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ABSTRACT‘
Central to the present concepts of the origin of the radiation-induced
‘creep, growth and swelling phenomena is the relative interaction of interstitials
and vacancies with various sinks. Radiation-induced climb of dleocations,

- ;which figures in many theories of. radiation creep and growth requires the :

i abaorption of an’ excess of either vacancies or interstitials.r On the other .

‘hand radiation swelling requires the absorption oE an excese of vacancies _

.to effect void growth. Ihese_relative-preferences are'nornally,expressed




etical models by certain bias factors, or capture efficiencies, usually
umed to. e”constant. Several attempts have been made to. estimate their :
';f'magnitude theoretically but allkare seen to- involve .errors or physically
3*f“¥unrealistic assumptions. We present here a unified treatment in which these

'hf various‘bias factors.are estimated in a self-consistent model‘which incorporates,
1for the first time; all the essentialyphysics, i.e.,'defect.production, inter-
actions of both vacancies and interstitials with sinks and the presence of‘two
~types of sinks. We_present'quantitative evaluations for the SIPA creep model

and for radiation swelling, and compare with previous estimates of these

‘phenomena. .

1. Introduction ]

The physical origin of various phenomena occurring under irradiation, such
as radiationlgrowth,“radiation creep and void swelling lies in the absorption
-of relatively more”of one‘type of point defect at one type of sink (and conse-
ouentlybless of that same defect at another type of sink). The reason for such
i preferential absorption is generally considered to lie in the interaction

-energies between point defects and the various sinks.

'"5, The mechanisms of radiation growth are still not clearly established, but
';ﬁ; one" contributing source, for cold—worked material at least, is probably the
c' mb of dislocations having an anisotropic distribution of Burgers vectors(l)
nsidered that, due to its larger relaxation strain, the interstitial in o

_talsiinteracts more strongly with a dislocation stress field than does the

‘ndfhence .an excess of interstitials is absorbed by dislocations, thus

Since in the steady state vacancies and interstitials nust

N

causing their'climb.

7
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f’,diaappear at exactly the rate at which they are produced, it is clear that -
‘ﬂfanother type of sink must exist which attracts interstitials less than do

‘ dislocations. These second sinks then absorb an excess of vacancies equal in
magnitude to the excess of interstitials absorbed at dislocations. It is
:furthervclear that vacancy interactions with the different sinks produce

analogous effects.so that the overall net effect {or bias) is due to-the
iicombined, simultaneous interactive diffusion of both vacancies and interstitials
to at least two’typesvof‘sinks. The sinks having a smaller attraction for
. interstitials may be dislocation multipoles, dislocation cell walls, sub-boundaries,
precipitates, voids or grain boundaries;

| In radiation creep, two basically different processes have been considered.

One is equivalent to that discussed under radiation growth but where the aniso~
'tropic.distribution of Burgerskvectors is no longer a requiremert. In this
concept, the dislocations climb does not itself produce creep strain but dis-
location glide follcwing the overcoming of some impedance actually produces the
creep strain. ‘Both internal stress fields(z) and local obstacles(s) have been
considered by various authors. A second type of process has been proposed which
requires climb’alone to produce creep. This is the so-called SIPA (Stress Induced
- Preferential Absorption) model( ) and assumes that dislocations having different

.orientaiions of their Burgers vectors provide the required two types of sinks.
- Their asymmetric interactions with point defects are in turn supposed to arise

ifrom the shear polarizabilities of the defects( )- The shear polarizability

. of a dumb—bell interstitial is assumed much larger than that of a. vacancy and
'_Vso the SIPA effect is felt to be due primarily to interstitials, with the vacancies

iparririoning themselves among the various dislocations in a relatively unbiased

: Afnanner. »-_”':f‘
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The:void~swelling phonomenon requires; obviously, a net absorption of

_acancies by voids._ This is generally thought to obtain primarily chause

Eiof the preferential absorption of interstitials at dislocations, as discussed
,fabove. Thus dislocation climb (and possibly growth and/or creep) must
’r'accompany the growth of voids.-

'The "real" situation in which mary sinks of various types (and geometries).
o are spatially distributed, each with its own diffusional fields of both vacancies
:and interstitials, has generully been considered too complex to analyze directly,
even when.defect~sink interactions are ignored. _The model generally employed

-is-one~in which the concentration of each type of point defect is assumed

constant throughout. The body and their losses to the various sinks as well
as their onnihilation by recombination are assumed to occur homogeneously. -
The rates at which these various losses occur must then be estimated by independent
calculations. These invclve the sblution_of a boundary-value diffusion problem
‘where an individual sink of a particular type is represented by its actual
geometry and size. Even when defect—sink interactions and recombination are
ignored, various proceduresAhave been employed to "couple" the discrete sink
to the surrounding medium, Wiedersich(e)used the Wigner-Seitz cell approach
TIand Surrounded the sink with a sink-free region, within which point defects are

;generated whose outer boundary‘was chosen to give the same cell volume as the

?n?average volume per sink :in the actual medium and no flux was allowed to cross
-that‘outer boundary. In one approach, the discrete sink is surrounded with a
b_lossy medium ;_an infinite region in which defects are generated and are lost
~tovother types of sinks at rates which vary spatially and are proportional ‘
‘“‘to the local defect concentration. Brailsford and Bullough( ) placed a sink-.~
:free region between the discrete sink and the "lossy medium" but later Brailsford
: (8)

’VBu110ugh and Hayns removed it.‘ A11 of these are. approximations and it is

.difficult to select one appraoch over the other though it seena clearly best to
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use an internally consistent set of such sink terms, derived by equivalent

approaches. We recently suggested such a set,

When defect—sink interactions are included,'the complexity increases
(10)

significantly. Bullough, Eyre and Perrin used a single cylindrical Wigner-
Seitz ceil 3urroundingzllong dislocation 1ine. Both vacancies and interstitials
were assumed to be produced at equal rates and to disappear bv'recombination at
a rate proportional to the produqt of their concentrations. The interstitials
had a radially symmetric, attractive interaction with the dislocation and "zero—
flux" boundary conditions were imposed for both defects at the outer cell
boundary. As we discussed previously however(ll), their use of only one type

of sink In a reglonr across whose boundary no defects pass requires that in the
steady state both'vacancies and interstitials enter the dislocation at precisely
equal rates. Thus we attribute their finite bilas factor to numerical errors,

so that the'Bias factor of 2Z which Bralisford and dullough(7) later quote as
being obtained from this model must be considered spurious.

