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ABSTRACT .

Central to the present concepts of the origin of the radiation-induced

creep, growth and swelling phenomena is the relative Interaction of interstitials

and vacancies with various sinks. Radiation-induced climb of dislocations,

which figures in many theories of radiation creep and growth, requires the

absorption of an excess of either vacancies or Interstittals. On the other

hand,.radiation swelling requires the absorption of an excess of vacancies

to effect void growth. These relative preferences are normally expressed
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in theoretical models by certain bias factors* or capture efficiencies, usually

assumed to be constant. Several attempts have been made to estimate their

magnitude theoretically but all axe seen to involve errors or physically

unrealistic assumptions. We present here a unified treatment in which these

various bias factors are estimated in a self-consistent model which incorporates,

for the first time, all tlie essential physics, i.e., defect production, inter-

actions of both vacancies and interstitlals with sinks and the presence of two

types of sinks. We present quantitative evaluations for the SIPA creep model

and for radiation swelling, and compare with previous estimates of these

phenomena. , • • -

1. Introduction

The physical origin of various phenomena occurring under irradiation, such

as radiation growth, radiation creep and void swelling lies in the absorption

of relatively more of one type of point defect at one type of sink (attd conse-

quently .less, of that same defect at another type of sink). The reason for such

preferential absorption is generally considered to lie in the interaction

energies between point defects and the various sinks.

The mechanisms of radiation growth are still not clearly established, but

one contributing source, for cold-worked material at least, is probably the

climb of dislocations having an anisotropic distribution of Burgers vectors' .

It is considered that, due to its larger relaxation strain, the interstitial in

aetals interacts more strongly with a dislocation stress field than does the

vacancy, and hence an excess of interstitials is absorbed by dislocations, thus

causing their climb. Since in the steady state vacancies and interstitials amst

ilh
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disappear at exactly the rate at which they are produced, it is clear that

another type of sink must exist which attracts interstitials less than do

dislocations. These second sinks then absorb an excess of vacancies equal in

magnitude to the excess of interstitials absorbed at dislocations. It is

further clear that vacancy interactions with the different sinks produce

analogous effects so that the overall net effect (or bias) is due to the

combined, simultaneous interactive diffusion of both vacancies and interstitials

to at least two types of sinks. The sinks having a smaller attraction for

interstitials may be dislocation multipoles, dislocation cell walls, sub-boundaries,

precipitates, voids or grain boundaries.

In radiation creep, two basically different processes have been considered.

One is equivalent to that discussed under radiation growth but where the aniso-

trppic distribution of Burgers vectors is no longer a requirement. In this

concept, the dislocations climb does not itself produce creep strain but dis-

location glide following the overcoming of some impedance actually produces the

(2) (3)

creep strain. Both internal stress fields and local obstacles have been

considered by various authors. A second type of process has been proposed which

requires climb alone to produce creep. This is the so-called SIPA (Stress Induced
(4)Preferential Absorption) model and assumes that dislocations having different

orientations of their Burgers vectors provide the required two types of sinks.

Their asymmetric interactions with point defects are in turn supposed to arise

from the shear polarizabilities of the defects . The shear polarinability

of a dumb-bell interstitial is assumed much larger than that of a vacancy and

so the SIPA effect is felt to be due primarily to interstitials, with the vacancies

partitioning themselves among the various dislocations in a relatively unbiased

manner.
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The void swelling phenomenon requires, obviously, a net absorption of

vacancies by voids. This is generally thought to obtain primarily because .

of the preferential absorption of interstitials at dislocations, aa discussed

above. Thus dislocation climb (and possibly growth and/or creep) must

accompany the growth of voids.

The "real" situation in which mary sinks of various types (and geometries),

are spatially distributed, each with its own diffusional fields of both vacancies

and interstitials, has generally been considered too complex to analyze directly,

even when defect-sink interactions are ignored. The model generally employed

is one in which the concentration of each type of point defect is assumed

constant throughout. The body and their losses to the various sinks as well

as their annihilation by recombination are assumed to occur homogeneously.

The rates at which these various losses occur must then be estimated by independent

calculations. These involve the solution of a boundary-value diffusion problem

where an individual sink of a particular type is represented by 5 ts actual

geometry and size. Even when, defect-sink interactions and recombination are

ignored, various procedures have been employed to "couple" the discrete sink

to the surrounding medium. Wiedersich used the Wigner-Seitz cell approach

and surrounded the sink with a sink-free region, within which point defects are

generated, whose outer boundary was chosen to give the same cell volume as the

average volume per sink In the actual medium and no flux was allowed to cross

that outer boundary. In one approach, the discrete sink is surrounded with a

"lossy medium", an infinite region in which defects are generated and are lost

to other types of sinks at rates which vary spatially and are proportional

to the local defect concentration. Brailsford and Bullough^ ' placed a sink-

free region between the discrete sink and the "lossy medium11 but later Brailsford,

Bullough and Kayns removed it. All of these are approximations and it is

difficult to select one appraoch over the other though it seems clearly best to
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use an internally consistent set of such sink terms, derived by equivalent

approaches. We recently suggested such a set.

