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G. H. Lathrop, D. L. Podesta, and J. H. Van Sant 

Lawrence Livermore National Laboratory 
University of California 

Livermore. CA 94550 

INTRODUCTION 
The 750,000-Ifa. superconducting magnet set (Fig. 1) for the Mirror Fusion 

Test Facility (MFTF-B) (Fig. 2) was successfully tested at its full design 
conditions, demonstrating that large superconducting-magnet systems are now an 
available technology for magnetic-fusion energy (Ref. 1). The magnet set, 
shaped like two interlocking C-clamps, creates a magnetic field which is 
150,000 times the average magnetic field at the earth's surface. This 
magnetic field is strong enough to contain hydrogen-isotope fusion plasmas. 
The magnet set and its associated ducting are shielded from thermal radiation 
by covering all its exterior surfaces with liquid-nitrogen-(LNp)-cooled 
panels. The system requirements for the LN.-cooled magnet shield system 
include (Ref. 1): 

• Providing a low thermal emissivity, LN--cooled shielding for 
magnet system surfaces; 

• Limiting combined leak rates of the thermal shield and magnet 
systems to 10" torr-liter He/sec; 

t Providing a heat source for regenerating the magnet system surfaces; 
• Restricting the heat load to the magnet case; 
• Providing mechanical support for water-cooled shields, gas boxes, 

and plasma diagnostic instrumentation; 

*Work performed under the auspices of the U.S. Department of Energy by tne 
Lawrence Livermore National Laboratory under contract number W-7405-ENG-43. 
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• Surviving the magnet and vessel seismic loading; 

• Having a maximum working pressure of 90 psia (0.62 HPa); 

i Surviving 1000 thermal cycles between room temperature and cryogenic 

conditions. 

DESIGN OF THERMAL SHIELDS 

Introduction 

The magnet liners are thin panels which are convectively cooled inside by 

IN,. They are connected to the LN ? supply and return manifolds by 

small-diameter feeder tubes. The flow rates are high enough to carry away the 

heat load and still keep the panel near LN ? temperatures. 

The liner system must thermally shield all of the magnet system cooled by 

liquid helium (Figs. 3-5). This includes the magnet case (Fig. 3), magnet He 

supply and return ducts (Fig. 4), and current lead ducts. The liner system 

supplies LfJ? to the cooling cans integral to the support hangers for removal 

for 500 U of heat by conduction. The liners also serve as warm radiation 

sources for magnet/duct surface regeneration and magnet warm-up. Thus, the 

LN- liner system also operates with room-temperature, gaseous nitrogen 

(GN_). Finally, the LNo liners are the attachment base for the 

liquid-cold-water (LCW) panels, their piping, and other equipment attached to 

the LCW panels. 

The stayout zone around the magnets and ducting allocated for 

installation of LN 2 and LCW liners, supports, and manifolding ranged from 

1 in. to 3 in. (25 mm to 203 mm). Figures 6 and 7 show the stayout zones for 

the magnet surface and ducting liners. The liner system allows for 

penetrations by the magnet support structure He supply and return ducting, 
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current leads, and other subsystems, For ease of repair of LN ? liner 
damage, they were sized for removability through the 2 ft (0.61 m) x 4.5 ft 
(1.14 m) vessel access doors. Since liner installation was done after the 
magnets were installed on a transporter, there is a size limitation imposed by 
the space available for installation on the magnets. 

Design Requirements 
Design reguirements for the LN ? liner panels fall into several 

categories: (a) structural, (b) seismic, (c) vacuum, (d) thermal, and 
(e) manufacturing/installation. 

Structural loads fall into four major areas: 
• U'U panel and piping weights; 
• LCH panel and piping weights; 
• Gas boxes and diagnostic weights; and 
• Internal loads due to operating pressure. 
The maximum expected seismic acceleration for components supported on the 

magnet is 1 g; for parts supported on the vessel, the maximum value is 1/4 g. 
The maximum operating pressure is 75 psig (0.62 MPa), based on a maximum LN-
saturation temperature of 97 K. 

