shown for an Assumed UO₂.

Fig. 5. The Ratios of the Fraction of Pulses Below the Geometrical Cut-off vs. the Fraction of Calculated FF Absorption Losses.

SAAPLE--ANE 25

WASS FROM FISSION DATTO MEASUREMTS//

55L • 10

C

€

€

C

C

(

(

€

(

(-

C

C

(

6.29

(

(

(

Ċ

. ••1

•

::**.** .

ing i

• .

۰.

-

- ;; **(**

.

MASS BASED ON

ANT ALPHA COUNT OUDTED MASSES

4.4L R7	• 6		• 0	
AND IN A	79.5		• .)	
a 1_ 5-1	79.3		• ()	
1 (al. (3-2)	71.4		• 0	
ANL SSTS	79.5	-	• "	-0 <i>i</i>
- V. A'''		79.4		79.4
LAML SI	79.5		79.3	
LANL S	79.5		79.5	
-v. Latt.		79.5		79.4
45	79.3		79.1	
V. NRS	· • •	74.3		79.3
		•		•
CORE VE	79.5		79 • n	
ANT XV	70.7		81.1	
NV . KIT		7.9.6		79,6
and .	70.4		• 0	
AND THE		19.4		• 0
AF F A	77.2		19.5	
いたいとう は	20 2		78 g	
AM AFTY	-	24.2		78.7
			.	
	70.1		(9+n	
CH 11 36	2 Q _ 2		(9+0	-0.0
• V • C(15) - 1		29.1		79.0

AV. FROM RAILO 71.4 with Whiletter (10 with 70.4 HU. (HATLINA PHA) 70.5

SA IPLE--ANL V3

.

C

E

€

E

(

("

C

C

C

(

C

C

Ċ

C

C

C

(

C

١.,

.`

MASS FROM FISSION RATTO MEASUREMIS//

		MASS BAS	SED ON	
REF IU	ant alone	COUNT	QUOTED	MASSES
A			• 0	
Albah Mita	- 0		• 0	
4.4L 5-i	52.0		• 1	
NL 5-2	52.1		• 0	
AV. ANI	58+8	52.1	• 11	52.1
LANL SI	52.2		52.1	
	D. • .•	52.2		52,1
45 AV. 185	52.0	52.0	52.0	52.0
K41 41	62.2		51.9	
NRT KV NV. KRT	52.3	52.2	52.6	52.2
19 A.L	52.1		• 0	
-V. HRC		52,1		• 0
AE OF A	52.0		51-5	
·····································	52.0		51+7	
AND AERE		52.0		51.6
6 - 61 - 43	42.5		51•9	
C19 14 36	52.0		51.8	
ov. Chart		52.0		51.5
.V. FROI RAILO	42+1			
on and and the	50.0			
AV. (RATIONALD 14)	92.1			

1

•

SAPPLE-ABL 5-1

C

₹

₹

€

E

(

(

(

(

(

C

(

(

C

(

Ç

C

Ċ

κ.

(·) (·

3

.

MASS FROM FISSION BATIO MEASUREMIS//

-

55L. TO	MASS AMI, ALDHA COUN	HASED ON 1 QUOTED MASSES
* 11_ 50 anii - 13 B	1071.3	• 0 • 0
1. 12 in - 2	• ?	• በ
14L 5-2 AML 8875	1967.8 1970.4	• 0
IV. ANI-	1070.2	1070.2
6, 46 - 51 6, 46 - 53	1071.4	1067.9 1070.4
av. LAHL	1070,5	1090.5
-45 .v. 1945	1067.2	1066.8 1066.8
∧ ₹1 - 71 1 - XV	1070.5	1063•7 1078•1
$\delta N_{\rm eff}^{2} = - \kappa_{\rm eff} \overline{\Lambda}$	1071.4	1070.9
sig⊉ istori	1063.7 1068.7	• ŋ • J
Ar Ar S	1-56.1	1057+3
star in the	1045.1	1000.9
494. AR1941	لر • (پَرْنِ ١ - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1059.1
Sec. 1. 1. 3. 5	1047.2	1003+7
US FRA COLL	1065 .) 1066.5	1062+9
PROT RAFID	1060.0	

