
UCRL-JC--105437

DE91 005070

Computational Model for Optimizing
Longitudinal Fin Heat Transfer in

Laminar Internal Flows"

C. S. Landram

Lawrence Livermore National Laboratory

Livermore, California 94550

t

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48.

• :_"l_/ ....... .,-,,...,Mni= THIS IDocUMF-.NT IS UNLI_rTED
DIS 1;_-_r-jui L.....



Nomenclatqre

bI channel half-width

b2 fin half-width

Dh channel hydraulic diameter
0

h local heat transfer coefficient, qw/(Tw- Tb)

H channel height

k thermal conductivity

qw base heat flux at lower surface

Q total heat flow to each cell, below Eq. (1)

S defined by Eq. (2)

T temperature

y dimensionless, y'/b

y' lateral dimension

z dimensionless, z'/H

z° longitudinal dimension

e dimensionless temperature defined below Eq. (1)

X defined by Eq. (6b)

E defined by Eq. (11)

dimensionless fin to coolant heat flux, Eq. (9)

Subscripts"

w at coolant-fin or base interface

1 coolant

2 fin

B base

b bulk of coolant
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Abstract
,,

Optimal configurations are identified, based on a numerical model,

for fully developed laminar internal flows whose base boundary walls have

perpendicular fins extending longitudinally into the fluid. The optimum

coolant flow channel, formed between each fin, has an aspect ratio

dependent on the coolant to wall thermal conductivity ratio and on the fin to

channel width ratio, which is optimally about unity. A base thickness exists

which minimizes the base hot-spot temperature, and its value is dependent

on the fin to channel width ratio.
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Introduction

, The multiple fin-channel-base configuration shown in Fig. la, used for heat

exchanger and electronics cooling designs[I], has laminar channel coolant flow into
i

the plane of the figure. The heat load enters uniformly along the bottom surface of the

base and flows predominantly up the fins and convects to the coolant. Some heat is

convected directly from the top of the base to the coolant. The tops of tne coolant

channels and fins are adiabatic.

Thermal analysis[2,3,4] of the problem is complicated by the thermal coupling

(conjugation) between the fin and coolant and the base and coolant. These couplings

render highly non-uniform interfacial heat transfer coefficients which are unknown a

priori and which depend in a sensitive and complicated fashion on the problem

geometry (e.g., on bl/a and b2/bl in Fig. la)and on the ratio of fluid to wall thermal

conductivity kl/k2.

In absence of the base, a numerical study[ 2] was performed assuming an

isothermal base-coolant interface with ali heat entering the bottom of the fins, and an

exact solution was obtained[ 3] for a similar situation except that the base-coolant

interface was assumed adiabatic (instead of isothermal). Both calculations assumed

hydrodynamically and thermally developed velocity and temperature profiles and

uniform heat flux in the direction of fluid flow. Reference 3 revealed the existence of an

optimum aspect ratio (channel width to height)minimizing fin root temperature.

One numerical study[ 4] considered a single base-fin-coolant configuration of
o

Fig. la with fully developed flow and uniform heat flux at the wall. The parameters

were not varied and the results were not of particular value for optimization. Base

TF90-121 :CSH:flk - 1 - 11/15/90



thickness, a most important parameter in determining peak hot-spot temperature, was

not considered.

l,

In the present study a computational model is presented which allows
0

parametric variations in channel, fin and base region sizes. A series of verification

problems, including the case for which an exact solution[ a] holds, is described and to

which the numerical results are tested. Results are optimized with respect to aspect

ratio, channel to fin width ratios, base thickness to channel half-width ratios and

coolant to wall thermal conductivity ratios. Fully developed laminar flows with uniform

heat flux at the wall and constant properties are considered.

Formulation

The fluid flow into the plane of the coolant passage of Fig. la is laminar and is

hydrodynamically and thermally developed. Ali properties are taken constant, and the

imposed heat flux qw on the lower surface of the base is taken uniform in the (axial)

direction of coolant flow. At any axial station,the local energy equation, in terms of the

normalized coordinatesy, z of Fig. lb, is given by:

°q20 (bl _2 0320
_+ "-H-" _ = S(y,z)
03y2 03z2 (1)
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where the dimensionless temperature e is re!ated to its dimensional value T by

O = T -T________b
• Q bl

2ki H

t

Q- 2bl q_ty

bl

and Tb is the fluid bulk temperature.