The panels must operate in a vacuum vessel at pressures as low as 
-7 -9 

1 x 10 torr. Allowable leak rate per panel is less than 1 x 10 std cc 
He/sec. 

The panel material must have a low magnetic susceptibility after multiple 
thermal excursions from 300 K to 77 K to avoid magnetically induced forces 
during magnet quenching. Because of required low leak rates, the material 
must be resistant to cracking during welding. Finally, the material must 
accept a surface treatment that provides a low thermal radiation emissivity. 
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To facilitate manufacture and installation, number and types of panels 

were minimized, while satisfying other requirements (Fig. 5). This is 

especially important in the panels installed around magnet penetrations, e.g., 

He ducting, current leads, and magnet hanger brackets (Fig. 4 ) . Panels are 

supported on the magnets and must be installed on the magnets after the 

magnets are placed on the transporter (Figs. 8-9) inside the reactor 

building. Few main surfaces of the magnets are horizontal or vertical, making 

installation difficult (Fig. 9). Scaffolding or rigging could not be attached 

to liners, lest leaks be induced or panel supports be overloaded. 

Operational requirements included the supply of the panels by subcooled 

LNp throughout the entire system, with U p flow per unit panel area 

remaining relatively uniform. The design must permit enough cross flow within 

panels so that boiling will not "vapor lock" panels. Panels are designed so 

that each can be drained by gravity to allow quick replacement of Lit, with 

GIL during magnet surface regeneration and to provide protection against 

freezing adjacent LCW panels in case of pump failure. Finally, sufficient 

temperature and pressure instrumentation must be provided for failsafe 

interlocks, thermal protection, and design verification. 

Panel design criteria were kept sufficiently general so that all 

companies making heat transfer panels would competitively bid. Use of curved 

panels was limited to zones where flat panels are not possible. Both magnets 

are the same size and shape, with symmetrical lobes and ends. Thus each area 

has seven additional counterparts (Fig. 5). Panels designed for one area must 

fit seven other areas, except for local penetrations. Where magnet ducts, 

leads, or brackets projected through liners, feed-tube locations, and 

convective coaling areas for the eight symmetric areas were kept the same. 



- 5 -

A typical panel layout is shown in Fig. 10. The 2 ft x 4.5 ft access 
doors in the vacuum vessel permit a 5-foot-wide (1.27 m) panel to pass 
diagonally through the door. Maximum length was set at 12 ft (3.05 m) by 
dimensions for che vessel and end-dome cryopanels. A one-inch margin was 
allowed around each panel for manufacturing tolerances in panels and magnets. 
Standoff distances were set by stayout zone and the possible presence of 
manifolding and I.CW liners and ranged from 7/8 in. (22.2 mm) to 11 in. 
(279 mm)(Figs. 5-7). Space available for panels in the beveled areas of the 
magnet and the inner large radius is too small to accommodate both a I X 
panel and a copper-clad, LCW-cooled panel, requiring the LNn shield to be 
cooled by conduction from adjacent panels. A small tube attached to the 
center of a high thermal conductivity material was used. 

Feeder tubes were positioned on the panel to exit at its midplane. 
Within the small installation area allowed for manifolding, the tube outside 
diameter was 0.5 in. (12.7 mm) to maximize flow through feeder tubes, while 
permitting bending and welding with portable tools usable on the magnet 
transporter during installation. The 0.049" wall thickness was chosen to give 
the largest possible flow area, thus minimizing pressure loss and chances of 
plugging, while giving sufficient wall thickness for easy tube welding. 
Feeder tubes were designed to 12-in. (305 mm) lengths for ease of manufacture 
and shipping. At the feeder tube inlet locations, panels were cut back to 
permit manifold bending close to the panels to minimize interference between 
adjacent panels. Thin stayout zone requirements drove the maximum panel 
thickness to 5/8 in. (15.9 mm). Based on supplier information, structural 
requirements set a 1/16-in. (1.6 mm) panel sheet thickness for austenitic 
stainless steel. 
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Significant local boiling could cause vapor blockage shutting down LN ? 

flow through a panel. This was avoided by designing panels for cross flow 

between internal channels. To balance the cross-flow level with requirements 

in panels made with discrete embossed channels, the minimum cross-flow 

requirement was set at 30» of the normal flow channel area. Internal flow 

guides were included to eliminate stagnant flow areas. These guides were 

needed where no preferred flow direction existed, such as in pillowed panels. 