Several authors(12 »13) have employed a single diffusional cell around a
dislocation_and allowed not defect production. Defect production is simulated
by assuming.fired defect concentrations at the outer boundary. With different
interaction fields, then;'for the same outer-boundarv concentrations; vacancies

and Interstitials arriveiat the central dislocation at different rates. This

approach avOids the.inconsistency of the Bullough, Eyre and Perrin appraoch

but suffers from at least two crucial problems. First, the use of fixed con—

centrations (supplied by imaginary sources outside the uiffusional field) intro-

' duces an unknown error. Second, its use of only one type of sink seems’ implausible

":‘“for estimating an effect which physically demands at least tno types of sink. o




we previously discussed injsome-detail(ll) the above approaches, along
’r";others(12 19) used in estimating bias factors for both void swelling and
:SIPArcreep analyses, and concluded that none had quantitative reliability.
:we subsequently presented an. analysis of the SIPArcreep process which included
Luniform defect production and tne presence of both types of dislocation with
(20)

'itheir asymmetric interaction fields " The resulting creep rate was shown

:Tlgto beﬁsignificantly—less than previous estimates. More recently, we have
‘”:'presented a simplified analysis for estimating the bias factor for void swelling(ZI)-
‘We allowed both dislocations and VOidu but to simplify the geometry considered
only cylindrical voids with a length per unit volume exactly equal to that of
the dislocations. ‘lnteraction of interstitials with dislocations was allowed
. but, for simplicity, interactions of interstitials with voids and of vacancies
with both dislocations and voids were ignored. The bias estimated was significantly
larger than previous theoretical or "experimental” estimates.
Our purpose here is first to present a synopsis of the various types of
"bias factorsv'introduced by different authors. Then we shall compare and
contrast the4various theoretical attempts at quantifying the bias. Then we shall
present a unified analysis appraoch which treats defect production and allows
for'the coupled'diffusional‘flou of defects in the presence of two types of sinks
' ﬁ‘suhich'interact”differentlyﬁuitﬁ the point defects. Bias factors so derived will
"be compared with previous estimates. Finally;’quantitative estimates of void

'VIVsWelling rates will be compared with experiment to bring Anto focus the need

E’ﬂfor the catefnll assessment of effective defect produttion rate, i.e.-

'?*the rate of prodmmtion of freely mobile dtfects which escape annihilation

‘f'within ¢h¢ damage cascade. This will alsn highlight the need for consistent

e
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': coupling between the bias factors and the various sink loss terms, both of
Hhich are treated aimtltaneously in the present approach which also naturally
supplies the volume7fraction and multiple-sink effects other authors have
attempted to estimate by independent models. | -
2.> Analysis

Aa has‘geueraiiy beeu done before, we shallvignore recombination in our
model, so that recombination effects can only be assessed by assuming the
appropriate defect production rate to be reduced by the recombination rate
which in turn must be estimated independently. We shall also treat only
two types of simks, so that again the appropriate defect production rate must
be reduced by the rate at which defects are independently estimated to be
loet to other sinks, "There is no obvious reason why additional types of sinks
eaunot be included directly in the model, however, and we expect to pursue '

" this in futureiresearch.

" With the above assumptions, conservation requires

Il 1 712 2 1 2

. .ajj

jir z 1°+z =1°+1° - Q)

g - 0. o . ‘ -
"fnd-q & zv11 +zv2 2 ,i1+r2 | . (2)




"l,where the I's are set by the densities and geometrical features of the sinks.

”ffThus the Z's for each defect are related through the relative sink strengths.
As‘shown in the reaction—rate—theory analysis by Wiedersich(ﬁ), the maximum in
:the rate of any process requiring the preferent1a1 absorption of one type defect
lﬁat one sink occurs when the two sinks involved have equa] strengths, i.e. when

’fl;‘“;Ig; For this special case, (3) and (4) become

';ZI - 2;5 Z (Equal sink strengths)_ ‘ (5)

12

;g;i';(EAual sink strengths) o = - . (6)

he limiting casev‘s zero absorption at one type sink, say z ., = 0 it

12 -

i possible value of the Z for the other sink say le,

The set le.- 2,_ 12 - 0 expresses the physical f_

for thi symmetrical case._

;
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o case-ig“o tocg;‘tbn,the other hand when a iarge differencefin sinkietrengthe“'
exists, say'i;t;? I°, Izlcan become very large (small) when ZIl is only-very
slightly'less (greater),than unity. Of course, this simply reflects the
-fhysicai'fact that a smalllchange in absorption at a sink of very high strength
requires a pr oportionately large. change in absorption at a weak sink.