In Eq. (1), S is zero in the base and fin regions and in the coolant passage it is

the ratio of the local fluid velocity to the mean velocity. Reference 3 demonstrated that

accurate assessments of fin temperature and fin-fluid heat flux could be obtained

using the approximate velocity ratio:

S(y,z) = g(y) f(z), 0 < y < 1, 0 < z < 1 (2)

where

3
g(y) = _ [1 - (1 - y)21

,(z__-{_coshE_-(_-½)1_cosh(__}_,Y

5=1-y tanhl
Y
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The fluid bulk temperature at any axial position is known from the overall

increase in bulk enthapy between the inlet and the particular axial location, lt follows •

that
0

I S(y,z) e(y,z)dydz = 0 (3)

The boundary conditions around the computational domain of Fig. lb are ali of

the Neumann type- zero e gradients normal to the fin and channel centerlines of

symmetry and zero gradients normal to the top, adiabatic surface. On the lower

surface of the base, the heat flux qw is specified, ant, in terms, of the dimensionless

variables this requires

OOB

az = qw =__1 z=- _ _-b2<y<!,
kl/kB /" b2 ' H ' bl14---

(bl / H) 2 ]_ qwdy bl
b, (4)

the latter equality holding if qw is also independent of lateral position y (as well as axial

position). Subscripts 1, 2 and B on dimensionless temperature and properties

respectively refer to the fluid, fin and base regions. Henceforth qw will be assumed

independent of lateral position y.

)
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Defining a laterally averaged fin temperature as

• 02 (Z) = _L 02 (y,z) dy,
b__&2

bt b, (5)
i

where 82 (y,z) is described by Eq. (1) with S = O. The "fin equation" is obtained by

lateral integration of Eq. (1) across the fin's half-thickness, yielding

_._01 _ d__ 0
(-'_--) y.o+ =dx2 (6a)

I

where

;_= H2 k__z_
bib2 k2 (6b)

Expanding a Taylor's series about the fin's centerline y = - b2 /bl at any longitudinal

position gives

lkl .__31 301 (O,z)(bb-_l+ y)2+ O(b_.+ y)S02 (y,z) = 02( , z) + 2 k-2b2 / bl o_y (7)

b2

which satisfies the appropriate boundory conditions at y = - b-l-and y = O. In Table 1,

the centerline to surface temperature drop across the fin determined from Eq. (7),

. ignoring the terms of order higher than two, is shown to closely match the

corresponding exact values for the particular case analyzed in Reference 1 (no direct

base-fluid heat transfer). The comparison shows that Eq. (7) is within about 1% of the
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klb2
exact solution for the parameter e = _ < 0.1 and is within., less than 0.1% for

e < 0.01.

o

Performing the indicated integration of Eq. (5) using Eq. (7) permits Eq. (6a) to
s

be written as

-_---d2(__ + --=d20w 0
3 dz2 dz2. (8a)

where (l)(z) is the dimensionless interfacial heat flux

ao_
¢(z)=--- (o,z)

ay (9)

and Ow(z) is the dimensionless interfacial temperature with

ew(z) _ 01(o,z) (1o)

with

e=kl b2 .
k2 bl (11)

Equation (8a)is the conjugated boundary condition applied to the fluid on y = O,

0 < z< 1. With exception of base to fin conduction, no other consideration need be

given the fin since fin-coolant coupling is incorporated into (8a). Once Eqs. (1), (2) and

(8a) are solved, the fin temperature distribution can be recovered from Eq. (7).

