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ABSTRACT 
The implications of nuclear matter equation of state measurements 
for a quark matter phase transition are discussed. The possibility 
of detecting such a phase transition by looking for changes in the 
pattern of collective flow associated with heavy ion collisions is 
pointed out. 

In this talk I will suggest some reasons why it is important to measure 
the equation-of-state of compressed nuclear matter, and will describe some 
simple ways to deduce the consequences of a particular equation of state. The 
main focus of my remarks will be the idea that at sufficiently high baryon 
number densities nuclear matter makes a transition to a Fermi gas of quarks. 
Indeed, it was just a little over eight years ago in a paper contributed to 
the 3rd High Energy Heavy Ion Study that I suggested that possibly the most 
interesting reason for studying relativistic heavy ion collisions is to look 
for the transient formation of quark matter. The same idea independently 
occured to Arthur Herman about the same time, and our ideas are documented in 
a Lawrence Livermore Laboratory report. Our suggestions were Inspired by 

2 the brilliant observation of Collins and Perry that as a consequence of 
asymptotic freedom the quarks 1n nuclear matter will be deconfined at very 
high baryon number densities. We note 1n this connection that at very high 
baryon number densities the interaction between quarks 1s characterized by a 3 coupling strength 

0$ 
DISTfi'BUTMN OF THIS mMtW IS WMV\ 

T 



ir 1 
ac ~ 22 - 4N ln(k p/A F) 

where N is number of different kinds of quarks, k p is the Fermi momentum and 
A p is a constant. 

Whether the transition from compressed normal nuclear matter is to quark 
matter is smooth or discontinuous is unknown at the present time. However, if 
the equation-of-state of compressed nuclear matter is fairly stiff then it 
follows from the Maxwell construction (F1g. 1) and the fact that the equation 4 -of-state of quark matter is fairly soft that the transition is a first 
order phase transition. Indeed, using a typical phenomenological equation of 
state (e.g. Bethe-Johnson equation-of-state) one obtains a phase transition at 
zero temperature like that shown in Fig. 2. In Table I we list the baryon 
number densities where the phase transition occurs at zero temperature for 
several theoretical nuclear matter equations of state. It can be seen that 
the phase transition typically occurs in the density regime of 3-15 times the 
density of ordinary nuclei. At finite temperatures the transition would be 
expected to occur at somewhat lower baryon number densities but be 
qualitatively the same as the zero temperature case. 

As a matter of historical interest I might mention that I was first 
motivated to suggest" that the transition from normal nuclear matter to 
quark matter is a first order phase transition by the fact that Hott 
transitions in cold materials are in all known cases first order 
transtitions. Whereas the ionization of atoms resulting from a rise in 
temperature is a smooth transition, the' derealization of electrons in cold 
materials resulting from an increase in pressure apparently is always 
accompanied by a phase transition. 

Whether the actual equation of state of hot compressed nuclear matter is 
similar to any of the equations of state referred to in Table I remains to be 
seen. However, the determination of the equation of state of compressed 
nuclear matter at densities up to a few times that In ordinary nuclei might be 
considered to be the most important objective of Becalac research. 
Preliminary Indications are that the equation of state is fairly stiff and 
would lead to a first order phase transition. 



In order to estimate the beam energies needed to produce baryon number 
densities like those shown in Table I one rnay use the simple shock wave model 
illustrated in Fig. 3. Here the compressed material is at rest in the center 
of mass system and the velocity p = V YCM-1/•*>„. In this frame of reference 
the equations for conservation of energy, momentum, and baryon number take the 
form 

e2 BS " ^CM e l ( P * "V ( 1 a ) 

P2 = TCM e l ( P * H ] { 1 b ) 

n2 h = YCM V P ¥ P S 5 ( 1 C ) 

Dividing (la) by (lc) one obtains 
e-

Yr« (2) n.mc 

i . e . the energy per baryon in the compressed state is simply Y C M -
Dividing ( lb) by ( l c ) , and assuming that the equation-of-state of nuclear 
matter has the form 

p = (v - l ) ( e - nmc2) (3) 

we f ind that 

n, w-l CM v - l 

It should be noted that the baryon number compression is a linear 
function of Yru- ^*° E<J-(*) provides a simple estimate of how the 
stiffness \> of the equation-of-state affects the maximum baryon number 
density that one can attain in a central collision. 