It has been shown by rate-theory analyses assuming constant Z's that the
rate of a process requiring differential absorption by one sink can be expressed

Rate « (23 - Zy)) = (Zyp = Zyp) )

This combination of Z's is equivalent to Wiedersich's rate-theory expression

for the rate of void swelling(e)

Rate © B -a : (8)

when only dislocatione and voids are present ~nd where a and B describe the
differencein capture efficiencies for interstitials and vacancies at veids
. and at dis-ocations, respectively, and are assumed to be constants. An

alternative form of Eq. (7) is sometimes given

RS Iyl -ty - o O

7:‘[a3ain assuming constant z's.

; The bias factors on. the right-hand sides of Fqs. {7 and (9) can easily

if;be ahown to be equal by use_of Eqs. (1) and (2) Thus, they nay be considered ‘h'




10,

eqﬁibalent.definitionsioffa‘bias{factorffor’thevnarticular Ffate ptocess_heing -

Some authors*attach a Z-factor to the term for'interstitial loss~rate
dislocations and none to any other loss terms for eithet intetstitials

»otivacancies. This is eqnivalent>to assuming that all other Z's are unity,

;but as we saw above this is physically impossible. Such inconsistencies,

ihonever,.can and do:go completely unnoticed in a reaction-rate theory calculation

3}§hete;defectﬂconservation is impoused on the system. And if the single Z-factor

;f*gd'assumed is‘tteated strictly as an empiricalffactor with no physical meaning,

‘? ﬁelliﬁhd,good.jrﬁowever, it allows no judgments as to what a reasonable

‘ vélﬁe ﬁould be. 'Iflsuch an assumption is inserted into Eqs. (7) or (9), the

 result is
Rate o Z - 1 . - . (10

T hht‘sdch a tteatmént becomes inconsistent and unreliable when theoretical
festimates'of the effect of interaction fields on the defect fluxes into
l”'fdislocations are used to obtain Z.

The vatious Z-factors discussed above, together with their corresponding

sink:strengths to which the I's of Eqs. Q) and (2) are proportional embody

mos of the physics contained in reaction—rate—theory analyses of radiation-

ed,rat processes and we turn now to their evaluation.

d( ) an analysis of the SIPA creep model and will

usﬁnnaryfhere;f

;Ithhis case, thentwortypes of_sinks are long, parallel
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'fidislocations whose Burgers vectors are such that an applied stress aids the

r“

. absorption of one type of defect at one dislocation and not at the other. The

(5)

interaction fields were those derived by Bullough and Willis s averaged over

.their attractive regions and applied as radially symmetric fields in the

two cylindrical regions surrounding the two dislocations, each with a radius

chosen so that the cell volume was equal to the average volume-per unit length

of dislocation in the real material. The concentrations of each type of defect

were reQuired,to match'at the outer boundary and the flux of each type of defect

leaving one region was required to enter the other. The important interaction

here is'that.due to the»elastic‘polarizability of the point defect and we

followed Bullough and Ha§n3(17)'in<neg1ecting the vacancy interactions. Thus,

for this process,
Rate  Z_, - % | ' (1)

11 I2

where the Z's in this ‘case are directly proporticnal to the applied stress.

V-Fbr values typical of stainless sLeels, we obtained blas factors which were

weakly temperature dependent (especially in the range of usual interest) but

‘somewhat dependent upon dislocation (sink) density. Typiczl results are shown

".”fin Fig. 1.‘ The curve labeled "simple" assumed interstitials in each cylindrical

e region interact only with that dislocation, whereas the curve labeled "“compound"

"aassumed that in each region the interaction energies of the two 1eighboring

_”;fregions are linearly additive. The effect of this sink "competition“ is

Z“L-relatively minor even at very large dislocation densities. For an applied tensile

stress of 100 MPa and a dislocation density of 6 x. 10 m/m , a bias factor o




'f7i.( 11

e Bullough and Hayns

12,

2) ~ 0.082 was obtained and the predicted ‘creep rates, as showm in

'fdthe figure, were considerably lower than the rate previously predicted by
(17) '

b. Dis;ocation - uylindrical Void

We recently presented( D a model much 1like the SIPA model above but one

. .
2

in-vhich,the econd cylindrical region contains not a dislocation but a cylindrical
void. Hereithevmajor source of the interactions is the relaxation strain

of a point defect. As a first approximation, we.neglected interstitial inter-
actions with the void and again neglected all vacancy interactions. Only one
temperature and one dislocation density were considered and the results for

ZID’ the capture efficiency of interstitials (assuming a relaxation strain of
unity) at dislocations; is,shown in Fig. 2 as a fonction of void size. The

corresponding values of ZIC’ the capture efficiency of interstitials at cavities

(voids) were not reported but. have been obtained here from Eq. (3)

- and &re also plotted. With these two Z's, the void-swelling bias factor was
also calculated from Eq.‘(ll) and plotted in Fig. 2. Thus,'for equal sink strengths

~of dislocations and pylindrical voids, this simple model predicts a bias factor

. Zlh - IC = 1, 14 and for a void sink strength greatly exceeding the dislocation

sink s-rengths, valutu approaching 2 are predicted This range corresponds to a range

iin a single effective Z using Eq. (10) from Z~ 2 lto 2~ 3. 'These are much higher'




rate-theory models, but ve’ defer ‘i i“

model to be presented below which

._any'noie quantitative comparison

= ill*utilize inreractions of both inv rstitials and vacancies with both

dislocations and spherical voids where both sinks may be present in arbitrary

densities..