TF90-121 :CSH:flk - 6 - 11/15/90



Computational Methods

Irl Fig. lb the entire base, - b2/ bl < y < 1, - 5B/ H < z < 0, and the lowerportion

of the fin/coolant regionin 0 < z < z* were resolvedusingfinite differences. The upper

fin/coolant region in z* < z < 1 was resolved using an integral method. The finite

difference calculations were linked to those based on the integral method along a

longitudinal line z = z*. The value for z* (of order 0.1) was chosen large enough to

resolve base-coolant conjugate heat flow from the finite difference mesh used in the

coolant, the criterion being solution convergence as z* is parametrically increased.

Further elaborationfollows.

A. Finite DifferencQCa!oulation,_in - 6B/H < z <Z;*

For the base of Fig. l b, Eq. (1) with S = 0 was centrally differenced using a

variably sized mesh. The Neumann-type boundary conditions encountered along the

symmetry line y = - b2 / bl and y = 1 in - 6B / H < z < 0 of the base and along the lower

surface of the base (Eq. (4)) were treated with second-order accuracy using the

fictitious nodal point (Shih[5]) or interior point (Roach[6J)method. At the base-coolant

interface, z=0, 0 <y< 1 and at the base-fin interface z=0, -b2/bl <y <0, the

conservative forms of Eq. (1) were used (with harmonic differencing) as described by

Patankar[7].
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ii Coolant and Coolant-Fin Interface

For the fin interface and the coolant in 0 < z < z*, where the finite different •
,:

calCulations were applied, it was only necessary to solve Eqs. (1) and (2) in the

coolant region, not the fin since boundary conditions (8a) applied, as previously

discussed in the formulation. Since the resulting calculations are obtained for fin or

base thermal conductivities up to several orders of magnitude greater than that of the

coolant, it was necessary to use a fine mesh for the coolant near the walls (to as small

as &z or Ay = .005) with coarser meshing elsewhere in the coolant. The applicable

Neumann-type condition on y = 1,0 < z < z* for the fluid was treated similar to those on

the base as p,aviously discussed.

iii Coolant-fin Boundary_Condition

The finite difference representation of the fin-coolant boundary condition (8a)

along 0 < z < z*, at y =0, is now considered. The subscript 1, denoting the fluid, will be

omitted here and the subscript W for wail, W + 1 for the first node in the fluid adjacent

to the wall will instead be used.

Expanding _ (Eq. (9))in a power series of

= A + EB + E2C+ ...,

and then substituting back into Eq. (8a), one obtains the coefficients A, B, C, ..., to write

as an alternative to (Sa)

,j,'

' ,11'
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A fictitious fluid node inside the fin has the temperature

t

ew-1 = ew+ ! + 2 z_y¢ + O(L_y3)

and, therefore, the second-order centr.aldifference

, o_2ew
=2-- [ew+_-ew+'_ _]+o (_y2)

_)z2 Ay2 ;L

can be combined with Eqs. (8b) and (1) to give, along y = 0'

[(_)_._z_]_ +_z_(ew+_-ew)+__z___d'ew+o(_y)_. o(__)2=o
;LAy dz2 Z_y2 ;LAy3;L dz4 3;L (12)

Equation (12) provides a second order-accurate boundary condition at the fin-

fluid interface, and was proven extremely useful in the limit that the ratio of the fin

thickness 2b2 to fin height H is small'

1 2b2 2
_=_(--fi-) <<13;L 12

B. ADDlicationQfthe IntegralMethQdin z* < z < 1

The fluid in 0 < y < 1 is assumed to have the temperature distribution

01(y,z) = ew(Z)- ¢(z) G(y) (13)
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where @and ew are defined by Eqs. (9) and (10) and apply here to z* < z < 1. The

function G(y) has the properties

dG
G(o) = _-(1)=0

dG
: 1

An appropriate choice for G is one which at least would satisfy the special

problem for which ew and (1)are independent of z:

