
THE ANIMAL CODE

I. R. Lindemuth

February 28, 1979

UCRL-52492

Work performed under the auspices of the U.S. Department of
Energy by the UCLLL under contract number W-740S-ENG-48.

D M LAWRENCE
I U 3 UVERMORE
IbSl LABORATORY

gtBTESEUTS'M o r ~'ir? DOfJiKUVT 3 OKUSBSJS)

Distribution Category
UC-34

U
LAWRENCE LIVERMORE LABORATORY

UniversityotCaktomia UvBimore, California 94550

UCRL-52492

THE ANIMAL CODE

I. R. Lindemuth*

MS. date: February 28, 1979

"Los Alamos Scientific Laboratory,

Los Alamos, New Mexico 87544.

tU l l ITiH.U WJ
N O T I C E -

pifpJtK] J l J w..,..! . , ..,k 1
V ^ m i ^ S h c
I toi t td S u r « n (tb« I n r t t d S i w I M r a i r ^ i ..i I

! u n " « io "™ w £ MU^'Ti 'h B t m j i i o v r o . m i k r i !
an) < M i u n l > . « •>. i u « n , „ , J , „ | '
h .Ma> « . » P u n ™ > ' t >'• " - P l c . r r c »
« « « n . i . , , l , . iitl<»Fiutn>ri. PPUJIUI. P I . J B l l ..,

injruifc p m , r f !) * « d n {ht> 1

1*

CONTENTS

Abstract 1
1. Introduction 1
2. Physical Model 3
3. Temporal Differencing—General Formalism 6
4. Spatial Differencing—General Formalism 9
5. Basic Difference Equations for Time Derivatives 16
6. Velocity Fractional-Step Time-Differencing 18
7. Implicit Time-Differencing with fi > 1/2 20
8. Spatial-Difference Equations 22
9. Implementation of the Algorithm—Introductory Remarks 29

10. Basic Control Variables 32
11. Basic Arrays 34
12. LCM Memory Allocation 35
13. Initialization Subroutines 36
14. Miscellaneous Logic and Control Subroutines 38
15. Preparatory Subroutines 43
16. Coefficient Subroutines 44
17. Tridiagonal Solver Subroutines 47
18. Output Subroutines 47
19. Marker-Particle Subroutines 48
20. Diagnostic Subroutines 49
21. Post-Processing Codes 49
22. Test Problems 49
23. Acknowledgments 51
References 52

iii

THE ANIMAL CODE
ABSTRACT

This repoit describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic
computer code. ANIMAL'S physical model also appears. Formulated are temporal and spatial
finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined
are the functions of the algorithm's FORTRAN subroutines and variables.

1. INTRODUCTION
This report describes the physical model and numerical methods in the computer code ANIMAL—A New

(Alternating Direction) implicit Magnetohydrodynanuc Algorithm. In addition, a description of the important
FORTRAN variables used in Ibe code is included and the method of memory allocation is described. This report is
intended to introduce the code features to the new user cr interested computational physicist. This report is by no means
complete: it does not give every detail of the physical model necessary for implementation, nor does it give every
finite-difference technique, nor is it a card-by-card code description. This report does not attempt to justify the physical
model or the finite-difference techniques, nor does it relate much of the history of the code. Rather, this report tells the
reader what ANIMAL is now, take-it-or-leave-it. Hopefully, this report does give a useful overview of the code as it
exists at this writing. The various references cited are useful supplements to this report and the reader should also
familiarize himself with these documents.

ANIMAL numerically solves a set of nonlinear, time-dependent, two-dimensional magnclohydrodynamic
(MHD) partial differential equations. Basically speaking, ANIMAL is intended to solve the model equations in any
coordinate system. To date, the Cartesian, cylindrical r-z, cylindrical r-d>, spherical, and toroidal coordinate systems
have been implemented. The present version of ANIMAL is limited to a rectangular domain in whichever coordinate
system is used. However, a version nearing the completion of development allows the construction of a finite-
difference grid that consisicof a number of rectangular domains connected on at least one side with another domain, and
the coordinate system of each domain can be different; with such a capability, more complex physical systems can be
modeled.

ANIMAL is a generalized Eulerian code. Either the finite-difference grid remains fixed in space or the grid
can move in one of the coordinate directions while retaining the orthogonality of the grid. In a Eulerian code, mass—as
well as momentum, energy, and magnetic flux—is allowed to move from one cell to other cells, and the finite-
difference grid remains orthogonal. Historically, nearly all major multidimensional MHO codes have been of the
Eulerian (fixed-grid) or generalized Eulerian (moving-orthogonal-grid) type. One alternative is the Lagrangian
approach where the finite-difference grid is fixed to the plasma, so that the mass within a cell remains fixed;
momentum, energy, and magnetic flux do, however, move from cell to cell. It is doubtful that a Lagrangian code could
handle the strongly two-dimensional, shearing motion observed in the calculations performed on ANIMAL, since, as is
well known, Lagrangian codes tend to lose accuracy and stability when the mesh becomes strongly distorted.
Intermediate to the generalized Eulerian and Lagrangian approaches is the generalized mesh method in which the mesh
moves in a Lagrangian manner until sufficient distortion is encountered, at which time, mass is allowed to flow from
cell to cell. The nearly Lagrangian motion of the generalized mesh method retains to a large degree die Lagrangian
advantages of interface resolution and accurate convective transport in the absence of shear. However, when motion
becomes strongly two-dimensional, the mesh in the generalized mesh method will become considerably distorted, and
it is unclear to this author just how well physical processes such as strong diffusion can be handled numerically on a
nonorthogonal mesh. Without a doubt, Eulerian codes have been used to simulate situations where the multi­
dimensional motion that occurs is stronger than any computations reported to date using either Lagrangian or
generalized mesh methods. In addition, the physical models that have been incorporated in the Eulerian codes are more
complete.

The physical model used in ANIMAL includes thermal conduction, resistive diffusion, radiation, and
ionization in addition to the inclusion of the LoreotzT X B force in a fluid description of a plasma. The charged-particle
transport coefficients are "classical" and the atomic processes are based on local thermodynamic equilibrium. The
plasma equations are coupled self-consistently to electrical circuit equations.

1

The major limitation of ANIMAL at present is that only the velocity components in the plane of the
calculation and the magnetic field normal to the plane are considered. In addition, ions and electrons are assumed to be
in thermal equilibrium, a limitation that can be eliriinated in a quite straightforward manner. A simple Ohm's law
including only resistive diffusion is normally used, al though the transverse thermoelectric effect is an option included in
the code.

Alternating-direction implicit (AD1) finite-difference methods are used in ANIMAL. The ADI method of
temporal differencing allows the use of a timestep larger than could be used with less sophisticated, explicit
finite-difference techniques. As Roberts and Potter1 have discussed, the timestep restrictions encountered with an
explicit method because of convective and diffusive transport can become very severe in magnetohydrodynamics. In
principle, the ADI method allows for a timestep dependent on time-rates-of-change of quantities, rather than on
Courant-Friedrichs-Lewy2 conditions; thus, for example, when simulating a quiescent gas with a very large sound
speed, the timestep can be much larger than the time required for a sound wave to travel across one zone. In addition,
ADI permits the formal accuracy of the finite-difference methods to be rigorously second-order accurate with respect to
the timestep. And, finally, ADI permits the inclusion of all physical processes and the inclusion of both dimensions,
simultaneously, without the need to resort to fractional steps, i.e., "splitting," and the resultant inaccuracies.

In ANIMAL, the ADI method of temporal differencing has been combined with spatial-difference equations
in such a manner that energy conservation depends only on timestep size and is independent of spatial-zone size, even
though a nonconservation form of energy equation is used. 3 For isolated systems, exact energy conservation to within
0.01% is generally expected.

The treatment of boundaries in ANIMAL is unique. 4 ANIMAL incorporates previously unconsidered aspects
of plasma/wall interaction. Situations such as wall contact, separation, and return are relevant in ANIMAL.

ANIMAL is intended to be a flexible and versatile tool. The numerous built-in options for geometries,
boundary conditions, initial conditions, physics (and even for difference methods) permit classes of problems never
run on the code previously to be attempted. For this flexibility the user must pay a price. Relatively little of the code is
"hardwired" and the user must experiment with things like zone size, timestep control parameters, artificial-viscosity
parameters, and difference technique, <o prevent pathologies and to ensure accuracy. The code is not "idiot-proof,"
and not all combinations of input data will work. The code must be considered on a ' 'user-beware'' basis, and the user
should not take for granted that everything will perform as advertised for every conceivable case, since not every
conceivable case has been checked out on the code.

During execution, ANflMAL produces a minimal amount of readily readable output. Normally, this output is
sufficient only to verify that a problem has been correctly generated and has encountered no pathologies during the
course of the computation. Only through the use of an extensive post-processor, briefly described in this document, is
extensive problem analysis possible. At this writing, the post-processor provides "snapshot" computer graphics for
approximately SS spatially dependent quantities, e.g., density, and approximately 90 time-dependent quantities, e.g.,
average density.

Published applications of ANIMAL include a study of the interaction of a hot, magnetized plasma with a cold
wall, 5 a study of z-pinch plasma under liner implosion conditions, 6 and a study of the MHD behavior of thermonuclear
fuel in an advanced relativistic electron-beam target using the fuel preheat-and-magnetothermoinsulation principle.7

ANIMAL was developed primarily to calculate the Krakatoa toroidal-pinch experiment.8 An important accomplish­
ment of ANIMAL is its ability to calculate the preionization phase of this experiment.9 ANIMAL has also been used to
study sausage instabilities of a plasma column, the run down stage of Lawrence Livermore Laboratory's (LLL's)
plasma focus, Rayleigh-Taylor instabilities of a plasma decelerated by a magnetic field in connection with LLL's
Baseball-H laser-target plasma production, 1 0 and studies of laser/plasma experiments.'' ANIMAL calculations have
suggested a possible diagnostic for use in liner implosion studies.' 2

Since ANIMAL is primarily a "pinch" code intended to calculate very dynamic plasma behavior, its
capabilities should be considered in context with other pinch-like calculations appearing in the literature. The
pioneering one-dimensional computer code of Hain el al. ' 3 was applied to the study of theta and screw pinches, and
various versions of their code have been used similarly at laboratories throughout the world. Duchs, 1 4 Freeman and
Lane," Schneider, 1 6 and Lindemuth and Killeen 1 7 computed various two-dimensional features of theta pinches. The
code of Lindemuth and Killeen was a predecessor to the current ANIMAL code. Other pinch-like two-dimensional
simulations were of the plasma-focus discharge by Potter, 1 8 a plasmoid interacting with a solenoidal magnetic field by
Freeman, 1 9 the trapping and tbermalization of a laser-produced plasma by Lindemuth and Killeen, 1 7 and the
simulations of plasma flow in channels by Brashlinsky. 2 0 More recently, Hofmann 2 1 has simulated the dynamics of a
belt pinch and Lui and Chu 2 2 have simulated the dynamics of a toroidal screw pinch in which all three components of the
magnetic field are important. Brackbill2 3 has done a three-dimensional ideal MHD computation of kink instabilities.

2

2. PHYSICAL MODEL

An MHD model based on local thermodynamic equilibrium is incorporated into ANIMAL. The basic model
equations are

dp
— +V.(pv) = C, (1)
0\

»<pv) _ _ 1 -
— + V-(pv v) + Vp + — B X(VXB) = 0 , (2)

St
tV-(pve) + p W - V - KVTt — X (VX B)|

1 u. J "0

(3) ?x B) — (V X B) - — x\

and

— -VX(v"XB) + VX f — (V X B) - S X V T I = 0 . (4)
at U 0 J

In Eqs. (1) to (4), p is the density, v is the fluid velocity, p the pressure, B the magnetic field, c the specific internal
energy of the fluid, K the thermal conductivity, T the temperature in joules, i) the electrical resistivity, er^D a radiative
energy loss, and fi^ the free-space permeability; mks units are used throughout. Equation (I) is the continuity equation.
Equation (2) is the equation of motion; the fourth term is the Lorentz force, T x B, where the current density 7has been
eliminated through the use of Ampere's law with the usual neglect of displacement current. Equation (3) is the internal
energy equation; the fourth term is the divergence of the heat-flow vector and the first part of the next-to-last term
represents ohmic heating, ijP. Equation (4) is Faraday's law, based on a simple Ohm's law, E = - v x B + 7ff
- }$ x VT, where the vector /5is the "transverse" thermoelectric coefficient multiplied by a unit vector in the B
direction.

For implementation into ANIMAL, the vector-model Eqs. (1) to (4) must be written out into component
form. The geometric versatility of ANIMAL is attained by writing the component equations in their general orthogonal,
curvilinear coordinate form and making a coordinate transformation from the usual (Xp x 3, t) two-dimensional
coordinate system to a "fixed" coordinate system (£,, | 3 , t). It is required that the transformation must satisfy
—I = I = 0. Ignoring the azimuthal component of Eq. (4), the component forms of Eqs. (1) to (4) then
Sh Hi
become

1 (h 1h 2h 3x 1jX 33 p) + ^ (x 3 3 h 2 h 3 p [v, - vfj) t ± . (x 1] h l h 2 p [v3 - vf]) = 0 . (5)

a
i i - (h 1 h 2 h 3 x 1 1 X j 3 p v l) + — (x 3 3 h 2 h 3 pv, [y,-"f])

+ i | ~ (x l l h l h 2 p v l [v 3 - v ?]) + h 2 p v 3 (v , h 1 3 x n - v 3 h 3 1 x 3 3)

+ h 2 h 3 x 33 S T + 7" h 3 X 33 B 2 7 T (h 2 B 2> = ° • < 6 >

3

and

- (h 1 h 2 h 3 X l l X33pv 3)+ — (x j 3 h 2 h 3 p V 3 [V] - v f])

+ 3 T (X H h l h 2 P V 3 [V J - V s]) + h 2 " v l (v 3 h 3 1 x 3 3 - v I h 1 3 x I l) %
+ h l h 2 x H ^ + — h l x U B 2 XT 0>2B2)=0.

3
W3

(7)

— (h , h 2 h 3 X l) x 3 3 p e) + — (x 3 3 h 2 h 3 p e [v, - v f])

+ ^ - (x l l h l h 2 " e [v 3 - v ?]) + P ^ - (h 2 h 3 x 3 3 v l >

+ p±(hlhM)-±

su

h 1 h 2 x I 1 ^ 0 3{

h 3 h 2 x 3 3 n 0 9{ 3

[h 2 h 3 x 3 3 / 3T + g"B2' 3 \]

I h i* . . r ««i + c 0h 2B 2 s i ; l t > 2 B 2 v j
" I M H / 9T "Tl^l a \1

IK + h,B,]
V 3 3 \ 3h "oh2B2 «J 2 ' / J

> f n 3

(h 2B 2)

h 2J|B 2l 3 T

,B,) + —
2 2 B 2 * 1

„ a , V ^ l a i l
(h,B,) +

,< 0 a t 3

 2 2 B 2 « j J
•• e R A D = (8)

^ (h l h 3 x U x 3 3 B 2) + j ^ [h3 x33B2 (v l - v ?) j + ^ f h l x l l B 2 (v 3 ~ v ?)

3 r h l x l l / r> » | B 2 ' 3T \ 1

~~df3 [h ^ (^ aj-0>a»a + ^ - ^ - j j
a T h3x3:i / i) a I B 2 ' 3T \1

(—-: — (h,B,) + 0 \ =0
3Si [v „ W 2 «» 2 2 B2 a $i / J

(9)

have been introduced for convenience. The notations Vj and v 3 refer to the velocity components in the f, and f3

direction, respectively, and B 2 is the component of magnetic field normal to the fj-f 3 plane.
The component Eqs. (5) to (9) are written essentially in the form in which they are differenced. It is very

important to note that only first and second spatial deiivatives of the dependent variables p , v,, v 3 , e, and B 2 are present
and that mixed derivatives of the form °, do not appear. Any additional Braginskii24 physics effects not in-

9fi9fe
eluded in Eqs. (1) to (4) generally involve the mixed second derivative.

4

To be complete, the model specified in Eqs. (1) to (4) must be supplemented by equations of state relating the
pressure, temperature, thermal conductivity, resistivity, and radiative energy loss to the density and specific internal
energy, and, for the thermal conductivity, to the magnetic field. It is here that an approximation to local thermodynamic
equilibrium is used. The ionization fraction f, for deuterium at a temperature T is computed from

C l f f + f i = '• (1 0)

where

Equation (10) is the Saha equation; the density dependence of the ionization potential I, is taken into account. A similar
expression is used for the dissociation fraction fd. The fraction dissociated and fraction ionized given the total number of
particles, so the pressure, assuming an ideal gas, is

1 (12)
p= — p T (l + f d +2f,) /m,

where T is in joules and all other quantities are in standard inks units. Similarly, the specific internal energy is

e = 2 n T . | T (2 - 5 + Yf'1 + 3f-) + 2f'e' + £<' f«] (13)

where «| and £ d are the ionization and dissociation energies, respectively, and where the 2.5 takes into account the
rotational and vibrational degrees of freedom of the deuterium molecule.

The thermal conductivity used is the sum uf the electron and ion thermal conductivities perpendicular to a
magnetic field as given by Braginskii . M Neutral-particle thermal conductivity, formulated by Stevens .^ can be used as
an option. The effect of neutral particles on charged-particle thermal conduction has not been taken into account.

The enhanced radiation due to line emission can be an important energy-loss mechanism. The radiative loss
rate e ^ o of Eq. (3) is

6 R A D = C 2 G W) p 2 T 1 / 2 , (14)

where C 2 is a constant and G(p,T) is a density- and temperature-dependent "total emission factor," which is a sum of
contributions from Griem's rates for bremsstrahlung, free-bound radiation, and bound-bound radiation.36 When
G(/>,T) is equal to unity, e ^ ^ equals the bremsstrahlung rate of Spitzer.2 7

The electrical resistivity, which represents the collisional loss of momentum and gain of thermal energy by
electrons, is due to collisions with both ions and neutrals. The resistivity is taken to be

» = H B + n N , (IS)

where r) B is the Braginskii25 perpendicular resistivity due to ion-electron collisions and where T^ , the resistivity due to
electron-neutral particle collisions, is given by

n N = C 3 T " 2 (l - f i) / f i , (, 6)

where C 3 is a constant.
The transverse thermoelectric coefficient 0 is also taken from Braginskii.24

5

3. TEMPORAL DIFFERENCING—GENERAL FORMALISM
The component Eqs. (5) to (9) can be written in the form

3T \ as, ; \ • dj 3 ;

where X, Y, f, and 0 are five component vectors, and

U = 0>,v,,v 3, c,B 2). (l g)

Only derivatives with respect to one orthogonal coordinate f, appear in X and only derivatives with respect to the
second coordinate f 3 appear in Y. The two alternately used finite-difference equations in ANIMAL can be considered
to have the form

[(<&-.)• ("]%)• ("?*«)] -° (, 9) + Y

("js") -T(UJJ»)

[f a£ i) - (D s 2 M D j £ .)] -° • (zo> + Y

where W k designates values at lime t™ and spatial coordinates (f ^ j , (f 3) k . In Eqs. (19) and (20), X and Y are spatial
ftnite-difference approximations to X and Y, respectively. Equations (19) and (20) show the standard ADI coupling
between unknown quantities. In Eq. (19), which is used to advance the calculations from t° to ! n + I , the unknowns are
the values U?^ 1 alongaline of constant k; the quantities atk -t-landk - 1 are known quantities since they have the
superscript n! In Eq. (20), which is used to advance the calculations from t n + 1 to t" + 2 , the unknowns are the values
U j £ 2 along a line of constant j ; the quantities al j +1 and j - 1 are known quantities since they have the superscript
n+1. Equations (19) and (20) ate in general nonlinear functions of the unknown quantities and therefore cannot be
solved directly. To solve Eqs. (19) and (20), ANIMAL uses essentially a Newton-Raphson method as given by
Pennington,28 among others. Application of the Newton-Raphson method to Eq. (19) gives an equation of the form

t A l ' j , k uj,lc + t B l > j . k u j+t ,k + l clAk uj-l,k l Vj,k • (21)

where the additional superscripts t and 8 + 1 indicate the iteration number and where A, S, and £ are matrices.
ThecalculatiomreporiedbyUndemuthandKilleen17canbeconsideredasusingEq.(21)for £ =0only.As

shown by Lindemuth and Killeen, Eq. (21) for 8 = 0 gives an approximation formally second-order accurate with
respect to the timestep A t = t n + 1 - 1 " . Repeated application of Eq. (21) until convergence is achieved does not increase
the formal accuracy of the solution, and Eqs. (19) and (20) are, when used together, still of second-order accuracy with
respect to the timestep. However, the basic reason for the success of ADI is that the errors introduced on one timestep
tre cancelled on the following timestep. This apparently requires the two approximations to the X of Eq. (17) to have
the same values, as indicated in Eqs. (19) and (20). If Eq. (21) is not iterated to somesort of convergence, the net effect
is to use a somewhat different value for X in (20) than is used in (19). Experience during the code development process
has shown that failure toiterate introduces unwanted, nonphysicaleffects that affect the calculations unless the timestep
is reduced considerably.