When defect-sink interactions are included, the complexity increases

significantly. Bullough, Eyre and Perrin used a single cylindrical Wigner-

Seitz cell surrounding a long dislocation line. Both vacancies and interstitials

were assumed to be produced at equal rates and to disappear by recombination at

a rate proportional to the product of their concentrations. The interstitials

had a radially symmetric, attractive interaction with the dislocation and "zero-

flux" boundary conditions were imposed for both defects at the outer cell

boundary. As we discussed previously however > their use of only one type

of sink in a region across whose boundary no defects pass requires that in the

steady state both vacancies and interstitials enter the dislocation at precisely

equal rates. Thus we attribute their finite bias factor to numerical errors,

so that the bias factor of 2% which Brailsford and Bullough *• ' later quote as

being obtained from this model must be considered spurious.

fl2fl2 13)Several authors ' have employed a single diffusional cell around a

dislocation and allowed not defect production. Defect production is simulated

by assuming fixed defect concentrations at the outer boundary. With different

interaction fields, then, for the same outer-boundary concentrations, vacancies

and interstitials arrive at the central dislocation at different rates,. This

approach avoids the inconsistency of the Bullough, Eyre and Perrin appraoch

but suffers from at least two crucial problems. First, the use of fixed con-

centrations (supplied by imaginary sources outside the diffusional field} intro-

duces an unknown error. Second, its use of only one type of sink seems implausible

for estimating an effect which physically demands at least.two types of sink.



We previously discussed in some detail the above approaches, along

(12—19)wit Si others used in estimating bias factors for both void swelling and

SIPA-creep analyses, and concluded that none had quantitative reliability.

We subsequently presented an analysis of the SIPA-creep process which included

uniform defect production and the presence of both types of dislocation with

their asymmetric interaction fields . The resulting creep rate was shown

to be significantly less than previous estimates. More recently, we have
(21)

presented a simplified analysis for estimating the bias factor for void swelling

We allowed both dislocations and void.s but to simplify the geometry considered

only cylindrical voids with a length per unit volume exactly equal to that of

the dislocations. Interaction of interstitials with dislocations was allowed

but, for simplicity, interactions of interstitials with voids and of vacancies

with both dislocations and voids were ignored. The bias estimated was significantly

larger than previous theoretical or "experimental" estimates.

Our purpose here is first to present a synopsis of the various types of

"bias factors" Introduced by different authors. Then we shall compare and

contrast the various theoretical attempts at quantifying the bias. Then we shall

present a unified analysis appraoch which treats defect production and allows

for the coupled diffusions! flow of defects in the presence of two types of sinks

which interact differently with the point defects. Bias factors so derived will

be compared with previous estimates. Finally, quantitative estimates of void

swelling rates will be compared with experiment to bring into focus the need

for the carefull assessment of effective defect production rate, i.e.

the rate of production of freely mobile defects which escape annihilation

within the damage cascade. This will also highlight the need for consistent
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coupling between the bias factors and the various sink loss terms, both of

which are treated simultaneously in the present approach, which also naturally

supplies the volume-fraction and multiple-sink effects other authors have

attempted to estimate by independent models.

2. Analysis

As 'las generally been done before, we shall ignore recombination in our

model, so that recombination effects can only be assessed by assuming the

appropriate defect production rate to be reduced by the recombination rate

which in turn must be estimated independently. He shall also treat only

two types of sinks, so that again the appropriate defect production rate must

be reduced by the rate at which defects are independently estimated to be

lost to other sinks. ' There is no obvious reason why additional types of sinks

cannot be included directly in the model, however, and we expect to pursue

this in future research.

With the above assumptions, conservation requires

a)

and a - Z ^ lj + Zy2 1° = ij + 1° (2)

where a is the effective defect production rate (assumed equal for vacancies

and interstitials); Z^, Z I 2 (Z^, Z^ are the ratios of loss rates of inter-

stitials (vacancies) to sinks of types 1 and 2 with and without interaction



••" fields. The Z's so defined are equivalent to Mansur*s sink capture efficiencies.

Equations (1) and (2) show clearly that the four Z"& so defined are rsrt

independent. In fact, one easily sees that .

Ij 1° /'\
ZI2 * X + To" ' ZI1 lo" (3)

X2 *2

1° 1°
and

where the I's are set by the densities and geometrical features of the sinks.

Thus the Z's for each defect are related through the relative sink strengths.

As shown in the reaction-rate-theory analysis by Wiedersich , the maximum in

the rate of any process requiring the preferential absorption of one type defect

at one sink occurs when the two sinks involved have equal strengths, i.e. when

I- " I,. For this special case, (3) and (4) become

- 2 - Z_. (Equal sink strengths) (5)

and Zy2 " 2 - Z^, (Equal sink strengths) .(6)

Since the limiting case is zero absorption at one type sink, say Z I 2 • 0, it

is clear that the maximum possible value of the Z for the other sink, say Z-.,

is 2, foir this symmetrical case. The set Z_. - 2 , Z__ - 0 expresses the physical

situation when all the interstitials are absorbed at sinks of type 1 and none

at sinks of type 2. Thus, the range of possible Z-values for this symmetrical
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case is 0 to 2. On the other hand, when a large difference in sink strengths

exists, say 1° » I?, Z__ can become very large (small) when 'Z-. is only very

slightly less (greater) than unity. Of course, this simply reflects the

physical fact that a. small change in absorption at a sink of very high strength

requires a proportionately large change in absorption at a weak sink.

