“ THE ANIMAL CODE

""
I. R. Lindemuth
February 28, 1979
v
-

) ;ﬂ L PFF2L
MAS L“ UCRIL-52492 |

Work performed under the auspices of the U.S. Department of
Energy by the UCLLL under contract number W-7405-ENG-48.

OWTRISDTION T TILS DOCIMENT 18 UNLIZITED

Distribution Category
uc-34

LAWRENCE LIVERMORE LABORATORY
University ! Catfomia Livermore, Califoria 84550

UCRL-52492

THE ANIMAL CODE

I. R. Lindemuth*

MS. date: February 28, 1979

NOTICE
Thia ot was prepated a5 an account of werk
peRLd fry e et SAnes Lontmeran Semner the
Lsted Sutes nor & Lested Staies Depariment w1 §
Enrigy. nor amy of theu emplayees no; any ot fher ’

e . - LURIECIO, VbcupteACtony, ot thes emplavees, makes |
*Los Alamos Scientific Laboratory, vy wamtanty, exptess W NEphed. or assumes sy gl
Niabstity or responubuity for the accuracy vompleteness
or usefulness of any Wl mation, app: L prdut e

Los Alamos, New Mexica 87544. Proceis b o EpreTs Dot s . o et

1ninnge prsately owned nghts

1. Introduchoncooviviviiieniniiionnarasnenas Crireanreraatr e, 1
2. PhysicalModelooiiiiiiiiiiiiiia S 3
3. Temporal Differencing—General Formalismoiiiiiaiiiiiiiieinenn. 6
4. Spatial Differencing—General Formalismcvieiiiiiiiiiiiiiiiiiiiiaana . 9
5. Basic Difference Equations for Time Derivativescovrieiveiiiinuiiiiaeeriaienianannns 16
6. Velocity Fractional-Step Time-Differencing iiiaiiiiiiiiiaiienaen 18
7. Implicit Time-Differencing with 8> 1/2ottt i s 20
8. Spatial-Difference Equationsoovvenin R 22
9. Implementation of the Algorithm—Introductory Remarksc.ooieiniiiiiiiiianinnnn,s 29
10. Basic Control Variables 32
Th, BBSIC ATTEYE . .ouuuinieianeninnninoraeinneniniarasessnrastotesaraneesasenenseannorans 4
12, LCM Memory Allocation 35
13. Initialization Subroutines 36
14. Miscellancous Logic and Control Subroutinesc.covivernininiannneneiieieieinna, 38
15. Preparntory SUDTOUSINES .. cvovutereaneieraneerisanrenusansarnrasiatososioenessnsansanss 43
16. Coefficient SUBTOUIINEScotiinieinieineiirsiasierarassaranaraeaarsesrareoraranansy 44
17. Tridiagonal Solver SUbFOUtNESc.couinioinirnmiururinrenernserarireotanincacerans 47
18, Output SubrOBHDES cieiniiiirieiiiinniainrnnicranosintonassnenss PN 47
19. Marker-Particle SUbroutinesoviviiiitiiiiiiiiiieia e et e 48
20. Diagrostic SUBMOUNESc.ciiiriiitiriarat et er e taata et e 49
21. Post-Processing COBES ... cvviuiireiinieionionnsoneasasareasotosertoretisastaiarasassen 49
22, Test Problemsoieuiiornruveuirvonssovsorossononertoncanrererearorannceasnsnssy 49
23, ACKROWIBABMENIS ... \ouetiiiiin et eiae et ee et ba ettt 51
2 T T NN 52

THE ANIMAL CODE
ABSTRACT

This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic
computer code. ANIMAL’s physical model also appears. Formulated are temporal and spatial
finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined
are the functions of the algorithm’s FORTRAN subroutines and variables.

1. INTRODUCTION

This repert describes the physical model and numerical methods in the computer code ANIMAL-—A New
(Alternating Direction) Jmplicit Magnetohydrodynamic ALgorithm. In addition, a description of the important
FORTRAN variables used in the code is included and the method of memory allocation is described. This report is
intended to introduce the code features to the new user cr irterested computational physicist. This report is by no means
complete: it does not give every detail of the physical mocdel necessary for implementation, nor does it give every
finite-difference technique, nor is it a card-by-card code description. This report does not attempt to justify the physical
model or the finite-difference techniques, nor does it relate much of the history of the code. Rather, this report tells the
reader what ANIMAL is now, take-it-or-leave-it. Hopefully, this report does give a useful overview of the code as it
exists at this writing. The various references cited are useful supplements to this report and the reader should also
familiarize himself with these d ts.

ANIMAL numerically solves a set of nonlinear, time-dependent, two-d
(MHD) partial differential cquations. Basically speaking, ANIMAL is intended to solve the model equauons in any
coordinate system. To date, the Cantesian, cylindrical r-z, cylindrical r-¢, spherical, and toroidal coordinate systems
have been implemented. The present version of ANIMAL is limited to a rectangular domain in whichever coordinate
system is used. However, a version nearing the completion of development allows the construction of a finite-
difference grid that consiste of a number of rectangular domains connected on at least one side with another domain, and
the coordinate system of cach demain can be different; with such a capability, more complex physical systems can be
modeled.

1 by A

ANIMAL is a generelized Eulerian code. Either the finite-difference grid remains fixed in space or the grid
can move in one of the coordinate directions while retaining the orthogonality of the grid. In a Eulerian code, mass—as
well as momentum, energy, and magnetic flux—is allowed to move from one cell to other cells, and the finite-
difference grid remaias orthogonal. Historically, nearly all major multidimensional MHD codes have been of the
Evlerian (fixed-grid) or generelized Euleriar (moving-orthogonal-grid) type. One alternative is the Lagrangian
approach where the finite-difference grid is fixed to the plasma, so that the mass within a cell remains fixed;
momentum, energy, and magnetic flux do, however, move from cell to cell. It is doubtful that a Lagrangian code could
handle the strongly two-dimensional, shearing motion observed in the calculations performed on ANIMAL, since, asis
well known, Lagrangian codes ténd to lose accuracy and stability when the mesh becomes strongly distorted.
Intermediate to the generalized Eulerian and Lagrangian approaches is the generalized mesh method in which the mesh
moves in a Lagrangian manner until sufficient distortion is encountered, at which time, mass is allowed to flow from
cell to cell. The nearly Lagrangian motion of the generalized mesh method retains to a large degree the Lagrangian
advantages of interface resolution and accurate convective transport in the absence of shear. However, when motion
becomes strongly two-dimensional, the mesh in the generalized mesh method will become considerably distorted, and
it is unclear to this author just how well physical processes such as strong diffusion can be handled numerically on a
nonorthogonal mesh. Without a doubt, Eulerian codes have been used to simulate situations where the multi-
dimensional motion that occurs is stronger than any computations reported to date using either Lagrangian or
generalized mesh methods. In addition, the physical models that have been incorporated in the Eulerian codes are more
complete.

The physical model used in ANIMAL includes thermal conduction, resistive diffusion, radiation, and
ionization in addition to the inclusion of the Lorentz ¥ X B force in a fluid description of a plasma. The charged-particle
transport coefficients are *‘classical’’ and the atomic processes are based on local thermodynamic equilibrium. The
plasma equations are coupled self-consistently to electrical circuit equations.

The major limitation of ANIMAL at present is that only the velocity components in the plane of the
ion and the magnetic field normal to the plane are considered. In addition, ions and electrons are assumed to be
in thermal equilibrium, a limitation that can be elirainated in a quite straightforward manner. A simple Ohm’s law
including only resistive diffusion is normally used, al though the transve-se thermoelectric effect is an option included in
the code.

Alternating-direction implicit (ADI) finite-difference methods are used in ANIMAL. The ADI method of
tesnporal differencing allows the use of a timestep)arger than could be used with less sophisticau:d, explicit
finite-diffe hni As Roberts and Potter! have d d, the ti P restrictions d with an
explicit method because of convective and diffusive transport can become very severe in magnetohydrodynamics. In
principle, the ADI method allows for a timestep dependent on time-rates-of-change of quantities, rather than on
Courant-Friedrichs— Lewy? conditions; thus, for example, when simulating 2 quiescent gas with a very large sound
speed, the timestep can be much larger than the tiine required for a sound wave to travel across one zone. In addition,
ADI permits the formal accuracy of the finite-difference methods to be rigorously second-orderaccurate with respect to
the timestep. And, finally, ADI permits the inclusion of nll hysical p and the inclusion of both dimensions,
simultaneously, without the need to resort to fractional steps, i.e., “'splitting,”’ and the resultant inaccuracizs.

In ANIMAL, the ADI method of temporat differencing has been combined with spatial-difference equations
in such a manner that energy conservation depends only on timestep size and is independent of spatial-zone size, even
though a nonconservation form of energy equation is used.3 For isolated systems, exact energy conservation to within
0.01% is generally expected.

The treatment of boundaries in ANIMAL is unique.? ANIMAL incorporates previously
of plasma/wall interaction. Situations such as wall contact, separation, and return are relevant in ANlMAL

ANIMAL is intended to be a flexible and versatile tool. The numerous built-in options for geometries,
boundary conditioas, iritial conditions, physics (and even for difference methods; permit classes of problems never
run on the code previously to be attempted. For this flexibility the user must paya pnce Relatively little of the code is

s arad

*‘hardwired"” and the user must experiment with things like zone size, ti artificial-viscosity
parameters, and difference technique , o prevent pathologies and to ensure accurncy The code is not *‘idiot-proof,”’
and not all combinations of input data wili work. The code must be considered on a **user-b ** basis, and the user

should not take for granted that everything will perform as advertised for every conceivable case, since not every
conceivable case has been checked out on the code.

During execution, ANIMAL praduces a minimal of readily readabl output. Normally, this output is
sufficient only to verify that a problem has been correctly g d and has enc d no pathologies during the
course of the computation. Only tirough the use of an extensive post-processor, briefly described in this document, is

ive problem analysis possible. At this writing, the post-processor provides *‘snapshot’” graphics for
approximately 55 spatially dependent quantities, e.g., density, and approximately 90 ume»dependenl quantities, .g.,
average density.

Published applications of ANIMAL include a study of the interaction of a hot, magnetized plasma with a cold
wall,’ a study of z-pinch plasma under liner implosion conditions,% and a study of the MHD behavior of thermenuclear
fuel in an advanced relativistic electron-beam target using the fuel preh d insulation principle.”
ANIMAL was developed primarily to calculate the Krakatoa !omldal-pmch expenmem 8 An important accomplish-

ment of ANIMAL is its ability to calculate the prejonization phase of this experiment.” ANIMAL has also been used to
study sausage instabilities of a plasma column, lhe win down stage of La Livermore Lab y's (LLL’s)
plasma focus, Rayleigh—Taylor instabilities of a p decelerated by a magnetic field in ion with LLL’s
Baseball-If laser-tasget pl duction, 10 and studies of laser/pl experiments.!! ANIMAL calculations have
suggested a possible dlagnostlc for use in liner implosion studies. 12

Since ANIMAL is primarily a *‘pinch** code intended to calculate very dynamic plasma behavior, its
capabllmes should be cons:dered in context with other pinch-like calculations appearing in the literature. The
. ing one-di computer code of Hain et al. '3 was applied to the study of theta and screw pinches, and
various versions of their code have been used similarly at laboratories throughout the world. Duchs,# Freeman and
Lane, ! Schneider, !¢ and Lindemuth and Killeen!7 computed various two-dimensional f; of theta pinches. The
code of Lindemuth and Killeen was a predecessor to the current ANIMAL code. Othet pinch-like (wo-dlmensmnal
sxmuluuons were of the plasma-focus discharge by Potter, '8 a plasmoid interacting with a solenoidal magnetic field by
Freeman,!® the trapping and thermalization of a laser-praduced plasma by Lindemuth and Killeen,!7 and the
simulations of plasma ﬂow in channels by Brushlinsky.20 More recently, Hofmann?! has simulated the dynamics of a
belt pmch and Lui and Chu?? have simulated the dynamics of a toroidal screw pinch in which all three components of the

field are imp Brackbill?? has done a three-dimensional ideal MHD computation of kink instabilities.

2. PHYSICAL MODEL

An MHD model based on local thermodynamic equilibrium is incorporated into ANIMAL. The basic model
equations are

%+V'(97)=0, (§))
a1
2 1
;"") *V IV ¥Vt — B X (VXB)=0, ®
0
3 _ _] _
G2 +V-(pv€)+pV-v—V-[KVT+I€ x(vxa)]
at Hg
foxB)| o B <
Lo xB)| Z{vxB) = X VT |repp =0, o)
2 5
Ho 0
and
ﬁ—vxuxnpvx[l (vxE)-ExVT]=o. @
ot o

In Eqgs. (1) to (4), p is the density, ¥ is the fluid velocity, p the pressure, B the magnetic field, « the specific internal
energy of the fluid, K the thermal conductivity, T the temperature in joules, 7 the electrical resistivity, ép 4y a radiative
eneigy loss, and g, the free-space permeability; mks units are used throughout. Equation (1) is the continuity equation.
Equation (2) is the equation of motion; the fourth term is the Lorentz force, T x B, where the current density T has been
eliminated through the use of Ampere 's law with the usual neglect of displacement current. Equation (3) is the internal
energy equation; the fourth term is the divergence of the heat-flow vector and the first part of the next-to-last term
represents ohmic heating, wJ2. Equation (4) is Faraday's law, based on a simple Ohm’slaw, E = —Vx B + of
— B % VT, where the vector [is the “‘transverse’” thermoelectric coefficient multiplied by a unit vector in the B
direction.

For implementation into ANIMAL, the vector-model Egs. (1) to (4) must be written out into component
form. The geometric versatility of ANIMAL is attained by writing the component equations in their general orthogonal,
curvilinear coordinate form and making a coordinate transformation from the usuval (x;, X3, 1)} two-dimensjonal
coordinate system to a “‘fixed”’ coordinate system (£, &3, 1). It is required that the transf fon must satisfy

g;_’ = % = 0. Ignoring the azimuthal component of Eq. (4), the component forms of Egs. (1) to (4) then
3 1
become
9 3 G 9 GI\ =0 5
w (hyhyhgx X35 0)+ _a-E—l (x33h2h3 P [vl -]) * —3?3— (xuhlh2 P [v3 - v3]) ')

] 2 G
o (uMahakyss) * 7 (xsaohs oy [—])

)
G
+ 3%, ("11"‘1 hy oy ["3 V3]) +hy pvy (hygxyy —v3hyyx45)

L3 ° -
*halysy g — hyxy3B, e {h;B,) =0, ©)

3

?
30 MuhahyXy Xy p¥g)+ o ("33“ hy v [v, - +F])
2
o ("uh:hz oYy ["3 - "(3;]) +hy vy (V3hy X33 ~ vihy3xy)
o,

op 1 2
+hyhyxy 2, + e hyxy By 3, (,B,)=0,)

(“ 1hahaty ngy pE) = az {55hghy pe vy - +)

3
L h,h, pe |v; —v§]) +p — (,h
%, ("u 1y P ["3 "3]) P %, (hyh3x33v))
hyh,x BTIB, |
a3 2 273733 aT 2 3
+p == (hyhykyv) = = -(x__+ th])
at, VAR g | hgxy 3%, ugh,B, 3, 2 B

h,h,x BTIB,|

) 1ha%y aT)l g

2 (](s .22 [thz])
%; | "3"33 %, "0“232 3]

h3xa 3 hyBIB,1 ap
o g By [= o @Byt —— o
" iyhyxy g E1 351 8
hyx F) h,BIB,! a1
__h_“__ 55 (B [__ — (hyB) + ——— —]
hahyxgsuy 865 #y 0% B, ¥

+épap =0 ®

and

2 ? ol . @ o
m (hyhyxy;%33By) + % [hs"ssBz ("\ -V)] * %, ["1"1132 ("3 —V3)]

hyx P [1:]
N R BB
aE3 2

Ay | hyxyy \Kghy B,
o [ha%s (2 2 (hB)+BIBZI LAY I ©
o | hyxy \mhy 3, 27 B, a51) ’

Ix

InEqgs. (5)w(9).thedeﬁmnonsx“ %E-, X33 --g?:. hy; = 'g;‘.:-' hy = .g;;’_ vi= th, wnd Vg = h3T3

have been introduced for The notations v; and v, refer to the velocity componems in the £, and &;
direction, respectively, and B, is the component of magnetic ﬁeld normal to the £—&; plane

The component Egs. (5) to (9) are writter: essentially in the form in which they are dxﬂ‘cr:nced. It is very

important to note that only first and second spazﬁnl derivatives of the dependent variables p, v, , 5, €, and B, are present

and that mixed derivatives of the form —_9 . Any additi inskii4 physic in-

a—flﬁ;do not appear. Any additional Braginskii** physics effects not in.

cluded in Egs. (1) to (4) generally involve the mixed second derivative.

4

To be complete, the model specified in Egs. (1) to (4) must be supplemented by equations of state relating the
pressure, temperature, thermal conductivity, resistivity, and radiative enargy loss to the density and specific internal
energy, and, for the thermal conductivity, to the maguetic field. It is here that an approximation to local thermodynamic
equilibrium is used. The ionization firaction f; for deuterium at a temperature T is computed from

C, i+ =1, (10)
where
32
o 12 / I
C=— | —= expl —). (1)
m; 21m|eT T

Equation (10) is the Saha equation; the density dependence of the ionization potential I; is taken into account. A similar
expression is used for the dissociation fraction f,. The fraction dissociated and fraction ionized given the total number of
particles, so the pressure, assuming an ideal gas, is

1 (12)
P= PT(L + 5 + 26)/m, ,

where T is in joules and all other quantities are in standard mks units. Similarly, the specific internal energy is

1 { 1
e= — [TQ25+— fd+3fi)+2fiei+edfd] ,
2m, 2 13)

where ¢ and ¢4 are the ionization and dissociation energies, respectively, and where the 2.5 takes into account the
rotational and vibrational degrees of freedom of the deuterium molecule.

The thermal conductivity used is the sum of the electron and ion thermal conductivities perpendicular to a
magnetic field as given by Braginskii.2# Neutral-pariicle thermal conductivity, formulated by Stevens,2® can be used as
an option. The effect of neutral particles on chasged-particle thermal conduction has not been taken into account.

