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The analysis of fluid-structure interaction involves the calculation of both fluid tran-

sient and structure dynamics. In the structural analysis, Lagrangian meshes have been used

exclusively, whereas for the fluid transient, Lagrangian, Eulerian, and arbitrary Lagrangian-

Eulerian (quasi-Eulerian) meshes have been used. This paper performs an evaluation on these

three types of meshes. The emphasis is placed on the applicability of the method in analyzing

fluid-structure interaction problems in HCDA analysis.

First, these three methods are evaluated and compared on the basis of their treatment of

the fluid-structure interfaces, internal structures, and free surfaces. Sample calculation

of a reactor vessel response under a postulated core disruptive accident condition is used to

illustrate the application of the method and its advantages and disadvantages. It is shown

that the treatment of the fluid-structure interaction with the Lagrangian method is very sim-

ple and the difficulty is in the elimination of the mesh distortions when fluid undergoes large

displacements. Sliding lines can alleviate some of the distortion problems, but a multi-

dimensional sliding is very difficult to be implemented into a Lagrangian code. Thus, for a

typical reactor in the Lagrangian calculation, the upper wall deformation is often slightly

overpredicted while the lower wall deformation is underpredicted. The treatment of fluid-

structure interaction in the Eulerian method is more complex. Complicated procedure and flag-

ging scheme for treating and identifying the irregular meshes at the fluid-structure interfaces

are naeded. This complicates the logic of the programming immensely, but the Eulerian method

can predict the wall deformations rather accurately. In the arbitrary Lagrangian-Eulerian

method, the fluid nodes at the fluid-structure boundary can be programmed to remain in contact

with the structural surface while the interior fluid meshes can be moved in such a way to min-

imize the mesh distortions. Thus, both the mesh distortions and complicated flagging scheme

at the fluid-structure interface are eliminated.

Next, spatial resolution, ease of coding, and the computer program CPU time are compared.

Results of a shock tube problem are used to study the resolution of the numerical solution,

the broadening of the wave front, and the dispersion of waves. Although Lagrangian solution

gives a better resolution in describing the wave front, artificial viscosities are often needed

for elimination of spurious oscillation at the discontinuities. Since the Eulerian formulation

has internal dissipation terms, its calculation can be performed with no artificial viscosities.

Thus, the Eulerian calculation can give a better resolution than the Lagrangian calculation when

the problem involved discontinuities and the use of artificial viscosities.
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1- Introduction

The analysis of fluid-structure interaction is a complex subject. Not only it involves

Ihe calculation of fluid transient and structure dynamics, but also the equations which gov-

ern the motion of the fluid and structure are coupled together. In reactor saftey analyses,

the problem is further complicated by the facts (1) that the structures in the reactor pri-

mary containment during a hypothetical core disruptive accident (HCDA) are subject to a series

of shock waves emanating from the core where the rate of HCDA energy release depends on the

motion of the structures, particularly for those which are adjacent to the core; (2) that the

problem is highly nonlinear in both geometry and material laws; and (3) that the fluid region

has finite boundaries in all directions. Thus, solutions of such fluid-structure interaction

problems are often obtained with numerical analysis through tne use of computer programs.

However, the arithematic operation in the computer is both discrete and finite. It is

necessary in the computer program tn formulate the equations of interest in a discrete form

and in the analysis to replace the physical system by a discretized system. In discretizing

a physical system, the continuum is replaced by a group of meshes.

In the structural analysis, because of history dependence of the constitute equations,

Lagrangian meshes have been used exclusively. However, in the fluid analysis, both Lagrangian

and Eulerian meshes are used. In treating problems involved large displacements, both meth-

ods have some shortcomings. For example, excessive mesh distortions in the Lagrangian calcu-

lation can deteriorate the accuracy of the numerical result, while in the Euleriaii analysis,

complex computation procedures are needed for treating the material and boundary interfaces.

Recently, an arbitrary Lagrangian-Eulerian (quasi-Eulerian) method has been suggested by many

wo' ers [1-4] as an alternate for the Lagrangian or Eulerian method. However, this method is

not without drawbacks. For once the mesh point moves differently from the material particle,

the convective terras appear in the formulation and the difficulties associated with the treat-

ment of free surface may also appear.