6

Note that Eq. (19) or (20), considered alone, is an approximation to the complete physical system, Eq. (17).
ANIMAL, as its predecessor,1 7 does not use fractional timestep or splitting procedures, whereby one physical
process—or one dimension—is treated as if the others were not present. Experience during code development has
shown instances where the coupling between physical processes or dimensions was sufficiently strong that a fractional
limestep mi.thod would have required a considerably reduced timestep to maintain accuracy. For example, situations
have been observed where the energy increase due to Ohmic heating was balanced by the heat loss due to thermal
conduction, so that no net change occurred, and yet either process by itself would have led to a drastic change in the net
energy.

Equation (21) is appropriate only when 1 < j <Jand 1 < k < K . ANIMAL casts boundary conditions in the
form

and

iin+l,B+l _ / p yi+l,e . fm+l.e+l j / 5 \n+l,2 . fTn+1,8+1 + / c V + l . e
uJ,k -^l'J.k u J - l , k ' <-*Vj,k u J - 2 , k + l t V J , k ' (23)

fjn+1,8+1 -fp \n+l,« . Jm+l.e+1 .(Vi urM.£ . rjn-H.B+1 + / p yi+l,B , - ,*
U j . l ~ (E 3 V U j , 2 + <H3>j,l U j ,3 n * V j , l • < 2 4>

j"ni+l,s+l _cp" in+l,B . r t n + 1 > s + 1 + m V + M . i tn+M+l. i . / i ! in+I,£
Uj,K '•'Vj.K U i , K - l ^ * V j , K U i , K - 2 + ,-'Vj,K (25)

Equations (21) to (23) form a set of linear, simultaneous, "tridiagonal" algebraic equations in the unknown
quantities Oj'jJ"1* s"1"1 for 1 s j =s J alongalineof constant k, 1 < k < K . The method of solution involves calculating
E's and F's such that

r in+I ,e+l -cn+l .E , frii+l.fi+l . piii-l.fi
uj,k ~ c j . k u j+l .k T r j .k • (26)

Substitution of Eq. (26) into Eq. (21) leads to the result that

E!iM--[(A,si i' ,*<P,si ,- ,-51>rv']"1-
[(B^y-' + ff.jsy.'-^y-']. (27)

psili'-[(*i«i,,, + (Pi«i 1 , ,-teM]" 1-
[^^'•'-(^•••(F,)-*1-']. (28)

hV,S = - I <VJ!kM + ^ l ^ ' ' 8 • ^"-l-'k] "' • % M • 2 < j < J , (29)

and

[tV.lK1-' - VJR1-* • F f t f] , 2 < j < J . (30)

7

Using Eqs. (29) and (30) for J - l and J-2 in Eq. (26) and substituting into Eq. (23) leads So

Irfi+l,8+t _ J 7 \tv "\n+l,C 4. m -\n+l,e . en+l .e 1 . pn+1,8 I .
U J,k - 1 ' _ y-Elh,i. + C V j . k E J - 2 , k] E J - l , k l

(/p yi+l.B + f ™ sn+1,8 . p"n-H,s + ,$ y i+l ,8 l . pn+1,8
^UJ.i. + |<- 'Vj,k b J-2 ,k + ^ t ' J . k J r J - l , k I'

+ M in+l,fi . cn+1,8 I
+ (*Vj,k F J-2 ,kj (31)

Thus the solution procedure along a line of constant k is to set and store the boundary condition Eq. (22), calctfbteA, B,
C, and V of Eq. (21) for j = 2, calculate and store j ^ and F 2 from Eqs. (27) and (28), repetitively calculate X, B, C, and
V of Eq. (21), andcalculate and store the E's and F's of Eqs. (29) and (30) for 2 < j < J. 0 , is then calculated fjpraEq.
(31)j}nd all other Uj's are calculated in decreasing order of j from Eq. (26). Note that it is not necessary to store A, B, C,
and V for each i as long as the boundary conditions have the form given in Eqs. (22) and (23). Also, note that each k line
is computed independently.

Equations (21) to (31), as a method of solving Eq. (19), give the basic ANIMAL algorithm for advancing
thecalculationsfromtimetntol"+l.Th?algorilhmbeginsbysetting Uj'jf'1'0 = fjjj .Thenfork =2(orK-l)Eqs.
(21) to (31) are applied repetitively until | (0 j £ ' - e + 1 - O j ^ 1 - 8 \l O j ^ 1 ' 8 \ < 8, wUre 8 is typically
5 x 10~4. Then each successive k is advanced similarly. When all k such that 2 ssk =sK - 1 have been advanced, the
boundary conditions Eqs. (24) and (25) are used to set values at k = 1 and k = K.

To advance the calculation from time t n + 1 to t n + 2 , the Newton-Raphson method is applied to Eq. (20).
Boundary conditions have the same form as in Eqs. (22) to (24), with the superscript n+1 replaced by n+2. The
equations corresponding to Eqs. (21) and (26) are

(•7 \n+2,B , rjn*2,t+l + en" yi+2,8 . rjn+2,8+1 + tr -in+2.8 . T\a*2,tt\ _ fv ^n+2,8
(A3>j,k U) ,k + l B 3'j .k U j , k / l + t C 3Jj.k U j , k - 1 " < V j . k (32)

and

U i ,k ^.k Uj,k+1 + F j ,k ' (33)

respectively. The derivation of expressions for EjU 2 , 8 , P",22'8 • Ej!k2'' , F j 1 / 2 , 8 . Uj 1^ 2- 8 corresponding to Eqs.
(27) to (31) is straightforward. Thus, the .algorithms for solving both Eqs. (19) and (20) arejdentical except for the
method of establishing the coefficients E, H, and Fof Eqs. (22) to (25) and the coefficients A, B, C, and V of Eqs. (21)
and (32). (Rigorously speaking, F and V are not "coefficients.") The only other difference in the two algorithms is
where the computed results, Eqs. (26) and (33), are stored. The similarity in the two algorithms is used t> minimize the
coding in ANIMAL.

As formulated by Eqs. (19) to (33), ANIMAL'S basic algorithm isquite general and need not be restricted to a
five-component solution vector 0 as indicated in Eq. (18). ANIMAL is in fact set up to calculate subsets of the model
equations. The following subsets can be selected in addition to Eq. (18):

(1) U = (p, e, B) in one-dimension, i.e., one-dimensional diffusive transport.
(2) 0 = (p, e, B) in two dimensions.
(3) U = (p, Vj, «), i.e., one-dimensional hydrodynamics.
(4) U = (p, V], V3, 6), i.e., two-dimensional hydrodynamics.
(5) 0 = (p, V|, c, B2), i.e., one-dimensional MHD.

For Eq. (18) and each of the subsets a variety of physics options are available; e.g., 0 = (p, v,, e) can be ideal
one-dimensional hydrodynamics if the thermal conductivity and radiation are set to zero. In addition, because of the
generality, the ANIMAL algorithm is set up to handle as many as ten variables in anticipation of die addition of more
dependent variables. For example, most of the structure to handle additional magnetic field components B t and B 3 is
already in the code (ANIMAL'S predecessor17 did in fact calculate B, and B3); what is mining is merely coding to
determine the appropriate coefficients, and this would be a relatively minor fraction of the entire coding.

It is important to note that for the OIK dimensional subsets, Y of Eqs. (19) and (20) are identically zero.
Hence, in one-dimensional calculations, ANIMAL uses a fully implicit method [Eq. (19)] to advance from t° to t n + l

and then ANIMAL uses a fully explicit method [Eq. (20)] to advance from f'1"1 to t" + 2. By combining Eqs. (19) and
(20). one can see that the one-dimensional difference equations relating U" + 2 to IP, for n even, appear to be
Crank-Nicholson,2 whereas those dialing U" + 3 to IF"*"1 appear to be "leapfrog."2

8

4. SPATIAL DIFFERENCING—GENERAL FORMALISM
The preceding section outlined the temporal-differencing techniques in ANIMAL. The spatial-difference

equations in Eqs. (19) and (20) are formulated by integrating the model equations over the * 'control volume," or "mesh
cell," or "zone," in the ft-(3 plane (shown schematically in Fig. 1). The following integrals of geometric quantities
are relevant:

V»fc= f f (h 1 h 2 h 3 x 1 1 X 3 3) » « 1 d 5 } .
'«I'j-J/2 •' (E3>k-l/2

J
' f3>|c+t/2

r ("2h3x33)jVl/2 d *3
-1/2

- f flVl/2
S,Vl/2 = f ^hlxAll2 «1 •

<*lVl« i f3>k+l/2 / h l h } " l l x 3 3 \ "

•/«i>j-«2 A 3) k - , / 2 h 2 '

« 3 W / h 3 X 3 3 \ "

•"'S'k-ip ' j+1/2

« i W / h i x : i \ "

(34)

(35)

(36)

(37)

(38)

(39)

*a

'^'k+Vi
f—»«,) ,—

'^'k+Vi I
<*3>k-%

•
I

<*3>k-%

•

t <*3>k-%

. FIG. 1. The control volume, ot
*1 "zone," used to formulate the ANI­

MAL finite-difference methods.

<*3>k-%

(S,)j.% «,>• tt,l|*

. FIG. 1. The control volume, ot
*1 "zone," used to formulate the ANI­

MAL finite-difference methods.

9

In Eq. (34), Vj k can be identified as the two-dimensional volume of the zone; the true volume isV"j k Af2, where, tor
ajisym metric problems, Af2 =2ff. Similarly, S] + 1 / 2 j . and S'i k +) / 2 can be interpreted as the areas of the cell interfaces
at j +1/2 and k+1/2, respectively. The quantities given in Eqs. (37) to (39) are relevant because it has been found to be
advantageous to difference the magnetic field as if h 2B 2 was a dependent variable. L" k can be interpreted as the
"inductance" of the zone.

Equations (5) and (9) are totally in "conservation" form and the difference approximations exactly (except
for machine roundoff) conserve mass and magnetic flux (the reader should be familiar with Ref. 3). Thus, the first
component of Eq. (19), corresponding to Eq. (S), is differenced as

v n + l „nt! v n -n

I jtl/2.fc

rJ/2,k|p(v,-v?)];; / 2 >

* SiMW l"^ - v3> i,k+l/2

S^-t /2 P(v, - *) . _._ = 0 t*-ll2\™»- V 3 '] J > k _ W - U ' (40)

where the method for evaluating the dependent variables in the spatial differences has yet to be specified.
Many of the terms in Eqs. (6) to (8) are also "conservative" and representy/are; of momentum or energy.

However, terms that cannot be integrated once exactly in the double integration over df, and d£3 are "nonconserva-
tive" and represent what this author refers to as forces. An example oizforce is the pressure gradient term of Eq. (6),
which in fact is a real force. Force terms involving spatial derivatives of dependent variables are called nonlocal forces.
These terms are integrated by assuming the force varies linearly over the diret Jon in which the derivative is taken and
by assuming the dependent variables are averages in the other direction, e.g.,

f f h 2 h 3 x 33 TT I d«l d*3 "

1 / 3p \ n + 1 1

(*W-«.U)[TW(£)^

4Mlf]
x l j-W.kJ

j+l/2,k

(41)
- J-1/2.KJ

10

The treatment of nonlocal forces as implied by Eq. (41) is necessary to retain in the difference equations the
"subconservation" properties of differential equations even though the model Eqs. (5) to (9) are not completely in
"conservation" form.3 Forces not involving spatial derivatives of dependent variables are termed local forces, e.g.,
the term h 2pv 3v 1h] 3x,, of Eq. (6).

From the form of Eq. (40) it should be apparent that, for fluxes, each zone on either side of an interface
receives the same contribution from quantities on either side of the interface except for a change in sign (i.e., fluxes are
antisymmetric about the interface). Similarly, from the form of Eq. (41), it should be apparent that, for nonlocal forces,
each zone on cither side of an interface receives the same contribution from quantities on either side of the interface with
the same sign (i.e., nonlocal forces are symmetric about lite interface). Thus, the coefficients of Eq. (21) can be written
as

l A l^ ik " " i i + ' " V i k + <n > " + 1 - s + (c y + M
1 J.k J.K 1 J.K T l a l ' j+ l /2 ,k l C l J j + l / 2 , k

tZ yHI.e + z-7 •.ii+l,e
~ y°\'i-lll,k + Ial>j-1I2.1L ' (42)

/» \n+l,c _ tZ -,n+l,fi . /T \n+l,B
(Bl>j,k " * b lVl /2 ,k + t d lVl /2 ,k ' (43)

(p \n+i,s _ _(~ yi+t.e + iZ \n+t,e

and

- ^.r.'/ik+ dtfiiU - <«%

~ (*Pj,k+l/2 ~(l*3>jMU2 + ^8P)".k-l/2 ~(&3*j!k-l/2 • (45)

In Eqs. (42) to (43), the various superscripts and subscripts imply a functional dependence for any quantity Q given by

n n+l ,B _ n / r .n t l . sN
Q),k Q \Ui*) ' (46)

nn+l,« = n / y n + l , C iin+l,s\
^+1/2,;: V\UjM ' V l . k J ' (47)

and

P T J ^ - Q O f t . «&••,) • (48)

Eqs. (42) to (45) result from
/7ayi+l.e+I _ f n " ^ n + l , S .wn+l .e+l + (5 \ n + l , ! . fjn+l.e+l _ (: r in -H,8
l ' 11+l/2,k tVj+l /2 ,k u j+ l ,k T ^Vj+l/2,k u j ,k l v l ' i+ l / 2 ,k • (49)

/7s>ii+l,B+l _ / 7 yi+1,8 . [Jn+l,e+l + / = 1 n + l , s . r,n+l,8+l / - \ n + l , s
l ' l V W * al'j+l/2.k u j + l , k rlci'l+in& U j,k — (' wl-'j+l/2,k • (50)

1 1 l-'j.k " ^Vj.k uj,k _ lVj,k • (51)

11

{ T l l+1 T n l"

t ntl _ tn J

_ pn+1,8. rjn+l.fi+I „n-t-l,S
" i.k i.k _ J * (52)

and

Yjlk - (?!)'* + (« !) J V W + ("Wk+w - <«3>jV-w + GJ^-w (53)

where?} represents all the antisymmesic fiuxes.Tf represents all the symmetric nonlocal forces, and f̂ represents the
local centered forces appearing in X°+' of Eq. (19). Thus, Eq. (49) is the Newton-Raphson linearization of
the forces, and hence

l. lVj+l/2,k
t f!V»*

dU j+l,k J (54)

/ -yvM.fi _
"•"l/j+W.k

a(fp j + l/2,k

l V j + l / 2
/ f a\n+l , f i + (h %n+l,B . irn+l,fi + t— \n+l,fi . trn+l.B

(56)

i.e.; b| and a, are "Jacobian" matrices. Note that in Eq. (56), (ff) \XHlx rePresems *" explicit flu*, which is only
a function of 0 ° + l ' ' . Throughout thisjeport, the convention is adapted that any quantity with an iteration subscript of
the form s +1 is a function of both TJ»+'.e+1 and U° + ' - e . The functional dependence implied by superscripts on
any quantity Q is

Qfi+1,B+1 _ Q(-jjn+l,B+l (jn+l.B\

<yi+i.« = Q (0 n + 1 ' e) ,

(57)

(58)

and

Q n = Q(U°) (59)

All of the coefficients appearing in Eqs. (50) to (52) are also determined as a Newton-Raphson linearization.
In Eq. (53), g§, £| , and g| represent the fluxes, nonlocal forces, and local forces, respectively, appearing in Yj>k

which appears explicitly in Eq. (19).
In a similar fashion, the coefficients in Eq. (32) can be written as

(K ^n+2,6 _ nn+2,B + /T jn+2,B + (T \n+2.E + / - \n+2,J _ / h \n+2,s + ,A \n+2,B
l A3 Jj,k V U3'j,k + *Vj,k«/2 + ^c3>j,k->l/2 l l Vj,k-l/2 + <Vj,k-!/2 ' (60)

12

http://yvM.fi
file:///XHlx

(B3'j,k _ <b3)j,k+l/2 + t**3>j,fc+l/2 • (61)

, •^ ,11+2,5- /= in+2,B + f = - , n + 2 , E
<C3Jj,k " ~ <a3Jj.k-l/2 + l <Vj.k-l|2 • (6.0

and

tV3-'j.k mj,k * ^Vj.k * lVj,k«-l/2 + *-w3-*i,k+l/2

l Vj,k- l /2 + lVj.k-1/2 1* l-'j.k

(l]'j*l/2,k u l'j+l/2,k + u l ' j - l / 2 . k

where, analogous to Eq. (49),

/:fa\in-2,e+l _ /T in+2,B . ff n +2,fi+l + S7 \n+2,fi . i i n + 2 , C + l _ (Z in + 2 ,e
tS 3>j.k+l/2 ~ ^b3-*j,k+l/2 Uj,k+1 + t a 3 > j .k+i /2 Uj.k l Vj .k-H/2

is the Newton-Raphson linearization of the fluxes g§. Similar linearizations for g| and 55, analogous* to Eqs. (50) and
(51), are also used in Eqs. '50) to (63): and Eq. (52), with superscript n + 1 replaced by n+2, is also used.

The coefficients A, B, C, and V of Eqs. (21) and (32) have been broken up into the form given by Eqs. (42) to
(45) and Eqs. (60) to (63), respectively, to facilitate implementation of the algorithm into actual FORTRAN coding.
Thus, for example, prior to the forward sweep along line k indicated by Eqs. (21) to (31), the "explicit" fluxes
(g^)j 1l (+] /2 and "explicit" forces(g s

3)'jk +| f f lare computed for all I < j < J and stored. They are then recalled
as required in the forward sweep to contribute to V t as indicated in Eq. (45). When the iterations along line k converge,
the algorithm is then applied to line k' = k+1. The explicit fluxes and forces at the k' + l/2 interfaces are again
calculated and stored, but the fluxes and forces at k' -1/2 need not be recomputed, for they are merely the previously
computed and stored values for k +1/2. Hence, when advancing time from tn to t n + 1 , there is no coding in which the
mass flux represented by the last term on the left side of Eq. (40) is explicitly calculated (except at boundaries, to be
described later); there is only coding corresponding 10 the fourth term of Eq. (40). In a similar fashion, the coefficients
a, b, v, c, 3, and w, which appear in Eqs. (42) to (45), are compute** only fora j+1/2 interface and are then stored where
they are used for the j'—1/2 interface when j ' = j + 1. In essence, then, only one-half the flux and nonlocal
force-difference equations are actually coded, and this minimizes the possibility of error.

