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ABSTRACT

In this paper we summarize recent theoretical studies of coherent

propagation effects in SF6 and other polyatomic molecules, beginning w

an account of relevant aspects of the high-resolution spectroscopy of

‘3
band of SF6. We show that a laser pulse propagating In a molecular

t h

hc

gas can acquire new frequencies which were not initially present in the

pulse, and that, in fact, a wave is coherently gen(’rated at the frequency

of every molecular transition accL :ible from the initial molecular energy

levels . We discuss the possihlc consequences of coherent generation of

sidebands for the mulliple-phoLon excitation of S1’6and other polyatomjc

molecules.



I. INTRODUCTION.——

This paper is a brief account of recent theoretical developments in

the theory of propagation of laser pulses through a molecular vapor, and of

closely related topics in high-resolution molecular spectroscopy, which

❑ay help provide some insight into the role of coherence in the laser-

driven multiple-photon excitation of SF6 and ot~er polyatomic molecules.

High-resolution infrared spectroscopy and coherent propagation effects are

closely linked in SF6, both conceptually and historically. Early experi-

1-5 6-9
mental nd theoretical studies of coherent propagation effects

in SF6 either suggested or depended upon specific models of the partici-

pating SF6 energy levels and transition moments, Recent high-resolution

10-13
spectroscopic studies have provided assignments of thousands of

transitions in the V3 fundamental of SF6, and have helped provide a frame-

14
work for the s:.illspeculative discussion of excited-state transitions

in SF6. The experimental linewidth observed in saturation spectroscopy of

SF 13 is ~e%s than lo ~7
6

. ,) which we may remark appears to be inconsistent

21
with a postulated Intramolecular thermalizatior, time of 30 ps. In Part

11 of this paper, we shall summarize the current state of knowledge of the

‘3
fundamental (V3 = O + V3 = 1) of SF6, Although we cannot yet fully

characterize Lhe energy levels and transition moments of the states of the

v mode of SF with more than one vibrational quantum, we shall describe a
3 6

model which we believe to possess many of the qualitative features of the

energy levels and transition moments of the real SF6 molecule.

In Part III of this paper, we shall direct most of our attention to

certain coherent propagation effects which ❑ay have a major influence on

the development of the spectrum of an initially monochromatic, nearly

resonant laser ptilsczs it ~roPaEates through a vapor of polyatomic molc-
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cules . Physically, the process of optical propagation consists of the

creation of a coherent, macroscopic electromagnetic polarization by the

incident optical electric field, and the interference of the optical elec-

tric fielciradiated by this macroscopic polarization with the incident

field. The total field produced by this interference acts on the molecular

system, arid the macroscopic polarization produced thereby must be self-

co~sistent with th~ total field, Such a self-consistent, nonlinear coupl-

22
ing is well known from Lamb’s theory of the laser and theories of laser

pulse propagation in simplified two-level systems Jeveloped by Hopf and

Scully
23 24 25

and Icsevgi and Lamb. We shall summarize a general derivation

of the equations governing the propagation of a laser pulse interacting

with an ensemble of multilevel molecular systems, within the framework of

the slowly varying amplitude and phase approximation (SVAPA) and the

rotating-wave approximation (RWA). Ne shall apply this formalism to the

specific case of propagation of laser pulses in SF6 vapor, in Lhe limit 01

an optically thin sample. The coherent effects which arise in optically

thin samples are optical nutation,
6 26

optical free induction decay and

2,27,28
photon echoes. Optical nutation6 arises from the fact that the

macroscopic polarization produced by the incident optical electric field

contains, in addition to the frequency w of the incident laser field, new

frequencies higher or lower than w by an amount equal to the Rabi frequency

of the transitions excited by the incident field. The macroscopic polariza-

tion then radiates a field which contains Rabi sidebands; ths interference

of the radiated field with the incident field makes the sidebands eviden~

as a temporal oscillation of intensity of the total field. If a system is

pumped nonresonantly by a laser pulse, the Rabi frequency is very nearly

equal to the detun+.ng, so that the frequency of one of the sidebands very
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nearly coincides with the resonant transition frequency of the system. The

molecular excitation produced by this nearly resonant, coherently generated

field may, of course, greatly exceed the excitation which would be produced

by the nonresonant incident field acting alone, depending on the magnitude

25,29
of the new field coherently generated in the medium. As is to be

expected for coherent effects, the intensity of the field radiated by the

macroscopic molecular polarization is proportional to the square of both

the malecular number density N and the distance z traveled in the sample.