The enhanced radiation due to line emissior can be an important encrgy-loss mechanism. The radiative loss

rate épap of Eq. (3) is

€pap =C; G P2 T, (14)
where C, is a constant and G(p,T) is a density- and temperature-dependent “‘total emission factor, '* which is a sum of
contributions from Griem’s rates for bremsstrahlung, free~bound radiation, and bound~bound radiation.2® When
G(p,T) is equal to unity, é,r, equals the bremsstrahlung rate of Spitzer.2’

The electrical resistivity, which represents the collisional loss of momentum and gain of thermal energy by
electrons, is due to collisions with both ions and neutrals. The resistivity is taken to be

N=0g +0y, 15)

where m is the Braginskii2® perpendicular resistivity due to ion—electron collisions and where 7y, the resistivity due to
electron-neutral particle collisions, is given by

ay=C3 TR (-6, (16)

where C; is a constant,
The transverse thermoelectric coefficient B is also taken from Braginskii.2*

5

3. TEMPORAL DIFFEREMCING—GENERAL FORMALISM

The component Eqs. (5) to (9) can be written in the form

W) Lz (a, _a_) +Y (ﬁ,."’_ -0, an
T 3, 2,

where X, ¥, T, and U are five component vectors, and

U=(p,v,,v3.¢,B,). (18)

Only derivatives with respect to one orthogonal coordinate £, appear in X and only derivatives with respect to the
second coordinate £; appear in Y. The two alternately used finite-difference equations in ANIMAL can be considered
to have the form -

(u":ni)] :: (un) o3 [(Umllk) (@) (5;“1*)]
+¥ [(B_i,:k—l) - () - (E;m)] =0 19)

T (or) 7 (g}
' (Jok) (ik) ."‘ pn+l untt Do+l
n*2 _ ol J-1Lk ik Lk
3 [(v,-".:i.) (). ()] o @

where U), designates values at time t* and spatial coordinates (£;);, (£3);. In Eqs. (19) and (20), X and ¥ are spatial
ﬁmte-dlﬁ'cmnce approximations to X and Y, respectively. Equations (19) and (20) sliow the standard ADI coupling
between unknown quantities. In Eq. (19), which is used to advance the calculations from (2 1o t"*1, the unknowns are
the values U"k* ! along a line of constant k; the quantities atk + 1 and k — 1 are known quantities since they have the
superscript a. [n Eq. (20), which is used 1o advance the calculations from t3+! (0 1**Z, the unknowns are the values
U'”‘2 along a line of constant j; the quantities a1 j+1 and j—1 are known quantities since they have the superscript
ngl-l Equatior:s (19) and (20) are in gencral nonlinear functions of the unknown quantities and therefore cannot be
solved directly. To solve Eqgs. (19) and (20), ANIMAL uses essentially a Newton-Raphson method as given by
Pennington,28 ar.iong others. Application of the Newton-Raphson method to Eq. (19) gives an equation of the form

(A)n+1 2, Un+l 241 (B)n+l 2. an+1 2Ly (El);:;l.n.ﬁ;\:lx::ﬂ = (vl)Rzl,a , @

where the additional superscripts 2 and % +1 indicaze the iterati ber and where A, B, and & are matcices.
The calculations reported by Lindemuth and Killeen!? can be considered as using Eq. (21) for £ =Qonly. As
shown by Lindemuth and Killeen, Eq. (21) for ® = 0 gives an approximation formally second-order accurate with
respect to the timestep At = (1+1 — 2, Repeated application of Eq. (21) until convergence is achieved does noti
the formal accuracy of the solution, and Eqs. (19) and (20) are, when used together, still of d y with
respect to the timestep. However, the basic reason for the success of ADI is that the errors introduced on one timestep
a2 cancelled on the following timestep. This appasently requires the two approximations to the X of Eq. (17) to have
the same values, as indicated in Eqs. (19) and (20). I Eq. (21) is not iterated to some sort of convergence, the net effect
i to use a somewhat different value for X in (20) than is used in (19). Expericnce during the code development process
has shown that failure to iterate introduces unwanted, nonphysical effects that affect the calculations unless the ti P
is reduced considerably.

Note that Eq. (19} or (20), considered alone, is an approximation to the complete physical system, Eq. (17).
ANIMAL, as its predecessor,!? does not use fmctional tiimestep or splitting procedures, whereby one physical
process—or one dimension—is ueated as if the otbcrs were not present. Experience during code development has
shown i where the coupling phy P or di i s was sufficiently strong that a fractional
timestep m¢.thod would have required a considerably reduced ti p to . For example, situations
have been observed where the energy increase due to Ohmic heatmg was balanced by t.he heat loss due to thermal
conduction, so that no net change occurred, and yet either process by itself would have led to a drastic change in the net

energy.

Equation (21) is appropriate only when 1 <j <Jand 1 <k <K. ANIMAL casts boundary conditions in the

form

Tn+1,e+1 & (g yn+l,0, g+l e+l o o7 yn+l,e, getl,e+l o om yn+l,Q

Uy = Bt Ugy +{H) " Uiy +ENET 22)

1,841 o ¢E ynt1,2, (ntl, e+ 4 i yn+1,2 | Gatl,e+1 4 ¢F yn+1,2

U =@ Rt P T TR Ut DL @3

Gntl,etl o (g yn+l,0 , gt 1,041 4o yr+l,e , n+1,2¢1 o (F yn+l,0

U,"I e —(53),-"_ 1 U,-". 2 *(H3)j': 1 Uj':3 *(Fg)j': [l (24)
and

Ujr:;],ﬂ*l =(E3)}:F’Q an+l ’“’1+(H)n+l 2 Unﬂ ’“1+(F3)j':§‘-'2. @5
Equations (21) to (23) form a set of lincar, simuitaneous, “‘tridiagonal’” algebraic equati in the unk

quantities U"“' 2+1 for1=j =<Jalongalineof constantk, 1 <k <K.The method of solution involves calculating
E'sand F’s such that

Ontl,eel ZEntl, R, Tn+l,erl | Furl,e

Uik Bt U ERR 26)
Substitution of Eq. (26) into Eq. (21) leads to the result that
E;Tkl'n - —[(A)n+1 2y (Cl)n+l 2 (El)rl-.;l,e]

[(B WiLe + (Cl)nﬂ .2 (H el E] @n

Fnﬂ,ﬂ [(A)n+l 2 4 (Cl)nﬂ ,2 (El)nﬂ n] ‘.

2,k
[(V e - (Cl)nﬂ .2 (El)nffkl,e] . a8
E;:;l,nz - [(A)n+l [(C)n+l E'E;”llf] -(=B)j'::l'" L2<j<y, @9)
and
Feve = [ppte s @opre-Eie]
[@oppre - @t Frlg] 2 < < @)

7

Using Eqs. (29) and (30) for J—1 and J—2 in Eq. (26) and substituting isto Eq. (23) leads to
aﬂuﬂ = {T _ [(El)?l]”z " (ﬁl)?;l.ll . E?f'ziﬁ] . E?:]‘:{z‘ l-l .
{(Fn,";'-" + [@ppe - Bk« € ppe] Pl
MCBLHEE E?flz’}] : 6D

Thus the solution procedure along aline of constant k is to se1 and store the boundary condition Eq. (22), calcul='= A, B,
€, and V of Eg. (21) for j = 2, calculate and store E, and ¥, from Egs. (27) and (28), repetitively calculate A, B, C, and
Vof Eq. (21), and calculate and store the E’s and F's of Eqs. (29) and (30) for 2 < j < J. U is then calculated from Eq.
(31) and all other U;'s are calculated in decreasing order of j from Eq. (26). Note that it is not necessary tostore A, B, C,
and V for each i as long as the boundary conditions have the form given in Egs. (22) and (23). Also, note thateach k line
is comptited independently.

Equations (21) to (31), as a method of solving Eq. (19), give the basic ANIMAL algorithm for advancing
the calculations from tisne t" to t"* . Tin= algorithm begins by setting U}‘_k“-o = UJV_,‘ . Then fork =2 (ezK—1)Egs.
{21) to (31) are applied repetitively until l ! ﬁj‘;"”' - U}"{"“ /0 e l < 8, where 8 is typically
5 X 10~9. Then each successive k is adv. similarly. When all k such that 2 <k <K — 1 have been advanced, the
boundary conditions Egs. (24) and (25) are used 1o set values 2tk = 1 and k = K.

To advance the calculation from time t"*! to t"*2, the Ncwton-Raphson method is applied to Eq. (20).
Boundary conditions have the same form as in Eqgs. (22) to (24), with the superscript n+1 replaced by n+2. The
equations corresponding to Eqs. (21) and (26) are

T AP+, (In+2,0+1 T OAN+2,0, [n+2,04) 4 g0 AR . (2,041 o oy \n+2.2
YV M (BN Uy @5t - U = (V) G2

and

an'zz,nﬂ = Ejn’zz,lz . U;l.:i,lwl + F,HZ‘E , o)
respectively. The decivation of expressions for Efif 2%, FP322, EDf22, FI¢2% , U122 comesponding to Egs.
(27) to (31) is straightforward. Thus, the algorithms for solving both Egs. (19) and (20) are _identical except for the
method of establishing the coefficients E, H, and ¥ of Egs. (22) 10 (25) and the coefficients A, B, C, and ¥ of Egs. (21)
and (32). (Rigorously speaking, F and ¥ ere not ““coefficients.*’) The only other difference in the two algorithms is
where the computed results, Eqs. (26) and (33), are stored. The similarity in the two algorithms is used t.» minimize the
coding in ANIMAL.

As formulated by Egs. (19) to (33), ANIMAL ’s basic algorithm isquite gencral and need not be restricted to a

five-component solution vector U as indicated in Eq. (18). ANIMAL is in fact set up to calculate subsets of the model
equations. The following subsets can be selected in addition to Eq. (18)%:

(1) U = (p, ¢ B) in one-dimension, i.e., one-dimensional diffusive transport.
(2) U = (p, & B) in two dimensions.

(3) U ={(p, v;, ¢, i.e., onc-dimensional hydrodynamics.

@) U=(p, v 3 6, ie., two-di ional hydredynami

5) U =(p, v}, & By), i.e., one-dimensional MHD. ~
For Eq. (18) and each of the subsets a variety of physics options are available; e.g., U = (p, v;, €) can be ideal
one-dimensional hydrodynamics if the thermal conductivity and radiation are set to zero. In addition, because of the
generality, the ANIMAL algorithm is set up to handle as many as ten variables in anticipation of the addition of more
dependent variables. For example, most of the structure to handle additional magnetic field comporents B, and B, is
already in the code (ANIMAL'’s predecessor!? did in fuct calculate B, and B,); what is missing is merely coding to
determine the appropriate coefficients, and this would be a relatively minor frection of the entire coding.

It is impontant to note that for the on¢ dimensionz! subsets, Y of Eqgs. (19) and (20) are jdentically zern,
Hence, in one-dimensional calculations, ANIMAL uses a fully implicit method [Eq. (19)]to advance from t* to 1°+!
and then AN:L1AL uses a fully explicit nethod [Eq. (20)] to udvance from 2+ to t+2. By combining Eqs. (19) and
(20), one can see that the one-dimensional difference equations relating U+2 1o U", for n ¢ven, appear to be
Crank-Nicholson, 2 whereas those rslating U"*3 to U1 appear to be *‘leapfrog.**?

4. SPATIAL DIFFERENCING—GENERAL FORMALISM

The preceding section outlined the temyx.ral-differenciny; techniques in ANIMAL. The spatial-difference

equations in Egs. (19) autd (20) are formulated by integrating the model equations over the ** 1 vol **or *‘mesh
cell,” or ““zone, "’ in the £~ £; plane {shown schematically in Fig. 1). The following integrals of g ic quantities
are selevant:

“1)1"/1/2 E3eei2

Vi = (hyhyhyxy xg3)" dfy iy . a4
(El;j—ln (&3 _1p

. AL, T .

Sjnx = f (hahyxga)fyy 4k (35)
(E3)k—l/2
LYY

n -

Skeip = f (hyhyxy Yooy O6; - 36)
(‘l)j—lﬂ

W AW Mahaap (B xgs)”
B o &) %% a7
€1 S e 2

Ealein f Pa¥as)”

Dl = 4% - (38

h.
(€3)y _ \2 2 iR

Egp { MXg\"
p" = —_ aE, . .
JRH2 h, 1 39
€)j_ 1 2 Tksip

&
(&) |8k) —
3k +% T
),) Py (Ak,),

e 1

& FIG. 1. The control volume, ov
&) (&) (& - 1 “zone,” used to formulate the ANI-
Vj- =17 B MAL finite-difference methods.

In Eq. (34), V7, can be identified as the two-dimensional volume of the zone; the true volume isV?, A£,, where, for
axisymmetric pmb]ems Ag, =27 Similarly, 87 T2k and §7 'k k +1/2 can be interpreted as the areas oi'the cell interfaces
at j +1/2and k +1/2, resp=ctively. The quantities given in Egs. (37) to (39) are relevant because it has been found to be
ad geous to diffs the magnetic ficld as if h,B, was a dependent variable. L k can be interpreted as the
“inductance’’ of the zone.

Equations (5) and (9) are totally in *‘conservation®* form and the difference approximations exactly (except
for machine roundoff) conserve mass and magnetic flux (the reader should be familiar with Ref. 3). Thus, the first
component of Eq. (19), cormesponding to Eq. (5), is differenced as

vn+] pnﬂ _ vpk p
i
* S0 I”("n -9)] e

ln"l — "

el n+l

- Sj—l/2,k[p(vl -)} 12k
n Gy |"

* Sunn (/’("3 - ¥3) L.,kﬂ/z

- S;‘k—llZ[plyy — "g)] ’ =90, (40)
’ k-2
where the method for evalueting the depend, iables in the spatial differences has yet to be specified.

Many of the terms in Egs. (6) to (8) are also *‘conservative”” and represent fluxes of momentum or energy.
However, terms that cannot be integrated once exactly in the double integration over d£, and d£, are ““nonconserva-
tive'” and represent what this author refers to as forces. An example of aforce is the pressure gradient term of Eq. (6),
which in fact is a real force. Force terms involving spatial derivatives of dependent variables are called nonlocal forces.
These terms are integrated by assurning the force varies linearly over the direc.ion in whxch the derivative is taken and
by assuming the dependent variables are averages in the other direction, e.g.,

(CVISY S CUWY) ap \™!
f (hzhs"sa g) dg, dt; =
ey S 1

3l 1 ap \ "
((s)ﬂl2 &), m) /“'J [; (hzh3x33 E)

k-1 112
1 ap n+l
+? (h2h3x33 5_51)] dg; =
-2
n+
(Y-)) R (a_p)
! 12,k
(2 1 -2 7 2 aEl)
Ik
. a+l
+% S (aaTP)] ’ “n
ok

The treatment of nonlocal forces as implied by Eq. (41) is necessary to retain in the difference equations the
*‘subconservation’" properties of differential equations even though the model Egs. (5) to (9) are not completely in
*‘conservation " form.? Forces not involving spatial derivatives of dependent variables are termed local forces, e.g.,
the term hypv3Vyhy 3%y, of Eq. (6).

From the form of Eq. (40} it should be apparent that, for {luxes, each zone on either side of an interface
seceives the same contribution from quantities on either side of the interface except for a change in sign (i.c., fluxes are
antisymmetric about the interface). Similarly, from the form of Eq. (41), it should be apparent that, for nonlocal forces,
each zone on cither side of an interface recejves the same contribution from quantities on either side of the interface with
the same sign (i.e., nonlocal forces are symmetric about the interface). Thus, the coefficients of Eq. (21) can be written
as

n+l,8 - gnthe 4 (7 JatLe =
(A Nk gt e+ ("‘l)j":ll/'zg,k + (°1)+1/2 K

- ik * (d)" Vo (42)
B = bR + @RS ' “3)
COMM = =GOS, + (Cn) ik (44)

and

+1,0 - +1,2 +1,2
VORSE = e+ R+ GO S + GOR
o L2 _ T
- Ok O — @D

= &2 ~ @ kerz + @12 ~ @12 - 45)

In Egs. (42) to (45), the various superscripts and subscripts imply a functional dependence for any quantity Q given by

1,2 _ un+l,
Q=0 (Uj'.'k+ . 5)
1,¢ _ pn+l,e 1,0
Qs = Q(U,-’fk BT k) . “7)
and
- m n
Gy = Q(Uj,k , Uj,kH) - (48)

Egs. (42) to (45) result from

+1,041 - +1,2 | Tjn+l e+l L hntl,e+l _
G)Jn+ll‘2 k (b)1+1/2k an"l koot (al)ﬁ'l/lk U" G,)f:l;z k 49)
+1,04] _ +1 [1,0+1 = 1,2, gotl,
DRI = GOl TR+ R Ui -GS, 0
Toyntl, e+l _ (T yn+l,e, gn+i,e+) <+,
O M O Ml OV M oD

11

Tarl _ Tn e+l
jik ik = = . —
= an-] Q.Un-ﬂ,ﬂil n+1,%

TR ik T Yik Y 52)

and
Y = G * @Djkern ¥ EDhere — @Dy * iy (53)
where 2 rep all the antisy ic fluxes, £ rep all the sy ic nonlocal forces, and T§ represents the

Jocal centeres forces appearing in)(“’rl of Eq. (19). Thus, Eq. (49) is the Newton-Raphson linearization of
the forces, and hence

B(Fa). n+l,e
(E)n+l.lZ Viri2k
15+ 12 k = ’
Wik (54)

A n+1,2
nt+l,e 1j+l2.k
("’)_|+1I2 k —_— s
Wik 5

u

and

+1,0 , pya+l,e
Uik

= n+LR _ _ craynilR Toan+Le | 1,2 4 (5.)0*L,
GPIBE = = (EDEER + (5INhS - URLE + Giike,) 56)

i.e.; b, and , are “Jacobian"* matrices. Note that in Eq. (56), % I}, represents an explicit flux, which is only
a function of 0‘”“ 2 "Throughout this report, the convention is adapted that any quantity with an iteration subscript of
the form 2 +1 is a function of both T7*1:2+1 and U+L.2, The functional dependence implied by superscripts on
any quantity Q is

QLR o Q(ﬁnﬂ,nﬂ , ﬁnﬂ.n) s 57

Qmtle = Q(ﬁnﬂ.ﬂ) , (58)
and

Q" = QUM . 59

All of the cociTicients appearing in Egs. (50) to (52) are also determined as a Newton-Raphson linearization.
In Eq. (53), 2% B}, and 5 represent the fluxes, nonlocal forces, and local forces, respectively, appearing in ?jn.k

which appears explicitly in Eq. (19).
In a similar fashion, the cocfficients in Eq. (32) can be written as

AIPE = PR+ NS + GONEE + Gl - BIh + @I, L g

12

http://yvM.fi
file:///XHlx

I

B.\t2, 2,
(B3 ? (. Meaw * (da),uuz , ©1)
CIE = - G * G - ©

and

n+2,2 _ —n+l,e n+2,9 n+ n+2,¢
(Va) mig sl ()5 + (9)] k+1l2 AR AL

R CA L AR CA i R G

_(F 1 _(F 1 1
(f‘;);l:lfl,k (fi)f:x/u + (fa),"*uzk (3)1 112,k (63)
where, analogous to Eq. (49),
= 42,
EIRIET = Gk UNESY + GORZs- Un>™ - Gofidih (64)

is the Newton-Raphson linearization of the fluxes g3. Similar linearizations for g§ and g5, analogous to Eqs. (50) and
(51), are also used in Eqgs. ISO) to (63); and Eq. (52), with superscript n+1 replaced by n+2, is also used.

The coefficients A, B C and ¥ of Eqs. (21) and (32) have been broken up into the form given by Eqgs. (42) to
(45) and Eqs. {60) to (63), respectively, to facilitate implementation of the algorithm into actual FORTRAN coding.
Thus, for example, prior to the forward sweep along line k indicated by Eqgs. (21) to (31), the **explicit’* fluxes

@ Masin and “‘explicit™ forces (5)1 +11247¢ computed for all 1 < j < J and stored. They are then recaled

as required in the forward sweep to contribute to Vl asindicated in Eq. (45). When the iterations along line k converge,
the algorithm is then applied to line k' = k+1. The explicit fluxes and forces at the k’+1/2 interfaces are again
calculated and stored, but the fluxes and forces at k’—1/2 need not be recomputed, for they are merely the previously
computed and stored values for k +1/2. Hence, when advancing time from t" to t"*!, there is no coding in which the
mass fluz represented by the last term on the left side of Eq. (40) is explicitly calculated (except at boundaries, to be
described later); there is only coding corresponding 1o the fourth term of Eq. (40). In a similar fashion, the coefficients
a,b,v,¢,d, and W, which appearin Egs. (42)to (45), are computew only for a j +1/2 interface and are then stored where
they are used for the j’—1/2 interface when j° = j+1. In essence, then, only one-half the flux and nonlocal
force-difference equations are actually coded, and this minimizes the possibility of error.