Just as there is symmetry (or antisymmetry) about an interface in the algorithm, there is also a symmetry in the
model equations with respect to the interchange of the variables f, and f3 (and subscripts I and 3). And there is a
symmetry in the corresponding difference equations when f j and £3 are interchanged and the time superscripts n +1 and
n+2 are interchanged. This symmetry is a result of retaining the scale factors h,, h 2, and h3 in the model equations and
in the corresponding difference equations. Thus, the same coding used to calculate (Spjx+112 i n E (l - W5) ' s u s e < i t 0

calculate (ff)!Vi/2 k'" Eq- < 6 3)- Similarly, the same coding used to calculate the coefficients (S^f+l^y fl,|)°+i/2,k'
m A <*i>jVi/2,k o f Eq- < 4 9 > i s u s e d '"calculate the coefficients (aVj^+ia' $})j,£li%> and ̂ ".k+m of Eq. (64), and so
forth.

Consequently, to understand nearly the entire ANIMAL coding, it is sufficient to understand only the
procedure for advancing from tn to t n + I , i.e., the procedure for solving Eq. (19). In addition, when more physical
effects are to be added to the code, or when finite-difference techniques are to be changed, it is nearly sufficient to make
the appropriate modifications to the coding gj, gf, and gf of Eq. (45) and to the coding for the coefficients of Eqs. (49)
to (52); the implied modifications to Eqs. (60) to (64) are automatically taken into account. There are, of course,
sections of the coding that must differentiate between f (and f3 and between t n - » t n + l and t n + l - » t n + 2 , but these
sections are relatively small and relatively static.

1 1 i'j-i/2,fc (63)

13

In the linearized difference equations, Eqs. (21) and (32), the contribution of any of the fluxes or forces
appearing in the model equations can be identified as a single numberonly if the fluxes and forces appeaiexpticitty; i.e.,
only if the fluxes and forces appear in'? or in X of Eq. (20). Thus, for example, when working with Eq. (21) to advance
from t n to I" + ' , the value for the mass fluxes corresponding to the last [wo terms on the left side of Eq. (40) can readily
be obtained as a single number. On the other hand, the values for the mass fluxes corresponding to the second and third
terms of Eq. (40) cannot readily be obtained, for these fluxes appear implicitly in Eq. (21); i.e., the actual value for the
mass fluxes can only be obtained after Eq. (21) is solved. The fact that the implicit fluxes and forces actually do have a
single value, computable only after solution of the implicit equations, seems to be a fact not usually considered by
people working with implicit equations. In ANIMAL, however, this fact is used as a debugging diagnostic. For
example, suppose the iteration procedure using Eq. (21) converges to within a factor S after L + l iterations. If the
coefficients rj| ,a| , and v, of Eqs. (54) to (56) have been saved, one can compute the flux values using Eq. (49), i.e.,

(' • ' j+W.k " (b l V l / 2 , k J+I,k + < a l V l / 2 , k Uj,k * V l V l / 2 , ! : ' (65)

Since the iterations converge, the identification U"f' = U n k ' , L + 1 is made. The explicit flux (S')?t{l2it • w n ' < : n

appears in Eq. (63), can then be computed. II the coefficients b , , 5 | , and V| of Eq. (65), used to advance from f" to t n + ' ,
were correctly computed and if the explicit computation of (f f^+f/z k, which is to be used to advance from t n + I to
to t n + 2 was also correct, then

(f a) n + 1 = /•(•a 1 n+l,L+l . n f s 2 >
U l > j + l / 2 , k ^ l ' j + l / 2 , k + ° l * > (66)

a consequence of the fact that the Newton-Raphson method is second order. In ANIMAL, the capability for performing
the check irnpl ied by Eq. (66) is built in for checking all implicit fluxes and forces. If the difference is not 0(A 2), then the
existence of an error is implied (of course, sometimes the error is in the coding doing the checking).

The symmetry of the algorithm provides another useful check used in ANIMAL. In the algorithm, when the
coefficients A, 6 , C, and V of Eqs. (42) to (45) are being assembled,?Pj 1 , 8 and m " k

M , B , corresponding to the
time derivatives as indicated in Eq. (52), are the last contributions to be incorporated. The algorithm can be intercepted
on the first iteration prior to the incorporation of fi and m, and the coefficients are modified so the actual coefficients
used in the tridiagonal solver have the form

/T'in+1,0 = ^n+1,0
l A l ' j , k *j,k • (67)

(B l ' j „ " ^ V j . k ° • (68)

U i '

where the unprimed coefficients A, B, C, and V are computed according to Eqs. (42) to (45). Using the primed
coefficients in Eq. (21) is equivalent to doing an explicit calculation, since for example, using Eq. (56),

rf -vn+1,0 . j > + l , 0 + <Z -vn+1,0 . fin+1,0 _ r~ -in+LO
l ' l W , k i.k *Vj+l/2 ,k u i + l , k <-Vj-H/2,k

_ /"fa\n+l,0 _ /Tain
" <•' Fj+lfl.k " <•' l'j+W.k ' (70)

14

In a similar manner the algorithm normally used to advance from t n 4 ' to t n + 2 can be used instead to advance from t" to
t n + ' , be intercepted on the First iteration, and be made to effectively perform an explicit calculation bymodifying the
coefficients analogously to Eqs. (67) to (69). Thus, there are two distinct ways to calculate an explicit U n + M ; and the
resultant values should be identical, or errors in the coding are implied. This type of check is normally performed along
with the checks implied by Eq. (66) whenever modifications to ANIMAL are made. These checks are really like a
single parity check in that they verify that the number of errors is even, not odd, and hopefully that the even number is
zero.

As indicated previously, there is a single section in ANIMAL that calculates implicit forces and fluxes
associated with an interior interface and a single section in the code that calculates explicit forces and fluxes associated
with an interior interface. The forms used for fluxes and forces across a boundary interface, however, are sufficiently
different that separate sections of coding for both left (or lower) and righUor upper) boundary fluxes are required. This
is a result of the fact that, in ANIMAL, interior dependent variables Oj i, for 2 =s j s l - l and 2 * k s K - 1 are
interpreted to be "zone-centered,"or average values. Each interior point [(f|)j- (6)k] is located a fiill cell-width away
from its interior neighbors. On the other hand, boundary values are interpreted as being boundary interface values, not
boundary cell, or "half cell," values. Since the boundary values are interface values, they are located a half cell-width
away from the first interior values, as indicated in Fig. 2. Boundary values are not included in any volume integrations,
so, for example, the total mass within the domain is

J - i K - i

j=2 k=2 (71)

The above described interpretation of boundary and interior values facilitates the incorporation of unique boundary
conditions4 and facilitates the maintenance of conservation properties.3

k = K(K:!4I

K-1

K-2
K-%

K-3

i — • r — • 1 • -

(I • • •

I • • •

I • • •

«1
J = \[%\ 2 5/2 3 7/2 4

FIG. 2. A portion of AMMAL's
finite-difference grid, showing loca­
tion of "cell-centered" values and
boundary values.

15

5. BASIC DIFFERENCE EQUATIONS FOR TIME DERIVATIVES

The time derivatives appearing in the model equations ate treated in a nearly straightforward manner. The
time derivatives in Eqs. (5) and (9) a.e linear in the dependent variables and hence need no linearization. On the other
hand, the time derivatives in Eqs. (6) tit (8) are nonlinear. In spite of earlierclaims in this report, the time derivativesare
not linearized by straightforward application of the Newton-Raphson procedure. ANIMAL'S procedure is a result of
the fact that its predecessor1 7 did not iterate to convergence, but rather accepted the first iterate U n + 1 ' 1 as the final
value. As shown by Lindemuth and Killten,' 7 when the two alternately used approximations to the spatial derivatives
are considered as a whole, even with only one iteration, they are overall-accurate to 0(At 2). For the time derivatives to
be overall 0(At 2), the linearization process can not introduce any (KAt) error other than that introduced by writing

3(pe) „n + l c

n + 1 - p V
_ + 0(At) . (72)

Newton-Raphson linearization of the first term on the right of Eq. (72) leads to

, n+l.l
lf"-fl

At \ At / At At

A truncation error analysis of Eq. (73) shows that additional 0(At) errors are introduced by the linearization. These
errors are not canceled when advancing from t n + 1 to t n + 2 . Hence the overall approximation, if only one iteration were
used, would be still only 0(At). This fact has been realized independently by Briley and MacDonald, 2 9 who essentially
use the same linearization algorithm to solve the Navier-Stokes equations as Lindemuth and ki i leen 1 7 used in
magnetohydrodynamics. On the other hand, a truncation error analysis of the ANIMAL method given below shows that
the only 0(At) error introduced is that indicated in Eq. (72), so even if only one iteration is performed, ANIMAL'S
treatment of the nonlinear lime derivatives is still overall correct to 0(At 2). Since ANIMAL now iterates to con­
vergence, it is not clear whether or not this treatment is necessary or useful. The ANIMAL treatment uses a
pseudo-explicit approximation to pj t ! based on both U n - 9 and U n . Consider the full difference approximation for the
continuity equation to have the form

v n + l n+l _ yn pn ^
J±^l J±J± + X.(U" + 1) + Y.(U n) = 0 , (74)

(ii+l _ t n

which corresponds to the first component of Eq. (19). The pseudo-explicit ??£ l ' ! » then calculated from

v n + l rn+1,8 _ v n n
j.k P) ,k i,k Pj,l< - „ t i D

— — — + X . (U n + 1 " e) + Y.(U") = 0 . (75)
,n+l _ t n ' '

Prior to the introduction of the basic time-derivative difference equations, it is convenient to introduce a
change in notation. As defined in Section 2, the velocities v f and v§ are the "grid" velocities, i.e., the velocities of
the moving coordinates x, and x 3 with respect to the' 'fixed'' coordinates f, and f3, respectively. As shown in Eq. (40),
it is actually the relative velocity v, - v f that determines the convection of mass (momentum, energy, magnetic flux).
Hence, in ANIMAL, the dependent variables are the relative velocities, rather than die total velocities, which are
given by

and

"* = v l - v l C (76)

(77)

16

It is also convenient to introduce a relative, or "plasma," magnetic field such that

BT — Dn — B. (78)

such that the electrical current flowing in the plasma is

VX B p

"0
(79)

Usually, V x § E - 0 in the region of solution; i e., § E represents the magnetic field due to currents external to the
domain. However, in calculations of an advanced relativisticelectron-beam tpjget,7 B E represented the magnetic field
due to the electron beam. In the electron-beam target, V x B E * 0 in the region of solution, since the electron beam
represented an additional current flowing through the target; however, the component of current that led to plasma
forces and plasm:, ohmic heating was still given by Eq. (79).

In all cases, vf, vp, and B | are assumed to be known functions of time and space (i.e., they are specified
prior to the initiation of a computation). The quantities v^, v j , and B | can be always identically zero, in which case,
vf, \f, and B£ represent the actual velocities and magnetic field, respectively.

In the presentation below, the term in the model equation is indicated on the left side of the ' 'approximately
equal" sign and the difference equations that define the coefficients corresponding to Eq. (52) appear on the right side.
The double-integration signs are shorthand for the integral of i({ df3 from (f,)j-y2to((i^+U2 a n d f r o m (ft'k-ira t o

(ft'k+1/2-
The basic time-derivative difference equations used in ANIMAL are

Uh h,h, x n x I 3 p d « 1 d t 3 * WW-1" vr j,k ^j.k
(80)

+ 1 ~n+l,G J '* J-* _J^2 J_2Z -T*'".*

N; k

+ ^; t

v n + l n + l , t + l _ v n _n
v j , k Pj.k v j , k ^j.k

181)

Ytffh\hihixn*nt> (v? + v ?) <*i Ah

(v «) " + M + 1

+ (v ?) " + 1 - (,»)" - (,?)"
~ n + , i t

 V 3 / j . * V 3 / J . k v 3 / j , k V 3 ' j , k
-Vf.t'Sjj.

K\+(*>;, v i i + l -n+l.B+1 _ v n n
v j . k Pj.k V j , k P j , k

(82)

17

- J ^ h 1 h 2 h 3 x 1 1 x J J ^ d E , < i 5 3

_ v n + l 3-11+1,«
.n+1,8+1 J I
j,k ~~ e i ,k

and

n+l „n+l,a+l v n n
J,k "j,k S<£

c!,k (83)

(84)

t n r l — * n

Expressions identical to Eqs. (80) through (84), with superscript n+1 replaced by n+2 and superscript n
replaced by n + 1, are used to advance from t " + 1 to f ° + 2 . Except that in Eqs. (81) to (83), W J 1 - * • calculated
according to Eq. (75), is replaced by T^k"2"6 . calculated according to

v n + 2 rn+2.C _ v n + l J I + 1
V j ,k Pj.t Vj,k ^j.k

fn+2 ,n+l

which corresponds to the first component of Eq. (20).

+ X , (U " + 1) + Y , (U " + 2 ' S) = 0 (85)

6. VELOCITY FRACTIONAL-STEP TIME-DIFFERENCING
In ANIMAL, there is actually a choice of three different methods of tune-differencing, the method given

in the previous section and the ones to be outlined in this section and the next. From the basic time-differencing
fomalism of Section 3 , it should be apparent that in Eqs. (19) and (20), only (v ,) n + l , and not (v.)" or (v ,) " + 2 appear
in ihe two successive approximations for the model Eqs. (5), (8), and (9); (v^" and (v ,) n + 2 appear only in the
approximations for Ihe model Eqs. (6) and (7). Similarly, only (v 3) n and (v 3) " + 2 appear in the approximations for Eqs.
(5), (8), and (9); (v 3) i l + ' appears only in the approximations for Eqs. (6) and (7). Under certain circumstances, the
velocities. . . (v i) " - 2 , (V])", (v i) n + 2 . . . oscillate about the relatively constant values . . . (v i) n " 1 , (v 1) n + 1
The exact origin of these oscillation's is unclear, although occasionally they can be attributed to improper timestep con­
trol or insufficient iterating convergence. The oscillations are driven by the pressure gradiant and magnetic forces. They
are generally related to the "explicit-implicit" character of ADI and high "Courant" numbers; they are short wave­
length oscillations, which have no business being there. These oscillations are not unstable (or at worst very weakly
unstable), but they sometimes wreak havoc with the timestep control. Therefore, the "velocity fractional step"
approach to time-differencing was developed.

Normally,

[p n + 1 , (v,r . (B,) n

(86)

18

and Vj and v 3 are advanced by equations of the form

J*_J*—u^ 1* i.* iij + (v n + 1 + „ = 0

«4-1 n i £

and
v n+2 _n+2 /„ ^n+2 _ v n + l „n+l , yi+1
vj,k ''j.k l v3 Jj,k v j ,k ^j.k *Vj,k

+ X 4 (U n + 1) + Y 4 (U n * 2) = 0
t n + 2 _ t n + l

In the velocity fractional-step approach, new dependent variable vectors are defined as

U n = [/>" , (V!)"- 1 , (v 3) n , en , (B 2) n] , (89)

U"" 1 = [P n + 1 , (l r 1)" + 1 , (v 3)" , <="+1 , (B 2) " + 1] , (90)

U n + 2 = [P n + 2 , (v ,) n + 1 , (v 3) n + 2 , e " + 2 , (B 2) n + 2] ; (91)

f.nd Eqs. (87) and (88) are replaced by

(v) i+l _ (v J?1"1

v ? k »j"k — ' r - + x 2 (u " + 1) - ("t^k1 x ; (u n t l)
J ' K J , K n+1 . n - 1 z l J ' K *

+ Y 2 (U n) - (v I) j £ 1 Y 1 (U n) * 0 (92)
and

W - ('j^n
J.K J.K (n + 2 _ t n * J J . K 1

+ Y 4 (U n t 2) - (vjff Y , ! ^ 1 1 * 2) = 0 . (93)

In essence, as shown by Eqs. (92) and (93), the velocity components are advanced every other timestep,
always by an equation implicit in the direction of the velocity component and explicit in the direction perpendicular to
the component. The possibility of instability in the explicit direction is introduced, but since the only piocess in the
perpendicular direction is convection, instability can be eliminated by the use of "upwind" differencing for the
convective term in the perpendicular direction. As can be shown when the actual form of X and Y are specified, Eqs.
(87) and (88) exactly conserve Cartesian momentum, whereas Eqs. (92) and (93) conserve momentum only to 0(it).
Where direct one- and two-dimensional comparisons between the normal method and the velocity fractional-step
method are made, the apparent inaccuracies introduced by the latter are tolerable, and often the computation time is
significantly decreased asa resultof using increased timesteps. Perhaps unacceptable inaccuracy is introduced in strong
shock cases, where the conservation properties of the difference equations are important. In one-dimensional problems,
the inaccuracies introduced by the velocity fractional-step method are not as severe as those introduced by a fully
implicit method, i.e., using Eq. (19) successively. In a sense, the velocity fractional-step method is not really a
fractional-step method, since Eqs. (92) and (93) involve all physics and both directions.

Implementation of the velocity fractional-step method in ANIMAL was a quite minor task. All coding to
calculate the coefficientsof Eq,. (21) [or Eq. (32)] was left intact. When the coding was executed, the quantity called
(v,)" was actually (v ,)" - ' . At the point where time derivatives are incorporated into the coefficients, the coefficients
for the V| (Vj) equation were appropriately modified, and the coefficients for the v 3 (V]) equation were zeroed. The
algorithm still went through the motions of using 5 X 5 matrices, but the v 3 equation merely led to the result (v 3) " + 1 =
(v 3) n . It would be more difficult (but advantageous from an execution time point of view) to make use of the fact that
really only 4 X 4 matrices, as implied by Eqs. (90) and (91), are required.

19

7. IMPLICIT TIME-DIFFERENCING WITH /3 > 1/2
It was indicated in Section 6 that one pathology observed in the operation of ANIMAL was the oscillation of

die values (v ,) " - 2 , (v ,) n , (V [) n + 2 . . . about the values (v ,) n ~ ' , (v ,) n + 1 , (v ,) " + 3 for n-even. Similar oscillation-, have
also been observed in the internal energy and magnetic field. The oscillations in internal energy are driven by the
thermal-diffjsion terms and tte oscillations in magnetic field ire driven by the resistive-diffusion terms. As with the
velocity oscillation, the exact origin of the oscillations is unclear, although occasionally they can be attributed to
improper timestep central or insufficient iteration convergence. The oscillations are generally related to the "explicit-
implicit" character of ADI and high "Courant" numbers. ' lean be shown that such oscillatory behavior occurs for
short wavelengths at high "Courant" numbers for the basic ADI differencing. What is not clear is the origin of the short
wavelengths, which have no business being there.

The implicitness of finite-difference equations is usually discussed in terms of an implicitness parameter)3
(not to be confused with the transverse thermoelectric coefficient /3 of section 2). For fully explicit differenceequations,
f) = 0. And for fully implicit equations, (3 = 1. The basic alternating difference Eqs. (19) and (20) are equations with
/3 = 1/2, at least for a fixed timestep. However, it seems plausible that a varying timestep could effectively lead to one
jimension having an effective /3 slightly less than, or slightly more than, 1/2. If the effective /? is slightly less than 1/2,

one might expect conditional stability.
In this section, a method for doing alternating direction implicit calculations with)3 > 1/2 is presented. The

intent of the method is to introduce additional implicitness beyond that of the method in Section 6 so that the amplitude
of short-wavelength numerical oscillations is reduced.