The aim of this paper is to examine the salient features of the three types of meshes and

their application to fluid-structure interaction problems in reactor safety analysis. The fi-

nite difference and finite element methods, which commonly used in the numerical analysis, will

not be discussed. As pointed out by Belytschko [5] that both the finite element equations and

Hilkins' equations for hydrodynamics may be considered as weak forms of the partial differential

equations which can be lead to identical difference equations. The differences between these

two methods appear to be in the formulation of the equations of motion and in the numbering of

mesh points. In the finite difference method, the equations of motion are us-jally expressed

in. terms of the pressure gradients of the neighboring meshes and the mesh points are not num-

bered, whereas in the finite element method the equations of motion are formulated through the

use of the intermediate nodal forces and the mesh points are numbered where the connectivity

information is explicitly stored. However, these distinctions are no longer visible. For

example, the finite difference technique used in YAQUI code (6] is similar to the nodal force

technique in the finite element method and the mesh points in some recent developed finite

difference programs ire numbered.

In the following sections, Lagrangian, Eulerian, and Arbitrary Lagrangian-Eulerian meth-

ods are evaluated and compared on the basis of their effectiveness in the treatment of the

fluid-structure interfaces, internal structures, and free surfaces. Spatial resolution, ease

of coding, and the computer program CPU time are also compared.
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2. Treatment of the Fluid-Structure Interfaces

Since the Lagrangian mesh moves with the material particle, the presence of a fluid-

structure interface does not complicate the computation procedure. In general, two sets of

mesh points must be used at the fluid-structure interface to account for the different motion

between the fluid and structure. The motion of the two sets of mesh points are assumed to be

independent to each other in the direction tangential to the interface, but in the normal di-

rection they are assumed to move together, i.e. no separation of the fluid particle from the

structural member is allowed. When an internal shell structure is present, it is usually

placed at the Lagrangian mesh lines, and three sets of mesh points are employed. One set of

mesh points belongs to the shell and the other two to the fluids, one on each side of the

shell. Again, the motions of the three sets of mesh points are aasumed to be independent to

each other in the direction tangential to the shell surface, but in the normal direction they

are forced to move together.

Analysis of fli. id-structure interactions using the Eulerian meshes is more complex. The

major difficulty is in the treatment of the irregular meshes at the fluid-structure inter-

faces. As the structure is displaced under the applied pressure loads, its boundaries will

intersect the Eulerian mesh lines, creating irregular meshes of various shapes. Figure 1 il-

lustrates some possible shapes of the irregular mesh in a two-dimensional Eulerian cell where

velocities are defined at tiie center of the cell boundary. For convenience, we have chosen

to use i,j subscripts to identify the variables.

One way of dealing with the irregular meshes is by use of the control volume technique

to derive the conservation equations with respect to the partial cell which is actually oc-

cupied by the fluid. However, because of the structure movement, the shape of the irregu-

lar mesh is changing continuously. The procedure of the control volume technique becomes too

cumbersome. An alternative to the control volume method is to treat the irregular meshes as

if they were regular cells and to express the unknown interaction pressure at the fluid-

structure interface in an equation form to satisfy the physical boundary condition required

at the fluid—structure interface. If the fluid at the fluid-structura interface is assumed

to be inviscid, the mathematical equation to satisfy the physical boundary condition is

(V, - V ) • n = 0, where V. is the velocity vector of the fluid particle located at the raid-

point of the interface, V is the velocity of the structure at that point, and n is the unit
s

normal vector of the interface, pointing into the fluid region. This equation together with

other equations obtained from the regular cells provide a sufficient set of equations for the

determination of pressures in the fluid region.

Another difficulty is in the calculation of fluid velocities where fluid pressui s of the

neighboring cells may not always exist. At the fluid-structure interface cell, a part of the

cell is occupied by the structure; so are the neighboring cells. For example, the pressure

in cell (i+l,j) shown in Fig. 2 is undefined and the velocity u.,, . cannot be obtained from

the momentun equation. Here one must use the mass equation to determine the velocity of the

fluid at the cell boundary. If two neighboring cell pressures are undefined, one has to make

a further assumption that one of the velocity components can be found from the f ] uid veloci-

ties inside the fluid region. Similarly, if three neighboring cell pressures a.e undefined,

two of the velocity components are computed from the fluid velocities inside the fluid region.

Thus, complex computation procedures must be developed for calculating velocity compc lents

of all types of irregular meshes as shown in Fig. 1»
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In the arbitrary Lagrangian-Eulerian method, the mesh point of the computing cell can be
i

made to move with the fluid, fixed in space, or to move in any arbitrary way. Thus, the com-

putation procedures at the fluid-structure interface can be made simplified by allowing the

computing cells to move together with the structure. However, this method is not without

drawbacks. Because once the mesh point of the. computing cell moves differently from the ma-

terial particle, the convective terms appear in the formulation and the major characteristics

of an fiulerian formulation retain.