1
G(y) = y-_ (I-4E')y3 (14)

As in ali applications of the integral method, the profile chosen (Eqs. (13) and (14)) is

not required to satisfy the local fluid energy Eqs• (1) and (2) but rather is only required

to satis .fy the energy equation in the integral sense•

Integrating Eq. (1) with respect to y from the interface y = 0 to channel centerline

y = 1 gives

(bl)2 [d28v, . 2 d2¢] = f(z)
* +"-ft" (15)

where f(z) is given in Eq. (2). Combining Eq. (8a) and (15) by eliminating ew gives a

single, linear second order ordinary differential equation describing ¢:
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i

a2@w-m2(l)+ Ko @(z)= 0 (16)
az2

• Once (I)is known, 0w is obtained from (8a)'

d2ew =(;L m2 -¢--
dz 2 - _)_+ Kof(z)3 (17)

where

m2 = [1 + ;t (_')2] KO

KO= [(bH--l")2(_" , )]"

In considering the boundary conditions for Eqs. (16) and (17), Eq. (13) is

differentiated to give

aO__L = dO___.__w.G(y) d._@_
az dz dz '

aO1
Since az = 0 for ali y at z = 1, the requirements that

dO____=d@= 0 atz=l
dz dz (18)

must hold. The boundary conditions at z = z* are implied by the solution to the finite

• difference equations in z < z* and the coupling between the solutions to (16) and (17)

for q)and 6win z > z*.
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The solutions to Eqs. (16) and (17) using (18) ar9 given by

= A_a + _ + _c (19)

and

ew= (;L- m2_) [(A_a+ _) + ew,+ cl z] + c2
,.1 m2 (20)

where A is an integration constant found by linkage at z -- z* and cl is obtained from

(18). The functions _a, _b, _c and ewaare given in the ap_pendixalong with c1.

The constant c2 in Eq. (20)is obtain from Eq. (3). Using Eqs. (13) and (14) one

obtains

z,I I soloydz170 z /ozo (21)

where the first term is obtained by numerically integrating the finite difference output

el, and the second term is evaluated using integration by parts. The value for c2 then

becomes an element of the solution matrix from which 01 in 0 < z < z* is determined.
]=

C. Linkage of Computational Schemes at z = z_

Nodal points along the longitudinal line z = Z* joining the finite difference and •

integral method procedures were placed in the fluid and on the wall. Nodal fluid

TFg0-i 2 i :CSH:fik I _- _ 11'4_'n_-- I1_1_
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temperatures along z = z*, based upon the differenced expression for Eq. (1),

depended on the values above z*, say at z* + &z. Fluid temperatures above z* were

evaluated from Eqs. (13), (19) and (20), once the integration constant A appearing in

the later two are known.
J

The interfacial fin/fluid temperature ew(z*) at the joining longitudinal position

was differenced according to Eq. (12), which introduces values of ew(Z* + &z),

ew(Z* + 2&z), etc. The values of ew for z > z* were evaluated using Eq. (20). The

single integration constant A was obtained by equating 0w(z*) found by Eq. (12) to that

given by Eq. (20). Thus, the constant A, similar to c2 discussed previously, was

allowed to participate as a member of the solution matrix of unknowns.

Verification of Comoutational Model

Three separate verifications were made in which simpler cases of Fig. 1 were

compared to known, corresponding solutions. First, the fin-coolant coupling (Eq. (12))

was tested by omitting the presence of the base, applying the heat flux qw (bl + b2)/b2

at z = 0 uniformly to the root of the fin in - b2/bl < y < 0 and imposing an adiabatic

base-coolant interface at z = 0 in 0 < y < 1. In Fig. 2, the exact solution[ 3] for the

centerline fin temperature and fin-coolant interfacial heat flux are shown to compare

closely to the numerical results for the case illustrated. The close agreement is also

demonstrated in fin center root temperature as a function of aspect ratio as shown by

the curves of Fig. 3 at each particular thermal conductivity ratio.

The second test was for base to coolant thermal coupling. Here Eq. (1) applied

to the base and to the fluid was solved exactly when ali lateral dependencies in y were

ignored (fin absent). The function S in Eq. (1) was evaluated at y = 1. The maximum
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error between the numerical solution, which is based on interfacial thermal

conductivity harmonic averagingiI], and the exact solution was found to be less than

0.35%.