As pointed out recently by Briley and MacDonald, 3 0the basic alternating-direction, implicit finite-difference
Eqs. (19) and (20) can be considered a special case of the general Douglas-Gunn 3' alternating-direction methods. The
general Douglas-Gunn equations as applied to Eq. (17) can be considered to have the form

L _ I + gx* + (1 - 0)X" + Y n = 0 (94)
* t l

t - r

and
'ytlT^ rrn

+ 0X + (l - f t X n + JY"*' i + (I - © Y " = 0 . (95)

Define t n + l as

,ntj = tn + fl(t* _ t ") . (96)

Then, for linear T and X,

•fn+1 = f n + 0(T* - f ") (97)

and

X n + 1 = 0X* + (1 - fi)X n . (98)

So Eq. (94) becomes

fn+l T n ~ ^
+ X n + 1 + Y" = 0 . (99)

,nt l _ ,n ,"" _ t

' \»ng Eq. (99) to eliminate Y" from Eq. (95) leads to

T n + 2 __ T-n+l .n+2 _ *n -* ~
• + — / ? (X n + 1 + Y " + 2) _ : h - B- v - _ ^ _ L I = 0

,n+2 _ ,n+l ,0+2 _ , in l ,n+! ._ ,n 1 ,n+2 _ .n+1 I (100)

T n + 1 .. T n r , tn+2 _ ,iw "I
) - 1 - f i (l 1 1 = I

t " + ! — t" I t" + 2 — t " + I I

20

For t» = t" + 2,

t" ,n+l = (•] _ 8) (,n+2 _ ,n) _

(10!)

and Eq. (100) becomes

T>n+2 - r n + l

,n + 2 n+1 (1 -13)
(X"

„ ~ „, T n + 1 - T n / 1 - 2fl\
<-l + Y

n t 2) - 1 = 0 .
,n+l _ ,n \ 1 - (J /

(102)

Equation (99) is identical in form to Eq. (19) and, for 0 = 1/2, Eq. (102) is identical in form to Eq. (20). Equations (99)
and (102) are equivalent to the Douglas-Gunn Eqs. (94) and (95) for linear T and X and (or t* = t" + :.

The symmetrical form of Eqs. (19) and (20) has been pointed out previously. However, Eqs. (99) and (102)
are symmetrical only if /8 = 1/2. Intuitively, it seems that the Douglas-Gunn algorithm for /3 * 1/2 might lead to
possibly unacceptable asymmetries in symmetrical problems, e.g., a spherical expansion in r-z coordinates. When it
was decided to give ANIMAL the capability for time-differencing with 0 * 1/2, a symmetrica! two-step algorithm was
derived.

Equation (99) is a consistent approximation to the original differential equation, Eq. (19). Hence, the
Douglas-Gunn equations can be applied to Un+• to calculate 0 " + 2 and U n + 3 . The appropriate difference equations are

rn + 2 x n + !
+ X"*1 + Y n (103)

p n+3 T n+2

tn+3 _ ,n+2 (1 - 0)
(X n + 3 + Y n + 2)

rn+2 x n + l T>+' - T n ' / 1 - 20 \
,n+2 _ ,il+l \ 1 - 0 I

(104)

Equations (103) and (104) still have the same type of asymmetry as Eqs. (99) and (102), except that the two dimensions
are interchanged. However, a symmetrical set of equations can be derived by averaging Eq. (99) with Eq. (104) for
,n _ tn + i a n d by averaging Eqs. (102) and (103). The resultant set of equations is

T H + 1 _ -»-n ^ ^ f i i _ -pn-1
(2 - 20) + X n + l + Y n - (1 - 20) = 0 (105)

and

(2 - 20) n+1 . v n + 2 + X n ' + Y (1 - 20) = 0 (106)

Equations (105) and (106) have the same symmetry as Eqs. (19) and (20) and reduce to Eqs. (19) and (20) if /8 = 1/2.
Equation (105) can be rewritten as

r n+1 T I I .̂ .̂
+ X " +) + Y n + (1 - 2/3)

Til -j1 n T n

(107)

21

Equation (107) is identical to Eq. (19) except for the last term. The last term of Eq. (107) is an approximation (o
(1 - 20) At (d 2f/3t 2).

Equations (105) and (106) have been implemented in ANIMAL. As implemented T, X and Y are nonlinear,
even though Eqs. (105) and (106) were derived from Eqs. (94) and (95) with an assumption of linearity. Implementa­
tion of Eqs. (105) and (106) was relatively trivial. To implement the first terms of Eqs. (105) and (106), the Umestep
was merely divided by 2 - 20 when the coefficients for time derivatives were computed. The terms involving X and Y
are identical to Eqs. (19) and (20), and no changes involving these complicated spatial-derivative terms were necessary •
The last terms are ' 'known,'' or explicit, quantities that are computed directJy and included in the V*s of Eqs. (21) and
(32).

For some one-dimensional problems, it appears that some of the inaccuracies encountered in the velocity
fractional-step method are not encountered using 0 > 1/2. Note that Eqs. (105) and (106) guarantee the conservation of
mass, momentum, and magnetic flux, but an additional nonccnservation of energy of order At (1 - 2(8) is introduced.
At this writing, the usefulness of using 0 > 1/2 has not been fully evaluated.

8. SPATIAL-DIFFERENCE EQUATIONS

It may, ci may not be, apparent to the reader that a complete difference equation for any of the model
equations, or any simplifications of them, has yet to be written in this document. Even Eqs. (40) and (41) are not
complete, since, for example, the method of evaluating the interface quantity [p(v (— vp)] |* + I has yet to be

specified. This author hopes, at this time, that the reader understands the general formalism about how implicit
quantities such as p [(v, - v f JK^'are implemented in the code as a set of coefficients as implied by Eqs. (42)
to (64). This author also hopes that the reader understands the symmetries between the two coordinates £(and £ 3, both
in the model equations and in the numerical algorithm.

The purpose of Section 4 was to formulate an algorithm in which only one interface implicitly treated and only
one interface explicitly treated need be considered. When these two are properly considered the calculations necessary
for all interior interfaces are automatically taken into account. (As previously indicated, boundary interTjces must be
considered separately.) In this section it is only necessary to specify the exact form of the fluxes and forces associated
with the, say, j + l/2,k interface. The reader should be able to figure out the appropriate Newton-Raphson coefficients
and also be able to extend the form to the j ,k+1/2 interface, and so forth, so that the complete difference equation can be
written down if so desired. Note that it is never necessary to actually write down the complete difference equation for
implementation of new fluxes, forces, or difference methods in ANIMAL. Consequently, a complete difference
equation is never written out in all its gory detail n this document; Eq. (40) is as close to a complete difference equation
as this author ever cares to write-

in specifying the forces and fluxes, several quantities need be defined. First of all,

^ j) . = J ll\—l±J!L (108)

and
2

tt3)k - ->h-m + i h) M I 2 , (.09)

which implies that the locations of the zone-centers are derived from the locations of zone-interfaces. The zone-centers
are always located half-way between the interfaces, but when nonuniform zoning is used, the interfaces are not located
half-way between the centers. The following geometric quantities are relevant:

(A?,)j = tti)j+]/2 ~ ttlVl/2 ' (110)

(^})k = tt3)k+1/2 - (5 3)k-l/2 • (111)

(A*lW = (£ l V l " ftI)j ' (112)

22

and

<A*3>k+l/2 = ^3*k-rl " <*?>k • (113)

where the first two quantities are zone dimensions and the latter two are distances between zone-centers. Fluxes and
nonlocal forces are expressed in terms of the average, difference, and sign of any quantity Q, defined as

<w. k

 = —— • (114)

*<Wk = — , — • < l l 5 >

I 1 a*i*
s(Q i + .n k> = i - • <" 6>

and

s(6Q) = { (117)
I - l i f S Q j - I « . k < °

In the notation of Eq. (114), an overline refers 10 an average, not a vector as in previous sections.
The mass fluxes of Eq. (5) arc expressed by

J h2h3x33 " (vl " v ?) dh " (7M>+

 =

where the subscript j + l/2,k has been replaced by a + for convenience and the quantity S + is defined by Eq. (35). The
second term in Eq. (118) is a second-order (in A£) "mass diffusion" term, which is included to reduce "numerical
dispersion" and to assure "positivity." The use of a second-order mass diffusion of the form given in Eq. (118) is a
unique feature of ANIMAL and minimizes the numerical diffusion traditionally associated with Euleriau codes. At the
first interior interfaces, j = —, J - —; k = —, K — —, the form useo is ' 2 2 2 2

y h 2 h 3 x 3 3 p (v, - v?) d«3 « (f M) + > S + (v f) + | p t - s f (v f) J l A , (1 19)

which is a first-order (in &£) donor cell, or upwind, convection introduced to prevent clearly nonphysical effects in the
vicinity of boundaries.

For momentum convection in Eqs. (6) and (7), ANIMAL uses

and

(120) / W j j p v , (v, - vf) dj3 - (fM) + j (v f) + + (v «) +

/h2h3X33P"3 ("l" - *?) d*3 * (f»\ | (' 3 R) +

 + (" ?) + | • < l 2 1>

where (fm)+ is defined by Eq. (118) or(l 19). The form given in Eqs. (120) and (120 assures that a subconservation
property is maintained.3

The internal-energy convection of Eq. (8) in ANIMAL is written as

y h 2 h 3 x 3 3 p e (v, - v?) diij * (7 M) + I 6 + - s W) \ *(Se+) («« +) 2 / e t) , (122)

a second-order <?TI A£) "diffusion" term is added to maintain "positivity." At the first interior interfaces,

y " h 2 h 3 x 3 3 pe (v, - v?) d{ 3 - (7 M) + J F t - , [(? ?) J 6e, J . (123)

The magnetic flux convection of Eq. (9) is written as

y " h 3 x 3 3 3 2 (v, - v?) dS3 * D + (? *) + | (h 2 B ^ + + (h 2 B | ^

where D+ is defined in Eq. (30). Equation (124), coupled with the magnetic force term to be given in Eq. (126),
guarantees the maintenance of a subconservation property.3

The pressure-gradient nonlocal force term in Eq. (6) is written as

where tbe factor " — " implies a corresponding symmetric contribution from the j—l/2,k interface.

The magnetic nonlocal force of Eq. (6) is

"T" TJI^™*1 i wd5ldls ~D+ [(h ^ *(^)] 6 (h 2 B 0 + (126)

FromEq. (41), one might be tempted to multiply Eqs. (125) and(126) by Af/Afj + 1 / 2 when nonuniform zoning is used.
However, doing so would destroy the appropriate subconservation property. In ANIMAL, as should be apparent from
Eqs. (118) to (126), there is no attempt in the fluxes and forces to weight quantities at j and j +1 in a manner related to
their distances from the j+1/2 interface, which are unequal when nonuniform zoning is used. On the nonuniformry
zoned shock-tube test problem suggested by Le Blanc,32 ANIMAL displays inaccuracies similar to those displayed by
various Lagrangian and Eulerian codes.

The local "force" terms h?pv3v1h|3Xi1 and h2pV32h3IX33 of Eq. (6) are evaluated at a cell center merely by
multiplying by (A£i)j(Afjlt to take into account the volume integration and using the obvious cell values. Both terms
are included in X of Eqs. (19) and (20); i.e., they are treated implicitly for t" •+ t n + I and explicitly for t n + ' •* t"+2.

The pressure-gradient and magnetic nonlocal forces and the local forces of Eq. (7) are treated analogously to
those of Eq- (6) as described above.

The compressional-work nonlocal force term of Eq. (8) can be rewritten as

P ^ ~ (h ah3 x33Vl) = af (h j I ^ V l P) - h2 h3*33 vl j ^ • < 1 2 7>

The first ierm on the right side of Eq. (127) leads to a flux and the last term leads to a nonlocal force. The difference
equations for the latter and former are

1
T

and

" j j ^ W l | - <*1«3 « S+ [(vf)^ + (v °) +
5p + (128)

24

y * h 2 h 3 x 3 3 v l P d { 3 « S + j [(v f) + + (v G) t j P. + C p [o (v R) + + « (v f) + « p t J ,

where

| C d i f [(v ?) + (v ?)] t 0 p +

\ 0 otherwise

< 0

(129)

(130)

and C d is a constant that is normally unity but can be altered -i execution time. The term of 3q. (130) involving Cp is a
second-order energy flux added to partially offset the effect of Eq. (128) at a contact discontinuity at the leading edge of
a rarefaction, e.g., the Riemann shock-tube problem suggested by Yrigger.33

The thermal-conduction flux of Eq. (S) is approximated by

/ ' •

3T
K — %

(h , x M) t (Ai,) +

(131)

where the factor of 2 is required because of the definition of 6 T + as given by Eq. (115); note that a simple average is
used for the thermal conductivity.

Similarly, the resistive-diffusion flux of Eq. (9) is given by

1 / • h :

" o - ' h 2

3 (h 2 B £) 2D +r, + 5 (h 2 B £) +

— i ' d { 3 = -i '—
3«1 ^ v V l l M ^ i) *

and the corresponding ohmic-heating nonlocal force in Eq. (8) is

~rff

(132)

^ 0 h , h 2 x u

r (l 4 B 5)] 2 « 1

d * i - ' (V + -

2 D + n + o (h 2 B ?) + 5 (h 2 B ^) +

"0 (V , ,) . &i>+
(133)

As written in Eq. (133), an equal amount of energy is deposited in the two zoneson either side of an interface as a result
of a gradient in h 2 B 2

P between the two zones. If the densities of the two zones adjacent to the interface are considerably
different, then the resulting temperature change (or, more correctly, specific internal energy change) is also considera­
bly different. Early in the development of ANIMAL it was decided to require that ohmic heating lead to an equal
temperature change ratherthan an equal energy change; this is accomplished by adding a second-order energy flux, i .e.,

- /
1 At, t |h 3 x 3 3 ^

4 «o h l V l l . " 3*> 3£, V 2 2 > *h (f) + *"+ / P +
(134)

where (f,)+ is defined by Eq. (133).
Since Eq. (134) is an internal energy flux, it does not alter the subconservation properties of Eqs. (132) and

(133). At this time, it is not clear whether or not the use of Eq. (134) is necessary.

25

As indicated in Section 2, the "transverse" thermoelectric effect is incorporated into the code. The
difference equation for the "transverse" thermoelectric flux in Eq. (9) is

/ n £ r ^ 5di> - "MJW****).
(h j X . .) ^ ^

and the corresponding/or« in Eq. (8) is

3T 3 (h 2 B 2 >
h.x.,u„ B, 3E, 3f,

2D t (hp, 5T+

d|, d«3 *

s(B^Bf)p]t tfatfy

The "transverse" thermoelectric energy flux, which appears in Eq. (8), is

/ • h , x 3 3 0 T | B 2 | a

(135)

(136)

2D+ (h ^ T« [s (B* * B|) g] t gfc B0 ,
C 0 (h 1 x 1 1) i . (^ ,) t

(137)

The radiative-energy-loss local force of Eq. (8) is incorporated simply by using zone-center values and
multiplying by A£, A£3. The radiative loss is always treated implicitly.

To this point, spatial-difference equations for all terms appearing in the model Eqs. (S) to (9) have been
presented. In the absence of shocks and steep gradients, the difference equations as presented so far are adequate.
However, to treat shocks and to help minimize ceitain pathologies, it is generally necessary to incorporate an artificial
viscosity. In ANIMAL, artificial viscosities are incorporated by aided fluxes to the equations of morion and adding
forces to the internal energy equation to account for the kinetic energy dissipated. The artificial viscosities included in
ANIMAL can be considered to be difference approximations to partial differential equations of the form

and

d

- (h , h 2 h 3 p v I) + .

(h,h 2 h 3 pv3) +

+ 3 j - (h2n3 x33«ll> + jj- ("tVulu) = °

3 0
+ ~n~ (h 2 t l 3 x 33l3l) + -rr- foiVllW = 0 .

9 8 v I 3v,
- (h,h 2h 3 pc) + . . . + h 2 h 3 x 3 3 q i l — + h j h 2 x , i q i 3 —

*1

av 3 av 3

+ hjhjXjjqj, — + h 1 h 2 x H q 3 3 _ = 0
«f, 3f3

(138)

(139)

(140)

26

Since all the added terms in Eqs. (136) and (137) are in flux form, they do not represent merely a modification to the
pressure-gradient terms. Nor do the added terms include all terms resulting from taking the divergence of a pressure
tensor in orthogonal curvilinear coordinates. Furthermore, in general, CJ31 ^ q J 3 . So the added terms are not symmetric
as would be the components of a pressure tensor. Thus, it is hard to make a precise physical analogy between Eqs. (138)
to (140) and real viscous effects, except that the terms do dissipate kinetic energy and do increase entropy, just as real
viscous effects do.

It is perhaps better to consider the terms of Eqs. (138), (139), and (140) as truncation-error modifications.
From a truncation-error point of view, if the various q's are formally of 0(Af)m, with m greater than zero, then the
complete difference equations are still consistent approximations to the differential Eqs. (5) to (9).

Because of the symmetry of Eqs. (138) to (140) with respect to the coordinates £, and f3, it is sufficient
merely to consider the fluxes and forces associated with the j+l/2,k interface, just as has been done throughout this
section. Thus one can write the momentum fluxes as

/ " h 2 h 3 x 3 3 q„ d£3 = S^q,,) , . (141)

and

/"h2h3 x33<bl « 3 x S

+ (<)3 l) t d «)

and the energy forces as

" j J^ h2 h3*33<lll fcT d | l d*J " S * < q „) + S (v ? + v ?) + (143)

and

"lfjf WlWll j f d*l d*3 " Mq"3,)+o(v* + v°)+ . (144)

The shock heating indicated by Eqs. (143) and (144) can give steep temperature gradients if the density gradient
between zones is steep, so an energy flux is also added:

r h 2 h 3 x 3 3 / 3 v l 3 v 3 \ d p

- 5 p + S + [(q n) + 8 (v R + v?) + + (q , 3) + S (vj • v f) , .] / - + . (145)

For shocks moving from a high-density region into a low-density region, use of Eq. (145) may not be wise since the
energy should be deposited in die low-density region.

Artificial viscosities of several different forms have been incorporated into ANIMAL. Thus,

(q „) + = P + 6 (vf + « f) + [(q j ^ + (q; ,) + + (q«,) +] + (qj ,) + . (146)

The terms of Eq. (146) are given by

(147)
otherwise ,

27

w C< (," t n) s(8p t) Sp +

D + [(h 2 B ;) + (h 2Bf) +
2

/ < •
(h ,x„) t A|, (p +) 2

("Hi >(<f M > +) (' * < > • / ^ ^ ' J = 5/2,1-3/2

(148)

(149)
otherwise

where CS andCH are constants, normally 8 and 0, respectively, which can be specified at execution time. In F- (149),
gf, is similar to the standard von Neumann-Richtmyer artificial viscosity,2 and,for Cartesian coordinates, it is in fact
identical. Considered in combination with Eq. (120), Eq. (149), which uses fM as defined in Eq. (118), leads to
first-order "upwind" convection at the first interior interface.

As defined in Eq. (148), qj, is a magnetic-field-dependent artificial viscosity introduced in an attempt to
minimize pathologies. The difference equations for the magnetic and pressure forces, as given in Eqs. (12S) and (126),
deposit an equal amount of momentum in each zone adjacent to an interface. When there is a large density variation
across the interface, a large velocity gradient can be introduced. Even when the velocity gradient introduced is
negative, Eq. (146) is often insufficient if the thermal and magnetic energy densities are much greater than the kinetic
energy density. Note that qc

(] depends on the density gradient. Note also that the first factor in brackets is essentially the
magnetoacoustic velocity.