J”c,i Dislocations and Spherical Voids

Consider a cylindrical region, of outer radius R, containing a long,
strsight d-slécation, of core radius ro, at its center. Ignoring recombination,
we can write, for either-type of défect, the general solution to the Poisson

eduation for cylindriCal symmetry

H o

(12)

[
B |

hﬂﬂ
+

k where J is the defect flux, & is the defect production rate (assumed equal for

vacancies and interstitials) and b is a constant. Wa also assume the usual

o flux'equation

constant and T is absolute temperature. We assumevthe usual
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e Disthe defect 1&'1ffpe‘i§ Lty 1n'._the absence of interaetieh' fields, E
and 'EGI ja:i_:'e :ﬂl'ts_s:l.nte;'vr._-aet;ixim energy ":I.n fﬁe eaddle-point' end greuhd-etete, '
i respectively, end ’éeé 'isA t%ie equilibrium .defect eonceneration. . Ineerting
A Eqs. (14) .‘ and (15) fnto (13) gives |

| _ ,—.(Es - EG) | _
J ==~ De ?‘T [Ve + &5 yEG] ' | 6)

which is easily revritten in the form

. I‘“"s .
-~ E"/KT. G _
Jm~De v (ceE /kT) . (17)

- For the case of radial eymmetry, Eq. an becomes

-E /kT G . . .
J=<De - -g—r,(ceE ”‘T) N a8

D’j[-_ci;gg(.xé:r)'k -_*'-';;sg/gf)f]‘" :

Jr T
e



TR 5_/ R re D,kT S e e e

':':‘ A : /kT
2_/; eED »“dr .

i'where the subscript "D" indicates the dislocan.ion cell. '

Now, consider a spherical region with the same outer radius R, containing
at its center a void of rad:lus rv. Assuming spherical symmetry, the solution

to Poisson s equat:lon :ls

for

(20)

[
'ri

which in turn is ‘set’_e:qua],. to Eq. (18) to obtain, after integrating,

D[ce C,kT) _' ce C/kT) ] .
b = = e V N

/‘R' B3k

j e C'

T
: r

(21)




’::"1_6. : o

:ignifies the void (cavity) ce11._ Since we are omitting ?

v course four E functions as well.

: Por boundaryiconditions,,we first take

R . (22)

ceED/_?kl) R = ce c/kT)
-which-tepresents two conditions, one for -each type of defect. For all inter-
: actions of interest EG + 0 for large r, so that Eqs. (22) basically express
f{continuity in defect concentrations at the outer bounda:ies of the two types
of regions. One may of course add the iInteraction fields of neighBoring cells
. e

= Dg is guaranteed identically but explicit calctlations in the

80 that Ej
‘simpler‘models discussed in a. and b. above showed that such a refinement
causes only smallvchnnges (less than a few per cent) in calculated results
\for nny reasonable range of parameters. Therefore, we‘shall use here, for -

‘ Jesch cell, tﬁe interaction fields which would exist in an infinite medium .
7s:contsining only thatASink;'

» | fbrfourAthit& and fourth boundary conditions, we take

‘;*:for each type of defect, where p is the dislocaticn line length, and N s the '

“%nunber of voids (both g unit volume of solid).




i*sink and be absorbed at the other. ffﬁliufgff’tfin

4 o33
2

' ::which simply state that all defects generated in each cell per unit time must,

dn the steldy state, either enter the sink in that cell or diffuse out of the

;cell. Adding these together, we obtain

' ) ! , ; . "
am=- JD(ro) anop - Jc(rv) lmrv Nv,

+ Iy(R) -+ 2780 + 3 (R) '.4nR?N§ o . e

~ where we have used the identity

9 24 3 3. '
‘.w(R. f'ro,> p+g TR -1 )N& 1 : 27)

i ,V‘fjwhich forms our definition of the outer radius R of the two types of cells.
'U~:;But since physically all defects must be absorbed at ‘either the dislocations

:Vor the voids, we also have

,,:fg__.“lqp(?q). ?rroo: ,chrv)A ~é’gv N, R '(382

:1;'Equating Eqs. (26) and (28) leads directly to. our boundary condition (23). which

‘clearly is valid also for thermal fluxes vhich must originate at one" type of

ey

gf::v;?iyv. : Je(#vlﬁ drr N+ Jc(g) 4tg'NV,’ . - (25)



nd 80 obtwin he fluxes

boundaryvcon Utions (22) and (23) enable us to evaluate bD and b

S el - § o +,lz r )
: v r
B3 /KT
e C dr
2
r .
R gSier
e C ar
T . r :
v

1 /k
-3 - re C ]
v .

R
Sk
. e c
J{. 7 dr
T r
v

18.

29)

A et i gy e 3 34 29 P @k i e e 2mpin et 2+l o s s

PO e g ]

Sy



‘ + n . v . (30)
21 5/t E./kT
2 [2—;’ f ED dr + £t —ar
| r, . T, T .
for each defect in each cell,
The Z-factors are obtained from
. Jon (E)
- "ID
Z. o= (31)
- JID.(O) T,

and aualogous equations for z ZVD and ZVC’ where the fiux ratios are defined

IC’

>:_with all E's present in the numerator and all E's = 0 in the denominatot.

Given the J'

Tftom Eqs. (29) and (30) we can find the swelling rate

! GE fll.'?(A—:)”"' ’vzﬁv '[ch(rv)'; Jvc(’v)]- o - en

whete'we have defined swelling as the increase in volume pe* unit volume ofv

"uni"total volume.