Specific panel requirements are given by a LLNL specification (Ref. 2), 

which includes previously discussed requirements and additional performance 

requirements verifiable at the factory. Panels were thermal cycled three 

times between 300 K and 100 K, followed by proof testing to 200% of operating 

pressure (150 psi, 1.24 MPa) without detectable leaks. Then panels were 

visually inspected for absence of permanent distortion. Finally, panels were 

vacuum leak checked with He to a maximum leak rate of 1 x 10 std cc He/sec. 

Stainless steel sheet, 0.063 in. (1.6 mm) thick, Type 316L, with a 

maximum N, content of 0.06%, and a maximum ferrite number (FN) of 2, was 

used to make the panels. The GTA welding-consumable FN range was 1 to 5. 

Panel edges and seams were GTA fusion welded. Resistance welding was 

permitted only in panel interiors. Panels were electropolished to a No. 4 

finish. The acceptance procedure for HFTF liner panels is given in Ref. 3. A 

synopsis of the panel manufacturer's QA results is given in Ref. 4. 

DESIGN OF TUBE AND SHEET PANELS 

Several panels were made as tube and sheet panels for cost reasons. 

Tiiese panels ire made of 1/4 in.-thick (6.35 mm), Type 316L stainless steel 

plate witn 0.5-in.-diameter (12.7 mm), Type 316L tubing. Calculations to 
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check average surface temperature of these panels showed that an average 
temperature of 136 K was expected and would be acceptable. 

U ? panels for the beveled region were the single tube and sheet type 
because of the thin stayout zone requirement. To assure a minimum heat load 
to the magnet, a Ni-plated, OFHC copper sheet with a LN,-cooled, 0.5-in. 
(12.7 mm) o.d., Type 316L stainless steel tube torch-brazed to it was used. 

DESIGN OF PIPING SYSTEM 
The internal piping and manifolding supplied LNn and GNo to the 

liners for thermal shielding, surface regeneration, and magnet system warmup 
and cooldown. This subsystem must support its weight under a 1 g seismic load 
if on a magnet, or against a 0.25 g seismic load if attached to the vacuum 
vessel. Maximum operating pressures for the LN~ system and LCw systems are 
75 psig (0.62 MPa] and 125 psig (1.03 MPa), respectively. All piping and 

_g manifolding must leak no more than 1 x 10 std cc He/sec with an internal 
vacuum of 1 x 10" torr and must operate in a 1 x 10" torr external 
vacuum over a temperature range of 80 K to 300 K. Material requirements were 
satisfied by use of Type 316L stainless steel with controlled N ?, a maximum 
FN of 2.0 to balance the requirements of good weldability and good, 
low-temperature metallurgical stability. 

Piping and manifolding design was modularized to facilitate preassembly. 
Because of an expected large number of tube welds in the manifold system 
(about 3000), coital GTA tube welding of as few tube sizes as possible was 
selected (Ref. 5). Post-weld leak checking was done on modules, with a final 
leak check and pressure proof test reserved for the completed system. Thermal 
shocking with IN ? was done as part of the system cooldown tests. 
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DESIGN OF MAGNET-TO-VESSEL LN ; SUPPLY AND RETURN LINES 

The LN, supply/return lines are made of 3-in. (76.2 mm) o.d. x 

0.0S3 in. (2.11 mm) wall, Type 316L stainless steel tubing. These tubes were 

installed in two major sections, those in the end-dome region and those 

running from the end-dome region to the magnet manifold interface. Piping in 

the end-dome region was installed with vessel end-dome cryopanels, due to lack 

of access space near end-dome cryopanels. 

