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SOFT-GLUON EFFECTS IN CHARMED-~MESON DECAYS
Ken-ichi Shizuya

Lawrence Berkeley Laboratory
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Recent experiments suggest significant enhancements of non-
) +
leptonic decays of the p? meson, such as T1(D )/T(DO) = 3~10 and

—_ Br(D%+k 1) /B8R (D%-E%+0) 3 1, which
—
C 2 u vV
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cannot be explained by charm-quark

s,

Dicd)

_ decay mechanisms alone%) The ob-
O
F?Cé) S served nonleptonic enhancements are

presumably dynamical, having their

Fiz. 1 Charm—quark decay origins in quantum chromodynamics
mechanism. (QCD) . In particular, in DO— and
r -mescn decays, QCD effects are expected to activate W-exchange
crocesses ("guark-annihilation" processes), as shown in Figs. 2 &

3, which by themselves are strongly suporessed because of hell-

L

0 . .
c:%y mismatch. For example, the D meson, on gluon emission,
can fl:p 1ts spin so that the subsequent weak decay proceecs
. : . . 2
withcut helicaty suppression. Hard-gluon emission from the D
2-4)

meson, evaluated perturbatively’ enhances the DO decay rate

,5)

{by ~ 20%). Soft-gluon emxssion3 1s an equally likely source

of enhancements in charmed-meson decays, and indeed seems to be
. 5)
the dominant one’
In this talkx I would like to study this soft-gluon effect in
charmed-meson decays by a nonperturbative method that has

theoretical foundations in QCD. The basic tool is a multipole

expansion in ecp. 8 The analysis is divided into three s:eps.
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Fig. 2 Nonleptonic decays of D0 via quark annihilation with

emission of soft gluons which eventually turn into light hadrouns.

(I) Virtuel color-fluctuation of charmed mesons.

A pair of ¢ and U quarks, that constitutes the D° mescn,
changes its color upon emission or absorption of gluons surround-
ing it. (I call these gluons soft gluons below.) Correspoding-
ly, let us describe the DC—meson state 1D0\ as a cclor-singlet
S0 cu constituent-quark pair {cﬁ\ surrouncded by a colcr-sinclet

0+ soft-gluon cloud (of lowest energy) '0Q):

0% = Jcu> @ 10)

poa

The spatial spread of the gluor cloud that induces the virtual

color-fluctuation will be of the order of 1/4¢ = (100 200 Mev),
typical spatial spread of ordinary hadrcns or a scale character-
ized by color confinement in QC . Since the gluon cloud 0)
consists of soft-gluon colcr fl:ctuaticns (of vacuum quantum

numbers) extending over the typ.cal hadronic size, it may approx-

imately be regarded as the gluoric vacuum.

(II) Separation of long-dis-ance and short-distance
phenomena by use of the QCD multipole expansion
Fig. 2a represents the W-e» thange process for nonleptonic
decays of DO, accompanied by a ¢ ft gluon which eventually turnc

into light hadrons. Soft~gluon emission is a long-distance
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Fig. 3 Anninilation of F into semileptonic channels

with emission of soft gluons forming a color-singlet.

phenomenon characterized by the energy difference 4e¢ associated
with the virtual color-fluctuation. On the other hand,

cu annihilation by the weak current is a short-distance phenome-
non characterized by the spatiai spread of the c quark l/mc.

It will therefore hbe a reasonable approximation to factorize the

soft-gluon and annihilatior parts in the decay amtlitude:

WC = (aaninilation) - (g Clem o, (2)
where ig.) denotes the soft-gluon state. The multipole tech-
nigue is useful for the determination of the operator C?(E,H)
consisting of the soft-gluon color fields E and H: Let us loeck
at Fig. 2a1 . The gluon f: 14 at ;, being soft, may be expanded
1n multipoles around the guark-annihilation position z. Then
the whole reaction is desc:ibed by a series of local interactions
at z, as i'lustrated in Fig. 2b {(and in Fig. 3 for the case of
semileptonic decays of F+). These multipole soft-gluon interac-
tions are cast into gauge-invarianc form by use of a suitable
gauge transformation?) For the process in Fig. 2,

a

Q- . a
= 7 - - 4
(e, (1+m /m_)H L1 -m /m )ET (3)

[¢]

where only color-Ml and color-El interactions have been retained.
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(III) Evaluation of the soft-gluon effect in terms of a
phenomenologically known gluonic vacuum condensate.
In the calculation of the decay rate, the sum over soft

gluons may be approximated as follows

(ae)

zlg (gl ~ L1 (4)
4

where the energy denominator has been replaced by its typical
average value A4c . This procedure yields che vacuum matyrix

element of the gluonic operator
‘L .
| Cem CeEm o (5)

Using Lorentz invariance of the QCD vacuum and some factorization

hypothesisz) this matrix element can he related to
7/ = (ol (Js/v)FW[AJZLO) ~ 0.012 cev? (6
p

a quantity phenomenologically known from the charmonium sum rules

. 7 . . . . N
of Shifman et al.) The nonvanishing value of (6) is considered
to be a consequence of strong soft-gluon interacticons;i.e., it is
predominantly saturated by soft-gluon ceolor fluctuations. This

will in turn justify the approximation eg.{4) which relies on the
saturation of matrix elements involving soft-glucon operators by

soft-gluon color fluctuations.

Results
The soft-gluon effect activates the quark-annihilaticon

process for D0 nonleptonic decays, with the decay ratc

759 (nL)

12 tiymy gm0 2 enim L im )
I'(c+all)
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~ 0.7 x (fD/Ae)2 (7)

where m,o= 0.34 GevV and m_ = 1.65 GeV have been used.
An empirical scaliig law gives an estimate of the D-meson decay
constant4)

fD//E ~ 150 MeV. (8)

The energy difference Ae may be estimated from the 351 —ls0

splitting of the D-meson system
Ae  ~ MD* - MD = 140 Mev , (99
or from the "binding energy”

e~ mc+ m. - MD = 120 MeV . (10}

Using eq.(B) and Aec ~ 140 MeV (120 MeV), one gets an estimate
tohsroh - 25 Lo . (11)

This result indicates that the soft-gluon effect could account
for a significant portion of the D0 -o" lifetime difference.

on
The actual number in (11) dependsﬁthe unknown parameters f Ae,

D’
etc;it, nevertheless, is generally sizable for a reasonable
range of these parameters. The above gualitative conclusion
will therefore, I believe, survive a more elaborate analysis.
Some other consequences of the preseat analysis are the
following:
(i) The enhancement of F+ nonleptonic decays, though sizable, is
smaller than that of Do decays.

(1i} Semileptonic decays of F+ are significantly enhanced and

lead to energetic leptons.
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(iii) The soft-gluon effects decrease rapidly {like l/mg as
mc-+m) as quarks become heavier. Consequently, they are not

very important for B-meson and T-meson decays.
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