Order-of-magnitude estimates presented below suggest that Rabi sidebands

may well be of significant in~ensity for conditions often encountered in

experiments on multiple-photon excitation of polyatomic molecules (pressure

- 0.1 torr, z - 10 cm).

The major conclusion of the work summarized in this paper following

29
our initial suggestion is that the optical field coherently radiated by

a molecular vapor subjected to an incident optical field contains a rich

spectrum of sidebands, covering essentially the full vibration-rotation

band with which the incident field interacts. The new, coherently generated

field zauses coherent cycling of population between the states radiatively

coupled by the incident optical field. In a two-level system not subject

to relaxation processes (e.g. collisions), the occurrence of coherent

cycling of population would mean that, on a time scale long compared to the

resonant Rabi period in the coherently generated field, approximately half

the population would appear in the upper state and half in the lower state.

This is a qualitatively important effect , which can greatly increase the

theoretically predicted effectiveness of multiple-photon excitation of

polyatomic molecules. The excitation of many rotational levels iriSF6 at

surprisingly low laser intensities has been observed experimentally.
30



E

6

It is, of course, possible to give a phenomenological interpretation

of the strong excitation of ❑any molecular energy levels not resonant with

the incident laser field as being the result .f rapid collisionless intra-

21
molecular energy transfer. Such an intramolecular phenomenon would be

completely independent of N and z, so that it should in principle be

possible to distinguish unimolecular from collective coherent phenomena

experimentally by a properly conducted study of the dependence of laser

energy deposition in the sample (for example) on N and z. Effects due to

coherent generation of Rabi sidebands should be a function of the product

Nz, for optically thin samples, and for a given (fixed) incident laser

intensity. It is, of course, certain that some effects of sideband gener-

ation have already been observed experimentally, but it is very easy to

ascribe these effects to other causes. For example, effects due to the

increase of sideband electric field as N (for fixed z) could be identified

as effects of collisions among the molecules pumped by the laser. However,

the effects of sideband generation will also depend on z (for fixed N), and

are thus distinguishable in principle from collisional effects.

Although we are aware that the ideas about coherent propagation effects

described in this paper are at odds with some published concepts of multiple-

photon excitation, we are hopeful that our work will at least stimulate new

experiments, and new interpretations of already published data.
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II. HIGH-RESOLUTION SPECTROSCOPY OF

THE U3 BAND OF SF6

In this section we shall summarize the current state of high-resolu-

tion spectroscopy of the v~ fundamental band (V3 = O + V3 = 1) of SF6, al:d

shall indicate some current ideas on the structure of SF states with two
6

or more ‘J3quanta The spectra of the infrared-active modes of tetrahedral

and octahedral spherical-top molecules are highly complex, owing in large

part to the fact that these vibrational modes are triply degenerate. In

octahedral spherical-top molecules, the two triply-degenerate infrared-

active modes, v
3

and v~, both belong to the (three-dimensional) Flu repre-

sentation of the octahedral point group Oh (Fig. 1). The V3 mode in SF6

involves primarily stretching motions, while the v~ mode involves both

31
stretching and bending motions. The complexity of the vibration-rotation

spectra of these triply-degenerate modes is the result of many physical

effects: (a) splitting of levels with two or more vibrational quanta by

vibrational enharmonic effects; (b) Teller Coriolis splitting (and

Coriolis interaction between different vibrationa- states) due to inter-

actions between vibrational and rotational angular momenta; (c) splitting

of each rotational level (which is (2J+l)-fold degenerate in the molecule-

fixed field frame) into as ❑any states as are allowed by the molecular

point-group symmetry, due to tensor vibration-rotation interactions; (d)