LN ? supply/return tubing was welded with orbital GTA tube welders 

during assembly. All tube bends greater than 15° used butt-weld elbow 

fittings to simplify assembly. 

Expansion bellows, 3-in. (76.2 mm) end o.d. x 5-in. (127 mm) center o.d., 

were used to compensate fc" thermal contraction, magnet movement, and assembly 

alignment. Additional bellows were included in GN„ lines for additional 

alignment capability. The maximum thermal expansion was 0.0025 ft/ft 

(0.0082 m/ra) over the range of 300 K to 80 K . 

Supply/return lines are supported cff the vessel wall using the structure 

shown in Fig. 11. Pairs of support rings were provided for each bellow and 

for the ends of the subsection. Supports consisted of a 1/4-in.-thick 

(6.35 mm), Type 316 stainless steel angle attached to a ring made from Type 

G10 fiberglass composite and a Type 316 stainless steel spring. Rings were 

held to frames by Type 316 stainless steel threaded "U" bolt. Supports 

allowed for piping-sliding-axial motion and perpendicular spring-loaded 

motion. Thin spring and low thermal conductivity fiberglass minimized heat 

conducted from vessel walls to tubing. Ring portions of the supports were 

preassembled and final adjustments made in frame leg lengths at installation. 
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DESIGN OF PANEL-TO-PANEL MANIFOLDS 

This manifolding had several special requirements. It is located above 

LNo panels or between U L and LCW panels. For even flow distribution in 

panels, the pressure drop in manifolding is minimized by installing most 

panels in parallel and by maximizing the tube diameters. LCW system operating 

pressure (125 .psig. 1.03 MPa) was the governing pressure criterion for both 

coolant systems. Thermal contraction during cool down was taken up with 

bellows or excess tube length. Breakpoints in the design were used so that 

subassemblies could be prefabricated in a shop and installed on the magnet 

surface. The manifolding was split into six sections for each magnet. 

For a maximum operating pressure of 125 psig (1.03 HPa) and a safety 

factor of 3.0, the minimum wall thickness vs. tube diameter for Type 316 

stainless steel tube is shown in Fig. 12. Tube wall thickness was selected to 

simplify use of orbital GTA welding. Feeder tube size, 0.5-in. (12.7 mm) 

o.d. x 0.049-in. (1.25 mm) wall, was "iaximized w'"hin available space to give 

tube flexibility and maximum flow area. For 2-i ., (50.8 mm) o.d. or larger 

tubing, butt-weld fittings were used to make bends. Bellows design pressure 

was 250 psig (2.06 HPa), so that the same bellows were able to be used for the 

LCW system. For proprietary bellows, the maxiirum extension for a unit made of 

Type 321 stainless steel, a 1000-cycle life, and a 6-in. (152 mm) convoluted 

length varied from 0.850 in. (21.5 mm) for a 3-in. (76.2 mm) i.d. bellow to 

0.410 in. (10.4 mm) for a 1-in. (25.4 mm) i.d.bellow. 
.g 

Bellows were made for a low leak rate requirement of 1 x 10 std cc 

He/sec and had machined cuffs to simplify joining to manifolding by orbital 

GTA welding. I n i t i a l production bellows were tested as fol lows: three 

samples of each size were thermal shocked three times by immersion in LN.,, 
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He leak checked, and found to be leak tight. The remaining bellows were 

accepted on the basis of these tests. One production bellow leaked and was 

repaired by manual GTA welding. 

Rapid, reliable assembly of the manifolding was accomplished by designing 

all welded joints for use of an orbital GTA welder, rather than manual 

welding. This required the use of butt-weld fittings designed for use with 

this welding process. In using orbital GTA welding, the number of welds 

triples, but the time per weld and the time for tube preparation decreased by 

more than a factor af 3. Increased reliability of each weld decreased the 

leak check times and repair, so the cost of the welders and fittings was 

justified. 