- S. F. 公田 P.H.S. したけ (丁) 二、主てみます)

ere restaural David - Tursen

SA PERE-ANL 5-2

MASS FROM FISSION RATTO MEASUREMTS//

¤8L• 10	MASS BA ANL ALPHA COUNT	SED ON QUOTED MASSES
ANL R	437.0	• 0
ANI_ 143	836-1	• ?
44_ 5-1	833+0	• 0
- WL 5-2	• በ	<u>• 0</u>
ANL SST5	836+5	• () Bas ()
AV . ANI	975*6	0.30 0 7
t salt c.		034 4
-7-1- 21	0.10 e 'n 3134 - 7	036.5
		835.6
AV, Edit	010.4	
1. S.	834.3	933.0
and BRS	834.3	833.9
	• • • •	
NH VI	836.6	831.7
N'S XV	838.1	842.6
	837_3	837.0
	•	
C	835.4	• 0
V BRC	835_4	• 0
AEOF A	833+7	826+3
公里片街 计	843 • 1	929+0
AV. ALRE	333.4	827.6
		- 15
Carriel 1 (11)	134 • 7	831 • S
Unit and street	833•2 Ann 7	8-1-2 8-1-2
Maria Contract	17.4.5 . 1	

•

ងហា 🖕	FROM RATIO	875-4
.† I_	<u>রা,চন্দ ৮</u> 94न†	834+6
	PHATEO+ALDOR)	835.0

(

· (

×,

€

€

. (

(

(

: C

୍

•

. . ..

1. 1. st

v

(

ر) ایپ

: C

(

C

C

C

Ċ,

C

••••

SA 1PL C--ANL SSTA

•

Ç

Ţ

E

€

€

C

đ

(

€

(

(

C

C

(

C

C

C

(

C

Ċ

Ĺ

·

N.

•.

2

•

MASS FROM FISSION GATTO DEASUREMTS//

•

	МД	SS HASED ON	
1881. • TO	ANE ALPHA CO	<u>ин]</u> 0001 <u>E</u> n	MASSES
11 - 41 1 5			
	41 ° • °	• ()	
	416.0	• 1	
South State	417.1	- ()	
AM CSTR	_ 1	• 0	
	417	6	417.5
LANL SI	418.1	417.1	
LANL S3	4]8.2	419.1	
av. LABL	418.	1.	417.6
45	416.9	416.7	
eV. ates	416.	9	416.7
NAL VI	415.1	415.5	
Kirt XM	418.9	421.1	
V. NHT	413.	5	418.3
S.C.	417.4	• 0	
V. M. HIHC	417.	4	• 0
or CE A	41 m. 7	413.0	
and the real	416.4	414.3	
-V.∎ ataF	415,	5	413.7
L . 1 3 3	+17.)	415.6	
Lo i in	476+4	415.2	
V. C541	415.	7	4 ^ر 4
3∀• FRO(1 ROFEO)	417+5		

H. LOAN CONDUCT STATES

SAIPLE-LANE ST

.

€

E

(

(

(

(

€

C

C.

•

(:

(

يغجم

(

C

(

C

÷

2 1

-

~

.

en : - (-

MASS BASED ON AHL ALPHA COUNT QUOTED MASSES REL. TO ANL R'S 300.2 • 0 299.3 .0 ANL NO. 298.4 • 0 ANL 5-1 ANL 5-2 298.7 • ^ 299.4 ຸາ ANI SSIS AY ANI. 299.2 299.2 Last. SI 290.4 599.3 •U Linal, S3 AV, LANL 299.4 299.3 " · · 5 298.4 298.6 298.6 298.4 4.V. HBS NRE VI 299.4 297.5 NPT XV 300.0 301.4 299.7 299.6 YV. KHT 64 C 500.0 • 0 298.9 • 0 AV. BRC AERE A 295 . 7 198.4 NE F H 505.5 246.7 548°3 290.2 AV. ALPE 0-1-33 200.6 297.6 C 101 36 500.5 247 . 3 298.4 297.5 CHAPA HV+ FROM RATIO 200.0 AL MORE CONT 1.34.4 网络第一个纪典书书的中国长 经有效的 199.2 JU1110 11.55 191.7