It has been shown by rate-theory analyses assuming constant Z's that the

rate of a process requiring differential absorption by one sink can be expressed

Rate « ( Z n - Z^) - (ZI2 - Z^) (7)

This combination of Z's is equivalent to Wiedersich's rate-theory expression

for the rate of void swelling* '

Rate..* 8 - o (8)

when only dislocations and voids are present md where a and 8 describe the

differencein capture efficiencies for interstitials and vacancies at voids

and at dislocations, respectively, and are assumed to be constants. An

alternative form of Eq. (7) is sometimes given

.•;.-••: Rate « Z n Z y 2 - Z 1 2 Z ^ <9)

again assuming constant Z's.

The bias factors on the right-hand sides of Eqs. (7) and (9) can easily

be shown to be equal by use of Eqs. (1) and (2). Thus, they may be considered
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equivalent definitions of a bias factor for the particular rate process being

analyzed.

Some authors attach a Z-factor to the term for interstitial loss-rate

to dislocations and none to any other loss terms for either interstitials

or vacancies. .This is equivalent to assuming that all other Z's are unity,

but as we saw above this is physically impossible. Such inconsistencies,

however, can and do go completely unnoticed in a reaction-rate theory calculation

where defect conservation is imposed on the system. And ±f_ the single Z-factor

so assumed is treated strictly as an empirical factor with no physical meaning,

well and good. However, it allows no judgments as to what a reasonable

value would be. If such an assumption is inserted into Eqs. (7) or (9), the

result is

Rate * Z - 1 (10)

but such a treatment becomes inconsistent and unreliable when theoretical

estimates of the effect of interaction fields on the defect fluxes into

dislocations are used to obtain Z.

The various Z-factors discussed above, together with their corresponding

sink strengths to which the Z's of Eqs. (1) and (2) are proportional, embody

most of the physics contained in reaction-iate-theory analyses of radiation-

v . induced rate processes and we turn now to their evaluation.

a. SIPA Creep

We previously presented an analysis of the SIPA creep model and will

only give a summary here. In this case, the two types of sinks are long, parallel
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dislocations whose Burgers vectors are such that an applied stress aids the

absorption of one type of defect at one dislocation and not at the other. The

interaction fields were those derived by Bullough and Willis , averaged over

their attractive regions and applied as radially symmetric fields in the

two cylindrical regions surrounding the two dislocations, each with a radius

chosen so that the cell volume was equal to the average volume-per unit length

of dislocation in the real material. The concentrations of each type of defect

were required to match at the outer boundary and the flux of each type of defect

leaving one region was required to enter the other. The important interaction

here is that due to the elastic polarizabllity of the point defect and we

followed Bullough and Hayns in neglecting the vacancy interactions. Thus,

for this process,

Rate « Z n - Zi2 (11)

where the Z's in this case are directly proportional to the applied stress.

For values typical of stainless steels, we obtained bias factors which were

weakly temperature dependent (especially in the range of usual interest) but

somewhat dependent upon dislocation (sink) density. Typical results are shown

in Fig. 1. The curve labeled "simple" assumed interstitials in each cylindrical

region interact only with that dislocation, whereas the curve labeled "compound"

assumed that in each region the interaction energies of the two neighboring

regions are linearly additive. The effect of this sink "competition" is

relatively minor even at very large dislocation densities. For an applied tensile

stress of 100 MPa and a dislocation density of 6 x 10 m/m , a bias factor
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(Z_. - Z-J) ~ 0.08% was obtained and the predicted creep rates, as shown in

the figure, were considerably lower than the rate previously predicted by

Bullough and Hayns(17).

b. Dislocation - Cylindrical Void

(21),, • We recently presented a model much like the SIFA model above but one

in which the econd cylindrical region contains not a dislocation but a cylindrical

void. Here the major source of the interactions is the relaxation strain

of a point defect. As a first approximation, we neglected interstitial inter-

actions with the void and again neglected all vacancy interactions. Only one

temperature and one dislocation density were considered and the results for

Z__, the capture efficiency of interstitials (assuming a relaxation strain of

unity) at dislocations, is shown in Fig. 2 as a function of void size. The

corresponding values of Zj._, the capture efficiency of interstitials at cavities