A more straightforwai-d approach to the problem of forces across a steep density gradient is to deposit
momentum in the two adjacent zones proportional to the density of the zone. This can be accomplished for the pressure
gradient by specifying qbu in Eq. (146) to be

i n = " c q » P + »P+ / P* . (150)

wnerei_Q •» it wiiaiaitt, iiunimiiy u, wiiii.iik.oii wactaicvcbtitiuu. i-iuuiutj. Mt*»>uiiGi.aii3Gc mat 4 | | » u w m i u n a ; ,
dissipate Kinetic energy. A modified momentum flux dependent on the magnetic force must also be used in conjunction
with Eq. (150). The modified flux is

F>, = -<* «P+ D + [(! . , - !) > + (h 2 B f) +] s (h 2 B f) + / ^ . (151)

When incorporating Eqs. (150) and (151) it was decided to interpret them as modified forces. A modified pressure
gradient should modify the internal energy, as indicated by Eq. (144). However, a modified magnetic force should lead
to a modification of the magnetic energy, not the internal energy. Since Eq. (151) can be interpreted as an
approximation to

3t
(hl h 2 h 3 x l l*33 pv,) + w^^° (152)

an equation of the form

3 a f 3v, , 3 (h 2 B 2) l
— (h.h, B,) + . . . r,. — / = 0 (153)

is required to ensure energy conservation. Hence, to the difference equation for Eq. (9) must be added a flux

-/['"3i;/^irJd^
<% «*>• D+ [(M l) , + (M l) t] Sfc + v°)+ / p+ . (154)

28

http://wiiii.iik.oii

This author has not run many problems using Eqs. (150) to (154); some have been satisfactory and some have been
obviously unsatisfactory. At this writing, this author recommends that C* always be set to zero. It is possible, however,
that the basic idea of modifying the magnetic convection flux (rather than an internal energy force) when a modified
magnetic force is used is a valid one and should be pursued further.

Analogous to Eq. (146), the "shear" viscosity is written as

(i 3 1) + = P+ « (v j + v £) + (q | , + q°, + q | ,) , (155)

where, generally, q^| = 0, q§| = 0, and

- (<fM>+) (' „) • / G * S t) (f 5 6)

otherwise . 55i • - I I o,

In earlier versions, <ft 1 — l l i and <fti ~~ l l t were used, and it has yet to be resolved which method is most
satisfactory. InEq. (156), the first form is used when the velocity fractional-step method is used since Eq. (155) and the
momentum convective term corresponding to Eq. (121) are always treated "explicitly," as indicated in Eq. (92).

The previous paragraph completes the specification of the fluxes and forces associated with interior zones.
Boundary fluxes and forces at the j = J -1 /2 boundary have essentially the same form if averages and differences are
redefined as

and

(157)

S Q J - l / 2 , k _ °J,k _ ° J - l , k . (158)

The upwind forms for convection given in Eqs. (119),(123), (149), and(156) are used if (vp) j > 0 . If (v,R)j *0 , the
forces have the form given in Eqs. (125) and (126). Otherwise the forces are zero (see Ref. 4). The compressional work
is as given by Eqs. (128) and (129), except the term involving C P is neglected. The heat flux, resistive diffusion, and
ohmic heating is as given in Eqs. (131) to (133), respectively. The thermoelectric effect is treated as given in Eqs. (135)
to (137). Only the viscosity q",,, given in Eq. (147), is used. The boundary at the j = 3/2 interface is treated similarly,
with the average and difference redefined as

and

Q i , k (1 5 9)

5 0 3 /2 ,k = °2,k - ° i , k • <>«»

9. IMPLEMENTATION OF THE ALGORITHM—INTRODUCTORY
REMARKS

In the previous section of this document, the mathematical algorithm used in the ANIMAL code has been
described. Implementation of the algorithm into an actual working computer code has required a major computer
programming effort. The code is written for operation on the CDC-7600 computer. Most of the computer code has been
written in FORTRAN, but some sections that consume a disproportionate fraction of the total computational time have
been reprogrammed in the ASCENTF assembly language. The combined FORTRAN/ASCENTF source code is
compiled by the CDC PUTT compiler, a simple, one-pass compiler introduced to LLL by a "third world" movement
dissatisfied with the CHAT compiler developed at LLL. Since ANIMAL'S predecessor17 was originally developed for

29

a CDC-3400 computer, which used a CDC compiler, when ANIMAL was first implemented at LLL it was felt that use
of the PUTT compiler would facilitate the conversion. Originally, it was anticipated that eventually ANIMAL would be
compiled with CHAT. However, even after ANIMAL has been in existence for over six years, there is no obvious
reason for attempting to use the CHAT compiler. Tests have indicated that only insignificant decreases in execution
time could be made with CHAT using all of its optimization features.34 On the other hand, it is clear that the CHAT
compiler is much more cumbersome to use for the many compiles and recompiles necessary during code development.
This author has found the PUTT compiler and its associated library and debug routines more man adequate, and, in fact,
this author feels progress in the development of ANIMAL would not have been as rapid had the more accepted CHAT
system been used. Recently, however, tests have indicated that the CDC FTN compiler will lead to a significantly faster
executing code with an acceptable increase in compilation time. 3 5 It currently appears that conversion of ANIMAL to
an FTN version will be advantageous when FTN-associated libraries and debug routines reach the same sort of
sophistication and convenience currently available through PUTT.

The most recent operable version of ANIMAL is ANMAL07. The corresponding source, MALAD07,
consists of roughly 13,000 FORTRAN lines. Consequently, a complete code description would be a monstrous
undertaking. The intent of the following sections is to describe the important variables and subroutines in MALAO07
(the description is not entirely applicable to previous versions). The following sections are not by themselves, very
useful; for the following sections to be completely useful, the reader must have available a source listing, an ANIMAL
user's manual, and the previous sections of this report. A copy of the ANIMAL user's manual and a copy of the
ANIMAL post-processor's user's manual are included on microfiche on the inside back cover of this report. However,
a source listing is available only from the author by direct request.

To understand a section of the code, the user will want to refer to this report. However, a particular variable
may not be described here. In such a case, this author recommends that the user use LLL's TRJX AC to "TS" the
variable throughout the source listing to determine how it is refined in terms of variables described here.

The following sections will not describe outdated, superseded, or experimental coding in ANIMAL. Since
the ANIMAL source listing has never really been cleaned up, there is inevitably unused or superseded coding still
carried along. In addition, since ANIMAL is by no means a static code, there is within the source listing experimental
coding for various techniques not yet proved and documented here or elsewhere.

In ANIMAL there are slightly less than 90 subroutines. These subroutines can generally be divided into
several different classes. INITIALIZATION subroutines read input data that define a particular problem and then do
various operations such as constant evaluation, table generation, and similar tasks that must be accomplished before the
time-marching algorithm can be initiated. MISCELLANEOUS LOGIC AND CONTROL subroutines do various tasks
that generally do not fit any of the other categories described here. PREPARATORY subroutines do a variety of
manipulation and transfer tasks to put problem data in a usable form for the subroutines that define the coefficients.
COEFFICIENT subroutines actually define the coefficients appearing in the linearized difference equations, Eqs. (21)
and (32), and the linearized boundary equations, Eqs. (22) to (25). TRI-DIAGONAL SOLVER subroutines solve the
linearized difference equations by doing the forward-backward sweeps implied by Eqs. (26) and (33). OUTPUT
subroutines do the unfortunately many necessary chores to accurately provide BINARY output data on tape or disc for
restart and post-processing and do the chores required to put a selected quantity of computed results into user-readable
ASCII. MARKER PARTICLE subroutines initialize and "push" marker, or tracer, particles that follow in a
Lagrangian manner the motion of fluid elements based on the velocity field calculated by the Eulerian code.
DIAGNOSTIC subroutines are used for debugging purposes and perform a variety of functions including the checks
indicated in Eqs. (66) to (70).

When additional physical effects or dependent variables are added to the code, the major changes to the
coding occur in the COEFFICIENT subroutines. Relatively minor changes are made to a few INITIALIZATION and
PREPARATORY subroutines, mainly those directly involving physics, but for the most part all subroutines except the
COEFFICIENT routines remain essentially intact.

INITIALIZATION subroutines are
STARTUP INIT1
MATRIX DTINIT
TCINIT CKTINIT
EOSINIT RBC
EPFROMT SPL
MESH FINDLW

30

MISCELLANEOUS LOGIC AND CONTROL subroutines are
XPAND BNDRYSW
SPLINT SETBDRY
CUTSET 1TCON
GRIDMOV MAXVAR
SWTCH13 DTCNTRL
SET27PT OUTK
INITPTR ENDMAL
SETPTR VOLINT1

PREPARATORY subroutines are
NEXTHHP MXTZGR
NEXTRBBP NXTZFLX
NEXTK SETRGR
NEXTTC SETSGN
EQNST SETBC
TRANCO SETRP

COEFFICIENT subroutines are
BCRZ RFLX
ZFLX RBCRFLX
UBCZFLX LBCRFLX
DBCZFLX MAT2

TRI-DIAGONAL SOLVER subroutines are
MAIN program
SUMBCE
TRIANG

OUTPUT subroutines are
RUNDATA BUFFO
OUTPUT 1 BSPVAR
PLOTR SETDEN
NUMZBZ STATUS
SCALFAC WRBLNK
BBEXT ENDFIL
ORDMES IFAR
WOFORD NEWTPE
GETIOC B1DARZ
BODARZ BIVAR
BOVAR BUFF1N

MARKER PARTICLE subroutines are
MPINIT INTERP1
MARKER INTERP2
SEARCH MPOUT
GETDXDT

DIAGNOSTIC subroutines are
CHECK
SPECHK
CHKLBCR

CHKRBCR
CHKRFLX

Prior to a description of the subroutine functions, the basic control variables and basic arrays in the coding are
introduced and the allocation of LCM (large core memory) is described.

31

10. BASIC CONTROL VARIABLES

NDIM— DA(1); the Mimber of D/Mensions of the problem; has values 1 or 2.
NV— DA(I6); the dumber of dependent Variables; has values 3 , 4 , or 5 depending on which set of

variables is calculated; code can handle a maximum NV = 9.
NDR— DA(9); the number of mesh points in the f | direction; corresponds to the value J used in the

text; note that the number of zones in the f, direction is NDR-2.
NDZ— DA(10); the number of mesh points in the f 3 direction; corresponds to the value K used in the

text; note that the number of zones in the f 3 direction is NDZ-2.
IIV— DA(21); a ten-digit number that designates which dependent variables are being computed;

each digit corresponds, in order, to a component of the "total" solution vector

OT = (p , v f . v j , v*. «,, e,. Bf. Bj , B j)
(161)

IFSV—
IBE—

MOVGRID-

1COORD-

NMP—
ISBC—
ISTEP—

LINSEQ-

MDSEQ—

if the digit that corresponds to a particular component is less than or equal to NV, then that
variable is being computed; e.g., for U = p, v , R , e e , NV = 3 and IIV = 1245637890, so the
•first, second, and sixth digit are < NV; FORTRAN names corresponding to the components
of U T areRO, VI, V2, V3, EE, EI, B l , B2, B3, respectively.
DA(22); a ten-digit number that designates which dependent variable of the total solution
vector corresponds to a particular component of the actual solution vector; die first NV digits
correspond to each component of the actual solution vector; e.g., for U = (p, V!, e e) , IIVV =
126345790; i.e., the third component of the solution vector 0 corresponds to the sixth
component of the total solution vector (F .
DA(8); has values 0 and 1; if 1, the velocity fractional-step method iv used.
DA(24); if 1, magnetic field is broken up into plasma and' 'external'' components as indicated
by Eq. (78); otherwise B 2

E = 0 and B ^ = B 2 .
-DA(126); if 1, the moving-grid option is used and the velocity is broken up into two

components as indicated by Eqs. (76) and (77); orherwise, v ° = v° = 0 and vf = v, ,
vf - v 3 .
DA(124); designates the orthogonal coordinate system ((,, f 3) being used: if - 1 , Cartesian; if
0, standard (r, z) cylindrical coordinates; if 1, spherical coordinates; if 2, toroidal coordinates;
if 3, cylindrical (r, </>) coordinates.
DA(116); the number of marker particles used.
DA(200); if 1, split-boundary conditions are used.
designates which direction is treated implicitly; if 1 or 3 , the ^ direction is treated implicitly;
if 2 or 4, the ^3 direction is treated implicitly; the values 3 and 4 are not used; the values 3 and 4
were intended to solve the difference equations by a "backward-forward'' method rather than
the "forward-backward" methods implied by Eqs. (26) and (33).
LINe 5E0uence; designates the sequence in which the implicitly treated lines are computed; if
1, k-lines are computed intheorderk = 2 ,3 ,4 . . .K- l forISTEP = I and j-lines are computed
in the order j = 2,3,4 . . . J-l for ISTEP = 2; if 2, k-lines are computed in the order k = K-l,
K-2, K-3 . . . 4 , 3 , 2 for ISTEP = 1 and j-lines are computed in the order j = J-l, J-2, J - 3 . . . 4,
3 , 2 for ISTEP = 2; LINSEQ = 2 was introduced in anticipation of treating mixed second

derivatives of the form , , _ , . 6* i 3ft
Afixed Derivative SEQuence; controls LINSEQ for each pair of dme steps; values for
LINSEQ are tabulated below:

MDSEQ = 1 2 3 4
ISTEP = 1 1 2 1 2
ISTEP = 2 1 2 2 1

32

MDSEQ was introduced in anticipation of treating mixed second derivatives of the form

NP— the number of points along a k- orj-line; for ISTEP = 1, NP = NDR and for ISTEP - 2, NP =
NDZ.

IPNT— timestep number at which to make next ASCII output.
TTOEDIT— time at which to make next ASCII output.
NWRBC— timestep number at which to make next BINARY output.
TTODUMP—time at which to make next BINARY output.
TIME— DADT(l)'. the Kal, i.e., problem, time since the problem was begun.
NNDT— DADT(2); the number of timesteps required for the problem to reach a certain TIME.
DT— DADT(11); the timestep being used to advance the calculations.
DTOLD— DADT(IO); the timestep size used to advance the calculations from the previous timestep

NNDT-1 to the present.
JBCRR— DA(69); a ten-digit number specifying the boundary conditions on the j = 1 (3/2)_boundary;

each digit, in order, corresponds to a component of the "total" solution vector U"1"; if split
boundaries are used, JBCRR applies to the upper k-values.

JBCR— DA(6); a ten-digit number specifying the boundary conditions on the j = K(K- l/2)J>oundary;
each digit, in order, corresponds to a component of the "total" solution vector U T ; if split
boundaries are used, JBCR applies to the upper k-values.

JBCZZ— DA(68); a ten-digit number specifying the boundary conditions on the k = 1 (3/2)_boundary;
each digit, in order, corresponds to a component of the "total" solution vector U T ; if split
boundaries are used, JBCZZ applies to the upper j-values.

JBCZ— DA(70); a ten-digit number specifying the boundary conditions on the k = K(K-l/2)
boundary; each digit, in order, corresponds to a component of the ' 'total" solution vector U T ;
if split boundaries are used, JBCZ applies to the upper j-values.

JSBCRR— DA(I92);aten-digitnumDerspecifyinglhe boundaryconditionsontllej = l(?/2) boundary
for lower k-values when split boundaries are used.

JSBCR— DA(I93); a ten-digit number specifying the boundary conditions on the j = J(J-l/2) boundary
for lower k-values when split boundaries are used.

JSBCZZ— DA(194); a ten-digit number specifying the boundary conditions on the k = 1 (3/2) boundary
for lower j-values when split boundaries are used.

JSBCZ— DA(195); a ten-digit number specifying the boundary conditions on the k = K(K-l/2)
boundary for lower j-values when split boundaries are used.

NTC— the number of transport coefficients plus the number of derivatives of transport coefficients
with respect to the dependent variables; this number is currently 19; the list of 19 is

H' 30 3T <"i 3n
T, — , f, , — , 7j, K, — .

Be ' 3e 3e

3K

17
3K 3K 3n 3t? 3 G \

0 , , — , — . — , I
3B 3p 3B 3p 3e /

(162)

where K is a transport coefficient vector, 0 is the pressure pdivided by the density p, i.e., d =
p/p, and G L and G B are the Lyman alpha-line and Balmer alpha-line emission^factors used
only for tally purposes; FORTRAN names corresponding to the components of K are: THET,
DTHDE, TA, DTADE, FION, DFIDE, RESP, XKEP. DRSDE, DKEDE, GF, GLA, GHA,
BETAT, DKEDB, DKEDR, DRSDB, DRSDR, DGFDE, respectively.

33

11. BASIC ARRAYS

DA— DAta array used to store various information that does not change as a problem progresses;
besides the basic control words described in the previous section, DA includes two 40-word
subarrays, ADDA (/lOditional OA\a values) and IDA (additional data value descriptor
words), which begin at DA(26) and DA(71), respectively, and into which are packed various
problem-dependent data words subsequently printed in the ASCII output. The number of
words used in ADDA and IDA is given by NADDA[DA(20)J.

DADT— DA\a array used to store various information that changes with each timestep as a problem
progresses; besides the basic control words described in the previous section, this array
includes circuit parameters and energy tallies, such as

DADTU8)—total circuit-load magnetic flux.
DADT(19)—circuit-load voltage.
DADT(20)—electrical energy delivered to load by circuit.
DADT(21)—dUdt.
DADT(22)—the circuit-load inductance L.
DADT(23)—the circuit source voltage.
DADT(24)—the circuit current at the advanced time.
DADT(25)—the circuit current at the present time.
DADT(26)—the circuit current at the previous timestep.
DADT(13)—the total heat loss to the surrounding walls.
DADTU5)—the total radiation loss.
DADT(91)—the total pdV heating.
DADT(92)—the total shock heating.
DADT(93)—the total ohmic heating.
DADT(94)—the total Balmer alpha-line radiation loss.
DADT(9S)—the total Lyman alpha-line radiation loss.
DADT(98)—the "cutoff" density p c o (see Ref. 4).
DADT(100)—the grid velocity (v , °) J i k of the j = J(J-1/2) interface for all k lines.

In addition, DADT includes two 10-word subarrays VVARM1 and VVARM2, which begin
at DADT(51) and DADT(61), respectively, in which are stored, at time t n , the maximum
fractional variation of the dependent variables when advancing from t n _ 1 to t" and t " - 2 to
t n _ 1 , respectively. VVARM1 and VVARM2 are used in conjunction with the timestep
control.

IVV, IV, IBCRR, IBCR, IBCZZ, IBCZ, ISBCRR, ISBCR, ISBCZZ, ISBCZ—ten-word arrays, each word
of which has the same value as the corresponding digit of IIV V, IIV, JBCRR, JBCR, JBCZZ,
JBCZ, JSBCRR, JSBCR, JSBCZZ, JSBCZ, respectively, and which are used for purposes
similar to the purposes of the words from which they are derived. . . .

A, B, C, V—arrays corresponding to the "coefficients" A. , B 1 , C , , a n d V] of Eq. (21) and A 3 , B 3 , C 3 ,
and V 3 , ofEq. (32).

KCOM27— a 10 X 10 array of subscripts for the matrix arrays A, B, and C, which are used by the
COEFFICIENT subroutines to assure that a computed coefficient is stored in the proper
location. In the coefficient routines, the elements of KCOM27 are named

LRORO, LROV1, LROV2, LROV3, LROEE, LROEI, LROB1, LROB2, LROB3,
LRODUM,

LVIRO, LV1V1, LV1V2, LV1V3, LV1EE, LV1EI, LV1B1, LVIB2, LV1B3,
LV1DUM,

LV2RO, LV2V1
LV3RO, LV3V1
LEERO, LEEV1
LEIRO, LEIV1
LB1RO,
LB2RO,
L B J R O etc.

34

For ISTEP = 1, a coefficient with the subscript LROV1 is a coefficient of the v, R velocity
component (VI) in the density (RO) equation, i.e., the continuity equation. Similarly, for
ISTEP = 1, a coefficient with the subscript LV1RO is a coefficient of the density (RO) in the
v,R velocity-component (VI) equation. On the other hand, for ISTEP = 2, the subscript
LROV1 refers to a coefficient of the v 3

R velocity component (V3) in the density (RO) equation.
It is by proper definition of KCOM27 that ANIMAL is able to use the same coding for implicit
fluxes in either the £, direction or the £3 direction. If the capability to compute the Bl
magnetic field component were being added to the code, coefficients with subscripts LB 1 RO,
LB IV] . . . ,etc. would have to be defined. If the solution vector was U =(p, c, B 2), so that 3
x 3 matrices were used and V R was not computed, LROV1 and LVlRO would have values
greater than 9 = NV * NV.