WASS FROM FISSION NATIO MEASURENTS//

SAMPLE-LANL 53

(

€

£

€

E

€

(

C

€

€

<

٤

<

()

C

(

C

(

ť

ŝ,

 \sim

. 3

...:

er i Karrin ander er er

PASS FROM FISSION WATTO DEASUREMTS//

MASS BASED ON ANT ALPHA COUNT OUOTED MASSES REL. TO ALL RE 1690.0 • 0 ANL SH 1688.3 • 1) ANE 5-1 1683.0 • 0 ANL 5-2 1684.4 • 0 ANL SSTS 1648.6 • 0 AV. AN. 1686.9 1686.9 LANL SI 1684.7 1688.7 • 0 • 1) LAM SH . AV. LAML 1688.7 1684.7 1682.6 · · · S 1683.4 1682.6 1683.4 V. UHS 1677.9 NRI VI 1688+5 NOTE RV. 1091.6 1700.5 1690.0 1639.3 AV. KHT 1696.4 CHC • 0 1686.4 .0 W. RRC HESE A 1682.1 1667 . 8 1.5 1. 3 1681.0 1672+8 1985 0 1670.3 W. ALLE Co. 1 33 1694.6 1679.1 ېش د د د ا 1691.4 1676 • 7 1677.9 1683.0 AV. Chreek

ак. ркол карто — 1695.9 Пр. арриа событ — 1888.6 Пк. скартонарнар — 1637.3

1988.3 1988.3

SAMPLE--NDS

.

. **(**

3

с. С

<u>,</u>,,€

•.•

(

C

C

C

C

C

C

C

1-3

C

C

C

Ċ.

L

ť

١,

····

•

NEL. TO	ANL ALP	HA COUNT	QUOLED	MASSE
ոպը սի	S50°2		• 0	
ลพ. ต3	SS0*5		• 0	
40L 5-1	228.5		•)	
AML 5~2 Amt 00.75	220 2		• 1 _ 1	
AV. ANL	• •	229.0	•	SS3.0
LAML SI	829.8		228.7	
LAHLS	\$50*3		249.2	0-0-0
arA. [●] - F.V. ₆₃ Γ		229_3		229.0
0.6S	• 0		• ()	
. V. HAS		• a		• 0
KRE VL	229.3		227.0	
$w_{ij} = \chi h$	250.1		530°d	0-0 4
•V• KHT		554.2		254.
1. 1 . A.	228.9		• 0	
- V • - 13 ™ C		554.9		• 0
HH-F A	128.5		226 . 4	
ALME B	559+3		552.5	296.9
AFRE		268.4		420 . 8
C S 2 4 311	228+6		552.0	
Charles 34	556.1		227 • 7	
оу. Сран		220,5		551.0
"V. FROM NATIO	222.0			
one, ALPHA COUNT	558+6			
ova (RATIO+ALPHA)	220.8			

HASS FROM FISSION RATIO MEASUREMTS//

٠.,

• • • • • •

SANPLE--NRI VI

.(

٢

•

•

€

(

(

€

€

(

C

•

C

C

C

C

(.

Ç

•

:

~~a (~

. .

-

₫Å.