(voids) were not reported but have been obtained here from Eq. (3)

and are also plotted. With these two Z's, the void-sweiling bias factor was

also calculated,from Eq. (11) and plotted in Fig. 2. Thus, for equal sink strengths

of dislocations and cylindrical voids, this simple model predicts a bias factor

ZT_ - Z T n • 1.14,and, for a void sink strength greatly exceeding the dislocation

sink strengths, valuta approaching 2 are predicted. This range corresponds to a range

in a single effective Z using Eq. (10) from Z- 2.1 to Z - 3. These are much higher
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than most authors assume in their reaction-rate-theory models, but we defer

any more quantitative comparisons to the new model to be presented below which

will utilize interactions of both interstitials and vacancies with both

dislocations and spherical voids where both sinks may be present in arbitrary

densities.

c. Dislocations and Spherical Voids

Consider a cylindrical region, of outer radius R, containing a long,

straight dislocation, of core radius r , at its center. Ignoring recombination,

we can write, for either type of defect, the general solution to the Poisson

equation for cylindrical symmetry

(12)

where J is the defect flux, a is the defect production rate (assumed equal for

vacancies and interstitials) and b is a constant. We also assume the usual

flux equation

D'e

where D* is the local defect diffusivity (as affected perhaps by interaction

fields), c is the defect concentration, u is its chemical potential, k is

Boltzmann's constant and T is absolute temperature. We assume the usual

Arrhenius relationship for D 1

D' - De~^ kT J (14)
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and express the chemical potential as

u « kT In c/c + E'
eq

where D is the defect diffusi-\ Ity in the absence of interaction fields, E

and E are its interaction energy in the saddle-point and ground-state,

respectively, and C is the equilibrium defect concentration. Inserting

Eqs. (14) and (15) into (13) gives

(15)

.̂  VEGJ (16)

which is easily rewritten in the form

ES/kT
J - - De (17)

For the case of radial symmetry, Eq. (17) becomes

-ES/M
J - - De (18)

Equating (18) and (12) and integrating, we obtain

/ :

vS'**
dr
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.R

a I re 1^'" dr

o

where the subscript "p" indicates the dislocation cell.

Now, consider a spherical region with the same outer radius R, containing

at its center a void of radius r . Assuming spherical symmetry, the solution

to Poisson's equation is

J - | £ + -2 (20)

which in turn is set equal to Eq. (18) to obtain, after integrating,

*--i
A

(21)
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where the subscript "C" signifies the void (cavity) cell. Since we are omitting

recombination, vacancies and interstitials are independent and there are a

total of four "b" constants, one for each type of defect in each cell; and of

course four E functions as well.

For boundary conditions, we first take

(22)

which represents two conditions, one for each type of defect. For all inter-

c* •

actions of interest E •* 0 for large r, so that Eqs. (22) basically express

continuity in defect concentrations at the outer boundaries of the two types

of regions. One may of course add the interaction fields of neighboring cells
G G

so that E * Dfi is guaranteed identically but explicit calculations in the

simpler models discussed in a. and b. above showed that such, a refinement

causes only small changes (less than a few per cent) in calculated results

for any reasonable range of parameters. Therefore, we shall use here, for

each cell, the interaction fields which would exist in an infinite medium

containing only that sink.

For our third and fourth boundary conditions, we take

R p JD (R) « - 4* R
2Ny Jc (R) (23)

for each type of defect, where p is the dislocation line length, and N is the

number of voids (both per: unit volume of solid)»

Eq. (23) nay be derived by writing the two conservation equations (for

each type of defect) for the two cells
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a • ir (R2-ro
2)p - - JD(ro> • 2Trrop + JD<R) • 2irRp (24)

and a • | ir(R3-ry
3) N y - -Jc(ry) • 4irrv

2Ny + Jc<R) • 4*R
2Nv (25)

which simply state that all defects generated in each cell per unit time must,

in the steady state, either enter the sink in that cell or diffuse out of the

cell. Adding these together, we obtain

a - - J_(r ) • 2irr p - J (r ) • 4nr 2ND o oK c v v v

JD(R) • 2TTRP + JC(R) * 4TTR
2NV (26)

where we have used the identity

• " * ^ * 9 9 L
p + f ir(RJ - r ^ N , - 1 (27)

which forms our definition of the outer radius R of the two types of cells.

But since physically all defects must be absorbed at either the dislocations

or the voids, we also have

" Jc(rv> ' *nv\ (28)

Equating Eqs. (26) and (28) leads directly to our boundary condition (23), which

clearly is valid also for thermal fluxes which must originate at one type of

sink and be absorbed at the other.
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The boundary conditions (22) and (23) enable us to evaluate b Q and b_

and so obtain the fluxes

. p

D

(l Nv R 3 +R 2 > A/**- dr

" e E >J

(29)

and J_ » -
i
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kT
-dr

a f f f re^dr - A /*
t Jro J

* re^dr]
J (30)

for each defect in each cell.

The Z-factors are obtained from

Z
J I D(E)

ID J I D(O)
(31)

ro

and analogous equations for ZIC, Zy^ and ^-^ where the flux ratios are defined

with all E's present in the numerator and all E's • 0 in the denominator.

Given the J's from Eqs. (29) and (30) we can find the swelling rate

where we have defined swelling as the increase in volume per unit volume of

solid, not per unit total volume.
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Similarly, the average climb velocity of the dislocations is given by

ro> " JID<VJ <33>[
where we have taken positive climb to correspond to interstitial absorption,

and have taken r to be equal to the Burgers vector.