Diameters, wall thicknesses and ovality of tubes and fittings were 

designed to be consistent with expected tubing dimensions. Large amounts of 

interaction and compromise between LLNL and the fitting suppler was required 

to achieve acceptable fitting designs. 

Supports for the shields are fabricated from NEMA G-10 fiberglass-epoxy 

composite. Each support is fastened to the magnet with four stud-welded bolts 

and attached to the panels with one Dolt. Each panel has four supports, and 

each suport contributes less than 0.1 W heat transfer to the magnet (Ref. 6). 

ASSEMBLY UF IN, AND LCW LINERS OH THE MAGNET SURFACES 
— . -c • •—• 

Assembly began with shop preassembly of munifolding modules, including 

shop vacuum leak checking with He, followed by preparation of manifold 

supports. Shop preassembly of panel supports was accomplished, followed by 

predrilling of panel edges for installation of anti-shine-tnrough assemblies 

(Fig. 13). Next, panel installation location reference lines were put on 
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magnet surfaces, followed by layout of the prefabricated panel templates and 

marking of panel support locations. 

Panel support mounting studs were located and installed by stud welding 

using a Nelson stud welder and Type 304 stainless steel studs (Fig. 14). Then 

magnet surface, panel supports, and panels were wiped clean using 

MEK-saturated cloths, and panel suppfts were installed. 

Panels were then prepositioned on tne magnet surfaces to check required 

feeder tube bends, anti-shine-through shield width, ana required support 

shims. Feed tubes were bent in the field; required shims were added to 

supports; anti-shine-through shields were attached. Next, the completed panel 

was installed, and final adjustments were made. 

After installation of a series of panels, called a "panel module", local 

manifolding modules were cleaned, fitted on the side of the magnet, and 

installed. Final welds on manifolding and feeder tubes were made using 

orbital 6TA tube welders. Ends of open tubes were plugged and liner nodules 

were bagged in polyethylene for vacuum leak checking and .surface contamination 

control. 

More than 3,000 welds that joined lengths of tubing to each other and to 

panels were made using the gas-tungsten-arc (GTA) process. Two semiautomatic 

orbital GTA units were used to fabricate manifold subassemblies. This method 

provided a rapid and reliable process for making weld joints in tubing ranging 

from 1/2-in. (12.7 mm) to 3-in. (76.2 mm) diameter. 

Manual GTA welding was used to weld some of the joints while installing 

panels and modules on the magnets. The more reliable orbital GTA process was 

preferred for making all tube joint welds, but limited clearances between 

piping and panels on the rnagnets sometimes left insufficient space for the 
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orbital weld head in some locations. High levels of weld leak tightness and 

structural integrity is required during operation. The initial acceptance 

rate of the orbital GTA welds was more than 98% and of the manual STA welds, 

more than 96%, as determined by vacuum leak checking of modules at 10 torr 

to assure a combined He leak rate less than 1 x 10 std cc He/sec. 

Leak-check tubes were plugged by manual GTA welding with Type ER316 filler 

wire, and results of leak checking were recorded on QA records. As welding 

and leak checking of multiple modules was completed, orbital GTA welding of 

interface joints was accomplished and vacuum ieak checking was repeated. 

Upon completion of assembly for one magne.t, the entire assembly was 

bagged, and a final leak check was performed. A required maximum allowable 
_ • leak rate of 1 x 10 std cc He/sec was attained. 

For cleanliness, installation of the panels began at the top of each 

magnet and proceeded downward. Routing of instrumtntation leads along magnet 

surfaces required that selected panels not be installed until all leads in a 

given area were attached, which made panel installation much more difficult. 

Installation of panels was completed using scaffolding described in 

Figs. 15-17. Installation of manifolding proceeded from the top of the magnet 

down. Installation of manifolding for a given panel module began after all 

panels in the module were installed. 