3. Treatment of Internal Structures

Treatment of internal structures presents a problem in the Lagrangian analysis. This is

because the fluid in the vicinity of an internal structure usually undergoes large distortions,

particularly at the end of the structure where geometry discontinuity occurs. Although re-

zoning of meshes can reduce the severity of the mesh distortions, there is an upper limit on

how far one can push this rezoning technique in the Lagrangian analysis. If rezoning is done

at every few time steps, it means, essentially, that th<! fixed mesh of a Eulerian discretiza-

tion is more appropriate. Sliding lines have been used quite successfully for treating fluid

sliding on vessel wall. However, applying to internal structures, the sliding line must be

able to change its direction at the end of the structure, which is very difficul'; to imple-

ment in a computer program.

Eulerian equations of hydrodynamics are ideal for treating problems involving large ma-

terial distortions. Therefore, for problems containing Internal structures and involving

large distortions, the Eulerian mesh becomes more attractive. Since the arbitrary Lagrangian-

Eulerian method has the option of using the fixed Eulerian meshes in the regions where the

fluid is expected to move extensively, it is also suitable for treating problems involving

internal structures. However, for both methods the computation procedures for treating in-

ternal structures are rather complex. This is because the fluids on both sides of the in-

ternal structure have different motions, and the field variables which are used to calculate

the fluid motion must also have different values. Similarly at the end of the internal struc-

ture, another set of field variables is needed for the motion of the fluid located above or

below the structure. In general, a cell can have up to four sets of field variables.

The advantages of using the Eulerian and arbitrary Lagrangian-Eulerian methods in the

analysis of fluid-structure interactions involving internal structures can be seen from the

following comparisons where computer code predictions obtaired by Lagrangian, Eulerian, and

arbitrary Lagrangian-Eulerian methods are compared with the experimental measurement. The

experiment chosen for this purpose is the SRI flexible vessel test FV102 [7]. The apparatus

used in the experiment is shown in Fig. 3. It consists of a flexible vessel, a core canister,

a flexible core barrel (pure lead contained in a thin aluminum cylinder), a vessel cover, and

a support platform. The profiles of the final vessel wall and core barrel deformations ob-

tained with the computer code prediction and the experimental measurement are given in Fig.

4. As can be seen the agreement between the Eulerian and arbitrary Lagrangian-Eulerian cal-

culations with the experiment is very good. However, in the Lagrangian calculation; the cal-

culated deformations of the upper vessel wall are higher than the experimental data, whereas

at the lower vessel wall, the Lagrangian results are lower than the experimental data. These

differences can be attributed to the lack of a two-dimensional sliding capability in the

Lagrangian code. Also, the use of sliding line allows the fluid to slide more freely in the

code than in the experiment along the designated surfaces. As a result, more energy was
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diverted to the axial direction in the form of coolant kinetic energy and less energy was di-

rected to the radial direction. For the case s!:udied, the sliding line at the inner surface

of the core barrel was extended all the way from the bottom of the platform to the top of the

water surface,

i4. Treatment of Free Surface

Free surface position in the Lagrangian calculation can be accurately determined if a

Lagrangian mesh line is initially placed at the free surface. However, this is not the case

in the Eulerian calculation where one must rely on the marker particle to determine the po-

sition of the free surface. This is also true in the arbitrary Lagrangian-Eulerian method

where the mesh points have already been prescribed to move with the structural nodes. They

can no longer move with the free surface in a Lagrangian manner. Therefore, marker particles

are often needed in the arbitrary Lagrangian-Eulerian calculations.

The field variables are not defined outside the fluid legion, but they are needed to carry

out numerical calculations. For example, the velocity field in an empty cell adjacent to the

surface cell is used to move the marker particles. Figure 5 shows the velocity field of a

two-dimensional Eulerian mesh in the vicinity of a surface cell, where u. i . , v. , , and
!-"?> J+l i>J"**5

U-_LL 'JI a r e t n e unknown velocities. The basic idea in calculating the unknown velocities is
I+SJ J+l

to satisfy the mass equation and the tangential stress condition. For the case shown in Fig.

5, the unknown axial velocity v. , in the surface cell can be computed from the mass equa-

tion; the unknown radial velocities, u._j_ . , and u._̂ __ in the empty cell are computed

from the condition that tangential stress vanishes near the free surface. The orientations

of the free surface are similar to those fluid-structure interfaces shown in Fig. 1. Thus,

the computation of the unknown velocities and the other field variables requires a complex

procedure.