To evaluate Eqs. (29) and (30) we require values for the interaction

energies. Here we use the analysis of Bullough and Willis' ' but omit the

bulk modulus and shear modulus terms because they are only small fractions of

the "misfit" terms given by

_ ' r fly I e°
4 - 4 ^4 - 4 - -

where Si Is the atomic volume, V is the shear modulus, e° is the point defect

relaxation strain; we have assumed the interactions in the ground and saddle-

point configurations to be essentially the same and have taken the average

value over the attractive portion of the field. The first assumption is

(23)partly justified by the experimental observation that the activation

volume for interstitial motion in tungsten is very small. Activation volumes

for vacancy migration are generally considered to be quite small also . The

second- assumption is known to give very accurate results for the case of diffusion

(25)
in a dislocation field without defect production*••.

For the interaction energies between point defects and voids, we use the

•isfit term of the analysis of ffolfer and Ashkin* ''



where v is Poisson's ratio and 5 •" r/r . Again we have assumed equality of

the interactions in the ground and saddle-point configurations.

3. Results

Before presenting numerical results, it is useful to point out some general

characteristics of Eqs. (29) and (30), some or which also appeared in the

results for SIPA creep and for the dislocation-cylindrical void problem. The

first terms of the equations give the thermal contribution to mass-transport,

they are directly proportional to the defect diffusivity and are non-zero

E*VkTonly when the product of c and e differ at the two sinks. If local

equilibrium is assumed,

c°e"E /kT (36)

at each sink and the interaction energy disappears. The concentration c°

may then be written

AW

(37>

where AW is the reversible work done in the transfer of a defect across a

sink interface (opposite signs for vacancies and interstitials). If there is

an externally applied hydrostatic pressure, p, and a gas is present in the
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void at a pressure, p , then we have

± pfl (38)

+ ( p g . - |
t )and AWC - + ( p g . - |
t ) (39)

at the dislocation core and void, respectively, where Y is the surface tension.

The assumption of local equilibrium is not essential but gives the maximum

possible, "diffusion-controlled" rate. Alternatively, concentrations differing

from local equilibrium might be assumed to simulate "interface control". Under

thermal conditions fa - 0) the current of each type of defect leaving one

type of sink is exactly equal to the current entering the other, as holds for

all mass-transport processes. This thermal swelling, or sintering depending

upon the relative magnitudes of Eqs., (38) and (39), in principle includes

contributions from both vacancies and interstitisls but, for metals, the

equilibrium value of interstitial concentration.is usually assumed to be so

small that primarily vacancies contribute. Finally, we note that the interaction

energies in the saddle-point affect the thermal rate through the integrals in

the denominators, and thus Z's (thermal) f 1 but they are not equal to the Z's

defined above for the radiation-induced components.

The radiation-induced portions of the fluxes are seen to be independent of

the defect diffusiyities and directly proportional to the defect production rate.

They are also totally independent of the boundary conditions at the two types

of sinks. Hence, they are the same whether "diffusion control" (local equilibrium

J
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concentrations at sinks) ox "interface control" (sink concentrations fixed

at non~equill.briutn values) is assumed to apply. Thus, we question the validity
: , • •; /22 26 2 7 ^ •

of the distinction some authors have claimed. ' ' J for these two cases

using reaction-rate theory with the same Z's applied to both the radiation-

produced defect absorption terms and the so-called thermal-emission terms.

It is clear from Eqs. (29) and (30) that the interaction fields do not affect

thermal fluxes in the same manner in which they affect the radiation-induced

components, so that using the same Z's is inappropriate. This illustrates

one of the difficulties in employing an approach such as reaction-rate theory

where sink-loss terms and bias factors must be supplied from independent

(and not necessarily wholly consistent) models. In the present treatment, no

such externally calculated parameters are required since they are inherent in

the model. •

In Fig. 3 we show illustrative results for predicted swelling rates as a

function of temperature. We have chosen our "standard" parameters to be rep-
resentative of stainless steel, withv ' DjCj = 1.58x10 exp(-51,000/T) m *s ,

- 10"5 exp(-33,950/T) m ^ s " 1 , rQ - 0.126nmt it = 1.20xl0~
29 m~3, p = 8.6xlO4

MPa, e* » 1.4(28), ê r - - 0.23
(28), v » 0.3, y » 1.5 J * m"2. All of the cases

shown in Fig. 3 employ p » 6x10 m/m , the single lower curve with a very weak

cavity sink strength (r .- 10rQ, N « 10 m~ ) and a,• 10 dpa • s"1 and the

upper family of curves with a relatively high cavity sink strength (r » lOOr ,

N v - iO
21 m"3) and a - 10"6, 10"4 and 10*"2 dpa • s"1. The radiation-induced

swelling rate is seen to increase by about a factor of two from T m 100 to the

maximum where thermally-induced cavity shrinkage causes a sharp decline. The
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| peak swelling in the upper family of curves is higher by over four orders-of-