As another application of Eq's.(l) one can suppose that the compressed 
material is quark matter whose equation of state is of the form 

P = I (e - 4B) , (5) 
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where B is the "bag constant." In this case, the baryon number compression is 
given by, 

!r - 4 Y r M - - 3 - / i - L i (6) 
nl C M YCM \ el 

For center of mass kinetic energies per baryon in the range 2 - 5 Gev the 
corresponding baryon number densities lie in the range 12 - 24 times normal 
nuclear density. As can be seen from Table I this is very likely within the 
range of baryon number densities expected just above a quark matter phase 
transition. 

Before going on to discuss how one might detect such a phase transition 
in heavy ion collisions I would like to mention that there is a cloud on the 
horizon regarding the possible existence of quark matter phase transition. In 
the last two years a new paradigm has emerged for nuclear physics, based on 

7 8 
the non-linear meson theory of Skyrme. Witten has shown that Skyrme's 
soliton solution is a fermion with baryon number = 1. This new paradigm 
allows one to calculate nucleon-nucleon forces and the equation-of-state of 
compressed nuclear matter. The somewhat suprising outcome of initial 

q calculations for nuclear matter is that the equation of state is very 4/3 soft—in fact, almost identical to that for quark matter; i.e. e ~ n 
for large n. Therefore, there is no first order phase transition to quark 
atter. One apparent defect of the Skyrme model for a nucleon is that it is 
not consistent with asymptotic scaling, i.e. the existence of free quarks at 
small distances. Whether the addition of quarks to the Skyrme model (for 
example, in the form of a chiral bag) will restore the quark matter phase 
transition remains to be seen. 

At this point it should also be remembered that there is one constraint 
on the equation of state of compressed nuclear that follows from observational 
astrophysics: namely, the maximum mass of a neutron star. The general 
relatlvistlc equilibrium condition for uniform density star 1s : 

p/e = 5(x) (7) 
p where x 1s related to the mass H and radius R of the star by sin x = 

2GM/c2R and 
3cosx , 3 9/2 cosx - sin x/(x - sinx cosx) 
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As shown by Chandrasekhar any star becomes unstable when the adiabatic 
index Y = 7TTT falls below a certain critical value, and he gave 
some numerical estimates of this critical adiabatic index for several values 
of x. Using the uniform density model Michael Nauenberg and I were able to 
derive an accurate analytic approximation for the critical adiabatic index : 

Y C - U * I > ji i - 1 1 1 ^ [ H f ta"2* - ] \ w 
Given the existence of a critical adiabatic index it is a simple matter to 
show that the mass of a cold star is bounded by : 

*'\$"{i £v3/2 J 1 - (\ + D/Yc 

el " P 1 / V C 

1 / 2 3 
sin x c , (9) 

where V is a critical value for the speed of sound such that (1 + 1/5 ) 
2 c 

V = Y C - T n e values of e, and P, are measured values of the energy density 
end pressure. In the case of neutron stars one would use the energy density 
and pressure of compressed nuclear matter corresponding to the highest baryon 
number density for which experimental values are confidently known. An 
example of how this scheme works is shown in Table II. The parameter V is 
actually unknown, but in any case is less than c, yielding a maximum mass of 
approximately 3M . The important point for us is that neutron star masses 12 =1.5M Q have been observed, so that one has a significant constraint 
on the equation of state of compressed nuclear matter. 

As a particular application of this constraint the pure Skyrmion 
equation-of-state appears to be ruled out. However, an equation of state 
which is Bethe-Johnson-like up to a few times normal nuclear density and 
Skyrmion-like at higher densities would be marginaly consistent with the g observed neutron star masses. Therefore, at the present time neutron star 
masses do not be themselves tell us whether a first order quark matter phase 
transition occurs. 

It is interesting, though, in this connection to inquire whether quark 
matter might occur Inside neutron stars and whether stars made primarily of 

13 
quarks might exist. The range of possibilities, assuming that the energy 2 2 density of nuclear matter e = an +• mnc , 1s shown in Fig. 4. One 
conclusion is that free quarks will not occur at the center of neutron stars 
unless A F 1s at the lower end of its range of plausible values. 
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corresponding to a phase transition at less than 10 times normal nuclear 
density. As for pure quark stars one finds from Eq.(5) that yc = 2.26 
and from Eq.(6) that M < 0.1 A p M 0, so that typically quark stars are less 
massive than neutron stars. Quark stars also have a minimum mass; 
corresponding to the curve 1n Fig. 4. Indeed, for plausible values of a and 
v quark stars cannot exist at all. In any case, we disagree with the recent 
suggestion of Witten that Jupiter-sized chunks of quark matter might exist in 
nature. 