The final verification test problem was that for the two dimensional heat flow in

the base region for various base thicknesses. An e×act, two-dimensional solution to

Eq. (1) applied to the base region was derived (see appendix) for the case of an

adiabatic coolant-base interface at z - 0, 0 < y < 1, with a uniform flux qw (bl + b2)/b2 at

the fin-base interface at z = 0, - b2/bl < y < 0. The two upper curves of Fig. 4 compare

exact and numerical solutions. The maximum difference between the two is less than

.8% and is attributed primarily to slight non-uniformities in longitudinal heat flux at the

fin-base interface calculated by the numerical model, but ignored (as a boundary

condition) for the exact solution.

Ali results are presented for the base and fin having the same thermal

conductivity. The dependence of fin and base temperatures and Nusselt numbers on

base boundary conditions is illustrated in Figs. 5 and 6. C_se 113]ignores the

presence of the base and prescribes the heat flux qw (1 + bl/b2) directly to the bottom

of the fin. Cases II and III include two-dimensional heat flow in the base. Case II

ignores interfacial base to coolant heat transfer, and Case III treats the actual

conjugate base-fluid heat transfer as herein formulated. In ali cases fin-coolant heat

transfer is conjugated.

The fin-temperature near z = 0 for Cases II and III decreases from that

determined from Case I (Fig. 5) as a result of the lateral temperature gradient in the
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t

base (Fig. 6), which is negative for Cases II and III, positive for Case I. The fin

temperature (Fig. 5) for the conjugate base-coolant interface (Case III) decreases from

that for the adiabatic base-coolant interface (Case II) owing base-coolant heat leakage

since less heat is transferred to the bottom of the fin.

i

The direct base-coolant heat leakage increases with increasing thermal

conductivity ratio (Fig. 7) and explains the increasing difference between conjugated

fin root temperature and fin root temperature for an adiabatic base-coolant interface

(Fig. 3).

The longitudinal temperature distribution in the base, shown in Fig. 7, has the

hot-spot (maximum) value at the bottom of the base, z = - 5B, at the channel centerline,

yl=bl. The hot-spot base temperature and the fin root temperature are plotted as a

function of the ratio of base thickness to fin spacing in Fig. 4. Their conjugated values

(Case III) are lower than those determined from the adiabatic base-coolant case (Case

II). The minimum in hot-spot base temperature with the base thickness shown in

Fig. 4 is a consequence of lateral thermal resistance vs longitudinal thermal

resistance in the base as its thickness increases.

The base hot-spot temperature normalized by qw bl/k1 is plotted

in Fig. 9 as a function of the fin to channel half-width ratio b2/bl for the respective

aspect ratio minimizing the root temperature (see Table 1, Fig. 3 ),

The ordinates of Fig. 9, based on a conductivity ratio of kl/k2 = 0.005, are minimized

at b2/bl = 1 for ali base thicknesses. The minimum in hot-spot temperature also
w

occurs at b2/bl = 1 for other thermal conductivity ratios.
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TABLE 1.

Dimensionless lateral fin temperature drop between the centerline and fluid
J

interface at longitudinal midheights z = 1/2. Aspect ratio bl/a chosen to maximize

channel heating, and direct base to fluid heat transfer suppressed as in Ref. 1.

• -b2 1 (1),e2(-_-_, _)- ew

O_el

_)y _Exact- Eq. (7))

k2kjl Io2 b4 (0,1),= Ref. 3 Eq. (7) Error, _ Exact x 100
(_')opt Exact) (Exact) (Approx.) (%)bl E: (

.005 0.50 .0025 .16 1.102 .0013765 .0013772 - .05

1.00 °005 .115 1.074 .0026830 .0026834 - .035

2,00 .010 .081 1.051 .005257 .0052578 - .015
,, , , ,,,

.05 0.50 .025 .50 1.110 .013899 .013994 - .68

1.00 .050 .35 1.155 .028597 .028875 - .97

2.00 .100 .24 1.139 .056338 .056943 - 1.07
, , ,,,

.50 0.50 .250 1.24 0.826 .105035 .103296 + 1.66

1.00 .500 0.85 0.923 .232814 .23065 + 0.93

2.00 1.00 0.55 1.011 .49780 .505387 + 1.52
,,
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TABLE 2.