”:,b;wQSiuiIcrlii;the7cve:cge clinbfvelocity of the dislocations is given by

"'uhetexwe'have taken positive climb to correspond to interstitial absorption,
- hnd have tcken r to be equal to the Burgers vector, ' -
Tb evaluate qu. (29) and (30) we require values for the interaction

% but omit the

energies. Here we use the analysis of Buliough and Willis
: bulk modulus and shear modulus terms because they are only small fractions of
the "misfit" terms given by ' |
v _ . o 'ﬂul . . ' _ ) . _ _
G S o . P
B =f =T (34)
. y

where R is the atomic volume, ¥ is the shear'modulus, e® is the point defect

relaxation strain; we have assumed the interactions in the ground and saddle-
boint configurations to be essentially the same and have taken the average

‘ialue over the attractive portion of the field. The first éssumption is

(23)

partly justified by the experimental observation that the activation

'ljvolumeifor interstitial motion in tungsten is very small. Activation volumes

(24)

' ”3Vﬂfor vacancy migration are generally considered to be quite small also . The

‘F':'second.assumption is known to give very accurate results for the case of diffusion .

in'a dislocation field without defect production(zs)

o Fbr the interaction energies between point. defects and voids, we use the

5nisfit term of the analysis of Holfer and Ashkin(16)




' where v is Poisson s ratio and E - r/r . Again we have assumed equality of

_the interactions in the ground and saddle-point corfiguiations._

3. Results
hefore presenting numerical results, it is useful to point out scme general
characteristics of Eqs; (29) and (30), some oi which also appeared‘in the
results for SIPA creep and>£or the dislocation-cylindrical void problem. The
first.terms'of'the equations give the thermal contribution to mass-transport,
theyvare‘directly‘proportional toGthe defect diffusivity and are non-zero |
E"/kT

only when the product ¢f c and e differ at the two sinks. If local

equilibrium is assumed,

¢ .
o= o B /KT , o . (36)

 at each sink and the interaction energy disappears. The concentration c®

e ¥

may t.hen be written [
. - c® = ¢ e ‘.Ct - | (37)

. eq

v,where AW is the reversible work done in the transfer of a defect across a

bsink interface (opposite signs for vacancies and interstitials). ‘If there is :f

'F‘ﬁan externally applied hydrostatic pressure, P> and a gas is present in the

rs o e n

. g | 3
e e 2B E;l-l (35)
36r L-vpr S gt Le-n® gt

e IR £ ey iy




(38)

(39)

l at the-dislocation core and void, respectively, whereby is the surface tension.

The assumpticn of local equilibrium is not essential but gives the maximum

possible, "diffusion-controlled“ rate. Alternatively, concentrations differing
-from local equilibrium might be assumed to simulate "interface control®”. Under
" thermal conditions (3 = 0) the cnrrent of each type of defect leaving one
'type'of sink is exactly egual to the current entering the other, as holds for
>:.all mass-transport processes. This thermal swelling, or sintering depending
npon the relative magritudes of Egs. (38) and (39), in principle includes
contributions from both vacancies and interstitials but, for metals, the
equilibfium value of interstitial concentration.is usually assumed to he 80
small that primarily vacancies contribute. Finelly, we note that the interaction
energies in the saddle—point affect the thermal rate through the integrals in
:the denominators, and thus Z's \thermal) # 1 but they are not equal to the Z's

3e5defined above for the radiation—induced components.

:3The_radiatior-induced portions of the fluxes are seen to be independent of
the, efect diffusivities and directly proportional to the defect production rate.

are also totally independent of the boundary conditions at the two types

of‘sinks.‘

Hence, they are the same whether "diffusion control" (local equilibrium

22,
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s:concentrations‘at sinhs) or “interface control" (sink concentrations fixed .
at non~equilibrium values) is assumed te apply. Thus, ‘we question the validity
‘ of the distinction some: authors have cla:lmedz22 26, 27) for these two cases
using teaction—rate theory with the same Z's applied to both the radiation-
»produced defect absorption terms and the so-called thermal-emission terms. -
It is clear'from Eqs. (29) and (30) that the interaction,fields do not affect
thermal fluxesnin the same manner in which they affect the radiation-~induced
components,_so’that_using the,same Z's is inappropriate. This illustrates
one of the difficulties in employing an approach such as reaction-rate theory
where sink-loss terms and bias factors must be supplied from independent
(and not necessarily wholly consistent) models.. In the present treatment, no
such externally calculated parameters are required since they are inherent in
~ the model.

. ln Fig. 3 we show illustrative results for predicted swelling rates as a
function of temperature. We have chosen our "standard" parameters to be rep-

resentative of stainless steel, with 22 D,C; = 1.58x10°° exp(-51,000/T) m?-s_l,

D,C., = 107 exp(-33,950/T) m2*s L, r = 0.126nm, @ = 1.20x10°2% 3, 4 = 8.6x10%

vy _ .
- MPa, ei =1, 4(28) _e; = -0, 23(28), v=0,3, y=1.5J ° m-z. All of the cases

Ashown in Fig. 3 employ p = 6x1014 m/ms, the single lower curve with a very weak
: cayity_sinh_strength (rv,= 10r , N = 10%° m_3) and & = 10-7_dpa e &L and the
upper'family‘of curves with a relatively high cavity sink strength (r = 100r s
ﬂ i11021 mis) and 'sswlﬁ-6 "0-4 and lOﬁz-dpa . s—l. The radiation-induced

"swelling rate is seen to increase by about a factor of two from T= 100 to the

:'naximum where thermally-induced cavity shrinkage causes a sharp decline._ The
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"peak swelling in the upper family of curves is higher by over four orders-of—

-‘-agnitude even though the defect production rate. is only one order-of~magnitude
e hiéher. Thiu reflects the fact that in the second case the two sink strengths
;ure comparable, whereas in the first case they are widely different. As shown
in the. analysis of Wiedersich(G), maximum swelling rate obtains for equal sink
: strengths. This much higher swelling rate causes the pezk to occur at significantly

higher temperature. Since each case is for fixed sink strengths, it is clear that

‘the bias factor for swelling is somewhat temperature depeadent, though for the

temperature range of significant swelling the variation is quite limited. We

’

point out that each of these curves assumes a constant "effective" &, i.e. a

constant rate of formation of defects which are absorbed at the twe types of sinks
considered. if a is interpreted as the actual defect product rate minus those

absorbed at any other sinks, these curves still require multiplication by the

S'-parameter defined by Wiedersich(6) as the fraction of defects which are in
fact absurbed at sinks. Such a factor would lower the low-temperature portions
of these curves much more abruptly as temperature decreases and recombination
removes essentially all defects. We estimate from Widersich's curves that

S 5'10"'2 below ~ 600~700K. Thus, the temperature variation of bias is indeed
minimal within the swelling regime.