Let us now turn to the question of how one would defect a first order 
quark phase transition during relativlstic heavy ion collisions. The question 
of how one would detect the transient presence of quark matter in the baryon 
rich region during the collision of two heavy nuclei has been previously 

14 discussed by Hbrst Stocker. I would like to suggest that one should look 
for the effect of a first order phase transition on the flow of nuclear matter. 

As a test of this idea a colleague, Alex Sranik, and I have studied how a 
first order phase transition affects the deflection of a relativistic flow by 15 an oblique shock wave. As is well known, supersonic flow around a sharp 
pointed object involves a conical shock wave (Taylor and Haccoll, 1933); while 
supersonic flow around a blunt object involves a detached shock, which is 
normal to the flow in front of the object and trails away at the Mach angle at 
large distances from the object (See Fig. 5). Locally, the deflection of flow 
by the blunt object may be modeled as the deflection of the flow by an oblique 
shock wave. As one varies the inclination of the shock with respect to the 
direction of incoming flow then the deflection of the flow by the oblique 
shock will increase from zero at normal incidence, reach a maximum and then 
decrease again. As 1s evident from Fig. 5 the maximum deflection by an 
oblique shock will be a measure of the maxumum deflection by a blunt object, 
and therefore (hopefully) Indicative of the deflection one would obtain in a 
realistic treatment of heavy 1on collisions. (Since there is a stagnation 
point directly in front of the blunt body, we have 1n mind that the frame in 
which the blunt body is at rest can be identified with the center of mass 
system for heavy ion collisions.) 

In a reference frame where the oblique shock wave is at rest (Fig. 6) the 
energy and momentum conservation equations across the shock take the form 
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(P, + e,) x 2 p 2n = e v. J l n 

P 2 + (P 2 • e 2 ) T 2

2 p 2 n

2 
J l n (10) 

(P 2 + e

2 ) T 2 
J 2n | J 2t "In p l t 

where P2 and e_ are the pressure and energy density behind the shock, 
B, and B_ are the ve loc i t ies normal to the shock, and B l t B ? t are 
the veloc i t ies pa ra l l e l to the shock. 

e 
In writing these equations we have 

assumed that P, = o and e. where e = 0.15 GeV/fm' 
energy density of cold normal density nuclear matter. 

is the 
If we assume that the 

material behind the shock is quark matter described by a bag model equation of 
state, P = ̂  (e - 4B), then Eqs. (10) reduce to a quadratic equation for 

16 B- /B-, whcse solution is 

< B2n / Bln>q Uark 
B 

e o < 
1 

Jin 

1/2 
(ID 

where U In B, v . If the material behind the shock is compressed 
nuclear matter described an equation of state of the Bethe-Johnson form (3) 
then one obtains a cubic equation for the ratio B„ /B, . 

2n In Given <J solution for B- /B, as a function of the shock Inclination 2n in 
angle 0, one can use the geometric identity B 2 /B, = (B_ - B~ cot 
0)/B, to calculate the "shock polar," i.e. the curve 8, /8, = 
f(B_ /B,). In the case where the material behind the shock is quark 
matter with the bag model equation of state (Eq. (5)) then the shock polar is 
a strophoid : 

.21 (1 - x) + 4B 
3 e o U l 2 J 

+ (1 - x)' 4B 
3 e o U l 

(1 - x)' 

V I1" ") - 2 * o -x) (12) 

In the ultrarelativistic limit U..-* » the shock polar, Eq. (12), becomes a 
circle with radius r A typical shock polar for quark matter along with 
the corresponding shock polar for nuclear matter is shown in Fig. 7. the 
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tangent lines originating at the origin determine the maximum angle of 
deflection in the two cases. As indicated by the shaded area the maximum 
angle of deflection is significantly greater in the case of quark matter than 
in the case of nuclear matter. Some numerical results for the maximum angles 
of deflection and corresponding shock inclinations are given in Table 3. 
These calculations suggest that in the case of heavy ion collisions there will 
be a significant increase in the center of mass <P > for collective 
flow when one reaches the quark matter phase transition. 