Just as there is sy y (or antisy y) about an interface in the algorithm, there is also a symmetry in the
model equauons with respect to the interchange of the variables £; and £; (and subscripts 1 and 3). And there is a
symmetry inthe coxrespondmg difference equations when £; and £, are interchanged and the time superscriptsn +1 and

n+2are hanged. This sy y is a result of retaining the scale factors h;, by, and hy in the model equations and
in the ponding diff equations. Thus, the same coding used to calculate)] , 5, in Eq (45)15 used to
calculate (f") +1/z X in Eq. (63). Slmllarly, the same coding used to calculate the coefficients (a,) " ,2 o (b w»r i+ ,,2 '

and (V)" J+l/2 of Eq. (49) is used to calculate the coefficients (3,) ";4_,'52,(53 k+,,z,and(_3) k+l/20qu (64), and so

forth

Consequently, to understand nearly the entire ANIMAL coding, it is sufficient to understand only the
procedure for advancing from t" to ¢+, i.e., the procedure for solving Eq. (19) In addition, when more physical
effects are to be added to the code, or when ﬁmle-" Hil hni are to be changed, it is nearly sufficient to make
the appropriate modifications to the coding g5, g3, and g5 of Eq. (45) and to the coding for the coefficients of Egs. (49)
to (52); the implied modifications to Eqs. (60) to (64) are automatically taken into account. There are, of course,
sections of the coding that must differentiate between £, and £; and between (" - t"*! and ("*! » 042, but these
sections are relatively small and relatively static.

13

In the lineanized difference equations, Eqs. (21) and (32), the contribution of any of the fluxes or forces
appearing in the model equations can be identified as a singie number orly if the fluxes and forces appearexplicitly; i.e.,
only if the fluxes and forces appear in ForinX of Eq. (20). Thus, for example, when working with Eq. (21) to advance
from t" to (" *1, the value for the mass fluxes corresponding to the last two terms on the left side of Eq. (40) can readily
be obtained as a single number. On the other hand, the values for the mass fluxes corresponding to the second and third
terms of Eq. (40) cannot readily be obtained, for these fluxes appear implicitly in Eq. (21); i.e., the actual value for the
mass fluxes can only be obtained after £q. (21) is solved. The fact that the implicit fluxes and forces actually do have a
single value, computable only after solution of the implicit equations, seems to be a fact not usually corsidered by
people working with implicit equations. In ANIMAL, however, this fact is used as a debugging diagnostic. For
example, suppose the iteration procedur: using Eq. (21) converges to within a factor 8 after L +1 iterations. If the
coefficients by, a;, and ¥, of Eqs. (54} to (56) have been saved, one can compute the flux values using Eq. (49), i.e.,

+1,L+1 L, o+l Lt =yn+l, L, n+l, L+ _
FOEET = ik O GRS O G - (65)
»
Since the iterations converge, the identification U"+I = U"'+l L+1 js made. The explicit flux (f]")?:']',z .+ which
appears in £q. (63), can then be computed. If the coefﬁcnents bl N al ,and v, of Eq. (65), used to advance from t"to t"* R
were correctly computed and if the explicit computation of (fl“)}‘: ,‘,z_k , which is to be used to advance from t"*! to
to " *2 was also correct, then

Faytl L FaynelL 2
Pk = O+ 0E? (66)

a consequence of the fact that the Newton-Raphson method is second order. In ANIMAL, the capability for performing
the check implied by Eq. (66) is built in for checking all implicit fluxes and forces. If the difference is not 0(32), then the

existence of an emor is implied (of course, someti the error is in the coding doing the checking).
The symmetry of the algorithm provides enother useful check used in ANIMAL. In the algorithm, when the

coefficients A, B, C, and V of Eqgs. (42) to (45) are being assembled,Z 7 L2 and my L2 corresponding to the

time derivatives as indicated in Eq. (52), are the last contribations 1o be incorporated. The algorithm can be intercepted
on the first iteration priur to the incorporation of ¢ and ffi, and the coefficients are modified so the actual coefficients
used in the tridiagonal solver have the form

(:-1);.:1.0 = ,Zn+1 0
3

i 67)
1,0 - (o'yatl,0 -
(B)r cy =0, (68)
and
_. ~ = = —
(V)j':;"" = (Vl)jr::],() _ (Al)jn.:l'o - 2;;],0 . thll: 0
_ (El)szzl.o Un+l 0 (C)n-ﬂ .0, Un+ll 0 9

where the unprimed coefficients X. B, (=3, and V are computed according to Egs. (42) to (45). Using the primed
coefficients in Eq. (21) is equivalent to doing an explicit calculation, since for ple, using Eq. (56),

n+1,0 n+1,0 _[n+l,0 n+1,0
5% UmhO + (b, D Ui — OBk

—(r 1,0 _ /¢
= EDRHY = DR - a0

In a similar manner the algorithm normally used to advance from t**! to 1" +2 can be used instead to advance from t" to
" *!, be intercepted on the first iteration, and be made to effecuvely perform an explicit calculauon by y modifying the
coefficients analogously to Egs. (67) to (69). Thus. there are two distinct ways to calculate an Un+1-1; and the
resultant values should be identical, or crrors in the coding ere implied. This type of check is nonnally performed along
with the checks implied by Eq. (66) whenever modifications to ANIMAL are made. These checks are really like a
single parity check in that they verify that the number of errors is even, not odd, and hopefully that the even number is
Zero.

As indicated previously, there is a single section in ANIMAL that calculates implicit forces and fluxes
associated with an interior interface and a single section in the code that calculates explicit forces and fluxes associated
with an interior interface. The forms used for fluxes and forces across a boundary interface, however, are sofficiently
different that separate sections of coding for both lefi (or lower) and right (or upper) boundary fluxes are required. This
is a result of the fact that, in ANIMAL, iuterior dependent variables Ujxfor2 <j<J-land2 <k <K-lare
imerpreted to be **zone-centered, " or average values. Each interior poml [(f,) , (fg)k] is located a full cell-width away
from its interior neighbors. On the other hand, boundary values are interpreted as being boundary interface values, not
boundary cell, or “*half cell, ** values. Since the boundary values are interface values, they are located a half cell-width
away from the first interior values, as indicated in Fig. 2. Boundary values are not included in any volume integrations,
so, for example, the total mass within the domain is

-1 K-1

Z Z Tk Phk

n

The above described interpretation of boundary and interior values facilitates the incorporation of unique boundary
conditions* and facilitates the maintenance of conservation propertics.3

&
k = K(K-%) -o— . o -0
K1|—¢ ® . '
K-%
K2t—¢ o ° ®
K-%
K3——¢ o . ®
FIG. 2. A portion of ANIMAL’s
£, finite-difference grid, showing loca-
' : . i tion of “‘cell-centered” values and
J= 1) 2 5/2 3 7/2 4 boundary values.

S. BASIC DIFFERENCE EQUATIONS FOR TIME DERIVATIVES

The time derivatives appearing in the model equations are treated in a nearly straightforward manner. The
time derivatives in Eys. (5) and (9) ae linear in the dependent variables and hence need no linearization. On the other
hind, the time derivatives in Egs. (6) tv» (8) are nonlinear. In spite of earlier claims in this report, the time derivativesare
not linearized by straightforward appli-ation of the Newton-Raphson procedure. ANIMAL s procedure is a result of
the fact that its predecessor!7 did not ilerate to converg but rather accepted the first iterate On+1.! as the final
value. As shown by Lindemuth and Killsen,!” when the two alternately uscd approximations to the spatial derivatives
are considered as a whole, even with only one iteration, they are overall-accurate to 0(At2). For the time derivatives to
be overall 0(At2), the linearization process can not introduce any O{At) error other than that introduced by writing

F) n+] ntl n+l _ n_n
[, (ape)} = .p____LA_!_p_E_. + 0(Ar) . (72)
1

Newton-Raphson linearization of the first term on the right of Eq. (72) leads to

i1 ntl _ gn en n+lL1 L pnthi pn Ll
- - - = ¢ -)
At At At

A truncation error analysis of Eq. (73) shows that additional O At) errors are introduced by the linearization. These
errors are not canceled when advancing from t"+1 to t"+2. {ence the overall approximation, if only one iteration were
used, would be still only O(At). This fact has been realized independently by Briley and MacDonald,2? who essentially
use the same linearization algorithm to solve the Navier—Stokes equations as Lindemuth and Kiileen!? used in
magnetohydrodynamics. On the other hand, a truncation error analysis of the ANIMAL method given below shows that
the only O(At) error introduced is that indicated in Eq. (72), so vven if only one iteration is performed, ANIMAL's
treatment of the nonlinear time derivatives is still overall correcy to 0(Af2). Since ANIMAL now iterates to con-
vergence, it is not clear whether or not this treatment is necessory or useful. The ANIMAL treatment uses a
pseudo-explicit approximation to p‘.‘:‘ based on both U™? and UP. Cunsider the full difference approximation for the
continuity equation to have the form

yatl gl oyn g0
k Fjk k Pk ~ =
L LS N RO TR ACLEE I a4
ol _gn
which correspouds to the first comp of Eq. (19). The pseudoexpﬂcix?gj;” is then calculated from

vatlgnele _yn g
LD k Pk — —
J) L + xl(UnH.II) + Yl(Un) =0. (75)

tn+1 L

Prior to the introduction of the basic time-derivative difference equations, it is convenient to introduce a
change in notation. As defined in Section 2, the velocities v“:' and vgi are the *‘grid"’ velocities, i.e., the velacities of
the moving coordinates x, and x; with respect to the **fixed"" coordina}es £, and &3, respectively. Asshownin Eq (40),
it is actually the relative velocity v; — v? that determines the convection of mass (me energy, magnetic flux).
Hence, in ANIMAL, the dependant variables are the relative velocities, rather than the total velocities, which are
given by

R _ G
I TV1IT v (76)
and
G
IR an

1t is also convenient to introduce a relative, or *'plasma,’’ magnetic field such that
Po_ E
B; =B, - By , (78)
such that the electrical current flowing in the plasma is

— 1 —
1P = _ vxBP . 19)
Mo

Usually, ¥ x BE = 0 in the region of solution; i.c., BE represents the magnetic field due to currents external to the
domain. However, in calculations of an advanced relativistic electron-beam trrget,” BE represented the magnetic field
due to the electron beam. In the electron-beam target, V x BE = 0 in the region of solution, since the electron beam
represented an additional current flowing through the target; however, the component of current that led to plasma
forces and plasriu ohmic heating was still given by Eq. (79).

In all cases, v‘,:', v?, and B'z5 are assumed to be known functions of time and space (i.e., they are specified
prior ta the initiation of a computation). The quantities v$, v§, and B can be always identically zero, in which case,
vR, VR, and Bf represent the actual velocities and magnetic field, respectively.

In the presentation below, the term in the model equation is indicated on the left side of the *‘approximately
equal®* sign and the difference equations that define the coefficients corresponding to Eq. (52) appear on the right side.
The double-integration signs are shorthand for the integral of d¢; d£, from (£), t0 e) +172 @nd from (£3), _ypp to

S
The basic time-derivative difference equations used in ANIMAL are

Vp+1 p+1,l+1 ~yn n

a ik Pik ik Pik
3“'/]“‘1“2*‘3"11"13 pdk) dg; =~ o g » {80)

3 R GY dE d
ajj];'x"zhlexxlzp ("1 + "1) b9

n+l,Q+1 n+l n n

(e 0D, - (D)), - (D)

~ Rt ik).k Jik ik
TVik Pk

1
tn+1 _qn

n+l n+l,e+1 _ yn
i

n
R H P
Ry " G\" ik Fik ,k Uik
+ (Vl.)- + ("x)A —_—
j.k ik g0 (81)

a
R, GY .«
3 JJ Bil2ha¥iXa; 2 (5 + ¥§) at a

n+l,R+1 n+l n n
(D), - (8, - (9,
~ I Js Js i
zV!‘” p."+l"z
ik k

- tnﬂ L

n+l n+l,R+1 _ yn 0
a1 avn | Vi Sk Vik Ak

+ vy} + Vi), . .

jk ik o+l _yn 82)

17

a
a fhlhzhz"u"ss pedt, dg,

n+l,0+1 n
€. - €
~Vn+1 ;n-ﬂ 9 "‘ ik
Bk i+l _yn
ntl _n+l, e+l
+ &P v’ p’ vkp].
g ' (83)

L0 I n

and

:tﬂh hyxy %a3 (Bz + Bz) d; dg, ~
Ly (hz)“ﬂ [(p)n+1 24 (Bg);:‘ -1 (hz) :k i(B;):k + (B'z':):k] .

tn+l _—

Expressions identical to Eqs. (80) through (84), with superscnpt n+1 replaced by n+2 and superscript n
eplaced by n + 1, are used 10 advance from t°+! to t2+2. Except that in Eqgs. (81) to (83), 7}"'“ ¥, calculated
according to Eq. (75), is replaced by ’ﬁ‘”’z £ calculated according to

Vn+2 ’ﬁ'n+2 R yntl n+l
K ik i — —
- H @ Y, @Y =0 @)

tn+2 _ t'"’l

which corresponds to the first component of Eq. (20).

6. VELOCITY FRACTIONAL-STEP TIME-DIFFERENCING

In ANIMAL, there is actually a choice of three different methods of time-differencing, the method given
in the previous section and the ones to be outlined in this section and the next. From the basic time-differencing
forralism of Section 3, it should be apparent that in Eqs. (19) and (20), only (v,)**!, and not (v 5)" or (v,)" *2 appear
in the two successive approximations for the modzl Egs. (5), (8), and (9); (v)" and (v,)2 appear only in the
approximations for the model Egs. (6) and (7). Similarly, only (v,)? and (vy)"*2 appearin the appm:umanons for Eqgs.
(5), (8), and (9); (v5)"*] appears o g' in the approximations for Eqs. (6) and (7). Under certain -.ucumstmﬁes the
velocities . . . (vp)i~2, (v))™ (vl)|1+ . . . oscillate about the relatively constant values . . . (v -1, (v)ott ...
The exact origin of lhese oscillations is unclear, although occasionally they can be attnbuled to \rnpmper timestep con-
trol or insufficient iterating convergence. The oscillations are driven by the p gradiant and mag; forces. They
are generally related to the **explicit-implicit’’ character of ADI and high *‘Courant”” numbers; they are short wave-
length oscillations, which have no business being there, These oscuhnons are not unstable (or at warst very weakly

ble), but they i wreak havoc with the ti p 1. Therefore, the ‘‘velocity fractional step’
approach to time-differencing was developed.
Normally,

T [pnﬂ , (vl)‘“" , (Va)n” , el (Bz)“”] .

18

and v; and v, are advanced by equations of the form

n+1 n+l n+} n T n
Vik A Ok — Vik Ak (i

+ XU + Y, 0" =0 87
tn+1 & 2 z
and
Y2 gni2 (g2 yanl pitl)il
k Pk W3l k Ak Mk - -
— i 1’] =+ X U™ +Y, (U™ =0 . (88)
{2 g

In the velocity fractional-step approach, new dependent variable vectors are defined as

U7 = [on, ™) L "] (89)
an+l = [pn-ﬂ , (vl)n'i-l , (va)n’ 6n+\ , (Bz)m—l] , ©0)
ume - [;o“+2 A AR (% LA (Bz)'"z] ; o1

+nd Eqs. (87) and (88) are replaced by

n+l n-1
i’ = (i

Vi ol o PR - X0

R

Y (UM - iy, =0 92)
and
2 o
(e’ = (vl _ —
+1 n+l b : C (Ut +1

vl ot — + %, U™ — @R X, (UMY

YUY - (R Y, ™ = 0, D)

In essence, as shown by Eqs. (92) and (93), the velocity components are advanced every other timestep,
always by an equation implicit in the dircction of the velocity component and explicit in the direction perpendicular to
the component. The possibility of instability in the explicit direction is introduced, but since the only process in the
perpendicular direction is convection, instability can be eliminated by the use of “‘upwind’’ differercing for the
convective term in the perpendicular direction. As can be shown when the actual form of X and Y are specified, Eqs.
(87) and (88) exactly conserve Cartesian momentum, whereas Eqs. (92) and (93) conserve momentum only to O(At),
Where direct one- and two-dimensional comparisons between the normal method and the velocity fractional-step
method are made, the app i ies introduced by the Iatter are tolerable, and often the computation time is
significantly decreased as a result of using i d ti ps. Perhaps ptable i y is introduced in strong
shock cases, where the censervation properties of the diff Juations are imp: In one-dimensional problems,
the inaccuracies introduced by the velocity fractional-step inethod are not as severe as those introduced by a fully
implicit method, i.e., using Eq. (19) successively. In a sense, the velocity fractional-step method is not really a
fractional-step method, since Egs. (92) and (93) involve all physics and both directions.

Implementation of the velocity fractional-step method in ANIMAL was a quite minor task. All coding to
calculate the coefficients of Eq; (21) [or Bq. (32)] was left intact. When the coding was executed, the quantity called
(v))" was actually (vl)““. Atthe point where time derivatives are incorporated into the coefficients, the coefficients
for the v, (v,) equation were appropriately modified, and the coefficients for the v4 (v;) equation were zerocd. The
algorithm still went through the motions of using 5 X 5 matrices, but the v, equation merely led to the result (v;)° ! =
(v3)". It would be more difficult (but ad J:{ from an ion time point of view) to make use of the fact that
really only 4 X 4 matrices, as implied by Eqs. (90) and (91), are required.

19

7. IMPLICIT TIME-DIFFERENCING WITH 3 > 12

It was mdlcated in Secuon 6 that one pathology observed in the operauon of ANIMAL was the oscillation of
the values (v,)" 4, (v,)", (v\)"*2 ., . about the values (v)"~1 (v)P*+1, (v)"*? for n-even. Similar oscillation. have
also been observed in the mtema] energy and magnetic field The osc:llallons in internal energy are driven by the
thermzl-diftusion terms and x> oscillations in magnetic field are driven by the resistive-diffusion terms. As with the
velocity oscillation, the exact origin of the oscillations is unclear, although occasionally they can be attributed to
improper timestep controf or insufficient iteration convergence. The oscillations are generally related 1o the “‘explicit~
implicit'* character of ADI and high ‘‘Courant™ numbers. %t can be shown that such oscillatory behavior occurs for
short wavelengths at high **Courant '’ numbers for the basic ADI differencing. What is not clear is the origin of the short
wavelengths, which have no business being there,

The implicitness of finite-diff; quations is usually di: d in terms of an implicitness parameter 8
(not to be confused with the transverse thermoelectric coefficient 8 of section 2). For fully explicit difference equations,
8 = 0. And for fully implicit equations, 8 = 1. The basic alternating difference Eqs. (19) and (20) are equations with
B = 1/2, at least for a fixed timestep. However, it seems plausible that a varying timestep could effectively lead to one
limension having an effective Bslightly less than, orslightly more than, 1/2. If the effective 8 is slightly less than 1/2,
one might expect conditional stability,

In this section, a method for doing altemnating direction implicit calculations with 8 > 1/2 is presented. The
intent of the method is to introduce additional implicitness beyond that of the method in Section 6 so that the amplitude
of short-wavelength numerical oscillations is reduced.