•agnitude even though the defect production rate is only one o^der-of-magnitude
t

] highei, This reflects the fact that in the second case the two sink strengths

are comparable, whereas in the first case they are widely different. As shown

in the analysis of Wiedersich , maximum swelling rate obtains for equal sink

L strengths. This much higher swelling rate causes the peak to occur at significantly

higher temperature. Since each case is for fixed sink strengths, it is clear that

the bias factor for swelling is somewhat temperature dependent, though for the

temperature range of significant swelling the variation is quite limited. We

" point out that each of these curves assumes a. constant "effective" a, i.e. a

constant rate of formation of defects which are absorbed at the two types of sinks

considered. If a is interpreted as the actual defect product rate minus those

absorbed at any other sinks, these curves still require multiplication by the

S -parameter defined by Wiedersich as the fraction of defects which are in

fact absorbed at sinks. Such a factor would lower the low-temperature portions

of these curves much more abruptly as temperature decreases and recombination

removes essentially all defects. We estimate from Widersich's curves that

S - 10~ below * 600-700K. Thus, the temperature variation of bias is indeed

. minimal within the swelling regime.

The increase of the temperature of peak swelling rate as a increases, along

with a broadening of the temperature range of significant swelling, is clearly

displayed by the upper family of curves in Fig. 3. The peak swelling rate is

predicted to occur for the assumed sink structure at -800, 1100 and 1300K for

a • 10~ , 10~ and 10*" , respectively. These three production rates are generally
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considered to be roughly representative of fast reactor, fast ion and electron

bombardment, respectively.

A few calculations were run under the conditions of the upper family of

curves, but for a • 10~ only, to assess the effects of an externally applied

hydrostatic tensile stress and a gas in the cavities. The dotted curves show

the trend for externally applied stress with the numbers on the" curves indicating

the magnitude of negative pressure (in MPa) applied. At 600K, stresses of -O.lu are

-3required for any discernible effect; at 900K, stresses in excess of - 10 u are

required. The possibility of loading a metal to such high levels of hydrostatic

tension without yielding seems marginal, so that for diese conditions stress-

enhanced swelling is unlikely to be measurable. Gas pressures, p , of comparable

levels are required for significant effects on swelling rate, as indicated in

, the figure.

The general effect of variations in relative sink strengths at T = 600K

and a = 10 for the combinations run to date is displayed in Fig. 4. The

peaking when void and dislocation sink strengths are comparable is clearly

displayed using the simple sink strengths normally employed. In some calculations

N was varied, in othersp and in still others r . However, very little overlap

In relative sink strengths existed for the different sets of calculations. We

shall discuss below a more precise function for correlating with sink strengths

evaluated internally from the present model.

Fig. 5 displays the effect of variations in e° and e^, the relaxation strains

of the point defects. It is of course the relative values of these parameters

through their proportional effects on the interaction energies which principally
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give rise to the void swelling phenomenon so the cross-over from shrinkage.

to swelling occurs of course precisely where e° exceeds e^. (Variations in

el were run with ef at its "standard" value, and-vice versa.) The far-from-

linear dependence reflects the fact that the fluxes involve integrals containing

exponential factors in the E's and the magnitudes, especially of the EQ'S, can

be quite large, especially n<?-« the sinks so that a linear expansion of the

exponentials can be quite inaccurate. Only for very small values of e£ and

e* would linear variation be expected.

4. Discussion

We have displayed various numerical evaluations of the swelling rates

predicted by our model. Its chief virtue would appear to be that it has all

physical features built into it which are felt to be important and thus
• . • i

i •

eliminjates the complex problems which have concerned various authors in their
. j ' ; . •

attempts to estimate and refine values for the various sink strengths and Z-factor

which nust be inserted into a reaction-rate-theory model. We have discussed

several instances in which inconsistencies have also arisen in such analyses.

It is informative, however, to relate our void swelling rates here to the

Various "bias factors" employed in reaction-rate-theory analyses. To do this,

let us return to Eq. (32) which we rewrite as

s = — f—i = (40)

where I_ • 4ir r N J for both types of defects. Now conservation of vacancies
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and interstitials independently, both with and without interaction fields,

yields

XID :*-V
o) + V°> (41)

V

since of course Ic(0) and In(0) are the same for vacancies and interstitials.