Another possibility for detecting a first order phase transition is 
illustrated in Fig. 8. It was pointed out a long time ago by Hans Bethe 
that 1n presence of a first order phase transition there will be some range of 
shock strengths for which a single shock wave is unstable. This is actually 
easy to see given the fact that the speed of a shock wave is given by the 
slope of the chord from the initial to final state on the Hugoniot curve. As 
is evident from Fig. 8 if the Hugoniot curve has an inflection point at A due 
to a phase transition, then a shock wave corresponding to the chord AX will 
travel slower than the one corresponding to chord OA. Thus for final states 
between A and B a single shock wave is unstable to splitting into two shocks. 
Some detailed calculations illustrating this effect have recently been carried 

18 out by Laszlo Csernai and his colleagues. Because the speed of the 
leading shock wave is constant for some range of incoming velocities, one 
expects that some observable quantities, e.g. differential cross-sections will 
have anomalous behavior for some range of center-of-mass energy. 

In conclusion, let me emphasize the potential advantages of a colliding 
beam machine for studying the quark matter phase transition in the baryon rich 
region. These include 1) with variable center-of-mass energy one is 
considerably less sensitive to uncertainties In the baryon density where the 
phase transition occurs; 2) changes in the pattern of collective flow would 
be easier to see 1n the center-of-mass system; 3) signatures visible at low 
luminosity would be very dramatic evidence of the phase transition. Finally, 
I would like to suggest that the demonstration of a quark matter phase 
transition 1s more than a parlor trick—1n particular, it would probably go a 
long way towards distinguishing models like the bag model and the Skyrmion 
model and therefore be of genuine scientific value. 
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Table I 

Bathe-Johnson 2 H Pandharipande-Smi in Causality limit 

A F (MeV) 200 300 400 200 300 400 200 300 400 

PT(10 3 5dynes c m 2 ) 10.2 24.0 36.8 - 4.1 10.9 - 3.6 7.3 

r^ifm-3) 1.49 2.15 2.58 - 0.7 1.1 - 0.47 0.59 

n 2(fm" 3) 1.77 3.61 5.07 - 1.3 3.0 - 1.26 2.68 

P^IO^gmcm" 3) 3.34 5.60 7.39 1.8 3.0 
' 

0.90 1.30 

P e n0 1 5 gmcm- 3 ) 3.31 1.1 1.6 

& 



Table II 

Maximum Mass of a Neutron Star (M ) 

P = 5 . 1 0 1 4 g/cm3 P = 1.10 1 5 g cm" 3 

o o 

V s may/C P Q = 7 . T O 3 3 dyn cm"2 P Q = 5 . 1 0 3 4 dyn cm 2 

1.0 3.6 2.6 

0.75 3.0 2.2 

0.50 2.0 1.6 

0.25 0.7 unstable 

Astrophysical Journal 17£, 277 (1973). 
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Table I I I . 

Maximum de f l ec t i on (6 ) of f l ow by an obl iaue shock wave as a 

f u n c t i o n o f incoming k i n e t i c energy (E- j ) . Also shown i s the shock 

angle (<*>„), corresponding t o the maximum d e f l e c t i o n . 

E l Nuclear Matter 

(GeV/A) m * (°) 

1.6 15.5 45.3 

2.0 14.2. 43.4 

3.0 16.0 46.0 

4.0 14.2 44.2 

5.0 12.8 42.9 

Quark Matter (B/e Q = 0.45) 

6 (°) <S> (°) 

27.1 58.9 
27.8 59.9 
28.8 60.0 
29.2 60.0 
29.4 60.0 
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FIGURE CAPTIONS 

Fig. 1. Maxwell construction, illustrating how a hard nuclear matter equation 
of state and a soft quark matter equation of state will lead to a 
first order phase transition. 

Fig. 2. First order phase transition resulting from a typical phenomenological 
equation of state for nuclear matter. 

Fig. 3. One dimensional model for the shock compression of nuclear matter. 

Fig. 4. Equation-of-state parameters that allow quark stars to exist. 

Fig. 5. Supersonic flow around a sphere. 

Fig. 6. Coordinate system for an oblique shock wave at rest. 

Fig. 7. f- = 3 shock polars for nuclear matter and quark matter: shaded 
area indicates increase in deflection that would accompany quark 
matter phase transition. 

Fig. 8. Instability of a single shock wave where the Rankine-Hugoniot curve 
has an infection point. 
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