'The inerease of‘the temperature of peak swelling rate as 3 increases, along
f};with a’broadening of the temperature range of significantvswelling, is clearly
:ﬁdisplayed by the upper family of curves in Fig. 3. The peak swelling rate is
predicted to ‘coeur for the assumed sink structure at ~ 800 1100 and 1300K for
' 4

z'i.iFlO-:‘and 10 2, respectively. - These three production rates are generally




: .of the point defects. It is of course the relative values of these parameters

‘,'shall discnss below a more precise function for correlating with sink strengths

through"th_ ' o proportional effects on the interaction energies which principally

- 'considered to be roughly representative of fast reactor, fast ion and electron

bombardment, respec:ively. '
A few calculationsvwere run under the conditions of the upper family of
curoes,'but for_a = 10-6 only, to assess the effects of an externally applied

hydrostatic tcnsile'stress and a gas in the cavities. The dotted curves show

‘the trend for externally applied stress with the numbers on the curves indicating

the magnitude of negative pressure (in MPa) applied. At 600K, stresses of ~0.1ly are
required for any discernible effect; at 900K, stresses in excess of -~ 10-3u are
required. The possibility of loading a metal to such high levels of hydrostatic
tension without yielding seems marginal, so that for these conditions stress-

enhanced swelling is unlikely to be measurable. Gag vpressures, pg, of comparable

~ levels are required for significant effects on swelling rate, as indicated in

.. the figure.

The general effect of variations in relative sink strengths at T = 600K

and 4 = ld-sifor the combinations run to date is displayed in Fig. 4. The

‘peaking when void and dislocation sink strengths are comparable is clearly

displayed using the simple sink strengths normally employed. In some calculations
N was yaried,,ﬁnotherso'and in still others L However, very little overlap

in relative sink strengthsexiétedfor the different sets of calculations. We

evaluated internally from the present model.

Fig. 5 displays the effect of variations in e and ev, the relaxation strains




'h to swelling occurs of course precisely where eI

VT_eV were run with eI
‘linear dependence reflects the fact that the fluxes involve integrals containing

-, be quite large, especially nenr the sinks so that a linear expansicn of the . ‘]

[zgive rise to the void swelling phenomenon S0 the cross—over from shrinkage

;exponential factors in the E's and the magnitudes, especially of the ED s, can

ﬂxponentials can’ be quite inaccurare.

:which sust be inserted into a reaction—rate—theory model.

Avarious "bias factors employed in reaction—rate—thecry analyses.

‘.let us. return to Eq. (32) which we rewrite as

e -

260

: :"JA_-» ,‘

exceeds ev '(Variations in

at its "standard" value, andovice versa. ) The far-from—

Only for very small valuee of eI and

1ev would linear variation be expected.

4, Discussion

We have displayed various numerical evaluations of the swelling rates

predicted by our model. Its-chief virtue would appear to be that it has all

physical features built into it which are felt to be important and thus
i : . S .
- ‘eliminhtes ‘the complex problems which have concerned various authors in their

o : :
attemplts to estimate and refine values for the various sink strengths and Z-factor

We have discussed

~several iInstances in which inconsistencies have also arisen in such analyses.

It is informative, however, to relate our void swelling rates here to the
To do this,

o

-}_..«s_a(v) . e

2 N J for both types of defects. - Now conseruation of vacancies



2.

=f and interstitials independently, both with and without interaction fields, :

yields i“ Lt

-a =T {,Ivb.-’xc-m) + 1,00 BT ¢!

3sinceiof,coutse”Ic(O)_and Ib(0)>are_the same for vacancies and interstitials.

ﬂthtiplying>Eq; (40) by 4 while diniding the twe terms by - (IiD + IIC) and

- (I ), respectively (both of which are equal to & by Eqs. (41) and
VC \ : .

(42)), we obtain

ve 1C .
6 = 3 - & . (43)
[ p*he Ip* Ixc] -

- which, after rearrangements, becomes

Iy lp I Ty .

(Ivn + Iyg) (g + T

e

(44)

Now, if we : introduce the Z—factors dnd use Eqs. (41) and (42) to convert the

two factor ;in the denominators to vurrents in the absence of interaction

fields"we obtain :

1,(0) + T (0) e

’ P
e o



e e
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-

= (g
-4 e .v.Ip 216 zvn [I © + 1 (0)]

(45)

oo

15(0) I,(9)

I 6)
. [Ic (0) + 1, (0)]

¢ =& [(ZIDY' Zyp) = (Bge = Zvc)]

:_ with two forms of the "hias factor" which can be shown to be equivalent through

"Egs. (3) and (4) The final factor in Eqs. (45) or (46) is completely determined

by the sink structure and each 1 could equally wvell be replaced by the appropriate
sink strength. Thus, Eq. (46) may be regarded as formally equivalent to
Hiedersich‘s formula( ) except that he assumed his factors corresponding to

ZI ZVD) and (ZIc ) to be constants which they clearly are not. Nor

~ are all of the Z's in Eq. (45) constant of course, as often assumed in reaction-
lrate-theory models. There is the possibility, however, that since the final
nfactor‘in these very symmetrieal formulas is a function of the sink strucutre

~ alone, the'bies féetors containing the Z's may not depend strongly on sink

structure. To»simnlify calculations of the bias factor, which we designate .