As pointed out recently by Briley and MacDonald, 0 the basic alternating-direction, implicit finite-difference
Egs. (19) and (20) can be considered a special case of the general Douglas-Gunn?! alternating-direction methods. The
general Douglas-Gunn equations as applied to Eq. (17) can be considered to have the form

T _ 0 ~ ~ ~
r-r, BX' + (0 =pX"+Y" =0 (94)
L
and
Th+2 _ Tn ~ ~ ~ ~
— + X+ (1 -BX"+ BY™ 24 (1 — BV =0 . (95)
l"+2 _ ln
Define 1" *! as
A L T O) (96)

Then, for linear T and ;(,

T = T0 4 g(T* - T7) t)
and

XML = g%k (1 — BXT . ©8)
So Eg. (94) becomes

Tn+l _ o

T Zl yXmryynoy, (99)
‘n+l __tn

1".ing Eq. (99) to eliminate Y0 from Eq. (95) leads 10

Th+2 _ pntl 2 gn ~ ~ e St | n+2 _ n
+ pxmt « ymzy T 1-gl LA N
(100)

'n+2 _ tn+1 tn~'»2 - !n-il tn+! " tn+2 —- ln+l

20

For i+ = (7+2,

tn+2 _ tn+1 = - 6) (t"+2 _ t“) s
(101)

and Eq. (100) becomes

TR+ _ Tatl ~ ~ Tl)2
¥ 8 XMyt o 8 =0. (102)
(42 _ o+l -8 PLES NN) 1 -8

Equation (99) is identical in form to Eq. (19) and, for 8 = 1/2, Eq. (102) is identical in form to Eq. (20). Equations (99)
and (102) are equivalent to the Douglas—Gunn Egs. (94) and (95) for linear T and X and for t* = (" +2,

The symmetrical form of Eqs. (19) and (20) has been pointed ovt previously. However, Eqgs. (99) and (102)
are symmetrical only if 8 = 1/2. Inwitively, it seems that the Douglas—Gunn algorithm for 8 = 1/2 might lead to
possibly unacceptable asymmetries in symmetrical problems, e.g., a spherical expansion in r-z coorai When it
was decided to give ANIMAL the vapability for time-differenciag with 8 = 1/2, a symmetrica! two-step algorithm was
derived.

Equation (99) is a consistent approximation to the original differential equation, Eq. (19). Hence, the
Douglas-Gunn equations can be applied to U *1 to calculate U +2 and U *3. The appropriate difference equations are

Tot2 _ o+l ~
T T (X ¥m™2og (103)
‘n+2 - tn'!'l
and
T3 _ o2 ~ ~ TR+2 _ T+l —
T " 8 {X"+3 + Yn+2) _ T T (l 2 (104)
3 _ 2 1-8 (¥ _ qn+l 1-8

Equations (103) and (104) still have the same type of asymmetry as Eqs. (99) and (102), except that the two dimensions
are interchanged. However, a symmetrical set of equations can be derived by averagmg Eq. (99) with Eq. (104) for
" ~ "1 and by averaging Eqs. (102) and (103). The resultant set of equations is

fnﬂ _fn ~ ~ fn _-]:n—l
(2 -2 ———— + X" s y" (] _28) =0 (105)
ntl _.n - tn—l
and
TN+ _ -Fnﬂ ~ ~ Tn+l _ fn
2-2) ————— + X"y _ (-2 ———— =0 . (106)
t|-|+2 _ trrﬂ ‘n+1 — "

Equations (105) and (106) have the same symmetry as Eqgs. (19) and (20) and reduce to Egs. (19) and (20) if 8 = 1/2.
Equation (105) can be rewritten as

T+l _ Tn o ~ Tt _ ™ T _ Tn-1
- +x“”+Y"+(1—Zﬁ)[- =0 .
FLas Y ghtl _ o m th -t (107

21

Equation (107) is identical to Eq. (19) except for the last term. The last term of Eq. (107) is an appreximation to
{1 — 28) At (8¥Tfatd).

Equations (105) and (106) have been implemented in ANIMAL. As implemented T, X and ¥ are nonlinear,
even though Eqs. (105) and (106) were derived from Eqgs. (94) and (95) with an assumption of linearity. Implementa-
tion of Egs. (105) and (106) was relatively trivial. To implement the first terms of Egs. (105) and {106}, the t’i_mes(cs
was merely divided by 2 ~ 23 when the coefficients for time derivatives were computed. The terms involving X and
are identical to Egs. (19) and (20), and no change s involving these complicated spatial-derivative terins wers necessary.
The last terms are ‘*known, '* or explicit, quantiies that are computed directly and included in the Vs of Eqs. (21) and
32).

For some one-dimensional problems, it appears that some of the inaccuracies encountered in the velocity
fractional-step method are not encountered using 8 > 1/2. Note that Egs. (105) and (106) guarantee the conservation of
mass, momentum, and magnetic flux, but an additional noncenservation of energy of order At (1 — 28) is introduced.
At this writing, the uscfulness of using 8 >+ 1/2 has not becn fully evaluated.

8. SPATIAL-DIFFERENCE EQUATIONS

It may, oi may not be, apparent to the reader that a complete diff quation for any of tire modei
equations, or any simplifications of them, has yet to be written in this document. Even Egs. (40) and (41) are not
complete, since, for ple, the method of evaluating the interface quantity [p(v, — ¥')] f‘:l'/uhas yet to be

j

specified. This author hapes, at this time, that the reader undersiands the general formalism about how implicit

quantities such as p [(v, — v§)]J“,f'a.re implemented in the code as a set of coefficients as implied by Eqs. (42)

to (64). This author also hopes that the reader understands the symmetries between the two coordinates £ and &3, both
in the model equations and in the numerical algorithm.

The purpose of Section 4 was to formulate an algorithm in which only one interface implicitly treated and only
one interface explicitly treated need be considered. When these two are properly considered the calculation
for all interior interfaces are automatically taken into account. (As previously indiceted, boundary interfaces must be
considered separately.) In this section it is only necessary to specify the exact form of the fluxes and forces associated
with the, say, j +1/2,k interface. The reader should be able to figure out the appropriate Newton—-Raphson coefficients
and also be able to extend the form to the j k +1/2 interface, and so forth, so that the complete difference equation can be
written down if so desired. Note that it is never necessary to actually write down the complete difference equation for
implementation of new fluxes, forces, or difference methods in ANIMAL. Consequently, a complete difference
equation is never written out in all its gory detaii '~ this document; Eq. (40) is as close to a complete difference equation
as this author ever cares to write.

In specifying the forces and fluxes, several quantities need be defined. First of all,

Gt G
2

¢); (108)

(EJ)V.—I/Z + (Eg)k 173
k), = _._.__2_.__+_

which implies that the locations of the zone-centers are derived from the locations of zone-interfaces. The zone-centers
are always located half-way between the interfaces, but when nonuniform zoring is used, the interfaces are not located
half-way beiween the centers. The following geometric quantities are relevant:

(109)

’

A&); = Epap — G » (110
(AEg)k = (Ei)k+l/2 - (E3)k—lﬂ f [433)]
@EDjnp = G - &) » (112)

22

and
(AES)k+l/2 = (ES)k?l - (E,’}k . {113)

where the first two quantities are zone dimensions and the Jatter two are distances between zone-centers. Fluxes and
nonlocal forces are expressed in terms of the average, difference, and sign of any guantity Q, defined as

- QG * G

Qeipk = T3 (114
Qj+l B Qj Y

Q= 5 (115)

@) 1if Qj+1/2.k z 0 6
§ . = .
2.k =

~1if Qjuyp <0

and

1 if §Qpp , >0
S(8Qj, 1.1 = . (117)
—1i 8Q_yp 4 <0

In the notation of Eq. (114), an overline refers to an average, not a vector as in previous sections.
The mass fluxes of Eg. (5) are expressed by

fhzhzxssp ("1 - "JG) dfy ~ (FM)+ =
s, (v%) {5, -5 [(v'})] s(60,) G0’ [5, 1 . ey

where the subscript j+1/2,k has been replaced by a + for convenience and the quantity § , is defined by Eq. (35). The
second term in Eq. (118) is a second-order (in Af) *‘mass diffusion’ term, which is included to reduce “‘numerical
dispersion™ and to assure *‘positivity.” The use of a second-order mass diffusion of the form given in Eq. (118) is a
unique feature of ANIMAL and minimizes the numerical diffusion traditionally associated with Euleriai; codes. At the

first interior interfaces, j =%. J - %—; k =%, K~ %—. the form used is

fhzhsxzap ("1 - "f) dgy ~ (0, = S, (;’_l})+ [R -3 [(;llz) +] 5P+} ' amw

which is a first-order (in A£) donor cell, or upwind, convection introduce- to prevent clearly nonphysical effects in the
vicinity of boundaries.
For momentum convection in Eqgs. (6) and (7), ANIMAL uses

fh1h3x33pv\ (vl - vf) ay ~ (), [(?'})+ +(Ff)+] (120)
fh2h3x33 o, (vl' - vf) d ~ (), [(7§)+ + (VS})J . azn

where (Tm)+ is defined by Eq. (118} or (119). The form given in Egs. (120) and (12.) assures that a subconservation
property is maintained.3

and

23

The intemal-energy convection of Eq. (8) in ANIMAL is written as

f hyhyxy; pe (vl - vf) g, = (?M)+ {E+ - [(v‘})+] s (8¢,) (Be,)? | E+} vl

where a second-order {in A¢) “‘diffusion’* term is added to maintain *‘positivity.** At the first interior interfaces,

fh2h3x33 pe (vl - vf) g, ~ (FM)+ { €, — s {(7':) *] Be+' . (123)

The magnetic flux convection of Eq. (9) is written as

fh3x33 8, (v] - v‘f) dg; = D, (7‘1‘)+ [(hz B})+ +(h2 B‘Zf)+] . (124)

where D, is defined in Eq. (30). Equation (124), coupled with the magnetic force term to be given in Eq. (126),
guorantees the mai of a sub vation property.
The pressure-gradient nonlocal force term in Eq. (6) is written as

W 1 ap
5 f hyhyXas % dt dk, ~ S, Bp, . (125)

where the factor ** -;— implies a corresponding symmetric contribution from the j—1/2.k interface.

The magnetic nonlocal force of Eq. (6) is

1.1) ’
“__n hyXq3 B, — (h, B,) df, dt, ~D (h BP) +(h BE) a(h BP) .
2 uof”3zaz,(22 1 "[22+ e AN

From Eq. (41), one might be tempted to multiply Eqs. (125) and (126) by Afj/AEjH /2 When nonuniform zoning is used.
However, doing so would destroy the appropriate sub vation p y. [n ANIMAL, as skould be apparent from
Egs. (118) to (126), there is no attempt in the fluxes and forces to weight quantitics at j and j-+ 1 in a manner related to
their distances from the j-+1/2 interface, which are unequal when nonuniformn zoning is used. On the nonuniformly
zoned shock-tube test problem suggested by Le Blanc,32 ANIMAL displays inaccuracies similar to those displayed by
various Lagrangian and Eulerian codes.

The local “force”” terms hypv3vihy 3%y and hzpvs?hy X33 of Eq. (6) are evaluated at a cell center merely by
multiplying by (A£,);(A;); to take into account the volume integration and using the obvious cell values. Both terms
are included in X of Egs. (19) and (20); i.c., they are treated implicitly for t2 - 1"*1 and explicitly for to+1-»e0+2,

The pre: -gradient and magneti local forces and the local forces of Eq. (7) are treated analogously to
those of Eq. (6) as described above.

The compressional-work nonlocal force term of Eq. (8) can be rewritten as

2 ? ap
P — (h,hyx0,v,) = — (hyh,X,,v,p) — Whoxa,v, — (127
ar, et T g hahiaxyz¥y 2Ma%zz¥y %

The fizet \erm on the right side of Eq. (127) leads to a flux and the last term leads to a nonlocal force. The difference
equations for the latter and former are

wla dp ~ TR 4G
7 M e g dt = s, [(vl)+ +(vl)+ 5o, (128)

24

fh2h3x33v|p d, = S+[[(7{‘) . "'(;?)J P, * % [5 (v¥)+ *é (vf)+] Bp*l '(129)

where

C, if [(7‘}) + (Vf)}* bp, <0
c, = (130)
0 otherwise

and Cy is a constant that is normally unity but can be altered -t execution time. The term of Zq. (130) involving Cpisa
second-order energy flux added to partjally offset the effect of Eq. (128) at a contact discontinuity at the leading edge of
a rarefaction, ¢.g., the Riemann shock-tube problem suggested by “rrigger.??

The thermal-conduction flux of Eq. (B) is approximated by

h2h3x33 T 28, K, 8T,
. K a— 4y ¥ ————— (131)
1*1 £) (hyxy), (A%),

where the factor of 2 is required because of the definition of 8T, as given by Eq. (115); note that 2 simple average is

used for the thermal conductivity.
Similarly, the resistive-diffusion flux of Eq. (9) is given by

P -
| phyxy @ (hz Bz) D, 7,5 (hz BZP) '

— 7 dg, (132)
T y (yyy), (B4,
and the corresponding ohmic-heating nonlocal force in Eq. (8) is
"3"33 E = 12 =
= w (nB3) | oty 0ty ~ G5, =
“0 h;h xIl 1
o P
,7,5 (b, BE), 8 (n, BE),
(133)
uh Gy, (B8,

As written in Eq. (133), an equal of energy is deposited in the two zones on either side of an interface as a resnlt

of a gradient in h, B, between the two zones. If the densities of the two zones adjacent to the interface are considerably
different, then the resulting temperature change (or, more correctly, specific internal energy change) is also considera-
bly different. Early in the development of ANIMAL it was decided to require that ohmic heating lead to an equal

temperature change rather than an equal energy change; this is plished by adding a second-order energy flux, i.e.,
AE, rhyx
1 1 MaX33 3p 3 NE — -
_.[T 2hhox.p % [? (., Bz)] o ~ - (£), 00, 1 0, (134)
Hg Pyl ™ t

where (f), is defined by Eq. (133).
"Since Eq. {134)is an internal energy flux, it does not alter the subconservation properties of Eqs. (132) and

(133). At this time, it is not clear whether or not the use of Eq. (134) is necessary.

25

As indicated in Section 2, the *° ' th lectric effect is incorp 1 into the code. The
difference equation for the *‘transverse*’ thermoelectric flux in Eq. (9) is

j‘ha"as 8 _la_z_L

— d&, ~ 2D, (h, GT(BP+BE)
hlxll Bz aE] EB +(2)+ + ﬂs(2 2) .

— (135)
(hlx“)... (M]);
an¢ the corresponding force in Eq. (8) is
1 h "xss I I ar B(hy By
2 /] b B T dhdh
"u”o 2 a'51)
D, (iy), 6T, [s B} + B} aL 8(h,85
Sl G) L Y w6
up (x), (8%,
The *‘transverse”” thermoeleciric energy flux, which sppears in Eq. (8), is
h.x,, 8T | B
3%33 [2[2
h, BY
fyuh]x“ B, o, ()“3
6, T, [+ (65 + 85) 8], o, 35).
(137

o (hyxy,), (85,),

The radiative-energy-loss local force of Eq. (8) is incorporated simply by using zone-center values and
multiplying by A&, A§3 The radiative loss is always treated implicidy.

‘o this point, spatial-difference equations for all terms appearing m the model Eqs (5) to (9) have been
presented. In the absence of shocks and steep gradients, the diff; q d so far are adequate.
However, to treat shocks and to help minimize certain pathologies, it is generally necessary to incorporate an artificial
viscosity. In ANTMAL, artificial viscosities are incorporated by added fluxes to the equations of motion and adding
Jorces to the internal energy equation to account for the kinetic energy dissipated. The artificial viscosities included in
ANIMAL can be considered to be difference approximations to partial differential equations of the form

]
3¢ Pibalzovp + .+ o (h haXssdy) +—— 3E (hyhyx,1943) = (138)
a(hhh Y+t a(hhx)+—a(hh y=0 (139
— V. oot — X = '
7t Byhaliy Y, Pl o, (h*ndn)
and
? bty pe) hoh ™ ™
5 Wfohy A8} + oo+ ohyxgyq) —— + hyhyx, q); —
P 3, %,
av3 av3
+ ByhuXaaqy, — + Bih,%,q., — =0 140)
et 1t2% 3933 W, (

26

Since all the added terms in Egs. (136) and (137) are in flux form, they do not represent merely a modification to the
pressure-gradient terms. Nor do the added terms include all terms resulting from taking the divergence of a pressure
tensor in orthogonal curvilinear coordinates. Furthermore, in general, g3, + q;3- S0 the added terms are not symmetric
as would be the components of a pressure tensor. Thus, it is hard to make a precise physical analogy between Egs. (138)
to (140) and real viscous effects, except that the terms do dissipate kinetic energy and do increase entropy, just as real
viscous effects do.

It is perhaps berter to consider the terms of Egs. (138), (139), and (140) as truncation-error modifications.
From a truncation-error point of view, if the various q’s are formally of 0(A£)™, with m greater than zero, then the
complete difference equativns are still consistent approximations to the differential Eqs. (5) to (9).

Because of the symmetry of Egs. (138) to (140) with respect to the coordinates £, and £;, it is sufficient
merely to consider the fluxes and forces associated with the j+1/2,k interface, just as has been done throughout this
section. Thus one can write the momentum fluxes as

f hhyxg3ay, dEy = S, (@), (41
and
f hyhyxasda, dy ~ S, (@), (142)

and the energy forces as

v
W 1 ~ 8 (5 R, G
5/]“2“3*33‘111 % df; dfy =~ s+(q11)+5("| * "1)+ (143)
1
and
1 sz _ R G
"3 [[hzhsxzsqzx &, 4, dk; = S,(ay), 8 ("3 * "3)+ : (44
The shock heating indicated by Eqs. (143) and (144) can give steep temp gradi if the density gradi

between zones is steep, so an energy flux is also added:

_j‘hzh3x33 A v, . ng ap @
4p t 1 aEl 13 azl azl 3
~ bp, S, [(E“), s (R + v(l:')+ +(a), 6 (v + vg;)+] /;+ . (145)

For shocks moving from a high-density region into a low-density region, use of Eq. (145) may not be wise since the
energy should be deposited in the low-density region.
Artificial viscosities of several different forms have been incorporated into ANIMAL. Thus,

@ = B 8 (8 +o8), [@0+ @ @]+ @ - (46)
The terms of Eq. (146) are given by

lcgl s(F +v8), L irs (s +4f), <o

0, otherwise »

147

27

(E‘l:l)*' = - Clc] (tnﬂ - t") 5(8p,) 8p, (F+ +
D, l(h2 2 h hBE] /] / [(hlx”), at, (5,)] .

(E§1)+ ={ —s ((TML) (FM),,/ (p,8,) j=52)1-32 -
0, otherwise

where C'l and C¢ are constants, normally 8 and 0, respectively, which can be specified at execution time. In F-~ (149),
qll is slmllar to the standard von N htmyer artificial viscosity,2 and, for Cartesian coordinates, it is in fact

idered in combination with Eq. (120}, Eq. (142}, which uses fM as defined in Eq. (118), leads 1o
first-order “upwmd" convection at the first intesior interface.

As defined in Eq. (148), G5, is a magneric-field-dependent ariificial viscosity introduced in an attempt to
minimize pathologies. The diffi equations for the magnetic and pressure forces, as given in Egs. (125) and (126},
deposit an equal amount of momentum in each zone adjacent to an interface. When there is a large density variation
across the interface, a large velocity gradient can be introduced. Even when the velocity gradient introduced is
negative, Eq. (146) is often insufficient if the thermal and magnetic energy densities are much greater than the kinetic
energy density. Note that g ; depends on the density gradient. Note also that the first factor in brackets is essentially the
magnetoacoustic velocity.

A more straightforward approach to the problem of forces across a steep density gradient is to deposit
mc in the two adj zones proportional to the density of the zone. This cun be accomplished for the pressure
gradient by specifying 4%, in Eq. (146) to be

a}y = —C 8o, 8p, | B, , (150)

where C? is a constant, normally 0, which can be set at execution. From Eq. (144) one can see that q%, does not always

dxmpa!eqlunencenergy A modified tum flux d dent on the magnetic force must also be used in conjunction
with Eq. (150). The modified flux is
- _cb E P =
Tt = —C° &, D, [(h2 B). +(hz B2)+] 8(h2 B;),{/m : (151

When incorporating Eqs. (150) and (151) it was decided to interpret them as modified forces. A modified pressure
gradient should modify the internal energy, as indicated by Eq. (144). However, a modified magnetic force should lead
to a modification of the magnetic energy, not the internal energy. Since Eq. (151) can be interpreted as an
approximation to

9 2
TS (h1h2h3x11x33 A I B—El (ru) =0, (152)
an equation of the form
ov a(h, B,)
3 3 1 2 P2
S thmyBy) + ... -2 _/__=
50 (il By) %, ["u %/] 0 as3)

is required to ensure energy conservation. Hence, to the difference equation for Eq. (9) must be added a flux

av1 B(h2 B,)
Slwwm/ | ®-
Cj 4, D, [(h2 B;)+ + (h2 Bf)*] s(v‘ + v) Jr N (154)

28

http://wiiii.iik.oii

This author has not run many problems using Egs. (150) to (154); some have been satisfactory and some have been
obviously unsatisfactory. At this writing, this author recommends that C: always be setto zero. It is possible, however,
that the basic idea of modifying the magnetic convection flux (rather than an internal energy force) when a modified
magnetic force is used is a valid one and should be pursued further.