LCOM27— an array of ten subscripts for the vector array V used by the COEFFICIENT subroutines to
assure that a computed vector component is stored in the proper location. In the COEFFI­
CIENT routines, the elements of LCOM27 are named LRO, LV1, LV2, LV3, LEE, LEI,
LB 1, LB2, LB3, LDUM. For ISTEP = 1, a coefficient vector component with subscript L VI
refers to a quantity included in the Vj component of the vectors Vj and V 3of Eqs. (21) and
(32), respectively. On the other hand, for ISTEP = 2, the subscript LVI refers to the v R

component of the vectors V, and V 3 .
RZ— mesh array giving position of grid interfaces at t n; RZ(M) is position of interface at j =

M + l/2, i.e., (£]) M -M/2; ^(NDR + M > i s position of interface at k = M+l/2, i.e.,
^Wl /2*

RZP— mesh array giving position of grid ir-tcrfaces at t n + 1 .
RR— mesh array giving £, location ofgrid (zone-center) values at time t n, i.e., RR(M) - (£ J) M -
RRP— mesh array giving £j location cf grid (zone-center) values at time t n + l .
ZZ— mesh array giving £3 location of grid (zone-center) values, i.e., ZZ(M) = (£3)^; n o

corresponding ZZP is required since at this writing the grid does not move in the fj direction.
SINZ— mesh array in which values for the sine of the angles £3 are stored for spherical, toroidal, and

cylindrical r-<£ coordinates.
VAR— the COMMON/19/ variable name; VAR is the main small core memory (SCM) working

storage array; the function of VAR is 1 ermined by various pointers and die particular part of
the algorithm the code is executing.

12. LCM MEMORY ALLOCATION

Large core memory on the CDC-7600 is used for bulk storage. ANIMAL does not do any random accessing
of LCM. All transfers of data between LCM and SCM are done by PUTT's block copy instructions SMALLIN and
SMALLOUT. ANIMAL'S LCM array is named simply XLCM and prior to execution has a length of 2. By issuing
appropriate system calls, XLCM is expanded as required at execution time. Information is stoied in LCM locations
determined by the pointers descnbed in this section. Every word of XLCM is used, so the total length of XLCM is
the minimum required for execution. This allows the code to time-share as much as possible. The total length of
XLCM is problem-dependent. Most of LCM memory allocation is done in subroutine MESH. The LCM pointers and
the length of the block of memory they point to are

NTIME— length = NV * NDR » NDZ; all the dependent variables at all the mesh points at the time
t n when advancing from t n to t n + I ; the ith component of the solution vector U at the (j, k)
point is given by

(U)" = XLCM (NTIME + I + NV « (J -
1 J,K

1 + N D R * (K - 1))) (163)

NP1TIME— length = NV « NDR « NDZ; the block in which variables at time t n + 1 are stored when an
iteration along a k-line (for ISTEP = 1; a j-line for ISTEP = 2) has been completed; indexing
is same as NTIME.

35

NM1TIME— length = NV * NDR * NDZ; all the dependent variables at all the mesh points at time t""1

when advancing from t n to t" + 1; if the calculation is successfully advanced to t n + l , the
values of the pointers NM1TIME, NTIME, NPITIME are rotated to the values of NTIME,
NPITIME, NM1TIME, respectively; if it is necessary to recycle, the pointer NTIME is
settoNMlTIME.

MPLCM— length = 2 * NMP; f f and f 3 coordinates of marker particles at time t".
MPLCMP—• length = 2 * NMP; new coordinates of marker particles at time t n + l .
MPLCMO— length = 2 • NMP; marker-panicle coordinates at time t n _ l ; when calculations advance,

MPLCMO, MPLCM, MPLCMP rotate to MPLCM, MPLCMP, MPLCMO, respectively;
when recycling, MPLCM is set to MPLCMO.

NAEOST— length = NEOST; the completeequation-of-state tables;consideranequation-of-state vector

S — I €, t- <L f f I ; a collection of sets of S for a series of density values

\ a*2 eJ ' "J
stored in an array EOSRO are generated and stored in LCM.

NZERO— length = 1000; an array of zero's block-copied into SCM to zero out SCM arrays.
KKMMLCM—length = problem dependent; all the scale factors, external magnetic field values, grid

velocity values, transport coefficients, and dependent variables for all j-values, I s j s J ,
fork = k ' - 2 when working a longa l inek=k' (for ISTEP = 1; for ISTEP = 2, all k-values
1 5 k = s K , for j = j ' — 2 working along a line j = j ') .

KKMLCM— same as KKMMLCM except at k = k' - I.
KKLCM— same as KKMMLCM except at k = k'.
KKPLCM— same as KKMMLCM except at k = k' + I.
KKPPLCM— used instead of KKMMLCM (o store values at k = k' + 2 when LINSEQ = 2.
LCMKPZF— length = 2 • NV » NDR (for ISTEP = i; length = 2 * NV * NDZ for ISTEP = 2); the

explicit fluxes and forces associated with the k = k' + 1/2 (j = j ' + 1/2) interface.
LCMKMZF— length = 2 * NV * NDR (for ISTEP = 1; length = 2 * NV • NDZ for ISTEP = 2); the

explicit fluxes and forces associated with the k — k' - 1/2 (j = j ' - 1/2) interface.

13. INITIALIZATION SUBROUTINES

General comments. ANIMAL begins execution in one of two modes, new problem generation or restart of a
problem partially completed. Under restart, not all data cards necessary for generation are needed, so the flow path in
each INITIALIZATION subroutine is different depending on the mode of execution. Most control information for.
restart is stored in a BINARY dump of the DA array; much of the information is obtained by searching the IDA and
ADDA subarrays. Upon generation, coding in the INITIALIZATION subroutines involving the variables NADDA,
IDA, and ADDA is intended to provide restart capability as well as ASCII output information.

STARTUP— controls the basic initialization process, whether for new-problem generation or for restart;
reads file-name data, if any, from the execution line and then reaua the OUTPUT card (see
ANIMAL user's manual for input-card description); if a new problem is being generated, also
reads me ID card.

MATRIX— establishes the solution vector U; reads PHYSICS card and sets ICOORD. NV, DIM, IIV,
OVV, and arrays IV, IVV accordingly.

TCIN1T— WJTializes Transport Coefficients; evaluates constants appearing in algebraic expressions for
thermal conductivities, resistivity, and radiative-loss term; sets up "total emission factor"
[G(p,T) of Eq. (14)] tables; the coding - ssociated with array variables TCMULT (Transport
Coefficient MVLTiplief) and TCCON (Transport Coefficient CO/Vstant) implements the
various multiplier/constant/zero options provided on the PHYSICS card; coding associated
with array variables JDW and IDW loads the data word arrays IDA and ADDA to provide
ASCII description of options used, etc.; reads any constant or multiplier data required by the
options used; important variables are

UO— free-space permeability.
EO— free-space permittivity.
PLANCK—Planck's constant.

36

EMASS— ion mass.
ECHG— electronic charge.
TQ— temperature above which quantum effects become important in evalua­

tion of Spitzer 2 7 Coulomb logarithm.
CNETE— constant appearing in Braginskii 2 4 expression for n e r e .
CNITI— constant appearing in Braginskii2 4 expression for nj^.
CWETE— constant appearing in Braginskii2 4 expression for IOCTC.
CWITI— constant appearing in Braginskii2 4 expression for w ^ .
CLAM1— constant appearing in Spitzer 2 7 expression for Coulc b logarithm.
CRES2— constant C 3 of Eq. (16) giving functional form of neutral resistivity.
CRES1— constant appearing in Braginski;2 4 expression for resistivity of fully

ionized gas.
CKEP1— constant appearing in Braginskii2 4 expression for electron thermal

conductivity perpendicular to a magnetic field.
CK1P1— constant appearing in Braginskii2 4 expression for ion thermal conduc­

tivity perpendicular to a magnetic field.
CTTE1— constant appearing in Braginskii2 4 expression for transverse ther­

moelectric-effect coefficient.
CKN1 — constant appearing in Stevens 2 5 expression for neutral-particle thermal

conduction.
CLAM2-- arbitrary constant added to argument of Coulomb logarithm to prevent

argument from being less trua 1.
CBREM— constant C 2 of Eq. (14) giving expression for radiative loss.
CSAHA— constant appearing in C, of Eq. (11).
GFLA— array; Lyman alpha-line emission table.
GFHA— array; Balmer alpha-line emission table.
GFF— array; total emission factor [G(p,T) of Eq. (14)] table.
TRAD— array; temperature table corresponding to GFHA, GFLA, GFF.
D2GFDT—array; second derivative of en(GFF) used in spline interpolation for

GFF.

EOSINIT— W/Tializes Equation Of State tables if the default ideal gas EOS is not being used; creates a
table for f; and fd [see Eq. (10)] as a function of density p and specific internal energy ([in
ANIMAL, € and p are treated as the two independent thermodynamic variables, so T = T(p,
e); using e instead or T makes the treatment of energy conservation and the Heatment of the
"phase change,'' which 'iccurs during dissociation and ionization, more accurate]; for every
density p = EOSRO (NRO), the EOS tables have NTAB(NRO) values of e. for a particular
density, values are stored in the EOS tables in the order . . .

second derivatives of f, and fd are used with spline interpolation; the tables for p =
EOSRO(NRO) begin at address NATAB(NRO); the tables are generated by starting at a low-
temperature and incrementing by DTEMP until fd or f, vary by a prescribed amount.

EPFROMT—used in conjunction with EOSINIT to give a specific internal energy € = EI and the
corresponding ft — FION and fd = FDIS for specified values of T and p = RO; a "reduced
ionization potential" that depends on fj is used, so an iterative method is used to calculate
HON.

37

. MESH— generates the finite-difference grid and establishes the 1-CM memory allocation; reads all
GRID cards; sets up RZ, RZP, RR, RRP, ZZ, SINZ arrays; if a moving grid is used, reads • 'r
vs t" tables; variables relevant to moving grid are

X1MAX— table of r values.
A O T — table of time values corresponding to X1MAX.

ah
AC1— table of -rj- values used with spline interpolation.
NACC1— number of values in the X1MAX, AC1T, and AC1 tables.

rNITl— generates initial conditions for solution vector; basic function is to establish v mes for the NV
*NDR*NDZ LCM words, which begin at pointer NTIME; reads INITIAL CONDITION
cards, including perturbation cards, as required; if problem is a "link," searches binary
records from earlier problem to get appropriate "link" values; "commented" coding is for a
"rezoner," which is not completely operative due to memory allocation changes made after
the rezoner was developed.

DTINIT— //WTializes timestep DT controls; reads TIMESTEP CONTROL card.
CKTINIT— /Wial izes circuit CAT calculations; reads circuit cards including voltage or current tables as

required; table variables are
ZI— array; current or voltage table.
ZITYM— time array corresponding to ZI.
D2Z1— second derivative with respect to time used in spline interpolation.

RBC— initializes boundary conditions; reads all BOUNDARY CONDITION cards; sets up arrays
ISBCR, ISBCZ, ISBCRR, ISBCZZ, IBCR, IBCZ, IBCRR, and IBCZZ; reads INSULAT­
ING WALL card; reads MAGNETIC FIELD BOUNDARY VALUE cards as required; table
variables are

ZI— magnetic field or current tables.
ZITYM— time tables corresponding to ZI.
D2ZI— second-derivative values used in spline interpolation.

SPL— generates second-derivative tables necessary for cubic spline interpolation.
FINDLW— FINDS Last IPrite on a BINARY record disc file or tape during restart.

14. MISCELLANEOUS LOGIC AND CONTROL SUBROUTINES

XPAND— eXPANDS length of LCM by issuing appropriate system calls.
SPLINT— performs a SPLine MTerpolation.
CKTSET— advances the circuit equations forward in time; basic function is, given current I n (ZIN) at

time t", to calculate current I n + 1 (ZTNP1); integrates B 2 over entire grid to find total FLUX
in grid; the circuit-calculation method depends on which source is actually used, as specified
on CIRCUIT data cards; because two alternately used finite-difference schemes [Eqs. (21)
and (32)] are used, ANIMAL actually does a circuit calculation every two timesteps.The
ANIMAL circuit equations assume that the circuit load, i.e., the plasma region, is entirely
surrounded by an "ideal" conductor except for an insulated "feed-through" slot between the
"terminals'' of the load. If the small ohmic voltage drop in the external conductors is
neglected, the voltage appearing at the "terminals" of the apparatus can be written, using
Faraday's law, as

= f E-dt = - f E -d£= -<f

•10
E-dl!

3B
•dS =

d*

~aT "dT
where

-£ B - d S

(164)

(165)

38

In Eq. (164), the first two integrals mean along a "path-independent" open path between the
"terminals" A and B, which are external to the apparatus. The third integral of Eq. (164)
is along a closed path, which includes the open path of the first two integrals and which
also connects the terminals A and B by a path passing around the plasma region. The equating
of the second integral to the third is valid if the ohmic voltage drop in the external conductors
is neglected. Inclusion of the copper drop is straightforward. On the other hand, if the plasma
region is not surrounded by conductor, such as in a direct z-pinch, a term dependent on
plasma resistivities and current densities must also be included. The third integral in Eq. (164)
is equated to the fourth integral in accordance with Faraday's law. Note that the total magnetic
flux $, as defined in Eq. (165), includes the magnetic flux in both the plasma region and the
surrounding insulation. The load inductance of the apparatus is defined to be

L = */I ; (166)

and, therefore, using Eq. (164),
dl dL
— + I ,
dt dt

the usual relation for a time-varying inductance. For the capacitive source shown in Fig. 3,
the circuit calculation is performed using the difference equations

V (167)

(t n

,n + ,n

(168)

V£ = R E(I? • If) + L E

and

in+2 j . tji+2 .n in
'i + h ~ h ~ h + U

R T I ; + L,.

in+2 in
'2 ~ '2

(170)

where VL is the voltage across L. Ideally, one would like to represent the voltage V,, using
Eq. (166), as

Ln+2 ,n+2 _ L „ ,y

,n+2 ,n
(171)

°1 «E L E

rrm.

FIG. 3. The electrical circuit used in
ANIMAL to provide magnetic field
boundary conditions.

39

However, L n + 2 can be determined from the plasma calculation only if I J + 2 is known; i.e.,
Eq. (171) is nonlinear in the unknown, I J + 2 . To avoid iterating between the plasma and
circuit calculations, the following two forms have been used in ANIMAL:

[n+2 _ in L n — L n ~ 2

V? = L" - + if2 (172)
L

 tn+2 _ (n ' ,n _ ,n-2 " " "

and

(173)

In Eq. (173), L v is the vacuum, plasma-free inductance of the region of solution and 4>? is the
magnetic flux due to plasma currents. <bP is given by

/ 7 s
BP-dS . (174)

Of course, finite-difference approximations are used to evaluate the integrals in Eqs. (165) and
(174), which are used todefuie the uiductanceLin accordance with Eq. (166). Originally, Eq.
(172) was used, but in calculations in which the current approached zero, the inductance L
became unmanageably large [see Eq. (166)]. In addition, during reverse-bias pinches, the
inductance became unmanageably small as the total load flux passed through zero. Currently,
it is believed that the use of Eq. (173) is superior. With the voltage V L specified by Eq. (172)
or (173), Eq. (168) is used to calculate V J. and then the linear, simultaneous Eqs. (169) and
(170) are used to calculate I ," + 2 and I2" + 2 . With I," + 2 determined, the plasma calculation can
proceed.

GRIDMOV—determines (v^) " + 1 and arrays RZP and RRP when a moving grid is used; assumes that the
grid uniformly expands or contracts in the f, direction only.

SWTCH13— SWiTCHes f, and f 3 directions when ISTEP = 2; this is accomplished by interchanging
appropriate values of the IVV, IV, IBCRR, IBCR, IBCZZ, IBCZ, ISBCRR, ISBCR,
ISBCZZ, ISBCZ, and ISBCK arrays, which are located in COMMON/28/ (note that there are
fixed arrays having the same names in COMMON/4/).

SET27PT— sets the LCOM27 and KCOM27 arrays using the IV and IVV arrays.
1NITPTR— W/Tializes SCM PoinTeRs described below; called at the beginning of a timestep.

Along a particular k- or j-line, the scale factors (h,)", (h |) n + 1 , (h 2)°, (h 2) " + l , (h 3) n ,
(h 3) n + l , the grid velocities (vp)", (v f) n + l , (vf)", (V p) " + 1 , the "6X1610081" magnetic
field components (Bf)", (B f) n + 1 , (B f) n , (Bf)»+', (B|)», (B |) » + ' , and the transport
"coefficients'1 and derivatives are needed in addition to the dependent variables 0° . These
quantities are computed line by line as required and men transferred as a block to the LCM
locations KKMMLCM, KKMLCM, KKLCM, KKPLCM, etc. When brought back into the
VAR array of SCM, these quantities are located by pointers:

KH1— forISTEP = l , (h,) j " k along a k-lineKK is located at VAR(KH1 + J);
similarly, for ISTEP = 2, (h3)£ , along a j-line KK is located at
VAR(KH1 + J).

KH1P— pointer for (h ^ ' o r (l ^ t 1 , etc.

KH2— (h2),"k or (h 2)Jj .

KH3— <hj)?k or (h ,) j \ .
40

KH3P— (ha)"^'

K V G 1 - (v ?) ^

K V G l P - (v f) J * '

K V G 3 - (v G) ; k

K V G 3 P - (v ?) j ; '

K B 1 E - (B f) ; k

K B 1 E P - (Bf) ! £ '

K B 2 E - (B |) ? k

K B 2 E P - (B |) " * '

K B 3 E - (B f) ^

K B 3 E P - (Bf) £ '

KTC— pointer to the transport coefficients; for ISTEP = 1, the I-compcnent of
the transport-coefficient vector K"U of Eq. (162) is located at VAR(KTC
+ NTC * (J - 1) +1); similarly.for ISTEP = 2, the I-component of K^,
is also located at VAR(KTC + NTC * (J - 1) + I).

KVAR— pointer to the dependent variables along ak- or j-line; the I-componem of
the dependent-variable vector V^ or V\j is located at VAR(KVAR
+ NV » (J - 1) + I).

KPH1, KPH1P, . . . KPB3EP, KPTC, KPVAR—pointers corresponding to KH1,
KH1P,. . . KB3EP, KTC, KVAR for time t" along k- or j-line KKP =
KK + 1.

KMH1, KMH1P, . . . KMB3EP. KMTC, KMVAR—pointers corresponding to
KH1, KH1P,. . . KB3EP, KTC, KVAR for time t n along k- or j-line
KKM = KK - 1.

NXTH1, N X T H 1 P , . . . NXTB3EP, NXTTC, NXTVAR—pointers corresponding
t o K H l . K H I P , . . .KB3EP, KTC, KVAR for timet" along the next k- or
j-line required; i.e., NXTK = KKP = KK + 1 if LINSEQ = 1, and
NXTK = KKM = KK - 1 if LINSEQ = 2.

KZH1, K Z H 1 P , . . . KZB3EP, KZTC, KZVAR—pointers corresponding to KH1,
KH1P, . . . KB3EP, KTC, KVAR for time t" for quantities associated
with the k- or j-line KKZ and which are to be used to calculate the explicit
fluxes across (he KKZ + 1/2 interfaces; for LINSEQ = I, KKZ = KK,
and for LINSEP = 2, KKZ = KKM = KK - 1.

KPZHI, KPZH1P, . . . KPZB3EP, KPZTC, KPZVAR—pointers corresponding to
KZH1, KZH1P, . . . KZB3EP. KZTC, KZVAR for quantities associated
with the k- or j-line KKP7. = KKZ + 1 and which are to be used to
calculate the explicit fluxes across the KKPZ - 1/2 = KKZ + 1/2
interfaces.