Multiplying Eq. (40) by a while dividing the two terms by - (ITT, + I_o) and

.-. (I~. + I™)» respectively (both of which are equal to a by Eqs. (41) and

(42)), we obtain

which, after rearrangements, becomes

ID ~ -"-IC IVD
(IVD +• IVC)

4 (44)

Now, if we introduce the Z-factors and use Eqs. (41) and (42) to convert the

two factors in the denominators to currents in the absence of interaction

fields, we obtain
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ZID - zic
(0) L,(0)

f"ic(o) + yo ) J

or

r i xc ( 0 )

(Z - Z^) - (Z - 5L ) j^-

L n>- ^ ° ic • -vcj r I ( 0) +

a \(ZTn - Z,m) - ( Z T ^ - Z,T/,)J ^ * =r-2 (46)
i (o)

with two forms of the "bias factor" which can be shown to ba equivalent through

Eqs. (3) and (4). The final factor in Eqs. (45) or (46) is completely determined

by the sink structure and each I could equally well be replaced by the appropriate

sink strength. Thus, Eq. (46) may be regarded as formally equivalent to

Wiedersich's formula except that he assumed his factors corresponding to

(Z-D - Z^j) and (Z__ - ZffC) to be constants which they clearly are not. Nor

are all of the Z's in Eq. (45) constant of course, as often assumed in reaction-

rate- theory models. There is the possibility, however, that since the final

factor in these very symmetrical formulas is a function of ttie sink strucutre

alone, the bias factors containing the Z's may not depend strongly on sink

structure. To simplify calculations of the bias factor, which we designate

B, the factors I_(0) + I«(0) may be replaced by a for our case of no recombin-

ation (although if one uses Eqs. (45) and (46) for estimates in which recombination

is important this cannot be done). With this replacement then, Eq. (45) or

(46) becomes

aBSc(O)SD(O) - a SD(0)

(No xeconbination) (47)
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where (48)

and JD(0)
(49)

and where Jc(0) and JD(0) may be obtained from Eqs. (30) and (29) with r « r^

and r • r respectively, and with the thermal terms and all E's set equal to

zero. We thus obtain

Sc(0) = -

-*t
(50)

With rearrangement, this can be written in the form

2Vv . R , 3 rv
l n +

sc(o) « J R
4 R

(51)

R

and, in similar fashion, we obtain

8,(0) - *<>} - rQ
2 + R2

3rv

2N r
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where the physical meaning of the S(0)'s as the fractional volumes from

which the sinks drain defects is clearly displayed. One easy limiting case is
• ' ' • .. 3 • • •

r v •*• 0, for which Sc(0).+ 0, SD<0) * irp(R2 - rQ
2) + ^— \ « 1, the dislocations

3
absorb all defects and of course no swelling occurs. The coefficients of R

2
in Eq. (51) and of R in Eq. (52). determine the location of the surface around

each type of sink across which the flux is zero in the absence of interactions

and they are plainly related strongly to the relative sink strengths through

R
the factor N. r /p.. The term 2N r In — /p is of course exactly the ratio

° r
v

of sink strengths obtained from simple, single-cell calculations. The =—
and ~ factors describe sink "volume-fraction" corrections and the presence

K
of parameters of both types of sinks in each S(0) produces the so-called

(8)"multiple-sink" corrections discussed by other authors . We feel that since

these effects are contained within the single model in an internally consistent

manner, they are probably more reliably described here than in other treatments where

they are estimated through different models (always with approximations whose

inaccuracies are difficult to assess) and then introduced into the reaction-rate-

"theory model'"as"correction factors". Unfortunately,'we are still subject to

the assumption that recombination can be adequately assessed separately, but

all other models calculating sink strengths, bias factors or multiple-sink

correction factors invoke the same assumption in addition to the lack of internal

consistency discussed earlier.

Values of the bias factor, B, have been calculated from Eq. (47) for the

various problems which we discussed above and are shown in Fig. 6. All unmarked
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points are for T-600K, whereas numbers beside points designate other temperatures.

The temperature dependence is very slight within the range of significant void

swelling, but there is a systematic variation with relative sink strengths

with B - 0.53 for equal sink strengths (maximum swelling). It falls to values

of - 0.25 for the dislocation-dominated case and rises to - 1.5 for the void-

dominated case.

These bias factors are much larger than the (Z-l) factors of 0.02

suggested by Brailsford and Bullough or 0.08 deduced by Bullough, Eyre

(29}and Krishan when matching their reaction-rate-theory predictions with

experiment. However, these authors employed the full damage-rate predictions

in their analyses and we believe this is incorrect. Although the actual fraction

of defects which survive close-pair annihilation and thus are available to

diffuse to sinks is difficult to assess quantitatively, it seems certain it

can be significantly less than unity even for electron irradiation where

close-pair annihilation typically removes as many as ~80% of the defects

under post-irradiation annealing in pure metals (but perhaps only -10% in alloys).

For neutron or heavy ion damage, cascade effects can reduce the number of

defects surviving close-pair annihilation even further. We recently concluded

that fewer than ~18Z of the defects escape a typical neutron cascade; Blewitt

(31) (32)

et al and Goldstone et al have interpreted independent experimental

measurements to mean that only -11 of the point defects escape a high-energy

cascade. It seems clear that the effective production rates for neutron damage

can easily be only -0.1 of the TRN standard calculations. Then if previous ,

authors estimated a required bias of -0.06 using the full damage rate, a more



32.

reasonable estimate would be B ~ 0.6 which is very close to the average of our

estimates. An alternative way of expressing the situation is that our estimates

are consistent with experimental observations and our knowledge of close-pair

annihilation whereas the bias values of a few percent are not.