Module leak checks were done during installation at appropriate intervals 

to optimize leak evaluation, A Varian He Mass Spectrometer was attac'.ed to 

the appropriate manifold leak-check port with a reusable vacuum coupling. The 

module was evacuated to 10" torr, and the leak rate was measured for a 
_g 

minimum of f ive minutes. The maximum acceptable leak rate was 1 x 10 std 
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cc He/sec. 
If the leak rate was higher than the allowable value, the leak test was 

repeated on module subsections. If the leak rate was still excessive, an He 
probe was used to check all welds made since the last successful cneck. Upon 
locating of the leaking weld(s), repairs were made by either orbital or manual 
GTH welding, depending upon the accessibility of the weld(s). 

ASSEMBLY AND INSTALLATION FOR 3.0-in. (76.2 mm) o.d. LINER SUPPLY/RETURN PIPING 
Piping nodules were preassembled, orbital GTA welded, and vacuum leak 

checked with He. Then, the piping supports were preassembled. Beginning at 
vacuum vessel port covers, the guard vacuum lines and LN 2 lines with the 
support rings in place were positioned and tack welded with the manual GTA 
process using Type ER316L filler wire. Next, the support frames were 
positioned, trimmed to size, and welded to the vacuum vessel wall by manual 
GTA welding. Then, the piping and support rings were attached to the frames. 

Final tube welds were made by the orbital GTA process, and the system was 
leak checked at the magnet interface. Finally, weld connections at magnet and 
He ducting interfaces were made by orbital GTA welding, and the final system 
leak check was carried out. 

STUD-WELDING DEVELOPMENT AND QUALITY ASSURANCE 
More than 4,500 stud-welded bolts were used to attach panel supports to 

magnet surfaces. Using 1/4-in. (6.35 mm) diameter, Type 304 stainless steel 
bolts, a st'j-J welding schedule was developed which produced over 100 samples 
that withstood 1602 of the design torque. During installation, studs were 
proof tested by torquing to 100% of design torque. The rejection rate was 
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less than IS. Repairs were made by spot grinding the magnet surface and 

welding another stud in the same location, with a zero rejection rate. Load 

tests of bracket and stud-welded assemblies showed that the assembly could 

support a 1,000-pound (4448 N) compression load and 500-pound (2224 N) side 

load, providing a safety factor of above 4. At the beginning of each shift, 

tht stud welder was checked by welding four studs to a stainless steel 

plate. Torque testing of the studs was required to demonstrate that all 

studs would withstand tension corresponding to 75-in./lb. (84.73 N-M) torque. 

If the weld on any of the four studs failed at 75-in./lb. (84.73 N-M) torque 

or less, the stud welder was checked per Nelson's Stud Welder Operation Manual 

for adjustment on the chuck, voltage setting, or current setting. 

At the completion of installation, the entire magnet liner system was air 

pressurized to 150 psig (1.24 MPa) far 24 hours, and visual inspection was 

performed for obvious damage or deformation. Then the entire assembly was 
-5 depressurized to 10 torr and leak checked by the helium-bag-check method 

described above. 

SUMMARY AND CONCLUSIONS 

Success of the thermal shield system was demonstrated by the results of 

acceptance tests performed with the magnet and all its ancillary equipment. 

During these tests the thermal shield system was: 

Thermally cycled several times from 300 K to 77 K; 

Pressure cycled several times from 0 to 5 atmospheres; 

Operated for mora than 500 hours at 77 K and in a vacuum environment 

of less than 10" torr; 

Operated in a magnetic field up to 6.0 Telsa; 
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Exposed to a rapidly collapsing magnetic field of more than 250 
gauss per second; 

Drained of all LN ? in a few minutes, without any weld failures. 