•

HASS FROM FISSION BATTO MEASUREMTS//

	MASS HASED ON				
NEL. 10	ANL ALPHA COUNT	NUDIFU MASSES			
4 . L	762 2	. 0			
AND R AND TOR	767.7	• 0			
AUL 5-1	760.2	• 0			
ANL 5-2	760.0	• 0			
ANL SST5	762.7	• 0			
WA MAG	761.9	761.9			
LANL SI	762.6	760.8			
LAUL S3	762.8	762.6			
AV. LANL	762.7	76].7			
11 11 5	760.2	759.9			
V. PbS	760.2	759.9			
NRT VT	• '}	• 0			
NOT XV	764.1	768.2			
AV. EPT	764.1	768.2			
it i C	761.3	• 0			
₩¥• BRC	761.3	• 0			
HEFE A	760.2	753.4			
AFTER B	759.5	755 • 9			
いす。 みた役官	759.9	754.6			
616 4 33	761.6	758+1			
CALL SIS	758.3	756.2			
AJ_ CHIM	759.4	757.1			
176 KOM KAT(()	161.4				
on allera contra	14. 1.1				
or a the flut strate	762.1				
2. 0. 14 12 Sec. 555	147.9				

w SANDLE-INKL XV MASS FROM PISSION RATTO MEASUREMTS// MASS BASED ON REL: IN AND ALPHA COUNT QUOTED MASSES 895.4 484L 135 • 0 ARE NO. 894.9 • በ A 1, 5-1 891.7 • 0 3ML 5-2 892.4 • 1 ANL SSTS 894.5 • 0 AV. ANL 893.8 893.8 Last SI 892.4 894.5 LANL S.ª 894.6 894.5 AV. LAUL 894.6 893.5 145 801.9 891.5 891.9 891.5 .V. 1385 KRI VI 894.6 A88.0 KHT XV • 1 • 0 894 6 898.9 SV. BRI : RC 892.9 • 0 AV. HEC 892.9 • 0 AERE A 891.7 883.7 Ban.R. NERE M 846.5 AV. DENE 891.2 885.1 6-11-1 33 892.4 989.1 UNDER 36 896.9 888.4 835 8 891.5 W. CHERR NV. FROM RATIO 107.1 A. L. P. Phys. Contar 894.0 AND THATIOHALDIGAL 834.5 300 FEB 0.55 -9.L**.**9

•

Construction of the

.

(

E

(

€

(

€

(

C

(

٤

(*

C

(

C

(

Ĺ

÷,

1

- • •

- **(**

ų C

SAMPLE-DHU

.(

¹. C

. . €

(

. . **(**

(

(

((

. (

C

C

C

ا (ا

ч **(**

(

C

(

C

(

G

.

	MASS BASED ON			
NEL. TO	AHL ALPHA	con⊌Ţ	QUULEN	MASSES
MNL R ^B	117.0		• 0	
A14L 0.3	116.9		• Դ	
	115+5		• 0	
ANL DHA ANI COTS	116.0			
AV. April	110	6_9	•	116.8
L_{R} (i.e. S_{1}	116.9		116.6	
LAGE SS	116.9		1-6-9	
sv. Latte	110	6,9		116.8
1 13 S	115.6		116.5	•
aV. 10 65	11	6.6		116.5
NRIVI	116.9		116.2	
$X^{1} + X^{1}$	11.4.1	~	117.7	
NV. KRT). 1	′ . 0		11/.0
$\mathbb{P}_{\mathbb{P}}^{\mathbb{C}}$	• 3		• 0	
·∀• HHC		• 0		• 0
HERE A	116.5		115.5	
AFRE H	116.4		115.8	_
AV. ALRE	114	h 5		115.7
CS000 (33	116+6		116.2	
Contra JA	116.4		116+1	
ma Chiqua	11:	5.5		116.1
SV. PROB MATTO	114.7			
HI ALMAN COMP	1 1 - 7			

and the second secon

•

HASS FROM FISSION PATTO MEASUREMTS//

.v. (matin+M.D.44) 11+.7

÷ .