Fin temperature insentivity to linkage line. The case shown is for b2/bl = 0.25,

' 2 bl/H = .23 and kl/k2 = •005. Base to fluid heat transfer suppressed[3].

Error, Numerical- Exact

Linkage Point in z
2bl

-H- ew[3]

z (Exact) 0.125 •150 •20

0 •2360 0 .0002 .0009
li,. , , , , .-

.03 .2250 0 •0002 .0009
ii i i i iii

•10 .2026 - .0001 .0001 .0009
i ill, i ....

•30 •1454 - •00004 .0001 .0007
, ..,, , ,

•50 •1034 - .00003 .0001 .0007
. , ,,, , ,,,,,

•70 .0772 - .00005 .0001 .0007
,,,,.

1.0 .06491 - .00004 .0001 .0007
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APPENDIX 1

Solutions to Equations (16) and (17)

The solutions to Eqs, (16) and (17) are given by Eqs. (19) and (20), respectively,

where

Sa = cosh mz- (tanh m) sinh mz

1

2Y sinh (_.)
-f

Sb = - sinh mz
7m cosh m

= X+ Y cosh [_ (z -1)]

= x_ + ¥ [-2Iz-½1]
9Wa 2 ____ cosh 7

ECl = (,y-m2 _-){27-[( )2-1]Y sinh (1,,/),X}
.,

Ko
X = _

7m2

Ko

Y = 5[(2) 2. m2] cosh 1

Symbols not identified here are given in the text.
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APPENDIX 2

Base Temperature Distribution with

Adiabatic Base-Coolant Interface,

Uniform Flux at Base-Fin Interface

_B b2
Equation (1) applied to the base region - -H-< z < 0, -_-_-< y < 1 has S = 0 with

6B bl
boundary condition(4) at z = - _ and at z = 0, the fluxqw (1 + b-2-2)is assumed uniform

b2
in- b2/bl <y<0andzeroin0<y< 1. The symmetry conditions aty=-_11 and

= transfon,, with respect to the variable y. They 1 permit a finite fourier cosine --[8]

result is given by

4

{ nZ.,[= k_2-2 - z + ) Fn cosh ( n_B )e- 0Root
b--_ 2(bi + b2) "bl + b2
a H

' + b2) }, n_H(z+ ) n_bl(y b!-! )]-cosh( )cos(b,+b

where

( n_:b2
sin ,_ + _2,)Fn= 1

(n_;)2 sinh (_)
"bl + b2"

0Root = 0 (- b_' 0)a

- - 8B
0Hot-spot = e (1, _)
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Figure la. Physical domain in plane of coolant flow showing actual coordinates

y', z'.

1

Figure lb. Hybrid computational domain. Finite difference computations in
i

-5B/H < z < z* are linked to integral method representations in

z* <z < 1. Dimensionless coordinates are y = y'/bl and z = z'/H.

Figure 2. Fin temperature and heat flux distributions for heat supplied to bottom of

fin. ,Base coolant interface is adiabatic.

Figure 3. Fin root temperature. Adiabatlc vs conjugated base-coolant interface.

Figure 4. Base hot-spot and fin root temperature dependencies on base thickness.

Adiabatic vs conjugated base-coolant interface. Same parameters as on

Fig. 2.

Figure 5. Fin temperature and Nusselt number. ADl is adiabatic base-coolant

interface. Same parameters as on Fig. 2.

Figure 6. Base temperature and Nusselt number lateral distributions. Case

nomenclature and parameters same as on Figs. 2 and 5.

Figure 7. Fraction of total power qw (bl + b2) convected directly from the base to

the coolant (by-passing fin). Aspect ratio bl_ evaluated at minimum fin

root temperature.
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Figure 8. Longitudinal temperature distribution in the base-fin region. Same

parameters as in Fig. 2.

Figure 9. Base hot-spot temperature vs fin to channel half width ratio. The

° channel aspect ratio used is that minimizing fin root temperature.

Thermal conductivity ratio = 0.005.

r
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