- By the fectors I (0) +1I (0) may be replaced by a for our case of no recombin-
‘ation (although if one: uses Eqs. (45) and {46) for esttmates in which recombination
 h1s important thlS cannot be done) With this replacement then, Eq. (45) or

-  (46) becomes

.‘jg‘”;oans}c(o):sn'(‘p)v_} - aBS4(0). [1"5 (0)] = éﬁ%«» [-:[;SD(O?]*I
3 L . (No recombinaﬁion) ) (47)
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o ” L ' |
o bwr "R.J(0) i o
- __"__"...9.__ , 48)

“ where ,

_ZFIOP_Jb(O)

o

amd | | -
S @ Ee T = s e ' R

A S .a

and where JC(O) and Jb(o) may be obtained from Eqs. (30) and (29) with r = T,
rand T f'fo reépéctively, and with the thermal terms and all E's set equal to

zero. We thus obtain’

' 2
SC(O) = - 41ltv Nv '—3--[ ) N N —]
. r
v

+ — e : (50)

<"!

_Hith :éérrangement, this ¢an be written in the form

2N r - -
vV R .3
- In - + 3
' o

@, e

‘' -and; ir eimilar fashion, we obtain -




0.

'"p;-:uhere the physical meaning of the S(O)'s as the fractional volumea from
ﬁgwhich the sinks drain defects is c1ear1y digplayed. One easy limiting case is

o - 3
e o. for which s ROES -0, ROR T (R% ~ r 2y 4 ";R N, = 1, the dislocations

-‘absorb all defects and of course no swelling occurs. The coefficients of R?

By in Bq. (51) and. of R? in Eq. (52). determine the location of the surface around
each type of sink across which the flux is zero in the absence of interactions
,and they are plainly related strongly'to the relative sink strengths through

B the factor N;ré/p. The tern 2erv in %— /o is of course exactly the ratio

,of sink strengths obtained from simple, single-cell calculations. The il

e
- and ig-factors describe sink "volume-fraction" corrections and the presence
: of’parameters of both-types of sinks in each S(0) produces the so-called

(8)

multiple-sink" corrections discussed by other authors . We feel that since
.ithese effects are contained within the single model in an internally consistent
manner, they are probably more reliably described here than in other treatments where
'.ithey are_eStimated through different models (always with approximations whose

inaccuracies are difficult to assess) and then intreduced into the reaction-rate-

:*if“"”theory modél as correction factors Unfortunately, we are still subject to
the assumption that recombination can be adequately assessed separately, but

'”n";,all other models calculating sink strengths, bias factors or multiple—sink

’correction factors invoke the same assumption in additiom to the lack of internal

,cons stency discussed earlier. o 1 _ v ) o

Values of the bias factor, B, have been calculated from Eq. (47) for the

oblemsz'hich we discussed above and are showm in Fig. 6. All unmarked




'dominated case.

. For neutron or.heavy ion damage, cascade effects can reduce the number of

~defects surviving close—pair annihilation even further. We recently concluded

".et al

' measurements'to_mean;that only ~1% of the point defects escape a high-energy

'“rv‘luthors estimated a required bias of ~0. 06 using the full damage rate, a more :

.

‘-points -are’ for THGOOK; whereasinumbers besidepointsdesignate other temperatures.
H'The tempera-ure dependence is very slight within ‘the range of significant void -
},swelling, but there is a systematic variation with relative sink strengths
‘fwith B ~ 0 53 for equal sink strengths (maximum swelling) It falls to values

: of ~ 0. 25 for the- dislocation-dominated case and rises to - 1.5 for the void-

These bias factors are much 1arger than the (Z-1) factors of 0. 02
suggested by Brailsford and Bullough(7) or 0 08 deduced by Bullough Eyre

and Krishan(zg) when matching their reaction—rate—theory_predictions with

' experiment. However, these authors empiloyed the full damage-rate predictions

injtheir analySes and_we,helieve this is incorrect. Although the actual fraction
of defects which survive close-pair annihilation and thus are available to

diffuse to sinks is difficult to assess quantitatively, it seems certain it

- can be significantly less than unitv even for electron irradiation where

close—pair annihilation typically removes(3o) as many as ~80Z of the defects

under post-irradiation annealing in pure metals {but perhaps only ~102 in alloys) };

(20)

that fewer than *182 of the defects escape a typical neutron cascade; Blewitt

(31) (32)