SAMPLE--MERE A

HASS FOOR FISSION NATIO MEASURENTS//

·

•

	MASS BASED ON			
6EL. IO	ANL ALPHA COUNT	QUOTED MASSES		
		· ·		
4 ML 18 D	348.1	• 0		
Fin _1000	347.6	• *3		
A ¹¹ L 5-1	346.5	• n - 0		
	345.3			
	347.3	347.3		
	• **			
LANI. SI	347.7	346.8		
LAML S3	347.7	347.6		
ave Latte	347,7	347.2		
	3. e	246 E		
1973 1975 - 1976 - 1976	345.7	346.5		
24 G G SHE 5		• • • • •		
BRT VI	347.7	345.5		
KINT XV	348.3	350.2		
化氯基 化带工	34H 0	341.		
	3. 7 1	- 0		
	347.1	• •		
· · · · · · · · · · · · · · · · · · ·				
NERF A	• 3	• 0		
47. 12 14	146.2	344.5		
AV. AFE	346,2	344 • 5		
1	144-3	245.6		
	346 - 2	345 • 2		
NV. Chest	346.5	345.4		
WAT ERDA MATEO	347.0			
GI AFP IN COULT	146.65			
	···· • • •			
· v · · · · · · · · · · · · · · · · · ·	A 14 64 . 13			
44444E02 - 46.555	243.4			

....

.(

€

E

(

(

(

C

C

(

C

47

C

C

C

Ć

C

C

C

Ĺ

í

۰.

(*

• .•• • • •

: ...

SAMPLE--MERE B

.**C**...

€

ł

C

•

(

(

C

€

€

C

C

C

- C

C

C

(

C

ţ

ς Ξ

e (1

• .

(**....**

MASS FROM FISSION PATTO DEASUREMTO//

			MASS MA	HASED ON		
884. TO	APU, AL	рна	CON₩Î	ONULEN	MASSES	
Mist R ^C	348 4			• 0		
ALL DR	340.3	1		• 0		
- L 5-1	347.1			• 0		
· '아니, '카 - 2	347.4			• 0		
41812 SST5 4.V _ A'VI	34 8 €⊄	34	47.9	• 0	347,9	
LANL ST LANL SB	348.2 349.3			347.4 348.2		
AV. LAML	•	34	48.3		347.8	
NS NV • MMS	347.3	34	+7.3	347.1	347.1	
NICL VI	340.0			346 • 1		
27. KA	349.9	34	98_6	320+8	348.4	
i KC av - DHC	347.6	34	57 ń	• 1	- 0	
		0	· · · · ·		• 0	
NE E A	347.1			344 - 0		
	• C		-	- 0		
- 99 • 《月日日日		_ 5 4:	-7.1		344.0	
UH 14 33	347 . 3			346 . 2		
Charles (Kr.	346 .8		7.	745.0		
Mana (1993) I (94)		.34	• ' • 1		346.0	
ау. РКОН КАТТО	147.9					
AND ALPHA LOUPT	1/2 th • • • •					
.V. (PATLU+ALPHG)	347.3					
STR. 110 14188		345.	ì			

SAMPLE--CONF 33

...

C

(

(

C

C

: C

C

C

C

C.

C

C

C

C

≮.

MASS FROM FISSION DATIO MEASUREMTS//

۰.

	MASS BASED ON					
ett. TO	ANL ALP	HA COUN!	QUOTED	MASSES		
A1.1 12 ¹⁴	122.7		• 0			
MRL N3	122.6		• 1			
ANL 5-1	122.2		• 0			
294, 5-2	122.4		• 0			
ARL SST	102.6	122.5	• 1	122.5		
•						
LANL SI	122.6		122.3			
LAML SP	166.6	100 4	152.6	167.5		
an the second		122.6		155.2		
148S	122.3		122.2			
NV. NBS		155.3		122.2		
NRT VI	122.6		121.9			
NET XV	122.9		123.5			
AV. NHE		122.7		122.7		
e HC	122.4		• 0			
•V• HHC		122.4		• 0		
util A	122.2		151.1			
e+t_1 m2 to	125-1	• • • •	121.5			
AV. AEPE		155 5		151.3		
GE106-33	• **		• 0			
Challe 36	155*1	• ···	121.8	0		
+∀• Cttret		155-1		121.8		
AV. EHON HATIO	122.5					
OF C ALPHIN CODUL	155.3					
over (RATIONALPORT	122+4					
44021ED -04-5(S	1	ډ . و ا در				

:

, ·

141 Hz