(33 34V ••

Fisher and White ' ' have previously suggested that the larger bias factors

predicted by the Heald single-cell approach offer a better explanation for

observed swelling rates (when the effective defect production rate is considered

as we have done here) than does the small bias factor proposed by Bullough and

co-workers. We concur with this general conclusion, but we consider that our

present bias estimates should be more quantitatively reliable than those derived

from Heald's model which considers only dislocations to derive Z and Z T O, in-

consistently assumes Z__ = Z,._ = 1 and simulates defect production by imaginary

sources outside the dislocation cell boundary. For example, we find B increases
19 21 —3from -0.29 to -0.46 as N goes from ~10 to -10 m (r - 100 r ) for a fixed

V V O
dislocation density of 6 x 10 m/m . The Heald model of course has no effect

21 —3of void sink strength. Also, we find that for a fixed void density of 10 m

(r • lOOr )i B decreases from ~1.55 to -0.46 as the dislocation density increases

from 10 to 6 x 10 m/m . Heald's approach yields values of B which increase

over the same range from -0.15 to -1.15. Thus not only do the magnitudes differ

but they vary in the opposite direction as a function of dislocation density.

Finally, we compare our results with those predicted by Volfer and Ashkin '

These authors claim that'cavities atract interstitials preferentially more than

do dislocations so that void growth cannot even occur unless the cavities are

first "coated" with segregated solute atoms which set up additional interaction

fields which repel the interstitial more than the vacancy. Now certainly solute

segregation to voids (and other sinks) does occur and this phenomenon can produce

additional interaction field? which in turn will alter the bias. Indeed, such
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effects could easily be incorporated into the.present model by specifying

these interaction fields in addition to the intrinisic ones used here. How-

ever, we reject their contention that "clean" voids will not grow in the presence

of "clean" dislocations. They arrived at this conclusion by eliminating the

first-order misfit interaction between a dislocation and a point defect on the

basis that its average over the full angular range is identically zero. This is

clearly inconsistent with the fact that, in analytical studies in the absence
(25)

of irradiation, the fully angular dependent interaction has been shown to

be equivalent to an interaction independent of angle with a magnitude equal to

the actual interaction averaged over only the attractive regime (exactly our

assumption). The prediction by Wolfer and Ashkin of a rnich stronger effect

of externally applied tensile stresses than that predicted here also arises

from the neglect of the misfit interaction contribution to the interaction

energy, so we believe them to be in error on this point also.

5. Summary

We have developed an analytical approach which considers the production

of point defects by irradiation and their migration to different types of sinks

with which they interact in differing ways. We have used this approach to

analyze the resulting bias effects, or the absorption of relatively different

amounts of one type of defect at particular sinks. This bias effect results in

radiation-induced dislocation climb which figures prominently in current concepts

of radiation-induced creep, growth and swelling. However, all prior models to

estimate the magnitudes of these bias effects suffer from definite errors or

unphysical assumptions which render them of uncertain quantitative accuracy.
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The approach presented here combines together, for the first time, defect

production and partitioning among more than one type of sink with different

interaction fields. We have applied it to obtain specific quantitative

estimates of the magnitude of SZPA creep and found its rate to be significantly

less than previous estimates, the magnitude of the bias factor being —0.07%

for an applied stress of 10 MPa and dislocation- density of 6 x 10 m/m .

This value is weakly temperature-dependent and increases with increasing

dislocation density.

We have also applied it to the case of dislocations and spherical voids

of arbitrary densities. The predicted bias factor for assumed values of 1.4

and 0.23 for the relaxation strains of interstitials and vacancies, respectively,

is -0.6 for comparable magnitudes of the dislocation and void sink strengths,

falls to—0.26 for the dislocation-dominated case and rises to "1.5 for the

void-dominated case. These magnitudes have been shown to be consistent with

experimental results and our present understanding of the number of point defects

surviving close-pair annihilation following their production. Previous theoretical

estimates of bias factors of only a few percent (or in one case even negative

values) have been shown to be theoretically deficient, and previous estimates

of a few percent deduced from experimental results employed the unreasonable

assumption that all the defects calculated to be produced by a model such as

the TRK standard are available for long-range diffusion.

Estimates have also been made of the effect of externally applied stress

and gases inside the voids on the resulting swelling and it was concluded that
- 3 ' • . • • • ' • • • • ' • ' " ' • • • • • • - • ' • • • • • • • ' ' • • ' • • • » ' -

pressures ~10 of the shear modulus would be required for significant effects.
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The possibility of applying such high pressures without yielding is problem-

atical so that observation of stress-enhanced swelling effects seems difficult

if not unlikely. .

The present model enables the calculation of more internally consistent

and therefore probably more accurate volume-fraction and multiple-sink correction

factors for sink strengths than those previously available.

Our model has ignored recombination, thus implying that an effective

defect production rate can be employed which has been corrected for losses

due to recombination. The latter must, in turn, be independently estimated

and so we have no guarantee that errors in predicted mass-transport rates

(35)are not thereby introduced. However, the recent analysis of Hayns indicates

that these errors are likely to be quite minor in most cases.

\
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