Anazlogous to Eq. (146), the *‘shear’’ viscosity is written as

@3p)e = 2, 8 ("3R + Vg')+ (q—gl I q_gl) , (153)

where, generally, §%; = 0, §§; = 0, and

31 + ~

. { _s ((TM),,) (), / (.8, (156)

0, otherwise

In earlier versions, Q41 = 911 and 951 = Tt were used, and it has yet to be resolved which method is most
satisfactory. In Eq. (156), the first form is used when the velocity fractional-step method is used since Eq. (155) and the
momentum convective term corresponding to Eq. (121) are always treated “‘explicitly,” as indicated in Eq. (92).

The previous paragraph completes the specification of the fluxes and forces associated with interior zones.
Boundary fluxes and forces at the j = J~1/2 boundary have essentially the same form if averages and differences are
redefined as

6)-1/2,k =Q as7n

and
Q1o T U~ QUonk (158)

The upwind forms for convection givenin Eqs. (119), (123), (149), and (156) are used if (v}) ; >0.If (v}) # 0, the
forces have the form given in Egs. (125) and (126). Otherwise the forces are zero (see Ref. 4). The compressional work
is as given by Eqs. (128) and (129), except the term involving Cp is neglected. The heat flux, resistive diffusion, and
ohmic heating is as given in Eqs. (131) to (133), respectively. The thermoelectric effect is treated as given in Eqs. (135)
to (137). Only the viscosity g, given in Eq. (147), is used. The boundary at the § = 3/2 interface is treated similarly,
with the average and difference redefined as

Qp = Qx (159

and
8Qpk = QU ~ Qi - (160)

9. IMPLEMENTATION OF THE ALGORITHM—INTRODUCTORY
REMARKS

In the previous section of this d the mathematical algorithm used in the ANIMAL code has been
described. Implementation of the algorithm into an actual working computer code has required a major computer
prograriuming effort. The code i written for operation on the CDC-7600 computer. Most of the computer code has been
written in FORTRAN, but some sections that consume a disproportionate fraction of the total computational time have
been reprogrammed in the ASCENTF assembly language. The combined FORTRAN/ASCENTF source code is
compiled by the CDC PUTT compiler, a simple, one-pass compiler introduced to LLL by a *“third wozld'* movement
dissatisfied with the CHAT compiler developed at LLL. Since ANIMAL 's predecessor!7 was originally developed for

29

a CDC-3400 computer, which used a CDC compiler, when ANIMAL was first implemented at LLL it was felt that use
of the PUTT compiler would facilitate the conversion. Originally, it was anticipated that eventually ANIMAL would be
compiled with CHAT. However, even after ANIMAL has been in existence for over six years, there is no obvious
reason for attempting to use the CHAT compiler. Tests have indicated that only insignificant d in

time could be made with CHAT using all of its optimization features.3? On the other hand, it is clear that the CHAT
compiler is much more cumbersome to use for the many compiles and recompiles necessary during code development.
Thisauthor has found the PUTT compiler and its associated library and debug routines more than adequate, and, in fact,
this author feels progress in the development of ANIMAL would not have been as rapid had the more accepted CHAT
system been used. Recently, however, tests have indicated that the CDC FTN compiler will lead to a significantly faster
executing code with an acceptable increase in compilation time. 35 It currently appears that conversion of ANIMAL to
an FTN version will be advantageous when FTN-associated libraries and debug routines reach the same sort of
sophistication and convenience currently available through PUTT.

The most recent operable version of ANIMAL is ANMALOQ7. The corresponding source, MALADO7,
consists of roughly 13,000 FORTRAN lines. Consequently, a complete code description would be a monstrous
undentaking. The intent of the following sections is to describe the important variables and subroutines in MALADO7
(the description is not entirely applicable to previous versions). The following sections are not by themselves, very
useful; for the following sections to be completely useful, the reader must have available a source listing, an ANIMAL
user’s manual, and the previous sections of this report. A copy of the ANIMAL user's manual and a copy of the
ANIMAL post-processor’s user's manual are included on microfiche on the inside back cover of this report. However,
a source listing is available only from the author by direct request.

To understand a section of the code, the user will want to refer to this report. However, a particular variable
may not be described here. In such a case, this author recommends that the user use LLL's TRIX AC fo **TS"’ the
variable throughout the source listing to determine how it is f2fined in terms of variables described here.

The following sections will not describe outdated, superseded, or experimental coding in ANIMAL. Since
the ANIMAL source listing has never really been cleaned up, there is inevitably unused or superseded coding still
carried along. In addition, since ANIMAL is by no means a static code, there is within the source listing experimental
coding for various techniques not yet proved and documented here or elsewhere.

In ANIMAL there are slightly less than 90 subroutines. These subroutines can generally be divided into
several different classes. INITIALIZATION subroutines read input data that define a particular problem and then do
various operations such as constant evaluation, table generation, and similar tasks that must be accomplished before the
time-marching algorithm can be initiated. MISCELLANEOUS LOGIC AND CONTROL subroutines do various tasks
that generally do not fit any of the other categories described here. PREPARATORY subroutines do a variety of
manipuiation and transfer tasks to put problem data in a usable form for the subroutines that define the coefficients.
COEFFICIENT subroutines actually define the coefficients appearing in the linearized difference equations, Eqgs. (21)
and (32), and the linearized boundary equations, Eqs. (22) to (25). TRI-DIAGONAL SOLVER subroutings solve the
linearized difference equations by doing the forward-backward sweeps implied by Eqgs. (26) and (33). OUTPUT
subroutines do the unfortunately many necessary chores to accurately provide BINARY output data on tape or disc for
restart and post-processing and do the chores required to put a selected quantity of computed results into user-readable
ASCIl. MARKER PARTICLE subroutines initialize and ‘‘push’’ marker, or tracer, particles that follow in a
Lagrangian manner the motion of fluid elements based on the velocity field calculated by the Eulerian code.
DIAGNOSTIC subroutines are used for debugging purposes and perform a variety of functions including the checks
indicated in Eqs. (66) to (70).

When additional physical effects or dependent variables are added to the code, the major changes o the
coding occur in the COEFFICIENT subrouti Relatively minor changes are made to a few INITIALIZATION and
PREPARATORY subroutines, mainly those directly involving physics, but for the most part all subroutines except the
COEFFICIENT routines remain essentially intact.

INITIALIZATION subroutines are

STARTUP INITI
MATRIX DTINIT
TCINIT CKTINIT
EOSINIT RBC
EPFROMT SPL
MESH FINDLW

30

MISCELLANEQOUS LOGIC AND CONTROL subroutines are

XPAND BNDRYSW
SPLINT SETBDRY
CKTSET ITCON
GRIDMOV MAXVAR
SWTCH13 DTCNTRL
SET27PT OUTK
INITPTR ENDMAL
SETPTR VOLINTI
PREPARATORY subroutines are
NEXTHHP MXTZGR
NEXTRBBP NXTZFLX
NEXTK SETRGR
NEXTTC SETSGN
EQNST SETBC
TRANCO SETRP
COEFFICIENT subroutines are
BCRZ RFLX
ZFLX RBCRFLX
UBCZFLX LBCRFLX
DBCZFLX MAT2
TRI-DIAGONAL SOLVER subroutines are
MAIN program
SUMBCE
TRIANG
OQUTPUT subroutines are
RUNDATA BUFFO
OUTPUT! BSPVAR
PLOTR SETDEN
NUMZBZ STATUS
SCALFAC WRBLNK
BBEXT ENDFIL
ORDMES IFAR
WOFORD NEWTPE
GETIOC BIDARZ
BODARZ BIVAR
BOVAR BUFFIN
MARKER PARTICLE subroutines are
MPINIT INTERP!
MARKER INTERP2
SEARCH MPOUT
GETDXDT
DIAGNOSTIC subroutines are
CHECK CHKRBCR
SPECHK CHKRFLX
CHKLBCR

Prior to a description of the subroutine functions, the basic control variables and basic arrays in the coding are
introduced and the atlocation of LCM (large core memory) is described.

3

i10. BASIC CONTROL VARIABLES

NDIM— DA(1); the Number of DIMensions of the problem; has values 1 or 2.

NV— DA(16); the Number of dependent Variables; has values 3, 4, or 5 depending on which set of
variables is calculated; code can handle 8 maximum NV = 9.

NDR— DA(9); the number of mesh points in the £ direction; corresponds to the value J used in the
text; note that the number of zones in the £, direction is NDR-2.

NDZ— DA(10); the number of mesh points in the £, direction; corresponds to the value K used in the
text; note that the number of zones in the £, direction is NDZ-2.

nv— DA(21); a ten-digit ber that desig; which dependent variables are being computed;

each digit corresponds, in order, to a component of the “‘total’” solution vector

uT = (p, Wk, vR, vR, €, €, BP, BP, BP) H
1 20 730 Fer 0 Tl 273 (161)

if the digit that corresponds to a particular componem is less than or equal to NV, then that
variable is being computed; e.g.. for U = p, vR, €, NV = 3 and IIV = 1245637890, so the
first, second, and sixth digit are <NV; FORTRAN names corresponding to the components
of UT are RO, V1, V2, V3, EE, EI, Bl, B2, B3, respectively.

nvv— DA(22); a ten-digit number that designates which dependent variable of the total solution
vector corresponds 1o a particular component of the actual solution vector; the first NV digits
correspond to each component of the actual solution vector; €.g., for U=(p, Vi, €), IIVV =
126345790; i.e., the third component of the solution vector U corresponds to the sixth
component of the total solution vector U'.

IFSV— DA(8); has values 0 and 1; if 1, the velocity fractional-step method is used.

IBE— DA(24). if 1, magnetic field is broken up into plasmaand ‘‘external’’ components as indicated

by Eq. (78); otherwise Bz =0 and Bz = B,.

MOVGRID—DA(IZG). if 1, the moving-grid option is used and the velocny is broken up _into two
cgmponents asindicated by Eqs. (76) and (77); otherwise, v = v§ = 0and v& = v,
V b V

ICOORD— DA(124) designates the orthogonal coordinate system (£, £;) being used: if —1, Cartesian; if
0. standard (r, z) cylindrical coordinates; if 1, spherical coordinates; if 2, toroidal coordinates;
if 3, cylindrical (r, ¢) coordinates.

NMP— DA(116); the number of marker particles used.
ISBC— DA(200); if 1, split-boundary conditions are used.
ISTEP— designates which direction is treated implicitly; if 1 or 3, the £, direction is treated implicitly;

if 2 or 4, the £, direction is treated implicitly; the values 3 and 4 are not used; the values 3 and 4
were intended to solve the difference equations by a **backward—forward '’ method rather than
the ‘‘forward-backward’* methods implied by Eqs. (26) and (33).
LINSEQ— LINe SEQuence; designates the sequence in which the implicitly treated lines are computed; if
1, k-lines are computed in the orderk =2, 3,4 . . .K-1for ISTEP = 1 and j-lines are computed
intheorderj =2,3,4. .. J-1 for ISTEP = 2; if 2, k-lines are computed in the order k = K-1,
K-2,K-3...4,3,2forISTEP = 1 and j-lines are computed in the orderj = J-1,J-2,J-3. . . 4,
3, 2 for ISTEP = 2; LINSEQ = 2 was introduced in anticipation of treating mixed second
derivatives of the form 3, 06,
MDSEQ— Mixed Derivative SEQuence; controls LINSEQ for each pair of time steps; values for
LINSEQ are tabulated below:
MDSEQ = 1 2
ISTEP = 1 T 2
ISTEP = 2 1 2

-
- s

32

MDSEQ was introduced in anticipation of treating mixed second derivatives of the form

8¢ 085
NP— the number of points along a k- or j-line; for ISTEP = 1, NP = NDR and for ISTEP = 2, NP =
NDZ.
IPNT— timestep number at which to make next ASCII output.

TTOEDIT— time at which to make next ASCII output.
NWRFEC-— timestep number at which to make next BINARY output.
TTODUMP—time at which to make next BINARY output.

TIME— DADT(1}; the real, i.e., problem, time since the problem was begun.

NNDT— DADT(2); the ber of ti ps required for the problem to reach a certain TIME.

DT— DADT(11); the timestep being used to advance the calculations.

DTOLD— DADT(10); the timestep size used to advance the calculations from the previous timestep
NNDT-1 to the present.

JBCRR— DA(69); a ten-digit number specifying the boundary conditions on the j = 1(3/2) boundary;

each digit, in order, corresponds to a component of the “‘total’* solution vector UT; if split
boundaries are used, JBCRR applies to the upper k-values.

JBCR— DA(6); a ten-digit number specifying the boundary conditions on the j = K(K-1/2) boundary;
each digit, in order, corresponds to a p of the “‘total’’ solution vector UT; if split
boundaries are used, JBCR applies to the upper k-values.

JBCZZ— DA(68); a ten-digit number specifying the boundary conditions on the k = 1(3/2) boundary;
each digit, in order, corresponds to a component of the *‘total"* solution vector UT; if split
boundaries are used, JBCZZ applies to the upper j-values.

JBCZ— DA(70); a ten-digit number specifying the boundary conditions on the k = K(K-1/2)
boundary; each digit, in order, corresponds to a component of the *‘total " solution vector UT;
if split boundaries are used, YBCZ applies to the upper j-values.

JSBCRR— DA(192); a ten-digit numper specifying the boundary conditions on the j = 1(2/2) boundary
for lower k-values when split boundaries are used.

JSBCR— DA(193); a ten-digit number specifying the boundary conditions on the j = J(J-1/2) boundary
for lower k-values when split boundaries are used.

JSBCZZ— DA(194); a ten-digit number specifying the boundary conditions on the k = 1(3/2) boundary
for lower j-values when split boundaries are used.

JSBCZ— DA(195); a ten-digit number specifying the boundary conditions on the k = K(K-1/2)
boundary for lower j-values when split boundaries are used.

NTC— the number of transport coefficients plus the number of derivatives of wransport coefficients
with respect to the dependent variables; this number is currently 19; the list of 19 is

—.f. —, 7K —, —,G. G, G,

- a0 aT af; an 3K
K= , —, T, ,
de de B¢

(162)

3K 9K a3p 9 oG
B ap 9B ¥ e/

wheré K is a transport coefficient vector, §is the pressure p divided by the density p,i.e., 6 =
p/p, and G and Gg are the Lyman alpha-line and Balmer alpha-line emission factors used
only for tally purposes; FORTRAN names corresponding to the comp of K are: THET,
DTHDE, TA, DTADE, FION, DFIDE, RESP, XKEP, DRSDE, DKEDE, GF, GLA, GHA,
BETAT, DKEDB, DKEDR, DRSDB, DRSDR, DGFDE, rcspectively.

33

DADT—

11. BASIC ARRAYS

DAta array used to store various information that does not change as a p
besides the basic control words described in the previous section, DA mcludes two 40-word
subarrays, ADDA (ADditional DAta values) and IDA (additional data value descriptor
words), which begin at DA(26) and DA(71), respectively, and into which are packed various
problem-dependent data words subsequently printed in the ASCII output. The number of
words used in ADDA and IDA is given by NADDA[DA(20)).

DAta array used to store various information that changes with each timestep as a problem
progresses; besides the basic control words described in the previous section, this array
includes circuit parameters and energy tallies, such as

DADT(18)—total circuit-load magnetic flux.
DADT(19)—circuit-load voitage.

DADT(20)—electrical energy delivered to load by circuit.
DADT(21)—dL/dt.

DADT(22)—the circuit-load inductance L.
DADT(23)—the circuit source voltage.

DADT(24)—the circuit current at the advanced time.
DADT(25)—the circuit current at the present time.
DADT(26)—the circuit current at the previous timestep.
DADT(13)—the 1otal heat loss to the surrounding walls.
DADT(15)—the total radiation loss.

DADT(91)—the total pdV heating.

DADT(92)—the total shock heating.

DADT (93)—the total ohmic heating.

DADT(94)—the total Balmer alpha-line radiation Joss.
DADT(95)—the total Lyman alpha-line radiation loss.
DADT(98)—the ‘“‘cutoff** density g, (see Ref. 4).
DADT(100)—the grid velocity (VIG)J y of the j =J(J-1/2) interface for all k lines.

In addition, DADT includes two 10-word subarrays VVARMI and VVARM2, which begm
at DADT(51) and DADT(61), respectively, in which are stored, at time t", the maximum
fracuonal variation of the dependent variables when advancing from "1 to 1" and t"~ 210
"1, respectively. VVARMI and VVARM2 are used in conjunction with the ti
control.

IVV, 1V, IBCRR, IBCR, IBCZZ, IBCZ, ISBCRR, ISBCR, ISBCZZ, ISBCZ—ten-word arrays, each word

of which has the same value as the corresponding digit of IVV, 11V, JBCRR, JBCR, JBCZZ,
JBCZ, ISBCRR, JISBCR, JSBCZZ, JSBCZ, respectively, and which are used for purposes
similar to the purposes of the words from which they are derived.

A, B, C, V—arrays corresponding to the “coefficients" A, B, C,, and V, of Eq. (21) and As. By, €

KCOM27—

and V,, of Eq. (32).
a 10 X 10 array of subscripts for the matrix arrays A, B, and C, which are used by the
COEFFICIENT subroutines to assure that a computed coefficient is stored in the proper
location. In the coefficient routines, the elements of KCOM27 are named
LRORO, LROVI, LROV2, LROV3, LROEE, LROEI, LROB1, LROB2, LROB3,
LRODUM,
LVIRO, LV1V1, LV1V2, LV1V3, LVIEE, LVIEI, LVIBI, LVIB2, LVIB3,
LViDUM,
LV2RO, LV2V] ...,
LV3RO, LV3V1 .. .,
LEERO, LEEVi. ..,
LEIRO, LEIV1. ..,
LBIRO, . . .,
LB2RO, ...,
LB3KO, . . ., etc.

34

LCOM27—

RZP—
RR—
RRP—
SINZ—

VAR—

For ISTEP = 1, a coefficient with the subscript LROV1 is a coefficient of the v,R velocity
component (V1) in the density (RO) equation, i.e., the continuity equation. Similarly, for
ISTEP = 1, a coefficient with the subscript LVIRO is a coefficient of the density (RO) in the
vR velocity-component (V1) equation. On the other hand, for ISTEP = 2, the subscript
LROV1refers to a coefficient of the v3R velocity component {V3) in the density (RO)equation.
It is by proper definition of KCOM27 that ANIMAL is able to use the same coding for implicit
fluxes in either the £, direction or the £, direction. If the capability to compute the Bl
magnetic field component were being added to the code, coefficients with subscripis LBIRO,
LBI1VI. .., etc. would have to be defined. 1f the solution vector was U = (p, , B,),sothat3
X 3 matrices were used and VR was not computed, LROV1 and LVIRO would have values
greater than 9 = NV * NV.

an array of ten subscripts for the vector array V used by the COEFFICIENT subroutines to
assure that a computed vector component is stored in the proper location. In the COEFFI-
CIENT routines, the elements of LCOM27 are named LRO, LVI1, LV2, LV3, LEE, LEl,
LB1, LB2, LB3, LDUM. For ISTEP = 1, a coefficient vector component with subscript LV 1
refers to a gquantity included in the vf comp of the vectors V and V3 of Egs. (21) and
(32), respectively. On the other hand, for ISTEP = 2, the Subscnpl LV refers to the v3
component of the vectors V and V3

mesh array giving position of grid interfaces at 1", RZ(M) is position of interface at j
M+1/2, ie., (€)y+ 2 RZINDR + M) is position of interface at k = M+1/2, ie.,
€M1z

mesh arcay giving position of grid interfaces at t7+1.

mesh array g|vmg £, location of grid (zone-center) values at time t", i.e., RR(M) = (£)y
mesh array ngmg £, location of grid (zone-center) values at time t°* '

mesh array giving £, location of grid (zome-center) values, i.e., ZZ(M) = (£3)y MO
cor g ZZP is required since at this writing the grid does not move in the £, direction.
mesh array in which values for the sine of the angles &, are stored for spherical, toroidal, and
cylindrical r-¢ coordinates.

the COMMON/19/ variable name; VAR is the main small core memory (SCM) working
storage array; the function of VAR is. .ermined by various pointers and the particular part of
the algorithm the code is executing.