KRH1, K R H 1 P , . . . KRB3EP, KRTC, KRVAR—pointers corresponding to KH1,
K H 1 P , . . . KB3EP, KTC, KVAR foriimet" + 1 - corresponding to the
iterate along ak-orj-lineKKR = KK; for » = 0,KRH1 = KH1,KRH1P
= K H l P . . . f o r B * O . K R H l = K R H l P = KHlP;KRTCreferstothe
transport-coefficient vector K = K (U n + 1 - e) and KRVAR refers to
f>+f.e ,

Note that pointers for B E , and B E

3 are included even though ANIMAL cannot currently handle
the field components B, and B 3 . This is an example showing that much of the formalism for
handling B (and B 3 is still retained in the code.
Other SCM pointers are

or (h ,) ^ 1

« mi

« W
or (B f ^

or (B f) - 1

or CBS-JIj

or (B S C

or (Bf) ! ,

or (B f) " + 1

41

NAU— the pointer for the "new" variables Un + '' 8 + l along a k- or j-line
KK; the I-component is located at VAR(N All + NV*(J - 1) +1).

NAE— thepointerforthematricesiofEqs. (22)to(26)jmd(33);forISTEP
= 1, the NV * NV elements of the matrix E",^1-8 are located
beginning at VAR (NAE + NV » NV * (J - 1 J'+ 1).

NAF— thepointerforthevectorFof Eqs. (22)to(26)and(33);forISTEP =
1, the NV elements of the vector Fj^^are located beginning at
VAR(NAF + NV » (J - 1) + 1).'

LOCADD— the pointer for the NRGR = 10 grid quantities associated with
zone-centers and implicitly treated interfaces; for ISTEP = 1, the
NRGR quantities are

Ol3>k • (h

3 1) " + ' • s"+V/2,k • DjVw.k • W , V W] , (175)

where the first 7 quantities are irrelevant for j = 1 and all are
irrelevant for j= NDR; similarly, for ISTEP = 2,

(h 3 1) f ' , (h 1 3)», s ^] / 2 , i ^ ; ; 1 / 2 . <At ,) j + w] ; i m

the I-component of the Vector R is located at VAR(LOCADD +
NRGR • (J - 1) + I).

NXTZGR— the pointer for the NZGR = 3 grid quantities associated with
explicitly treated interfaces; for ISTEP = l.theNZGRquantitiesare

ĵ",k = 1 s"k+l/2 • Sj!ktl/2 • (^3>k+l/2 J (177)

for 2 s j =s NDR - 1 and for 1 S U NDZ - 1; similarly, for
ISTEP = 2,

'.- [W i - D k W ^ . W] • 078)

The I-component of the vector Z is located at VAR(NXTZGR +
NZGR* (J - I) +I);forLINSEQ = 1, NXTZGRreferstotheKK +
1/2 (KKP -1/2) interface, and for LINSEQ = 2, NXTZGR refers to
the KKM + 1/2 (KK - 1/2) interface.

NXTZS YM—the pointer for the symmetric explicit vectors fe Vj k + i n °f Bq- (45)
and (f^)l-n/2j of Eq. (63); the I-component ofthe' vector is located
at VAR (NXTZSYM + NV * (J - I) + I).

NYTZASM—the pointer for the antisymmetric explicit vectors (gSjjj,+1/2 of Eq.
(45) and (Tpk+1/2 j of Eq. (63); the I-component orthe vector is
located at VAR (NXTZASM + NV* (J - 1) + I).

KZFLX— the pointers for the sum total of the explicit vectors (63)%+1/2 +

fo)l.k+i/2 + fe)5,k+ia - < &) V t / 2 o f ^ < 4 5) m d

<ft>*+l«J + WH+WJ + (S H - i a j - (^)l- l /2j°fEq.
(63); the I-componem is located at VAR(KZFLX + NV * (J - 1)
+ 1).

42

SETPTR— rotates LCM and SCM pointers when advancing from one k- or j-line
to another after convergence of the iterations.

BNDRYSW—controls implementation of BouNDRY Switches such as those dis­
cussed in Ref. 4; is called after the first iteration along each k- ur
j-line; sets the values of the KRVAR "array" for J = I and J =
NDR(NDZ) according to switches that have been turned on or off, if
any.

SETBDRY— controls the advancement from t" to t n + ' for boundary k- or j-lines;
for ISTEP = 1, the k-lines 1 and KfNDZ) are set according to Eqs.
(24) and (25), respectively; for ISTEP = 2, the j-lines 1 and 1(NDR)
are set according to Eqs. (22) and (23), respectively.

ITCON— checks for convergence of iterations; compares values U n + 1 - 8 + l

starting at location NAU with value D " + 1 . e starting at location
KRVAR; compares changes in the differences SQ: + 1 / 2 l o f E q . (U S)
rather than changes in Q itself, as might normally be done; if SQ is
less than the appropriate reference value as specified on the TIME
STEP CONTROL card, the change in SQ is compared with the
reference value; sets NI = I if iterations have converged; if the
number of iterations K1TER exceeds NEXTAVE (initially 6),
fjn+i, s+i i s s e t t 0 (ijn+l,e+l + fjn+l.s) / 2 p r i 0 I . to the next
iteration in an effort to achieve convergence.

MAXVAR— checks for the maximum variation of a dependent variable when
advancing from t" to t n + l ; compares values U n + 1 ' ! + 1 starting at
location NAU with value 0" starting at location KVAR after itera­
tions along a k- or j-line have converged; if a component of 0 n is less
than the appropriate "reference" value as specified on the TIME
STEP CONTROL card, the component of 0 n + I ' t + 1 is compared
with the "reference" value.

DTCNTRL— increases, decreases, or maintains the time-step by comparing the
maximum variations obtained by MAXVAR with the maximum
change CHGMAX specified on the TIMESTEP CONTROL card; if
the maximum change exceeds CHGMAX by 50%, or if negative
densities or energies occur, will initiate a recycle by interchanging
NTIME and NM1TIME and doing miscellaneous other chores; prints
relevant ASCII information on timestep control at each timestep.

OUTK— transfers a completed k- or j-line from SCM locations starting at
NAU to the appropriate location in the LCM block starting at
NP1TIME.

ENDMAL— a subroutine to terminate ANIMAL; does a variety of ASCII output
prior to termination.

VOLINT1— used when the moving-grid option is used; calculates the volume of
the mesh; the value is then used in MOVGRID to adjust the CUTOFF
density (see Ref. 4) as the volume changes.

IS. PREPARATORY SUBROUTINES
NEXTHHP—calculates scale factors h,, h 2 , h 3 and grid velociti :s v G , and v G

3 at times t" and t » + ' for all
points along line NXTK; note that the actual functional form depends on ICOORD.

NEXTBBP—calculates external magnetic field components at time t° and tP*' for all points along line
NXTK; note that the actual functional form depends on ICOORD.

NEXTK— brings dependent variable values 0" for all points along line NEXTK into SCM from the
appropriate LCM location in the block beginning at NTIME.

43

NEXTTC— controls the calculation of the components of the transport-coefficient vector K of Eq. (162)
for all points along line NXTK; sets up appropriate arguments and then calls subroutines
EQNST and TRANCO.

EQNST— calculates equation-of-state quantities f|, fd, T, and i and their derivatives with respect to e
and p; for input values of RO, searches EOSRO array to find the two density values between
which RO lies, then brings into SCM locations starting at pointer NSEOST the corresponding
EOS tables from LCM beginning at location NAEOST + NATAB(NRO); the tables corre­
sponding to the two densities are spline interpolated in e, then linear in p, to give values for f,
and fd.

TRANCO— calculates transport coefficients; computes components of K of Eq. (162) not calculated by
EQNST; all quantities are computed as algebraic functions.

NXTZGR— calculates the grid quantities of Eqs. (177) and (178); note that the actual functional form
depends on ICOORD as well as ISTEP.

NXTZFLX—controls the calculation of the explicit fluxes associated with the KK + l /2(KKP-l /2) inter­
faces for LINSEQ = 1 and the KKM + 1/2 (KK-1/2) interfaces for LINSEQ = 2; sets up
COMMON blocks 191, /10/, and / l l / for explicit coefficient subroutines DBCZFLX,
UBCZFLX, and ZFLX.

SETRGR— calculates the grid quantities of Eqs. (175) and (176); note that the actual functional form
depends on ICOORD as well as ISTEP.

SETSGN— determines the value for the algebraic sign of various quantities used in the spatial-difference
equations for the implicitly treated interfaces; checks to see if the signs vary with each
iteration, and, if so, sets the signs to zero to aid convergence; relevant variables are

SGNW1— s (v?) in Eqs. (118), (119), (122), and (123).
SGNDRO—s (8p) in Eqs. (118) and (148).
SGNPDV— has values 0 or 1; is used to multiply C d of Eq. (130).
SGNDV1— s (Sv,) if 8v, < 0, 0 otherwise; multiplies C." of Eq. (127).
SGNDEI— s (oe) in Eq. (122).

SETBC— sets up COMMON/23/ for coefficient subroutine BCRZ.
SETRP— sets up COMMON blocks 191, IWI, I ill, and others for implicit coefficient subroutines

LBCRFLX, RBCRFLX, and RFLX.

16. COEFFICIENT SUBROUTINES

BCRZ— establishes the coefficients for the boundary condition Eqs. (22) to (25); performs tests for
boundary "switches" in accordance with Ref. 4; variables RO, VI . . . refer to the first
zone-center inside a boundary; variables RORM, V 1 R M . . . refer to the point to the "left'' of
the zone-center; variables RORP, V1RP . . . refer to the point to the "right" of the
zone-center; if input JJJjs I, RORM, V1RM. . .are "boundary values"; the coefficient E S m

of the m-component of 0 in the X-component equation is stored in location VAR(NBCE + L +
N V * (M - 1)); the S-component of F is located at VAR(NBCF + L); the component H t m of
the matrices H in Eqs. (22) and (24) are stored in location HH(L + NV * (M - I)); the
component H S m of the matrices ft in Eqs. (23) and (25) are stored in location HH(NV*NV +
L + NV * (M - 1)); the appropriate boundary conditions are determined by arrays IBCRR,
IBCR, ISBCRR, ISBCR of COMMON/28/, which are the corresponding arrays of COM­
MON/4/ for ISTEP = 1 and which are the arrays IBCZZ, IBCZ, ISBCZZ, ISBCZ, respec­
tively, of COMMON/4/ for ISTEP = 2.

ZFLX— calculates explicit fluxes g% of Eq. (45) andfl of Eq. (63) and explicit forces ft of Eq. (45)
and f\ of Eq. (63); always assumes it is working with a j,k +1/2 interface; important variables
are

R O , V l . . . - p ' j i k , (v I \) V ; B .
ROZP, V1ZP ... - pf\M1 , (v R ,) n

j l k + i - •
ROPZ, VIPZ ... - P) M 1 / 2 , (A)V+m ••• •
DROPZ, DV1PZ ... - Sp\i+m . S(^)\k+V2

44

H(I,1), H(l,2), H(2,l) ... — (h ,) 1 ^ . (h i) 1 , k + , • (h 2V],k •
H12PZ-Sn k + „ 2

H n i P Z - D - j , ^ ^ .
GIB—flux from (corresponding to) Eq. (118) or (119).
G2B—flux from Eq. (121).
G4B—flux from Eq. (120).
G6B—flux from Eq. (122) or (123).
G4DS—force from Eq. (125).
G4HS—force from Eq. (126).
G4F—flux from Eq. (141).
G2F—flux from Eq. (142).
G4J—flux from Eq. (151).
G4DA—flux from Eq. (150).
G8B—flux from Eq. (124).
G8H—flux from Eq. (154).
G8D—flux from Eq. (132).
G6JS—force from Eq. (128).
G6JA—flux from Eq. (129).
G6FS—forces from Eqs. (143) and (144).
G6FA—flux from Eq. (145).
G6H—flux from Eq. (131).
G6LS—force from Eq. (133).
G6LA—flux from Eq. (134).
G8F—flux from Eq. (135).
G6PS—force from Eq. (136).
G6PA—flux from Eq. (137).
VAP—vector array corresponding to gf or Tf
VSP—vector array corresponding to g | or?}.

UBCZFLX— calculates boundary fluxes and forces corresponding to those of ZFLX for the k = NDZ
interface on ISTEP = 1 and the j = NDR interface on 1STEP = 2; variable names are
essentially same as for ZFLX.

DBCZFLX— calculates boundary fluxes and forces corresponding to those of ZFLX for the k = 1 interface
on ISTEP = 1 and the j = 1 interface on ISTEP = 1; variable names are slightly different, e.g.,
RO, VI . . . changed to ROZM, V1ZM ROZP, V 1 Z P . . . changed to RO, VI . . . , PZ
changed to MZ, B in fluxes changed to A, and D in fluxes changed to C

RFLX— calculates the coefficients a, T>, c, d, v, w of Eqs. (42) to (45) and Eqs. (60) to (63); always
assumes it is_working with a j + I/2,k interface; in the code listing, the "explicit" fluxes
(evaluated at U " + ' , s) and forces are defined in the vicinity of the corresponding coefficients;
the fluxes and forces are

FIB— flux from (corresponding to) Eq. (118) or (119).
F2B— flux from Eq. (120).
F4B— flux from Eq. (121).
F6B— flux from Eq. (122) or (123).
F2DS— force from Eq. (125).
F2HS—force from Eq. (126).
F2F— flux from Eq. (141).
F4F— flux from Eq. (142).
F2J— flux from Eq. (151).
F2DA—flux from Eq. (150).

45

F8B— flux from Eq. (124).
F8H— flux from Eq. (154).
F8D— flux from Eq. (132).
F6JS— force from Eq. (128).
F6JA— flux from Eq. (129).
F6FS— forces from Eqs. (143) and (144).
F6FA— flux from Eq. (145).
F6H— flux from Eq. (131).
F6LS— force from Eq. (133).
F6LA— flux from Eq. (134).
F8F— flux from Eq. (135).
F6PS— force from Eq. (136).
F6PA— flux from Eq. (137).

Important variables are

. n+l,B

.+!,« ,„R»n + ,-«

RO. VI . . . — rtV^v?)

R O R P . V I R P . . . - ^ 8 . ^ : ; , ^

. R O P , V l P . . . - ^ > i « k , (v f) j " ; |

,

/ ; t

k .

DROP, DV1P . . . _ Spj:,V2

e

k .Slvf)". '^ •

H(l,l), H(l,2), H(2 , l) . . . - (h,)»f'•* *i>j+l,k •

(h 2)j k
• > + 1

HP(1,1), HP(1,2), HP(2,1) . . . — ihfii' , (h ,) j + 1 - k ,

(h 2)" k

H 2 3 P R _ s ; +

+ , ; 2 - k •

H 3 2 I P R - D j ,

+

+

I

1

/ U

AAP— coefficient array corresponding to matrix a.
BAP— coefficient array corresponding to matrix b.
ASP— coefficient array corresponding to matrix c.
BSP— coefficient array corresponding to matrix d.
VAP— vector array corresponding to vector v.
VSP— vector array conesponding to vector w.

RBCRFLX— calculates coefficients for boundary fluxes and forces corresponding to those of RFLX for die j
= N D R interface on 1STEP = 1 and the k = NDZ interface on ISTEP = 2; variable names are
essentially same as for RFLX.

LBCRFLX— calculates coefficients for boundary fluxes and forces corresponding to those of RFLX for the j
= 1 interface on ISTEP = 1 and the k = 1 interface on ISTEP = 2; variable names are slightly
different, e.g., RO, V I . . .changed to RORM, V I R M . . .,RORP, VIRP. . .changed to RO,
V ! . . ., PR changed to MR, B in fluxes changed to A, D in fluxes changed to C.

MAT2— computes the "local" coefficients J, 3, g|.f"i of Eqs. (42), (45), (60), (63) and computes die
time-derivative coefficients s and fii; assembler all coefficients including those calculated by
ZFLX, RFLX, UBCZFLX, RBCRFLX, DBCZFLX, LBCRFLX into the coefficients A, fi,
£ , and V of the tridiagonal linearized difference Eqs. (21) and (32); when completed,
calculation of fi and F begins.

46

17. TRIDIAGONAL SOLVER SUBROUTINES
MAIN program—the DO 710 loop calculates the E's and F's according to Eqs. (27) to (30); the quantity

Uj+l . s+l 0 f £q. (31) i s calculated between statements 715 and 775; the DO 780 loop
does the backward substitution indication in Eqs. (26) and (33); within the DO 710 loop,
the DO 620 loops sets t'w vector array V to the quantity V - C-F of Eqs. (28) and (30); the
DO 630 loop, replaced by ASCENTF subroutine SUMBCE, sets die matrix array A to the
quantity A + C'E of Eqs. (27) to (30); the DO 635 loop adds to matrix array 8 the quantity
C-f lofEq. (27).

SUMBCE— an ASCENTF subroutine to replace the triple-loop FORTRAN DO 630 loop of the MAIN
program; sets the matrix array A to the quantity A t O E of Eqs. (27) to (30).

TRIANG— used to solve linearalgebraic systems of equations of the form A-X = B where A isan NV
X NV matrix, X is an NV x NNV unknown matrix, and B is an NV x NNV matrix;
solution procedure is Gaussian elimination, which triangularizes the matrix A; TRIANG
is used to calculate the E's. F's, and G of Eqs. (27) to (31), since the inverses do not need
to be computed; it does not take into account the fact that matrix A may be reducible, a fact
that could lead to a reduction in execution t ime . 3 0

18. OUTPUT SUBROUTINES
RUNDATA—prints a variety of problem information in the ASCII output file ' 'ANIMREC'' (see attached

fiche for ANIMAL user's manual).
OUTPUT1— controls ASCII output in file "MHDOUT," which occurs at time and timestep intervals

that appear as input data on the OUTPUT card; sets up input arrays for PLOTR.
PLOTR— does an ASCII "plot" of the NP points of array A as a function of array R.
NUMZBZ— prints ASCII zonal numbers zone-by-zone into output file "MHDOUT."
BBEXT— calculates "external" magnetic field component at a specified zone; used in conjunction with

OUTPUTl, NUMZBZ.
SCALFAC— calculates scale factors at a specified zone; used in conjunction with BBEXT, OUTPUTl,

NUMZBZ.
WOFORD— sets up and controls sending of ASCII messages to the RECORD OF ORDER produced

by the ORDER controller that runs ANIMAL during operator-run production.
ORDMES— transmits the messages set up by WOFORD.
IFAR— ASCENTF subroutine to convert floating point numbers to Hollerith character equivalent.
BODARZ— Buffers Out DA and SZ; controls the writing of the DA and RZ arrays into the BINARY

output disc or tape file RECORD (see attached fiche for ANIMAL user's manual).
BOVAR— Suffers Out MRiables; controls the writing of time-dependent quantities, including all

''.pendent variables, into the BINARY output file RECORD at the time and timestep
intervals specified on the OUTPUT card; ANIMAL makes a BINARY record that has the
following structure:

Record 1—DA array, NDA = 200 words.
Record 2-^RZ array, NDR + NDZ words.
Record 3—quantities at timestep zero; DADT array, first NDADT = 100 words;

RZ array only if moving-grid option is used, next NDR + NDZ words;
marker-particle positions and miscellaneous related words, next
2 * NMP + 8 words; all dependent variables, next NV * NDR * NDZ
words; if the total number of words exceeds NRECWD == 5000, the
dump is broken into as many NRECWD records as required with the
last record =£ NRECWD.

Record n—same quantities as Record 3 except at a later timestep.

47

In Record 3 Record n, the dependent variables are stored in the order J + NDR *
(K - 1 + NDZ * (I - I)), rather than the order given by Eq. (163), to facilitate post­
processing; since input/output can be done only from SCM locations, the output quantities
must be brought into SCM from LCM; originally, once the words to be dumped were
collected, ANIMAL used a simple BUFFER OUT statement; however, to survive under the
Livermore time-sharing operating system and apparently poor tape-unit maintenance, an
output procedure using all of the subroutines below was developed as a replacement for the
simple BUFFER OUT statement; an END OF FILE is written after each complete dump; the
END OF FILE is overwritten when a new dump is made; the dumps contain all necessary
information for restart or post-processing.