The successful (and relatively problem free) operation of the magnet 

system validates the choice of the welding processes used, as well as their 

execution in both shop and field environments. 
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Figure 3. The magnet liner system is installed over the entire surface 
of the magnet. 
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Figure 4. The magnet liner system also covers the magnet helium supply 
and return pipes and current lead pipes. 
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Figure 6. The stayout zone for the magnet liner system on the magnet He piping and current lead ducts 
allows approximately 3" of space around the circumference. 



Original Minimum Stayout Zone Requirements 

4i!l h / 

•a to / J « H 

* 2.750" increased to 4.000" 
0.875" increased to 1.000" 

Fiqure 7 One staycut zone for the magnet liner system is a thin region 
surrounding the magnets, ranging 1" to 3" in thickness. 
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Figure 8. All magnet surface panels are installed while the magnet is in 
place on the magnet transporter. 
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PANEL OUTLINE 

(PANELS SIZED AND SHAPED FOR 

REMOVABILITY AND GRAVITY DRAIN) pipe liners 

PUGNET OUTLINE (TOP YIEW) 
(SHOWS HANGER LUGS, HE SUPPLY, GUARD VACUUM) 

figure 10. The panel layout over regions B, C and F covers this portion 
of the magnets. 



G-10 containment 
ring 

Support 
spring 

G-10 
conta inment 
channel 

Stainless steel 
support frame 
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Threader 
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Supp ly / re tu rn lever 

G-10 containment 
channel 
-Load adjusting nut 

Figure 1 1 . The supports for the 3" 0 liner supply and return lines are designed for axial and 
perpendicular motion, low thermal conductance, and ease of assembly. 



M a l l 
thickness 
(mils) 

3 = Design wall thickness 
' 0 0 r based on butt weld f i t t ing availability and 

bending requirements. 

ft 

Co 

4o 

ZQ 

•5 / 2 3 

Tube outer diameter (in.) 

Figure 12. The wall thickness was set by the wall thickness of available 
tubing, butt weld fittings,and wall buckling and wall thinning 
during bending. 



"7 
Attachment site 
for anti-shine-
thru snields LN„ cooled panel 

Figure 13. The panel has a cutback edge to allow for attachment of the 
anti-shine-thru shields. 

o 

y\\\\\\K\\) 
N\ \ N 

A. Regular support site B. Capped support site 

Figure 14. The attachment site allows for bolting the support to a 
planar surface onto an offset cap. 
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Figure 15. Access to the magnet/transporter is provided primarily from the staging area and 
various stairs and ladders. 



Scaffolding attached to transporter 
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LLNL Sca f fo l d i ng support frames 

1" 7""" 
Scissor 11ft 

ding ladders 
between lobes of*->•<• •« 
magnet — j /'***•'*•»»••»• 

Figure 16. ,. Scaffolding consisted mainly of planks attached to the transporter, the lifts on 
LLNL scaffolding frames. 
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, - . l f ' ' ; ' ' r i Telescoping l i f t 

SCISSOR 
LIFTS 
(Gas and electric) 

Power Outlet 
120 DC volt 
(Eloclrlc model) 

Baltary Charger ~ 

Power Steering -

Cherry picker 

Self-propelled 

Figure 17. Various lifting devices were used to position personnel and liner components near the 
magnet surface for liner installation. 



Figure Captions 

1. MFTF yin-yang magnet set. 

2. MFTF-3. 

3. Magnet liner system (front view]. 

4. Magnet liner system {in vacuum vessel). 

5. Magnet liner system (regions o. magnet surfaces). 

6. Stayout zones for liner system. 

7. Stayout zones for liner system. 

8. Magnet pair on transporter. 

9. Magnet pair on transporter. 

10. Typical liner layout. 

11. Design of supports for liner supply and return lines. 

12. Minimum wall thickness vs. tube diameter for Type 316 stainless steel 
tubing. 

13. Attachment of anti-shine-thruough shields. 

14. Attachment of supports by stud welding. 

15. Layout of liner installation area. 

16. Methods of gaining vertical access to magnet surfaces (1). 

17. Methods of gaining vertical access to magnet surfaces (2). 
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