12. LCM MEMORY ALLOCATION

Large core memory on the CDC-7600 is used for bulk storage . ANIMAL does not do any random accessing
of LCM. All transfers of data between LCM and SCM are done by PUTT’s block copy instructions SMALLIN and
SMALLOUT. ANIMAL's LCM array is named simply XLCM and prior to exécution has a length of 2. By issuing
appropriate system calls, XLCM is expanded as required at execution time. Information is stored in LCM locations
determined by the pointers described in this section. Every word of XLCM is used, so the total length of XLCM is
the minimum required for execution. This allows the code to time-share as much as possible. The total length of
XLCM is problem-dependent. Most of LCM memory allocation is done in subroutine MESH. The LCM pointers and
the length of the block of memory they point to are

NTIME— length = NV » NDR * NDZ; all the dependent variables at all the mesh points at the time
1" when advancing from t" to t"*}; the ith component of the solution vector U at the (j, k)
point is given by

(Ui)jnk = XLCM (NTIME+[+NV*(J - 1+NDR * (K - 1})) (163)

NPITIME— length = NV » NDR * NDZ; the block in which variables at time t"*! are stored when an

iteration along ak-line (for ISTEP = 1; a j-line for ISTEP = 2) has been completed; indexing
is same as NTIME.

35

NMITIME—

MPLCM—
MPLCMP—
MPLCMO—

NAEOST—

NZERO—

length = NV * NDR » NDZ; all the dependent variables at all the mesh points at time ("~

when advancing from " to ("*1; if the calculation is successfully advanced to t"*!, the

values of the pointers NMITIME, NTIME, NPITIME are rotated to the values of NTIME,

NPiTIME, NMITIME, respectively; if it is y to recycle, the pointer NTIME is

set to NMITIME.

length = 2 » NMP; £ and &, coordinates of marker particles at time t".

length = 2 * NMP; new coordinates of marker particles at time t"*!.

length = 2 » NMP; marker-particle coordinates at time t"~!; when calculations advance,

MPLCMO, MPLCM, MPLCMP rotate to MPLCM, MPLCMP, MPLCMO, respectively;

when recycling, MPLCM is set to MPLCMO.

length = NE(Z)ST; the 2complete equation-of-state tables; consider an equation-of-state vector

§={e 9 f; . Kk’ Jf;. fy) ; a collection of sets of § for a series of density values
P

stored in an array EOSRO are generated and stored in LCM.

length = 1000; an array of zero’s block-copied into SCMi to zero out SCM arrays.

KKMMLCM—length = problem dependent; all the scale factors, external magnetic field values, grid

KKMLCM—
KKLCM—
KKPLCM—
KKPPLCM—
LCMKPZF—

velocity values, transpont coeffici and dependent variables for all j-values, | <j <],
fork =k’ — 2 when working along aline k =k’ (for ISTEP = 1; for ISTEP = 2, all k-values
1 =k <K, forj = j" ~ 2 working along a line j = j').

same as KKMMLCM except atk =k’ — 1.

same as KKMMLCM except atk = k.

same as KKMMLCM except atk = k' + 1.

used instead of KKMMLCM to store values at k = k' + 2 when LINSEQ = 2.

length = 2 « NV « NDR (for ISTEP = i; length = 2 * NV » NDZ for ISTEP = 2); the
explicit fluxes and forces associated with the k = k' + 1/2 (j = j' + 1/2) interface.

LCMKMZF— length = 2 « NV * NDR (for ISTEP = 1; length = 2 * NV # NDZ for ISTEP = 2); the

explicit fluxes and forces associated with the k = k’ — 1/2 (j = j’ — 1/2) interface.

13. INITIALIZATION SUBROUTINES

General comments. ANIMAL begins execution in one of two modes, new problem generation or restart of a
problem partially completed. Under restart, not all data cards necessary for generation are needed, so the flow path in
each INITIALIZATION subroutine is different depending on the mode of execution. Most control information for.
restart is stored in a BINARY dump of the DA array; much of the information is obtained by searching the IDA and
ADDA subarrays. Upon generation, coding in the INITIALIZATION subroutines involving the variables NADDA,
IDA, and ADDA is intended to provide restart capability as well as ASCII output information.

STARTUP—

MATRIX—

TCINIT—

controls the basic initialization process, whether for new-problem generation or for restart;
reads file-name data, if any, from the execution line and then reaus the OUTPUT card (see
ANIMAL user’s manual for input-card description); if a new problem is being generated, also
reads the ID card.
establishes the solution vector U; reads PHYSICS card and sets ICOORD. NV, DIM, 11V,
VYV, and arrays IV, IVV accordingly.
INITializes Transport Coefficients; evaluates constants appearing in algebraic expressions for
thermal conductivities, resistivity, and radiative-loss term; sets up *‘total emission factor™
[G(p.T) of Eq. (14)] tables; the coding . ssociated with array variables TCMULT (Zransport
Coefficient MULTiplier) and TCCON (Transpont Coefficient CONstant) implements the
various multiplier/constant/zero options provided on the PHYSICS card; coding associated
with array variables JDW and IDW Joads the data word arrays IDA and ADDA to provide
ASCII description of options used, etc.; reads any constant or multiplier data required by the
options used; important variables are

vo— free-space permeability.

EO— free-space permittivity.

PLANCK—Planck s constant.

36

EMASS—
ECHG—
TQ—

CNETE—
CNITI—
CWETE—
CWITI—
CLAMI—
CRES2—
CRES1—

CKEP1—
CKIP1—
CTTE1—
CKNI—
CLAM2- -~
CBREM-—
CSAHA -~
GFLA—
GFHA—

GFF—
TRAD—

ion mass,

electronic charge.

temperature above which quantum effects become important in evalua-
tion of Spitzer?’ Coulomb logarithm.

constant appearing in Braginskii2* expression for n,7,.

constant appearing in Braginskii2* expression for n;7;.

constant appearing in Braginskii2* expression for w,7,.

constant appearing in Braginskii? expression for w;;.

constant appearing in Spitzer?’ expression for Coulc b logarithm.
constant T of Eq. (16) giving functional form of neutral resistivity.
constant appewsing in Bragiaskii2 expression for resistivity of fully
ionized gas.

constant appearing in Braginskii2® expression for electron thermal
conductivity perpendicular to a magnetic field.

constant appearing in Braginskii2* expression for ion thermal conduc-
tivity perpendicular to a magnetic field.

constant appearing in Braginskii2® expression for transverse ther-
moelectric-effect coefficient.

constant appearing in Stevens25 expression for neutral-particle thermal
conduction,

arbitrary constant added to argument of Coulomb logarithm to prevent
argument from being less thaa 1.

constant C, of Eq. (14) giving =xpression for radiative loss.
constant appearing in C, of Eq. (11).

array; Lyman alpha-line emission table.

array; Balmer alpha-line emission table.

array; total emission factor {G(p,T) of Eq. (14)] table.

array; table ponding to GFHA, GFLA, GFF.

2

D2GFDT— array; second derivative of en(GFF) used in spline interpolation for

GFF.

EOSINIT— /NITializes Equation Of State tables if the default ideal gas EOS is not being used; creates a
table for f; and f, [see Eq. (10)] as a funciion of density p and specific internal energy e (in
ANIMAL, € and p are treated as the iwo incependent thermodynamic variables, so T = T(p,
€); using € instead of T makes the treatment of energy conservation and the treatment of the
*‘phase change,’’ which nccurs during dissociation and ionization, more accurate]; for every
density o = EOSRM (NRO), the EQOS tables have NTAB(NRO) values of e; for a particular
density, values are stored in the EOS tables in the order . . .

o’y a2 1,
o \%a7) o\ Q.(fi)u,(fd)g,em,

aty, iy
a€2 e+1 ' a€2 e+1 ' (ri)2+l ‘ (rd)‘Hl ' €E+2 o

second derivatives of f; and f; are used with spline interpolation; the tables for p =
EOSRO(NRO) begin at address NATAB(NRO); the tables are generated by starting at a low
temperature and incrementing by DTEMP unti f; or f; vary by a prescribed amount.

EPFROMT—used in conjunction

with EOSINIT to pive a specific internal energy € = El and the

corresponding f; = FION and f; = FDIS for specified values of T and p = RO; a *‘reduced
ionization potential’” that depends on f; is used, so an itcrative method is used to calculate

FION.

37

MESH—

INIT1—

DTINIT—
CKTINIT—

RBC—

SPL—
FINDLW—

generates the finite-difference grid and establishes the LCM memory allocation; reads all
GRID cards; sets up RZ, RZP, RR, RRP, ZZ, SINZ arrays; if a moving grid is used. reads *‘r
vs t”" tables; variables relevant to moving grid are

XIMAX— table of r values.

ACIT— table of time values corresponding to X1IMAX.

82 . .
ACl— table of 3‘7'- values used with spline interpolation.

NACCI1— number of values in the XIMAX, ACIT, and ACI tables.
generates initial conditions for solution vector; basic function is to establish +- rues for the NV
*NDR*NDZ LCM words, which begin at pointer NTIME; reads INITIAL CONDITION
curds, including perturbation cards, as required; if problem is a ““link,”” searches binary
records from earlier problem: to get appropriate *‘link”’ values; *‘commented”’ coding is for a
**rezoner,”” which is not completely operative due to memory allocation changes made after
the rezoner was developed.

INITializes timestep DT controls; reads TIMESTEP CONTROL card.
INITializes circuit CKT calculations; reads circuit cards including voltage or current tables as
required; table variables are

Z— array; current or voltage table.

ZITYM— time array comesponding to ZI.

D2Z1— second derivative with respect to time used in spline interpolation.
initializes boundary conditions; reads all BOUNDARY CONDITION cards; sets up arrays
ISBCR, ISBCZ, ISBCRR, ISBCZZ, IBCR, IBCZ, IBCRR, and IBCZZ; reads INSULAT-
ING WALL card; reads MAGNETIC FIELD BOUNDARY VALUE cards as required; table
variables are

Zl— magnetic field or current tables.
ZITYM— time tables comesponding to Z1,
D2ZI— second-derivative values used in spline interpolation.

generates second-derivative tables necessary for cubic spline interpolation.
FINDs Last Write on a BINARY record disc file or tape during restar,

14. MISCELLANEOUS LOGIC AND CONTROL SUBROUTINES

XPAND—
SPLINT—
CKTSET—

eXPANDS length of LCM by issuing appropriate system calls.

performs a SPLine INTerpolation.

advances the circuit equations forward in time; basic function is, given current I* (ZIN) at
time 7, to calculate current I*+1 (ZINP1); integrates B, over entire grid to find total FLUX
in grid; the circuit-calculation method depends on which source is actually used, as specified
on CIRCUIT data cards; because two alternately used finite-difference schemes [Eqs. 21
and (32)] are used, ANIMAL actually does a circuit calculation every two timesteps. The
ANIMAL circuit equations assume that the circuit load, i.c., the plasma region, is entirely
surrounded by an ““ideal” conductor except for an insulated *‘feed-through’” slot between the
‘“‘terminals’’ of the load. If the small ohmic voltage drop in the extemal conduetors is
neglected, the voltage appearing at the “terminals”’ of the apparatus can be written, using
Faraday's law, as

B _ A o
V=/ E-dE=—/ E-d2=—f E-de
A B Cc

B - db
- B 5.2 (164)
g ot at

where

<b=[/ B-dS . (165)
s

38

In Eq. (164), the first two integrals mean along a ‘‘path-independent’” open path between the
‘terminals® A and B, which are external to the apparatus. The third integral of Eq. (164)
is along a closed path, which includes the open path of the first two integrals and which
also connects the terminals A and B by a path passing arovnd the plasma region. The equating
of the second integral to the third is valid if the ohmic voltage drop in the extemnal conductors
is neglected. Inclusion of the copper drop is straightforward. On the other hand, if the plasma
region is not surrounded by conductor, such as in a direct 2-pinch, a tenin dependent on
plasma resistivities and current densities must also be included. The third integral in Eq. (164)
is equated to the faurth integral in accordance with Faraday’s law. Note that the total magnetic
flux ¢, as defined in Eq. (165), includes the magnetic flux in both the plasma region and the

surrounding insulation. The load ind e of the app is defined to be
L=4®/; (166}
and, therefore, using Eq. (164),
dl dL
Vel —+1 — (167
dt dt

the usual relation for a time-varying inductance. For the capacitive source shown in Fig. 3,
the circuit calculation is performed using the difference equations

41
Ve o= VAT gt - 1Y T - (168)
Ben?ogong o Bop
Vo= R(I" + D7) + L, + + VD (169
c E(2 1) E ln+2 _, LS (nt2 _ yn L (169)
and
|tz |2 _ o
RTI’Z' t Ly 2 2 - L, ! i + VP, (170)
+2 _yn s (nt2 g0 L
Ev:cre V| is the voltage across L. Ideally, one would like to represent the voliage V, , using
. (166), as)
Ln+2 M2 _ Lo
Vi o= 1 1
LS ——— . (17D
t"+2 "

FiG. 3. The electrical circuit used in
ANIMAL to provide maguetic field
boundary conditions.

39

However, L"*2 can be determined from the plasma calculation only if l"’r2 is known; i.e.,
Eq. (171) is nonlinear in the unknown, l‘l"r2 To avoid iterating between the plasma and
circuit calculations, the following two forms have been used in ANIMAL:

l;l|+2 _ l|11) L" - fn-2
Vi=L" ——— + 1"
L g2 _ yn 1 " -2 amn)
and
+2 -2
I
L Lv tn4'2 —¢" -2 (173)

InEq. (173), Ly, is the vacuum, plasma-free inductance of the region of solution and ¢p is the
ic flux due to pl currents. ¢p is given by

% ﬁ BP-dS .
S

Of course, finite-difference approximations are used to evaluate the integrals in Egs. (165) and
(174), which are used to define the inductance L in accordance with Eq. (166). Originally, Eq.
(172) was used, but in calculations in which the current approached zero, the inductance L
became unmanageably large [see Eq. (166)]. In addition, during reverse-bias pinches, the
inductance became unmanageably small as the total load flux passed through zero. Currently,
it is believed that the use of Eq. (173) is superior. With the voltage V; specified by Eq. (172)
or (173), Eq. (168) is used to calculate V & and then the linear, simultancous Egs. (169) and
(170) are used to calculate 1 *2 and I 25 . With "2 determined, the plasma calculation can

(174)

proceed.
GRIDMOV—determines v?)“'” and arrays RZP and RRP when a moving grid is used; assumes that t.he

the §; di only.

grid uniformly expands or

SWTCH13— SWiTCHes &, and £, directions when lSTEP = 2; this is accomplished by interchanging

SET27PT—
INITPTR—

appropriate values of the IVV, IV, IBCRR, IBCR, IBCZZ, IBCZ, ISBCRR, ISBCR,
ISBCZZ, ISBCZ, and ISBCK amays, which are located in COMMON/28/ (note that there are
fixed arrays having the same names in COMMON/4/).

sets the LCOM27 and KCOM27 arrays using the IV and IVV amays.

INITializes SCM PoinTeRs described below; called at the beginning of a timestep.

Along a particular k- or j-line, the scale factors (h))", (h)"*!, (hp)?, (hy)"*!, (hy)",
(hy)?+1, the grid velocities (v§)n, (v§)**1, (v§)", (V§)"*), the “‘external” magnetic
field components (BE)", (BF)"*!, (BE)", (BF)"+1, (B})n, (B)"+!, and the transport
“coefficients”” and derivatives are needed in addition to the dependent variables U. These
quantities are computed line by line as d and then ferred as a block to the LCM
locations KKMMLCM, KKMLCM, KKLCM KKPLCM, etc. When brought back into the
VAR armay of SCM, these quantities are located by pointers:

KHi— forISTEP =1, (hl)j':k along a k-line KX is located at VAR(KH1 + J);
similarly, for ISTEP = 2, (hy)?, along a j-line KK is located at
VAR(KH1 + D).

KH1P— pointer for (hy)], P Hor (h,)"'”, etc.

KH2— ()}, o (ppy

kP~ @)il' o @}

KH3— (hy)f, or Gyl

40

KH3P— (hg)“” or ()

KVGI— (v§)i, or (+§)ka

KVGIP— (v)], ""' or (S

KVG3— (v§)J. L o OF)kj

Kvep—(v§)i' or (5)07

KBIE— (BE)/ i or (B§)k‘j

KBIEP— (8§)] “” or (B)"*' .

KB2E— (Bf)j voor (B

KB2EP— (BE)y' or (B§)p;' -

KB3E— (BE ik OF (8%)k.i

KB3EP— (85)iy' or (BF)} -

KTC— pomter to the transport coefficients; for ISTEP = 1, the I-compsnent of
the transport-coefficient vectorl(" 1« of Eq. (162) is located at VAR(KTC

+NTC*(J —~1) +1); smularly,for ISTEP = 2, the I-component ofl(’t{‘l
is also located at VARKTC + NTC* (J — 1) +I).

KVAR— poiaterto the dependent variables along ak- or _‘-hl\ﬁ the I-component of
the dependent-variable vector U1 T or O ; J is located at VAR(KVAR
+ NV« -1)+1)

KPHI, KPHIP, . . . KFB3EP, KPTC, KPVAR—pointers corresponding to KH1,
KHIP, . . . KB3EP, KTC, KVAR for time t" along k- or j-line KKP =
KK + 1.

KMHI1, KMHIP, . . . KMB3EP. KMTC, KMVAR—pointess corresponding to
KHI, KHIP, . . . KB3EP, KTC, KVAR for time (" along k- or j-line
KKM =KK -1,

NXTH1, NXTHIP, . . . NXTB3EP, NXTTC, NXTVAR—pointers corresponding
to KH1,KHIP, . .. KB3EP, KTC, KVAR for time t” along the rnext k- or
j-line required; i.e., NXTK = KKP = KK -+ 1 if LINSEQ = I, and
NXTK = KKM = KK - 1 if LINSEQ = 2,

KZHI,KZHIP, . . . KZBIEP, KZTC, KZVAR—pointers corresponding 10 KH1,
KHIP, . . . KB3EP, KTC, KVAR for time t" for quantities associated
with the k- or j-line KKZ and which are to be used to calculate the explicit
fluxes across the KKZ + 1/2 interfaces; for LINSEQ = 1, KKZ = KK,
and for LINSEP = 2, KKZ = KKM =KK - 1.

KPZH1, KPZRIP, . . . KPZB3EP, KPZTC, KPZVAR—pointers corresponding to
KZH1, KZHIP, . . . KZB3EP, KZTC, KZVAR for quantities associated
with the k- or j-line KKPZ = KKZ -+ 1 and which are to be used to
calculate the explicit fluxes across the KKPZ — 12 = KKZ + 12
interfaces.