BUFFO— writes a specified number of words on discs or tape; called by BODARZ, BOVAR; on
tape, checks for errors by backspacing and rereading as well as checking unit status; if
errors occur, will retry to write up to four times, then write blank tape in an effort to bypass
bad spot on tape.

BSPVAR— bacKspaces a tape unit over a dump for rereading.
STATUS— checks the status of a tape unit.
WRBLNK— writes 6 in. of blank tape on a unit.
SETDEN— sets the density of a tape unit.
ENDFIL— ASCENTF subroutine to cause an END OF FILE to be written on a tape or disc; this routine

is included because a more recent version in CLOB would not correctly write an EOF on
disc.

GETIOC— gets the IOC or minus word associated with a logical unit number; used in conjunction with
STATUS, WRBLNK, and SETDEN.

NEWTPE— starts a new disc file or tape when the current one is filled; reads TAPE card; initiates new
disc or tape so it is completely independent of the previous one.

BIDARZ— controls the reading of the DA and RZ an-ay from the BINARY output upon restart.
B1VAR— controls the reading of time-dependent quantities, including all dependent variables, from

the BINARY output upon restart.
BUFFIN— reads a specified number of words from disc or tape; called by BIDARZ, BIVAR.

19. MARKER-PARTICLE SUBROUTINES

General Information. Marker, or tracer, particles are used to trace in a Lagrangian manner the motion of fluid
elements. At initialization, the initial positions of an array of panicles are specified. At the end of each successive
timestep, a velocity for each particle is determined by interpolating on the velocity field calculated by the Eulerian
code ANIMAL. The velocity is multiplied by the timestep to give a position displacement. The marker particles can
be considered as vertices of a Lagrangian calculation. Because a Eulerian formulation is significantly different from
a Lagrangian formulation, the marker particles do not always accurately represent the actual mass distribution in the
calculation. It appears to be quite difficult to formulate a particle "pusher" that is always consistent with the way a
Eulerian code moves mass.

MPINIT— initializes the marker-particles arrays; reads the MARKER PARTICLE card.
MARKER— controlling subroutine for particle pushing.
SEARCH— finds the position of a particle on the ANIMAL mesh.

GETDXDT—finds velocities of corners of a box in which the panicle is located; actually works with —-£- ,

which is not a true velocity if f is an angle.
INTERP1— linearly interpolates on the velocities determined by GETDXDT to give an actual velocity.
INTERP2— a dummy subroutine.
MPOUT— prints ASCII output giving positions of the panicles as well as giving a plot.

48

20. DIAGNOSTIC SUBROUTINES

General Information. These subroutines are used when ANIMAL enters the TEST MODE (see attached
fiche for ANIMAL user's manual). ANIMAL requesis NCHK, the number of zones to be checked, and J2BCHK and
K2BCHK [the corresponding (j> k) pairs of the zones to be checked]. A working disc file SCRATCH is created
when required. _ _

CHECK— writes coefficients A, B, C, and V for specified zones: writes E's and F's for a specified
k- or j-line; writes ITs for a specified k- or j-line; after an iteration has been completed,
calls SETRP and sets up COMMON/25/ with variables Un + l - C j ' 1 , then calls CHKLBCR,
CHKRBCR, or CHKRFLX, as appropriate.

SPECHK— lists dependent variables, transport coefficients, mesh quantities, etc. associated with the
interfaces of a specified zone.

CHKRFLX—essentially a duplication of the coding of RFLX, with coding added to actually evaluate the
values for fluxes and forces after fj l l + l>fi'*'1 have been computed, such as indicated in
Eq. (65); the resultant values are stored in COMMON/23/, which are then printed by CHECK;
the values 0 n + 1 - ^ ' are stored in COMMON/25/.

CHKRBCR—essentially a duplication of ihe coding of RBCRFLX, with coding added to actually evaluate
the values for fluxes and forces after u n + 1 , c + 1 have been computed.

CHKLBCR—essentially a duplication of the coding of LBCRFLX, with coding added to actually evaluate
the values for fluxes and forces after 0 n * l , l t + I have been evaluated.

21. POST-PROCESSING CODES

The ANIMAL "system" consists of a post-processor MALPP and auxiliary codes TTOD, TCETC, and
PLOT in addition to the ANIMAL code. The functions of the post-processor and auxiliary codes are described in
the post-processor user's manual (on microfiche, inside back cover). In these codes there are no complicated mathe­
matical algorithms with th*- exception of the computer graphics algorithms used in standard CLOB graphics sub­
routines. The post-processing codes use many subroutines with names and functions identical to or similar to
subroutines in ANIMAL; in some cases the coding is also identical, but the user should not automatically assume
that the coding is identical. The coding for TTOD, TCETC, and PLOT is relatively straightforward, altSiough the
coding for TTOD gets rather cumbersome because of the many functions TTOD can perform. When attempting
to understand the coding of all post-processing codes, this author recommends that the user consider a particular
function and follow the coding through from start to end for a typical set of input data.

The function of MALPP is to read an ANIMAL BINARY dump, manipulate the information from the
dump, and do the appropriate computer graphics or ASCII output or both. For "vs time" plots, the iclevant
information must be stored until all dumps have been processed. Then the graphics can be performed. MALPP's main
working storage is COMMON/19/, which is broken up into arrays A, B, C, and D. The graphics routines are
set up to process the information in these four arrays, so the function of the "physics" routines is to set up the arrays
properly.

Because MALPP is nearly 150 subroutines, a description of the subroutines will not be given l;ere. Many
of the subroutines have recognizable mnemonic names.

22. TEST PROBLEMS

When an individual gets involved with a code for the first time, u is good practice to dream up test problems
for which solutions are known or for which comparisons with other codes can be made. For the code developer, the
test problems can unveil bugs. For the user, the test problems can delineate the capabilities and limitations of a code.

The test problems listed below are some this author has used. Several have been suggested by others. Un­
fortunately, all but one are one-dimensional. If any of the readers have other useful test problems, this author would
appreciate hearing of them. In this repot no detailed calculational results from running the test problems on ANIMAL
are given; however, a brief descriptor { ANIMAL'S performance is included.

49

TEST 1—ID SQUARE WAVE: cartesian coordinates 0 s x s 100 cm; 50 uniform zones; p = 10" 5

kg/m3 for 10cm "-x «=30cm,p = 10-'kg/m 3 elsewhere; T = 0.01 eV for 10cm s x 5 30cm,T = 1 x 10~5eV else­
where; v, = 107m/s everywhere; B = 1.0 x 10 _ 4for 10cm s x * 30cm, B = 1.0 x 10 7elsewhere; ~- = 0 at

' dt
boundaries for all quantities; all transport coefficients set to zero; ideal gas, y = S/3; follow calculations for 0.6 p&.
ANIMAL performance—because the fluid velocity is much greater than the magnetosonic velocity, all square
pulses should translate 60 cm without distortion. However, since ANIMAL is a Eulerian code, dispersive and diffusive
effects are present and the density wave evolves into a Gaussian-like shape. Negative densities do not occur because
of the second-order (in Ax) mass diffusion given in Eq. (118). The temperature wave remains very flat but widens
considerably. No negative temperatures occur because of the second-order diffusion introduced in Eq. (122). The
magnetic field wave widens into a Gaussian-like main pulse with oscillations trailing the main pulse. The os­
cillations are a result of the dispersive errors introduced by the convective flux of Eq. (124). Because there is no
dominant diffusive truncation error, some magnetic field values in the trailing oscillations are negative.

TEST 2—ID IDEAL MHD PINCH: cartesian coordinates; 0 s x s 100 m; 40 uniform zones; p = 10~3

kg/m3;T = 1.044 x 10" 2eV;B = 0; all transport coefficients set to zero; ideal gas, y = 7/5; at t = 0 apply a step-
function vacuum magnetic field, B = 9.301 X 10" 2 Wb/m2 to x = 0 boundary; follow calculations for 0.05 s.
ANIMAL performance—this is an MHD generalization of the SCTP-I-A hydrodynamics test problem suggested by
Hicks.3 6 A shock propagates toward increasing x. The shock is driven by a magnetic piston, which also moves
toward increasing x. The magnetic piston/gas interface is a "contact discontinuity." Representation of the pision
(or vacuum)/gas interface is a nontrivial problem that has plagued computational magnelohyorodynamicists since the
early calculations of Hain •_! a l . , 3 ANIMAL uses a new "background plasma" method.4 For this problem, the "back­
ground plasma" parameters are p = 10~6 kg/m3 and T = 10~* eV. The inflow velocity is not specified, and
ANIMAL computes the correct value to within) % . Both the "contact discontinuity" and the shock appear as
transition regions over several zones. The average compression behind the shock is correct, but the density, tem­
perature, and velocity profiles show "ringing" and "overshoot," which is characteristic of second-order methods.
The shock arrives at the x = !00-m boundary at roughly the correct time. ANIMAL'S predecessor'7 did not perform
nearly as well on the hydrodynamic analog of this problem; the poor shock propagation can be traced to the conser­
vation3 properties of the predecessor.

TEST 3—ID R1EMANN SHOCK TUBE PROBLEM: cartesian coordinates; - 1 cm s x s 2 cm; 30
uniform zones; p - 103kg/m3andT = 695.6eVforx <0 ;p = 1 kg/m3 and T = 6.956 x 10"4for x =0;all transport
coefficients set to zero; ideal gas, y = 5/3; follow calculations for 5 x 10~8 s. ANIMAL performance—this is
similar to the SCTP-V test problem discussed by Hicks.36 These particular parameters were suggested by Trigger.33

The correct solution is a strong shock propagating into the low-density material and mc Mnent of the "contact
discontinuity" of the two fluids. Because the initial pressure jump is a factor of 10', this is a severe problem.
ANIMAL'S shock position is correct within 10%, and ANIMAL'S accuracy is comparable to LLL's explicit hy-
drocodes (for this type of problem, ANIMAL'S timestep will be comparable to the explicit limit). The temperature in
the shocked materia] is also acceptable. The contact and shock in the density profile are difficult to distinguish at
these short times with so few zones. If the ' 'velocity fractional step" method of Section 6 is used, the shock propagates
significantly too slow, with corresponding inaccuracies in all other relevant quantities.

TEST 4—REFLECTED SHOCK: cartesian coordinates; O s x =s 50 cm; 25 zones, 0 s x s 25 cm, each
adjacent zone 1.16 times larger than the adjacent zone at greater x; 25 zones, 25 cm s i =£ 50cm, each adjacent zone
1.16 times larger than the adjacent zone at lesser x; p = 10 3kg/m 3;T = I0~ 2eV; v, = 3 x I0 5 m/s; all transport
coefficients set to zero; ideal gas, y = 5/3; — = 0 for all quantities at x = 0; rigid wall at x = 50cm; follow for 5.0 /us.

ANIMAL performance—tois problem models a translating fluid coming into contact with a rigid wall. A strong shock
wave with compression ratio 4 should propagate away from the wall. This problem was originally suggested by
Le Blanc32 to test the effect of nonuniform zoning. For uniform zoning, ANIMAL will calculate the correct average
compression, and the density profile will show small-amplitude oscillations behind the shock. However, with non­
uniform zoning there is a tendency to overcompress by a factor of nearly 10% for x > 25 cm and a tendency to under-
compress by a factor of nearly 10% for x < 25 cm. This same tendency is observed in a variety of LLL Eulerian and
Lagrangian codes, and the actual overcompression or undercompression depends on the coefficient used in the
"artificial viscosity."32 This problem suggests that nonuniform zoning should be used cautiously.

TEST 5—ID COAXIAL PINCH: cylindrical coordinates; 1 cm s r s 10 cm; 45 uniform zones;
p = 3 X 1 0 - 4 kg/m3: T = 3 eV; bounr1 -les are electrically and thermally ins'ilating; radiation losses turned off,
but thermal conductivity and resistivity on; ideal gas equation-of-state, 7 = 5/3; apply a sinusoidal current along the
cylindrical axis; the current amplitude is 450 kA and the quarter cycle is 5 ps; follow the calculations for 15 ps.
ANIMAL performance—this is a "real'' -inch problem. The plasma separates from both inner and outer boundaries,

50

leaving behind a "vacuum." Al a later time, the plasma returns to contact both boundaries. ANIMAL'S performance
on this problem is reported in Ref. 4.

TEST 6— ID DIFFUSION PROBLEMS: for constant thermal conductivity (resistivity), exact solutions to
the thermal (resistive) diffusion equation are available in a variety of references thai will not be cited here.

TEST 7—2D ISOLATED SYSTEM: initial conditions are an arbitrary distribution of plasma and magnetic
field: the system is surrounded by electrically conducting, thermally insulating walls. ANIMAL performance—mass
and magnetic flux are constant to within machine roundoff errors. The total system energy—kinetic + thermal +
magnetic—is constant to within 0.0] % in spiu of strong turbulence. Ttiisproblem is intended to verify the conservation
properties of die code.

23. ACKNOWLEDGMENTS

The ANIMAL code as it exists today is a result of contributions f"om many people. Joe Petti bone, as a
former group leader, provided the guidance and much of the physical insight necessary to build ANIMAL. John
Stevens, Larry Suter, and Dave Kraybill participated in the development of the physical model; all spurred the develop­
ment of the code by conceiving interesting and challenging physical problems. Rollin Harding participated in many
useful discussions on numerical methods. John Stevens added several features to MALPP, including the original
"offline" marker particles that greatly added to our physics understanding. Larry Suter made modified versions of
ANIMAL and MALPP to handle problems of interest to him. Ray Cochran added many user-convenience and system-
interaction capabilities to both codes, considerably increased ANIMAL*s operating speed, and performed quite a
variety of miscellaneous, very necessary chores. Alan Mankofsky. a 1975 summer employee, generate ' .NIMAL's
"online" marker-particle capability. John Brasunas, a 1976 summer employee, converted handwritten user's
manuals to the current online versions. Finally, Grant Cook, a graduate student at the National Magnetic Fusion
Energy Computer Center, did extensive proofreading of tl manuscript.

51

REFERENCES
1. K. V. Roberts and D. E. Potter, "Magnetohydrodynamic Calculations," in Methods in Computational Physics,

B. Alder, S. Fernbach, and M. Rotenberg, Eds. (Academic Press, New York, 1970), vol. 9, p. 339.
2. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems (Interscience, New York,

1976), 2nd ed.
3. I. R. Lindemuth, / . Computational Phys. 18, 119 (1975). Erratum, J. Comput. Phys. 19, 338 (1976).
4. I. R. Lindemuth, J. Comput. Phys. 25, 104 (1977).
5. I. R. Lindemuth, J. S. Pettibone, J. C Stevens, R. C. Harding, D. M. Kraybill, and L. J. Suter, Phys. Fluids

27, 1723(1978).
6. I. R. Lindemuth and T. R. Jarboe, Nucl. Fusion 18, 929 (1978).
7. I. R. Lindemuth, and M. M. Widner, Magnetohydrodynamic Behavior of Thermonuclear Fuel in a Precon­

ditioned Electron-Beam Target, Lawrence Livermore Laboratory, Livermore, CA 94550, submitted for publi­
cation to Nuclear Fusion.

8. J. C. Stevens, The KRAKATOA Program, Lawrence Livermore Laboratory, Livermore, CA 94550, in
preparation.

9. R. C. Harding, D. M. Kraybill, I. R. Lindemuth, J. S. Pettibone, J. C. Stevens, and L. J. Suter, Numerical
Computation ofthe Preionization Phase ofa Pinch Discharge, Lawrence Livermore Laboratory, Livermore, CA
94550, submitted for publication to Plasma Physics.

10. J. Allbritton, J. Cohen, R. S. Devoto, and R. Rowlands, "Flute Instability of a Laser-Pellet Plasma in a
Magnetic Mirror," in Proc. Ann. Mtg. Theoretical Aspects Controlled Thermonuclear Fusion,
Madison, Wisconsin, April, 1976 (University of Wisconsin, Madison, Wisconsin, 1976).

11. L. J. Suter and I. R. Lindemuth, "2D Simulations of CO z Laser Breakdown and Propagation in Hydrogen
Gas, "in Proc. lEEEInt'l. Conf. Plasma Science, Rensselaer Polytechnic Institute, Troy, New York, May, 1977
(IEEE, New York City, 1977): D. M. Kraybill, I. R. Lindemuth, and L. J. Suter.fluff. Am. Phys. Soc. 22 (9),
1204 (1977); L. J. Suter and I. R. Lindemuth, Bull. Am. Phys. Soc. 22 (9), 1119 (1977).

12. L. J. Suter, D. M. Kraybill, I. R. Lindemuth and J. C. Stevens, "Line and Continuum Radiation as a Liner
Implosion Diagnostic," in Proc. 2nd Topical Conf. High Temp. Plasma Diagnostics, Santa Fe, New Mexico,
March, 1978 (Los Alamos Scientific Laboratory, Los Alamos, NM 87544, 1978).

13. K. Hain, G. Hain, K. V. Roberts, S. J. Roberts and W. Koppendorfer, Z. Nalurforsch. A 15, 1039 (1960).
14. D. Duchs, Phys. Fluids 11, 2010 (1968).
15. J. R. Freeman and F. O. Lane, "Initial Results from a Two-Dimensional Lax-Wendroff Hydromagnettc

Code," in Proc. 2nd Conf. Numerical Simulation of Plasma, Paper C7, LA-3990 (Los Alamos Scientific
Laboratory, Los Alamos, NM 87544, 1968).

16. W. Schneider, Z. Physik 252, 147 (1972).
17. I. Lindemuth and J. Killeen, J. Comput. Phys. 13, 181 (1973); I. R. Lindemuth, Lawrence Livermore

Laboratory, Livermore, CA, 94550, UCRL-51103 (1971).
18. D. E. Potter, Phys. Fluids 14, 1911 (1971).
19. J. R. Freeman, Nucl. Fusion 11, 425 (1?71).
20. K. V. Brushlinsky, Comp. Metk. in App. Mech. and Eng. 6, 293 (1975).
21. F. Hofmann, Nucl. Fusion 14, 438 (1974).
22. H. C. Lui and C. K. Chu, Phys. Fluids 18, 1277 (1975).
23. J. U. Brackbill, "Numerical Magnetohydrodynamics for High Beta Plasmas," in Methods in Computational

Physics, B. Alder, S. Fembach, and M. Rotenberg, Eds. (Academic Press, New York, 1976), vol. 16.
24. S. I. Braginskii, "Transport Processes in a Plasma," in Reviews of Plasma Physics, M. A. Leontovich, Ed.

(Consultants Bureau, New York, 1965), vol. I, p. 205.
25. J. C. Stevens, Lawrence Livermore Laboratory, Livermore, CA, 94550, private communication (1976).
26. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
27. L. Spitter, Physics of Fully Ionized Gases (Interscience, New York, 1962), 2nd ed.
28. R. H. Pennington, Introductory Computer Methods and Numerical Analysis (Macmillan, New York, 1965),
29. W. R. Briley and H. McDonald, J. Comput. Phys. 24, 372 (1977).
30. W. R. Briley and H. McDonald, On the Structure and Use of Linearized Block ADI and Related Schemes,

Scientific Research Associates, Inc., Glastonburg, Connecticut, R78-3 (1978).
31. J. Douglas and J. Gunn, Num. Math. 6,428 (1964).
32. J. M. LeBlanc, Lawrence Livermore Laboratory, Livermore, CA 94550, private communication (1975).

52

33. K. R. Trigger, Lawrence Livermore Laboratory, Livermore, CA 94550, private communication (1973).
34. T. E. Rudy, Lawrence Livermore Laboratory, Livermore, CA 94550, private communication (1975).
35. R. C. Cochran, Lawrence Livermore Laboratory, Livermore, CA 94550, private communication (1977).
36. D. Hicks, Hydrocode Test Problems, Air Force Weapons Laboratory, Kirkland AFB, New Mexico, AFWL-

TR-67-127 (1968).

LG

53