and Goldstone et al have interpreted independent experimental

cascade.. It seems clear that the effective produttion rates for neutron damage

Can'easilv‘be’only'~d‘1‘of the TRN standard calculations. Then if previous .
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if'ressonable estimate‘would be B 2 0 6 which is very close to the average of our
A}estimates. An alternative way of expressing :the situation is that our estimates
1f’sge"consistent with experimental observations and our knowledge of close—pair
cgiisnnihilation whereas the ‘bias values of a ‘few percent are not.
7 . Fisher and wt\ite(33 31’) have previously suggested that the larger bias factors
bari.predicted by the Heald single-cell approach offer a better explanation for
observed swelling rates (when the effective defect production rate is considered
:asbwe have‘done here) than‘does the small bias factor proposed by Bullough and
- co-workers. We concur with this general conclusion, but we consider that our
present bias estimates should be more quantitatively reliable than those derived
'fromeHeald's~mode1 which'considers only dislocations to derive ZID‘and ZVD’ in-
viconsistently-assumes ZIc = zvc = 1 and simulates defect production by imaginary
sourcesjoutside the dislocationAcell boundary. For example, we find B increases
. from ~0.29'to'f0;46 asvﬁv goes from ~10'? to ~10%! (r = 100 r ) for a fixed
f"g; "'dislocation density of h'x lO14 /m3. The Heald model of course has no effect
‘ " of void sink strength; Also, ve £ind that for a fixed vold density of 102! 53
R r(r = 100r_ ) B decreases from ~1 55 to ~0.46 as the dislocation density increases
:from 1010 to 6 x 1014 m)m + Heald's approach yields values of B which increase
fhovérréne same range‘from -0 l5'to ~1.15. 'Thus not-Only do the magnitudes differ
‘ta”fbut they vary in the opposite direction as a function of dislocation density.
v: Finally, we compare -our, results with those predicted by Wolfer and Ashkin (13;16).

iij}These authors claim that cavities atract interstitials preferentially more than :

do dislocations so that void growth cannot even occur unless the cavities are

“oated" with segregated solute atoms which set up additional interaction

T,fields which repel the interstitial more than the vacancy. Now certainly solute i'

segregation to voids (and other sinks) does occur and this phenomenon can produce

sdditional interaction fields which in turn will alter the bias. Indeed, such ‘f“ R
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-effects could easily be: incorporated into ‘the . present model by specifying

‘these interaction fields in addition- to the intrinisic ones used here. Howe

ever, we reject their contention that clean voids will not grow in the presence
of "clean" dislocations. They arrived at this conclusion by eliminating.the

first-order misfit interaction_between a dislocation and a point defect on the

Hbasis'that its average over the full angular range is identically zero. This is

clearly inconsistent'with the fact that, in analytical studies in the absence
of irradiation, the fully angular dependent interaction has been shownczs)
be equivalent to an interaction independent of angle with a magnitude equal to
the actual interaction averaged over only the attractive regime (exactly our

(16)

assumption).' The prediction by Wolfer and Ashkin of a much stronger effect

of externally.applied tensile stresses than that predicted here also arises

from the neglect of the misfit interaction contribution to the interaction

energy, Su we believe them to be in error on this point also.

5. Summary

We have developed an analytical approach which considers the production

of point defects by irradiation and their migration to different types of sinks

: with‘which they interact in differing ways. We hava used this approach to

» analyie the resulting bias effects, or the absorption of relatively different

:amountsAof one type of defect at particular sinks. This bias effect reSults in
.}fradiation-induced dislocation climb which figures prominently in current concepts

-fof radiation-induced creep, growth.and swelling. However, all prior models to
“:;‘estimate the magnitudes of these bias effects suffer from definite errors or.

'“;:unphysical assumptions which render them of uncertain quantitative accuracy. '




The approach presented here combines together, for the first time, defect

‘ﬁproduction and partitioning -among more - than one type of sink with different

:';interaction fields. He have applied it to obtain specific quantitative

>y~estimates ‘of the magnitude of SIPA creep and found its’ rate to be significantly

1ess than previous estimates, the magnitude of the: bias factor being ~0.072

14

‘v/for an applied stress of 102 MPa and dislocation-density of 6 x 10 m/m . i

Ihis.value is weaklyvtemperature-dependent and increases‘with.increasing

dislocation density.

We have also applied it to the case of dislocations and spherical voids

’of arbitrary densities. Th° predicted bias factor for assumed values of 1.4

and 0 23 for the relaxation strains of interstitials and vacancies, respectively,

is ~0.6 for comparable magnitudes of the dislocation and void sink strengths,

falls to ~0.26 for the dislocation—dominated case and rises to ~1.5 for the

»void-dominated case.» These magnitudes have been shown to be consistent with
' experimental ‘results and our present understanding of the number of point defects

_surviving close-pair annihilation following their production. Previous theoretical .

.nestimates of bias factors of only a few percent (oc 1n one case even negative

:‘?‘fvaluea) have been ‘shown to be theoretically deficient, and previous estimates

aa':mption that a11 the defects calculated to be produced by a model such as

’?-of a few percent deduced from experimental results employed the unreasonable




The possibility of applying such high pressures without yielding is problemr »

atical 80 that observation of stress-enhanced swelling effects seems difficult

“1f not unlikely.

: The present model enables the calculation of more 1nterna11y consistent

and therefore probably more accurate volume—fraction and multiple—sink correction

f factors for sink strengths than those previously available. -

Our ‘model has ignored.recombination, thus implying that an effective
defect production rate can be employed which has been corrected for losses

due to recombination. The latter must, in turn, be independently estimated

and so we have no guarantee that errors in predicted mass-transport rates

are not thereby'introduced. However, the recent analysis of Hayns(Ss) indicates

that these errors are likely to be quite minor in most cases.
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List of Illustrations =~ =

~Compariaon5between.Predictions of SIPA Creep for TWo-Cell Hbdel and

-6 =1

'ormula for a = 10 dpa-s ;o= 102HPa and T = 600K.

Predictions of" Biae Factors for Dielocations and Cylindrical Voids for

‘{f m/m ¥ T = 600K eI =1, 0 and. e§:= 0. - . 'lg//ﬁf

;i.fPredictions of Swelling Rate as Function of Relativelﬁislocation and
Aébeid Sink Strengths for 4 =10 -6 dpa . 8 -1 and I= 600K.
'Predictions of Swelling Rate as Function -of Interstitial and Vacancy
'l-'Relaxation Strains for 4= 1078 dpa * 8 "1 and T = 600K.

‘ " Predicted Vhriation_of Bias Factor as Function nf Relative Sink Strengths.
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