KRH1, KRHIP, . . . KRB3EP, KRTC, KRVAR—pointers correspanding to KH1,
KHIP, . . . KB3EP, KTC, KVAR for time t"*!- corresponding tothe
iterate along a k- or j-line KKR = KK; for ¢ =0, KRH1 = KH1, KRHIP

=KHIP...for 2#0,KRH] = KRHIP =KH]1P; KRTCrefers to the
mnsrgn-cocfﬂcient vector K = K(U"*+1?) and KRVAR refers to
gn+

Note that pointers for BE; and BF, are included even though ANIMAL cannot currently handle
the field components Bl and B;. This is an example showing that much of the formalism for
handling B and B, is still retained in the code.

Other SCM pointers are

41

NAU— the pointer for the “*new’* variables U"*!- 2+} along a k- or j-line
KK; the I-component is located at VAR(NAU + NV*(J — 1) +1).

NAE— the pointer for the matrices E of Eqgs. (22) to (26) and {33); for ISTEP
= 1, the NV * NV elements of the matrix E%}! L are located
beginning at VAR (NAE + NV* NV * () -] + 1).

NAF— the pointer for the vector Fof Eqs. (22) to (26) and (33); for ISTEP =
1, the NV elements of the vector F 04 L.2are located beginning at
VAR(NAF + NV* (3 - 1) + I).

LOCADD— the pointer for the NRGR = 10 grid quantities associated with
zone-centers and implicitly treated interfaces; for ISTEP = 1, the
NRGR quantities are

[Vie. izt G, Gyt (ot aty),

+1 1 1
s G Sb ko Pitho - Q6D] , (175)

where the first 7 quantities are irrelevant for j = 1 and all are
irrelevant for j= NDR; similarly, for ISTEP = 2,

o [VRS VIS (L)L (LT, (B8, (8%,

+1
Gy (PSP L B] ; 176

the I-component of the Vector R is located at VAR(LOCADD +
NRGR*(J -1 +1).

NXTZGR— the pointer for the NZGR = 3 grid quantities associated with
explicitly treated interfaces; for ISTEP = 1, the NZGR quantities are

iy = [ket Shien - (Aza)mrz] am
for2<j<NDR —landfort <k <NDZ — 1; similarly, for
ISTEP = 2,

23k = | St Dlorny» @ehess] - a78)

The I-component of the vector Z is located at VAR(NXTZGR +
NZGR* (J - 1) +1); for LINSEQ = |, NXTZGR refersto the KK +
1/2 (KKP — 1/2) interface, and for LINSEQ = 2, NXTZGR refers to
the KKM + 1/2 (KK — 1/2) interface.

NXTZSYM—the poml.er forthe 5 Eqmmemc explicit vectors (3"53‘0 x+12 9F Q. (45)

and (f})%+112, i ©f Eq. (63); the Icomponent of the vector is located
at VAR (NXTZSYM +NV' (J - l) +1)
NYTZASM—the pointer for the anti 12 Of Eq.

@sy and @y ,yp0 5 of Eq (63), the I-component of“ the vectar is
located 8t VAR (Nkmsm FNVEQ — 1) + 1),

KZFLX— the pointers for the sum total of the explicit vectors (£%)%x+12 +
(n)'}kﬂlz + m),k+1/2 - ('E’s) 1x-12 of Eq. (45) and
(ﬁ)'hm,, + (78) Tz + ™)y —12,§ - @ -1 °fEq.
(63); the I-component is located at VAR(KZFLX + NV * (J - 1)
+D.

42

SETPTR— rotates LCM and SCM pointers when advancing from one k- or j-line
to another after convergence of the iterations.

BNDRYSW-—controls implementation of BouNDRY SWitches such as those dis-
cussed in Ref. 4; is called after the first iteration along each k- ur
j-line; sets the values of the KRVAR ‘‘array™ forJ = 1 and J =
NDR(NDZ) according to switches that have been turned on or off, if
any.

SETBDRY— controls the advancement from t® to t**! for boundary k- or j-lines;
for ISTEP = 1, the k-lines 1 and K(NDZ) are set according to Eqgs.
(24) and (25), respectively; for ISTEP = 2, the j-lines 1 and J(NDR)
are set according to Egs. (22) and (23) respectively.

ITCON— checks for convergence of i values Un+!. 241
starting at location NAU with value [n+1.2 starung at location
KRVAR; compares changes in the diffe +12, °FEq. (115)
rather than changes in Q itself, as might nonna]lJ be done; if 5Q is
less than the appropriate reference value as specified on the TIME
STEP CONTROL card, the change in 5Q is compared with the
reference value; sets NI = 1 if iterations have converged; if the
number of iterations KITER exceeds NEXTAVE (initially 6),
gn+l 2+1 jg set to (ﬁn+l,l2+l + Un+l.ll)/2 prior to the next
iteration in an effort to achieve convergence.

MAXVAR— checks for the maximum variation of a dependent variable when
advancing from (" to ("*); compares values Un+!- 2+! starting at
Iccation NAU with value O starting at location K VAR after itera-
tions along a k- or j-line have converged; if a component of Un js less
than the appropriate ‘‘reference’” value as specified on the TIME
STEP CONTROL card, the component of Un+1. 2+! js compared
with the ‘‘reference’’ value.

DTCNTRL— increases, decreases, or maintains the time-step by comparing the
maximum variations obtained by MAXVAR with the maximum
change CHGMAX specified on the TIMESTEP CONTROL card; if
the maximum change exceeds CHGMAX by 50%., or if negative
densities or energies occur, will initiate a recycle by interchanging
NTIME and NMITIME and doing miscellaneous other chores; prints
relevant ASCII information on timestep control at each timestep.

OUTK— transfers a completed k- or j-line from SCM locations starting at
NAU to the appropriate location in the LCM block starting at
NPITIME.

ENDMAL-— a subroutine to terminate ANIMAL; does a variety of ASCII output
prior to termination.

VOLINT1— used when the moving-grid option is used; calculates the volume of
the mesh; the value is then used in MOVGRID to adjust the CUTOFF
density (see Ref. 4) as the volume changes.

15. PREPARATORY SUBROVUTINES

NEXTHHP—calculates scale factors h,, hy, hy and grid velociti s vC and v, at times t* and ! for alt
points ‘along line NXTK; note that the actual functional form de \Pends on ICOORD.,

NEXTBBP— calculates external magnetic field components at time t" and 12 ¥! for all points along line
NXTK; note that the actual functional form depends on ICCORD.

NEXTK— brings dependent variable values O for all points along line NEXTK into SCM from the
appropriate LCM location in the block beginning at NTIME.

43

NEXTTC— Is the calculation of the comp of the transport-coefficient vector K of Eq. (162)
for all points along line NXTK; sets up appropriate arguments and then calls subroutines
EQNST and TRANCO.

EQNST— calculates equation-of-state quantities fy, fy, T, and 8 and their derivatives with respect to €
and p; for input values of RO, searches EOSRO array to find the two density values between
which RO lies, then brings into SCM locations starting at pointer NSEOST the corresponding
EOS tables from LCM beginning at location NAEOST + NATAB(NROY; the tables cormre-
sponding to the two densities are spline interpolated in ¢, then linear in p, to give values for f;
and f

TRANCO— calculates transport coefficients; computes components of K of Eg. (162) not calculated by
EQNST,; all quantities are computed as algebraic functions.

NXTZGR— calculates the grid quantities of Egs. (177) and (178); note that the actual functional form
depends on ICOORD as well as ISTEP.

NXTZFLX— controls the calculation of the explicit fluxes associated with the KK +1/2(KKP—1/2) inter-
faces for LINSEQ = 1 and the KKM+1/2 (KK —1/2) interfaces for LINSEQ = 2; sets up
COMMON blocks /9/, /10/, and /11/ for explicit coefficient subroutines DBCZFLX,
UBCZFLX, and ZFLX.

SETRGR— calculates the grid quantities of Eqs. (175) and (176); note that the actual functional form
depends on ICOORD as well as ISTEP.

SETSGN— determines the value for the algebraic sign of various quantities used in the spatial-difference
equations for the implicitly treated interfaces; checks to see if the signs vary with each
iteration, and, if so, sets the signs to zero to aid convergence; relevant variables are

SGNW1— s (v'l‘) in Egs. (118), (119), (122), and (123).
SGNDRO—s (3p) in Egs. (118) and (148).

SGNPDV— has values 0 or 1; is used to multiply C, of Eq. (130).
SGNDV1— s (8v,) if &v; <0, 0 otherwise; multiplies C; of Eq. (127).
SGNDEJ— s (8¢) in Eq. (122).

SETBC— sets up COMMON;/23/ for coefficicnt snbroutine BCRZ.,

SETRP— sets up COMMON blocks /9/, /10/, /il/, and others for implicit coefficient subroutines
LBCRFLX, RBCRFLX, and RFLX.

16. COEFFICIENT SUBROUTINES

BCRZ— establishes the coefficients for the boundary condition Eqs. (22) to (25); performs tests for
boundary itches’’ in accord, with Ref. 4; variables RO, V1 . . . refer to the first
zone-center inside a boundary; variables RORM, VIRM . . . refer to the point to the *left’’ of
the zone-center; variables RORP, VIRP . . . refer to the point to the *‘right’” of the
zone-center; if input J)J is 1, RORM, VIRM . . . are ‘‘boundary values™; the coefficientE o,
of the m-component of U in the 8-component equation is stored in location VAR(NBCE +L +
NV * (M — 1)); the 8-component of F is located at VAR(NBCF + L); the component H em Of
the matrices H in Egs. (22) and (24) are stored in location HH(L. + NV * (M — 1)); the
component Hy,, of the matrices f in Eqs. (23) and (25) ate stored in location HH(NV * NV +
L + NV * (M — 1)); the appropriate boundary conditions are determined by arrays IBCRR,
IBCR, ISBCRR, ISBCR of COMMON/28/, which are the corresponding arrays of COM-
MON/4/ for ISTEP = 1 and which are the areays IBCZZ, IBCZ, ISBCZZ, ISBCZ, respec-
tively, of COMMON/4/ for ISTEP = 2. _

ZFLX— calculates explicit fluxes g of Eq. (45) and] of Eq. (63) and explicit forces g% of Eq. (45)
and 5 of Eq. (63); always assumes it is working with a j,k +1/2 interface; importar ¢ variables
are

RO, V1 ... —ply» (B -

ROZP, VIZP ... — Py, CLY TR

ROPZ, VIPZ ... — Bz » (78 Bcrnsz - -
DROPZ, DVIPZ ... — 8p% 4172 » 8OVR ka2 e -

44

UBCZFLX— calculates boundary fluxes and forces corresponding to those of ZFLX for the k = NDZ
interface on ISTEP = 1 and the j = NDR interface on ISTEP = 2; variable names are
essentially same as for ZFLX.

DBCZFLX— calculates boundary fluxes and forces corresponding to those of ZFLX for the k = 1 interface
onISTEP = 1 and the j = 1 interface on ISTEP = _; variable names are slightly different, e.g.,
RO, V1. . . changed to ROZM, VIZM, .. ,ROZP, VIZP. . . changedto RO, V1... ,PZ
changed to MZ, B in fluxes changed to A, and D in fluxes changedto C

RFLX—

H(1,1), H(1,2), H2, D) ... — () () -) o

HI2PZ—SY, .1 |

HI2IPZ—D" ;4112 .

G1B—flux from (corresponding to) Eq. (118) or (119).
G2B—flux from Eq. (121).

G4B—flux from Eq. (120).

G6B—flux from Eq. (122) or (123).
G4DS—force from Eq. (125).

G4HS—force from Eq. (126).

G4F—flux from Eq. (141).

G2F—flux from Eq. (142).

G4J—flux from Eq. (151).

G4DA—flux from Eq. (150).

G8B—flux from Eq. (124).

G8H—flux from Eq. (154).

G8D—flux from Eq. (132).

G6JS—force from Eq. (128).

G6JA—flux from Eq. (129).

G6FS—forces from Egs. (143) and (144).
G6FA—flux from Eq. (145).

G6H—flux from Eq. (131).

G6L.S—force from Eq. (133).

G6LA—flux from Eq. (134).

GBF—flux from Eq. (135).

G6PS—force from Eq. (136).

G6PA—flux from Eq. (137).

VAP—vector array corresponding to g§ or .
VSP—vector array corresponding to g5 or £

calculates the coefficients a, b, ¢, d, v, w of Egs. (42) to (45) and Egs. (60) to (63); always
assumes it is working with a j+1/2,k interface; in the code listing, the “‘explicit”’ fluxes
(evaluated at U *12) and forces are defined in the vicinity of the corresponding coefficients;
the fluxes and forces are

F1B-- flux from (corresponding to) Eq. (118) or (119).
F2B— flux from Eq. (120).

FaB— flux from Eq. (121).

F6B— flux from Eq. (122) or (123).

F2DS— force from Eq. (125).

F2HS— force from Eq. (126).

F2F— flux from Eq. (141).

FAF— flux from Eq. (142).

F2J— flux from Eq. (151).

F2DA—flux from Eq. (150).

45

F8B— flux from Eq. (124).
F8H— flux from Eq. (154).
F8D— flux from Eq. (132).
F6IJS— force from Eq. (128).
F6JA— flux from Eq. (129).
F6FS— forces from Eqs. (143) and (144).
F6FA— flux from Eq. (145).
F6H- flux from Eq. (131).
F6LS— force from Eq. (133).
F6LA— flux from Eq. (134).
F8F— flux from Eq. (135).
F6PS— force from Eq. (136).
F6PA— flux from Eq. (137).

Tmportani variables are

1 R n+1,R
RO, V1. .. —pnit% W ix

1,8 (R TR

RORP, VIRP . . . — jﬂ_\‘(vl)jﬂ_k .
1.2 R n+l.2

ROP, VIP. .. — pithf) o

n+1,2
DROP, DVIP . .. — 3p8i18, 80D 41y

n+l,9
H(L1), H(L,2), HR,D) . .. —)RR by o
n+l,
)k .
n+
HP(1,1), HP(1,2), HPQ,1) . . . — (I by
[

i

H23PR— S,
n+l

H32IPR— Dy, 1y -

AAP— coefficient array corresponding to matrix 3.
BAP— coefficient array corresponding to matrix b.
ASP— coefficient array comresponding to matrix €.
BSP—- coefficient array corresponding to matrix d.
VAP— vector array corresponding to vector V.
VSP— vector array corresponding to vector W,

RBCRFLX— calculates coefficients for boundary fluxes and forces corresponding to those of RFLX for the j
=NDR interface on ISTEP = 1 and the k = NDZ interface on ISTEP = 2; variable names are
essentially same as for RFLX.,

LBCRFLX— calculates coefficients for boundary fluxes and forces corresponding to those of RFLX for the j
= linterface on ISTEP = 1 and the k = 1 interface on ISTEP = 2; variable names are slightly
different, e.g., RO, V1 .., changedto RORM, VIRM, RORP, VIRP. . . changed to RO,
V1..., PR changed to MR, B in fluxes changed to A, D in fluxes changed to C.

MAT2— computesthe “local”’ coefficients ¥, 5, 85, 11 of Egs. (42), (45), (60), (63) and computes the
time-derivative coefficients & and iri; assemblec all coéfficients including those calculated by
ZFLX, RFLX, UBCZFLX, RBCRFLX, DBCZFLX, LBCRFLX into the coefficients A, B,
¢, and V of the widiagonal linearized difference Eqs. (21) and (32); when completed,
calculation of E and F begins.

46

17. TRIDIAGONAL SOLVER SUBROUTINES

MAIN program— the DO 710 loop calculates the E’s and F's according to Eqgs. (27) to (30); the quantity
0031 1 of Eq. (31) is calculated b] 715 and 775; the DO 780 loop
does the backward substitution indication in Eqgs. (26) and (33); within the DO 710 loop,
the DO 620 loops sets the vector array V to the quantity V — &+F of Eqs. (28) and (30); the
DO 630 Igop. replaced by ASCENTF subroutine SUMBCE, sets the matrix array Atothe
%uami!y A + C+E of Egs. (27) to (30); the DO 635 loop adds to matrix array Bhe quantity

o of Eq. 27).

SUMBCE— an ASCENTF subroutine to replace the triple-loop FORTRAN DO 630 loop of the MAIN
program; sets the matrix amray A to the quantity A + C+E of Egs. (27) to (30).

TRIANG— used to solve linear algebraic systems of equations of the form AsX =B where Aisan NV
% NV matrix, § is an NV % NNV unknown matrix, and B is an NV x NNV matrix;
solution procedure is Gaussian elimination, which triangularizes the matrix A; TRIANG
is used to calculate the l'-.’s, Fs,and Gof Egs. (27) 10 (31), since the inverses do not nzed
to be computed, it does not take into account the fact that matrix A may be reducible, a fact
that could lead to a reduction in execution time.30

18. OUTPUT SUBROUTINES

RUNDATA—prints a variety of problem information in the ASCH output file **ANIMREC"" (see attached
fiche for ANIMAL user's manual).
OUTPUT1— controls ASCII output in file “MHDOUT,’’ which occurs at time and timestep intervals
that appear as input data on the QUTPUT card; sets up input arrays for PLOTR.
PLOTR— does an ASCII “plot*" of the NP points of amray A as a function of array R.
NUMZBZ— prints ASCHl zonal numbers zone-by-zone into output file **“MHDOUT.”
BBEXT— calculates *‘external’’ magnetic field component at a specified zone; used in conjunction with
QUTPUT1, NUMZBZ.
SCALFAC— calculates scale factors at a specified zone; used in conjunction with BBEXT, OUTPUTI,
NUMZBZ.
WOFORD— sets up and controls sending of ASCII messages to the RECORD OF ORDER produced
by the ORDER controller that runs ANIMAL during operator-run production.
ORDMES— transmits the messages set up by WOFORD.
IFAR— ASCENTF subroutine to convert floating point numbers to Hollerith character equivalent.
BODARZ— Buffers Out DA and RZ; controls the writing of the DA and RZ arrays into the BINARY
output disc or tape file RECORD (see attached fiche for ANIMAL user's manual).
BOVAR— Buffers Out VARiables; controls the writing of time-dependent quantities, including all
A.pendent variables, into the BINARY output file RECORD at the time and timestep
intervals specified on the OUTPUT card; ANIMAL mekes a BINARY record that has the
following structure:
Record 1—DA array, NDA = 200 words.
Record 2—RZ array, NDR + NDZ words.
Record 3—quantities at timestep zero; DADT array, first NDADT = 100 words;
RZ array only if moving-grid option is used, next NDR + NDZ words;
marker-particle positions and miscellaneous related words, next
2 * NMP + 8 words; all dependent variables, next NV * NDR » NDZ
words; if the total number of words exceeds NRECWD = 5000, the
dump is broken into as many NRECWD records as required with the
last record = NRECWD.

Record n—same quantites as Record 3 except at a later timestep.

47

BUFFO—

BSPVAR—
STATUS—
WRBLNK—
SETDEN—
ENDFIL—

GETIOC—

NEWTPE—

BIDARZ—
BIVAR—

BUFFIN—

In Record 3 Record n, the dependent variables are stored in the order J + NDR »*
(K =1 + NDZ * (I — 1)), rather than the order given by Eq. (163), to facilitate post-
prc ing; since input/output can be done only from SCM locations, the output quantities
must be brought into SCM from LCM; originally, once the words to be dumped were
collected, ANIMAL used 2 simplc BUFFER QUT statement; however, 1o survive under the
Livermore time-shering operating system and apparently poor tape-unit maintenance, an
output procedure using all of the subroutines below was developed as a replacement for the
simple BUFFER OUT statement; an END OF FILE is written after each complete dump; the
END OF FILE is overwritten when a new dump is made; the dumps contain all necessary
information for restan or post-processing.

writes a specified pumber of words on discs or tape; called by BODARZ, BOVAR; on
tape, checks for errors by backspacing and rereading as well as checking unit status; if
errors occur, will retry to write up to four times, then write blank tape in an effort to bypass
bad spot on tape.

bzckspaces a tape unit over a dump for rereading.

checks the status of a tape unit,

writes 6 in. of blank tape on a unit.

sets the density of a tape unit.