5. Spatial Resolution

As mentioned earlier, once the mesh point moves differently from the material particle,

the convective terms appear in the formalation. Thus, in the Eulerian and arbitrary Lagrangian-

Eulerian methods, mass, momentum, and energy equations have convective terms. As is well

known, the mass convection tends to introduce additional smoothing of solutions. Therefore,

results obtained by the Eulerian and arbitrary Lagrangian-Eulerian methods can be expected to

be somewhat more dispersive than the Lagrangian solution. However, in the analysis of prob-

lems involving discontinuities, artificial viscosities are often used in the Lagrangian analy-

sis for elimination of the spurious oscillation at the discontinuities. On the other hand,

the Eulerian and arbitrary Lagrangian-Eulerian methods already have internal dissipation terms

built in the formulation, their calculations can be performed with no additional artificial

viscosities. As a result, the Eulerian and arbitrary Lagrangian-Eulerian calculations can

give a better resolution than the Lagrangian calculation if the problem to be solved involved

the use of artificial viscosities.

To illustrate this, a shock tube problem is presented. The shock tube is 100-cm-long

and 10-cm-dia with rigid walls and end caps. The tube was filled with ideal gas and divided

into equal regions by a diaphragm. The internal energies and temperatures were the same on

both sides; the density and pressure on the left side were twice the values on the right side.

This problem can provide a sensitive test of the amount of broadening of discontinuities, and

of the numerical noise which is introduced by the numerical method.
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Figure 6 shows two pressure profiles obtained by the Lagrangian method at t = 500 us

after the diaphragm is removed: one without artificial viscosity and one with artificial vis-

cosity. As can be seen the use of artificial viscosity in the Lagrangian method is necessary,

if the spurious oscillation is to be eliminated. Figure 7 is the pressure profile obtained

with the Eulerian method, where the Lagrangian solution with the use of artificial viscosity

is also given. It can be seen that the Eulerian solution gives better spatial resolution than

the Lagrangian solution.

6. Computer Programming and CPU Time

Lagrangian formulation does not have convective terms and the fluid-structure interface

is clearly delineated. Therefore, programming procedure is relatively simple. The treatment

of the fluid-structure interface in the Eulerian method is rather complex. Complicated proce-

dure and flagging scheme for treating and identifying the irregular meshes at the fluid-structure

interface must be developed. This complicates the logic of the programming immensely. In the

arbitrary Lagrangian-Eulerian method, the complex flagging scheme at the fluid-structure in-

terfaces has been eliminated. But at the core gas-fluid interface and free surface, it still

needs a flagging scheme to identify the orientation of the interface and a computational pro-

cedure to compute the movement of marker particles. Since an arbitrary Lagrangian-Eulerian

calculation is usually performed in two steps: first Lagrangian and then Eulerian, consider-

able amount of programming work is needed.

The complexity of computer programming can be further seen from the CPU times required

for one cycle of computation given below. For the shock tube problem, the CPU times for

Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian methods are 0.34, 0.76, and 1.00 ms

per mesh cycle, respectively. The ratio is approximately 1:2:3. For the flexible vessel

problem, because of extensive calculations were needed at the fluid-structure interfaces,

the CPU time for the Eulerian method becomes considerably longer. The CPU times are 0.97,

3.29, and 2.61 ms per mesh cycle, respectively, for the Lagrangian, Eulerian, and arbitrary

Lagrangian-Eulerian methods. All computer runs were performed on IBM 370 computer model 195.

7. Concluding Rettarks

It has been demonstrated that the Eulerian and arbitrary Lagrangian methods are more ver-

satile than the Lagrangian method in the analysis of the fluid-structure interaction problem

which contains internal structures. They can give a better solution than the Lagrangian

method. It has also been shown that in the determination of fluid-structure interfaces, the

Eulerian method needs a complex flagging scheme and complicated computing procedures. There-

fore, it needs a longer CPU time. However, in the selection of method to use in the reactor

safety analysis, other factors, such as the type of problem to be analyzed, the type of solu-

tion desired, and the time available to develop a computer program, must also be taken into

consideration. If the problem to be analyzed involving coolant spillage, fluid cavltation,

heat transfer, structure with perforated holes, and two-phase flows, it is advantageous to

use an Eulerian formulation.
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J?ig. 1. Different Types of Irregular Meshes. '

I • j

Tig. 2. Structure Boundary Cell with One Neighboring Pressure Undefined.

Fig. 3. Details of the SRI Flexible Vessel Test FV102.

JFig. 4. Profiles of the Vessel Wall and Core Barrel Deformations. |

.Tig. 5. Velocity Field in the Vicinity of a Surface Cell. j

Fig. 6. Pressure Profiles Obtained by the Lagrangian Method at t = 500 us After the Removal
of the Diaphragm.

tig. 7. Comparison of the Eulerian and Lagrangian Method Predicted Pressure Profiles at
t = 500 us After the Removal of the Diaphragm.
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