ASCENTF subroutine to cause an END OF FILE to be written on a tape or disc; this routine
is included because a more recent version in CLOB would not correctly write an EOF on
disc.

gets the 10C or minus word associated with a logical unit ber; used in conjunction with
STATUS, WRBLNK, and SETDEN.

starts a new disc file or tape when the current one is filled; reads TAPE card; initiates new
disc or tape so it is completely independent of the previous one.

conirols the reading of the DA and RZ array from the BINARY output upon restart.
controls the reading of time-dependent quantities, including all dependent variables, from
the BINARY output upon restart.

reads a specified number of words from disc or tape; called by BIDARZ, BIVAR.

19. MARKER-PARTICLE SUBROUTINES

General Information. Marker, or tracer, particles are used to trace in a Lagrangian manner the motion of fluid
elements. At initialization, the initial positions of an array of particles are specified. At the end of each successive
timestep, 2 velocity for each particle is determined by interpolating on the velocity field calculated by the Eulerian
code ANIMAL. The velocity is muluphed by lhe umestep to give a position displacement. The marker panticles can
be considered as vertices of a Lag| n. B a Eulerian formulation is significantly different from
a Lagrangian formulation, the marker particles do not always accurately represent the actual mass distribution in the
calculation. It appears to be quite difficult to formulate a particle **pusher’ that is always consistent with the way a
Eulerian code moves mass.

MPINIT—

initializes the marker-particles arrays; reads the MARKER PARTICLE card.

MARKER— controlling subroutine for particle pushing.

SEARCH—

finds the position of a particle on the ANIMAL mesh.

GETDXDT—finds velocities of corners of a box in which the particle is located; actually works with —df)

INTERP1—
INTERP2—
MPOUT—

which is not a true velocity if £ is an angle.

linearly interpolates on the velocities determined by GETDXDT to give an actual velocity.
a dummy subroutine.

prints ASCII output giving positions of the particles as well as giving a plot.

48

20. DIAGNOSTIC SUBROUTINES

General Information. These subroutines are used when ANIMAL enters the TEST MODE (see attached
fiche for ANIMAL user's manual). ANIMAL requests NCHK, the number of zones to be checked, and J2BCHK and
K2BCHK [!he corresponding (j, k) pairs of the zones to be checked]. A working disc file SCRATCH is created
when required. - .= _ - _

CHECK— writes coefficients A, B, C, and V for specified zones; writes E's and F's for a specified

k- or j-line; writes U's for a specified k- or j-line; after an iteration has been completed,
calls SETRP and sets up COMMON/25/ with variables U"*1-¢*!_ then calls CHKLBCR,
CHKRBCR, or CHKRFLX, as appropriate.

SPECHK— lists dependent variables, transport coefficients, mesh quantities, etc. associated with the

interfaces of a specified zone.

CHKRFLX~—essentially a duplication of the coding of RFLX, with coding added to actually evaluate the

values for fluxes and forces after UP*1.2“1 have been computed, such as indicated in
Eq. (65); the resultant values are stored in COMMONY/23/, which are then printed by CHECK;
the values On*)-%*! are stored in COMMON/25/.

CHKRBCR—essentially a duplication of the coding of RBCRFLX, with coding added to actually evaluate

the values for fluxes and forces after Un*1-+1 have been computed.

CHKLBCR-essentially a duplication of the coding of LBCRFLX, with coding added to actually evaluate

the vafues for fluxes and forces after Un~!+4+! have been evaluated.

21. POST-PROCESSING CODES

The ANIMAL “‘system'" consists of a post-processor MALPP and auxiliary codes TTOD, TCETC, and
PLOT in addition to the ANIMAL code. The functions of the post-processor and auxiliary codes are described in
the post-processor user’s manual (on microfiche, inside back cover). In these codes there are no complicated mathe-
matical algorithms with th+ exception of the computer graphics algorithms used in standard CLOB graphics sub-
routines. The post-processing codes use many subroutines with rames and functions identical to or simiiar to
subroutines in ANIMAL; in some cases the coding is also identical, but the user should not automatically assume
that the coding is identical. The coding for TTOD, TCETC, and PLOT is relatively straightforward, although the
coding for TTOD gets rather cumbersome because of the many functions TTOD can perform. When attempting -
to understand the coding of all post-processing codes, this author recommends that the user consider a particular
function and follow the coding through from start to end for a typical set of input data.

The function of MALPP is to read an ANIMAL BINARY dump, manipulate the information from the
dump, and do the appropriate computer graphics or ASCII output or both. For **vs time'" plots, the sclevant
information must be stored until all dumps have been processed. Then the graphics can be performed. MALPP’s main
working storage is COMMONY/19/, which is broken up into arrays A, B, C, and D. The graphics routines are
set up to process the information in these four arrays, so the function of the **physics ' routines is to set up the arrays
properly.

Because MALPP is nearly 150 subroutines, a description of the subroutines will not be given liere. Many
of the subroutines have recognizable mnemonic names.

22. TEST PROBLEMS

When an individual gets involved with a code for the first time, #i is good practice to dream up test problems
for which solutions are known or for which comparisons with other codes can be made. For the code developer, the
test problems can unveil bugs. For the user, the test problems can delineate the capabilities and limitations of a code.

The test problems listed below are some this author has used. Several have been suggested by others. Un-
fortunately, alt but one are one-dimensional. If any of the readers have other useful test problems, this author would
appreciate hearing of them. In this repor o detailed calculational results from running the test problems on ANIMAL
are given; however, a brief descriptior { ANIMAL’s performance is included.

49

TEST 1—1D SQUARE WAVE: cartesian coordinates 0 < x =< 100 ¢m; 50 uniform zones; p = 1075
kg/m3for 10cm = x < 30cm, p = 10~ %kg/m> elsewhere; T = 0.01 eV for 10cm <x <30cm, T =1 x 1075 eV else-

where;, v; = 107 ms everywhere; B = 1.0 x 104 for 10cm < x = 30cm, B = 1.0 x 107 elsewhere; Tflj!_ =0 at

boundaries for all quantitics; all transport coefficients set to zero; ideal gas, y = 5/3; follow calculations for 0.6 us.
ANIMAL performance—because the fluid velocity is much greater than the magnetosonic velocity, all square
pulses should translate 60 cm without distortion. However, since ANIMAL is a Eulerian code, dispersive and diffusive
effects are present and the density wave evolves into a Gaussian-like shape. Negative densities do not occur because
of the second-ordes (in Ax) mass diffusion given in Eq. (118). The temperature wave remains very flat but widens
cansiderably. No negative temperatures occur because of the second-order diffusion introduced in Eq. (122). The
magnetic field wave widens into a Gaussian-like main pulse with oscillations trailing the main pulse. The os-
cillations are a result of the dispersive errors introduced by the convective flux of Eq. (124). Because there is no
dominant diffusive truncation error, some magnetic ficld values in the trailing oscifiations are negative.

TEST 2—1D IDEAL MHD PINCH: cartesian coordinates; 0 < x < 100 m; 40 uniform zones; p = 1073
kg/m®; T = 1.044 X 1072 ¢V; B = 0; all transpon coefficients set to zero; ideal gas, y = 7/5; at t = 0 apply a step-
function vacuum magnetic field, B = 9.301 X 10~2 Wb/m? to x = 0 boundary; follow calculations for 0.05 s.
ANIMAL performance—this is an MHD generalization of the SCTP-I-A hydrodynamics test problem suggested by
Hicks.?0 2. shock propagates roward increasing x. The shock is driven by a magnetic piston, which also moves
toward increasing x. The magnetic piston/gas interface is a *‘comact discontinuity.” Representation of the piston
(or vacuum)/gas interface is a nontrivial problem that has plagned computational magnetohydrodynamicists since the
carly calculations of Hain -t al.’3 ANIMAL uses a new **background plasma®” method.* For this problem, the **back-
ground plasma’" parameters are p = 1076 kg/m? and T = 10~% &V. The inflow velocity is not specified, and
ANIMAL computes the correct value to within 1%. Both the *‘contact discontinuity " and the shock appear as
transition regions over several zones. The average compression behind the shock is correct, but the density, tem-
perature, and velocity profiles show ‘‘ringing'* and ‘‘overshoot,'* which is characteristic of second-order methods.
The shock arrives at the x = 100-m boundary at roughly the correct time. ANIMAL s predecessor!” did not perform
nearly as well on the hydrodynamic analog of this problem; the poor shock propagation can be traced to the conser-
vation® propenties of the predecessor.

TEST 3—1D RIEMANN SHOCK TUBE PROBLEM: cartesian coordinates; —1 cm < x < 2 cm; 30
uniform zones; p = 103 kg/m¥and T = 695.6 &V forx <0; p = 1 kg/m3and T = 6.956 % 10 ~%for x = 0; all ransport
coefficients set 10 zero; ideal gas, y = 5/3; follow calculations for 5 X 1078 s. ANIMAL performance—this is
similar to the SCTP-V test problem discussed by Hicks.® These particular parameters were suggested by Trigger. 33
The correct solution is a strong shock propagating into the low-density material and mc . »ment of the ‘‘contact
discontinuity’* of the two fluids. Because the initial pressure jump is a factor of {0%, this is a severe problem.
ANIMAL’s shock position is correct within 10%, and ANIMAL s accuracy is comparable 1o LLL's explicit hy-
drocodes (for this type of problem, ANIMAL s timestep will be comparable to the explicit limit). The temperature in
the shocked material is also acceptable. The contact and shock in the density profile are difficult to distinguish at
these short times with so few zones. If the *‘velocity fractional step’” method of Section 6 is used, the shock propagates
significantly 100 slow, with corresponding inaccuracies in all other relevant quantities.

TEST 4—REFLECTED SHOCK: carlesian coordinates; 0 < x < 50 cm; 25 zones, 0 < x < 25 cm, each
adjacent Zone 1.16 times larger than the adjacent zone at greater x; 25 zones, 25 cm < x < 50 cm, each adjacent zone
1.16 times larger than the adjacent zone at lesser x; p = 103 kg/m3; T = 1072eV; v, =3 X 10° m/s; all transport

coefficients set to zero; ideal pas, y = 5/3; ':—t = 0 forall quantities at x = 0; rigid wall at x = 50 cm; follow for 5.0 us.

ANIMAL perfarmance—tbis problem models a translating fluid coming into contact with a rigid wall. A strong shock
wave with compression ratio 4 should propagate away from the wall. This problem was originally suggested by
Le Blanc?? to test the effect of nonunifarm zoning. For uniform zoning, ANIMAL will calculate the cotrect average
compression, and the density profile will show small-amplitude oscillations behind the shock. However, with non-
uniform zoning there is a tendency to overcompress by a factor of nearly 10% for x > 25 cm and a tendency to under-
compress by a factor of nearly 10% for x < 25 cm. This same tendency is observed in a variety of LLL Eulerian and
Lagrangian codes, and the actual overcompression or und pression depends on the coefficient used in the
*artificial viscosity.“32 This problem suggests that nonunifarm zoning should be used cautiously.

TEST 5—ID COAXIAL PINCH: cylindrical coordinates; L cm =< r < 10 cm; 45 uniform zones;
p =3 x 107% kg/m3; T = 3 €V; bounc _.ies are electrically and thermally inssslating; radiation losses tumed off,
but thermal conductivity and resistivity on; ideal gas equatian-of-state, y = 5/3; apply a sinusoidal cusrent along the
cylindrical axis; the current amplitude is 450 kA and the quarter cycle is 5 us; foliow the calculations for 15 ps.
ANIMAL performance—this is a *‘real’’ “inch problem. The plasma separates from both inner and outer boundaries,

5¢

leaving behind a **vacuum.’’ At a later time, the plasma returns to contact both boundaries. ANIMAL s performance
on this problem is reported in Ref. 4.

TEST 6—1D DIFFUSION PROBLEMS: for constant thermal conductivity (resistivity), exact solutions to
the thermal (resistive) diffusion equation are available in a variety of references that will not be cited here.

TEST 7—2D ISOLATED S YSTEM: initial conditions are an arbitrary distribution of plasma and magnetic
field; the system is surrounded by electrically conducting, thermally insulating walls, ANIMAL performance—mass
and magnetic flux are to within machine roundoff errors. The total system energy—kinetic + thermal +

magnetic—is constant to within 0.01% in spil of strong turbul This problem is ded to verify the conservation
properties of the code.

23. ACKNOWLEDGMENTS

The ANIMAL code as it exists today is a result of contributions fom many people. Joe Peuibane, as a
former group leader, provided the guidance and much of the physical insight necessary to build ANIMAL. John
Stevens, Larry Suter, and Dave Kraybill participated in the develop of the physical model; all spusred the develop-
ment of the code by conceiving interesting and challenging physical problems. Rollin Harding participated in many
useful discussions on numerical methods. John Stevens added several features to MALPP, ircluding the original
**offline’” marker particles that greatly added to our physics understanding. Larry Suter made modified versions of
ANIMAL and MALPP to handle problems of interest to him. Ray Cochran added many user-convenience and system-
interaction capabilities to both codes, considerably increased ANIMAL'’s operating speed, and performed quite a
variety of miscellaneous, very y chores. Alan Mankofsky. a 1975 employee, generate ° {NIMAL's
**online’* marker-particle capability. John Brasunas, a 1976 summer employee, converted handwritten user’s
manuals to the current online versions. Finally, Grant Cuok, a graduate student at the National Magnetic Fusion
Energy Computer Center, did extensive proofreading of ! .nanuscript.

51

w —

N

13.
14,
15.

16.
17.

18.
19.
20.
21,
22.
23.

24,

26.
27.
28,
29,
3n.

31.
3z

REFERENCES

K. V. Roberts and D. E. Potter, ‘‘Magnetohydrodynamic Calculations,” in Methods in Computational Physics,
B. Alder, S. Fernbach, and M. Rotenberg, Eds. (Academic Press, New York, 1970), val. 9, p. 339.

R. D. Richtmyer and K. W. Morton, Difference Meihods for initial Value Problems (Interscience, New York,
1976), 2nd ed.

I. R, Lindemuth, J. Computational Phys. 18, 119 (1975). Erratum, J. Comput. Phys. 19, 338 (1976).

I. R. Lindemuth, J. Compus. Phys. 25, 104 (1977).

I. R. Lindemuth, J. S. Pettibone, J. ¢ Stevens, R. C. Harding, D. 1. Kraybill, and L. J. Suter, Phys. Fluids
27, 1723 (1978).

I. R. Lindemuth and T. R. Jarboe, Nucl. Fusion 18, 929 (1978),

I. R. Lindemuth, and M. M. Widner, Magneiohydrodynamic Behavior of Thermonuclear Fuel in a Precon-
ditioned Electron-Beam Targer, Lawrence Livermore Laboratory, Livermore, CA 94550, submitted for publi-
cation to Nuclear Fusion.

J. C. Stevens, The KRAKATOA Prog 1 Livermore Lab y, Livermore, CA 94550, in
preparation.

R. C. Harding, D. M. Kraybill, I. R. Lindemuth, J. S. Peuibone, J. C. Stevens, and L. J. Suter, Numerical
Comy ton of the Preionization Phase of a Pinch Discharge, Lawrence Livermore Laboratory, Livermore, CA
94550, submitted for publication to Plasma Physics.

J. Allbritton, J. Cohen, R. S. Devoto, and R. Rowlands, “‘Flute Instability of a Laser-Pellet Plasma in a
Magnetic Mirror,"" in Proc. Ann, Mtg. Theoretical Aspects Controlled Thermonuclear Fusion,
Madison, Wisconsin, April, 1976 (University of Wisconsin, Madison, Wisconsin, 1976).

L. J. Suer and 1. R. Lindemuth, **2D Simutations of CO, Laser Breakdown and Propagation in Hydrogen
Gas, ' inProc. IEEE Int'l. Conf. Plasma Science, R laer Polytechnic Insii; Troy, New York, May, 1977
(IEEE, New York City, 1977): D. M. Kraybill, I. R. Lindemuth, and L. J. Suter, Bull. Am. Phys. Soc. 22 (9),
1204 (1977); L. J. Suter and I, R. Lindemuth, Bull. Am. Phys. Soc. 22 (9), 1119 (1977).

L. 1. Suter, D. M. Kraybill, I. R. Lindemuth and J. C. Stevens, *‘Line and Continuum Radiation as a Liner
Implosion Diagnostic,™ in Proc. 2nd Topical Conf. High Temp. Plasma Diagnostics, Santa Fe, New Mexico,
March, 1978 (Los Alamos Scientific Laboratory, Los Alamos, NM 87544, 1978).

K. Hain, G. Hain, K. V. Roberts, S. J. Roberts and W. Koppendorfer, Z. Naturforsch. A 15, 1039 (1960).
D. Duchs, Phys. Fluids 11, 2010 (1968).

J. R. Freeman and F. O. Lane, *‘Initial Results from a Two-Di ional Lax-Wendroff Hyd

Code," in Proc. 2nd Conf. Numerical Simulation of Plasma, Paper C7, LA-3990 (Los Alamos Scxenuﬁc
Laboratory, Los Alamos, NM 87544, 1968).

W. Schneider, Z. Physik 252, 147 (1972).

I. Lindemuth and J. Killeen, J. Compur. Phys. 13, 181 (1973); I. R. Lindemuth, Lawrence Livermore
Laboratory, Livermore, CA, 94550, UCRL-51103 (1971),

D. E. Potter, Phys. Fluids 14, 1911 (1971).

3. R, Freeman, Nuci. Fusion 11, 425 (171).

K. V. Brushlinsky, Comp. Meth. in App. Mech. and Eng. 6, 293 (1975).

F. Hofmann, Nucl. Fusion 14, 438 (1974).

H. C. Lui and C. K. Chu, Phys. Fiuids 18, 1277 (1975).

J. U. Brackbill, *‘Numerical Magnetohydrodynamics for High Beta PJ ** in Meshods in Computational
Physics, B. Alder, . Fembach, and M. Rotenberg, Eds. (Academic Press, New York, 1976), vol. 16.

S. L. Braginskii, *“Transport Processes in a Plasma, " in Reviews of Plasma Physics, M. A. Leontovich, Ed.
(Consultants Bureau, New York, 1965), vol. 1, p. 205.

J.C. § , La Livermore Lab y, Livermore, CA, 94550, private communication (1976).

H. R. Griem, Plasma Speclroscopy (McGraw-Hill, New York, 1964).

L. Spl(ur Physxcs of Fully lonized Gases (I i New York, 1962), 2nd ed.

R.H. P g Irodi y Co Methods and Numerical Analysis (Macmillan, New York, 1965).
W, R, Briley and H. McDonald, J. Compur Phys. 24, 372 (1977).

W. R. Briley and H. McDonald, On the Structure and Use of Linearized Block ADI and Related Schemes,

Scientific R h A iates, Inc., Gl burg, Connecticut, R78-3 (1978).
J. Douglas and J. Gunn, Num, Math. 6, 428 (1964).
J. M. LeBlanc, L Livermore Lab y, Livermore, CA 94550, private communication (1975).

52

33.
34,
3s.
36.

LG

K.
T.

R. Trigger, Lawrence Livermore Laboratory, Livermore, CA 94550, private communication (1973).
E. Rudy, Lawrence Livermore Laboratory, Livermore, CA 94550, private communication (1975).

R. C. Cochran, Lawrence Livermore Laboratory, Livermore, CA 94550, private communication (1977).
D. Hicks, Hydrocode Test Problems, Air Force Weapons Laboratory, Kirkland AFB, New Mexico, AFWL-

TR-67-127 (1968).

53

“LEL: 19796