nuclear hyperfine splitting. All of these effects are significant in

understanding and assigning the experimentally observed high-resolution

spectua of the SF6 V3 band. Even the nuclear hyperfille splitting ha~ been

resolved, and some additional vibration-rotation spectroscopic constants

determined,
13

in recent sub-Doppler studies of SF6.
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However, essentially nothing is firmly established with regard to the

spectroscopic constants of states in SF
6

wi~h two or more vibrational

quanta. In view of this fact, all we can attempt in this brief review

with regard to vibrational overtone states is to outline a model which

possesses some important qualitative features of the overtone states and

excit~ l-state transition ❑oments of the real SF molecule.
6

The model

we shall outline , which has the virtues of computational convenience and

physical reasonableness, has been used in

propagation effects in SF6 which we shall

paper,

the numerical studies of coherent

describe in Section III of this

The derivation of the quantum-mechanical Hamiltonian for a vibrating,

rotating polyatomic molecule has been the subject of discussion and study

for many years; we refer the reader to a small subset of the literature for

32-35
a detailed summary. A full derivation of the effective vibration-

rotation Hamiltonian for a single (degenerate) mode of a spherical-top

molecule, starting with a power-series expansion of the vibration potential

energy, involves a sequence of contact transformations to bring operators

of successively higher order to approximately diagonal form. Such a

transformation has been carried out for a triply-degenerate mode of a tetra-

hedral molecule,
36

but has not yet been attempted in the octahedral case.

An alternative approach which is very useful for the assignment of spectra

and the determination of spectroscopic constants is to expand the vibration-

rotation Hamiltonian in terms of A1l operators (up to a given order in the

vibrational normal coordinates , vibrational and rotational angular momenta,

etc.) which are allowed by the molecular syminetry group.
37

The phenomeno-

logical constants which ❑ultiply the different operators appearing in such

an expansion can, of course, be expressed in terms of the parameters charac-
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terizing the ❑olecular force field, the equilibrium moment of inertia, etc.!

38
and such expressions are known for the tetrahedral case. Because of the

far greater complexity of the vibrational Hamiltonian for octahedral

39
molecules, only the phenomenological approach of regarding the constants

which appear in the vibration-rotation Hamiltonian as independent para-

meters, and adjusting these parameters to give a least-squares fit to

experimentally measured spectral lire positions, has been followed for SF
6

10-12
and other octahedral molecules.

The amount of spectroscopic detail which can usefully be studied

theoretically depends to a great extent on the degree of resolution which

40
can be achieved experimentally. Grating spectra of SF at room

6

temperature show a smooth band contour uninterrupted by rotational struc-

ture. A grating spectrum of SF6 at a tempe_-ature of 153K
41

(Fig. 2), at

which 80% of the SF6 molecules are in the vibrational ground state, shows

an irregular contour which is not noise, but is also not recognizable as

rotational structure. A real understanding of the SF6 spectrum depended

on obtaining experimental spectra with a resolution limited only by the SF6

Doppler width (30 MHz at room temperature). The application of semiconduc-

t.~rdiode lasers to vibration-rotation spectroscopy
42-44

resulted in

Doppler-limited spectra of SF6 covering a frequency range of approximately

45
f] GHz near the C02 laser lines overlapping the SF6 V3 band. Although

these spectra went unassigned at that time, they proved to be very useful

later’0-12 owing to the fact that they had been calibrated by heterodyning

the tunzble semiconductor diode laser with a fixed-frequency C02 laser

45
stabilized at the center of the CO laser line.

2
This technique gives a

direct measurement of the frequency difference between the center of the

C02 laser line and the spectroscopic feature to which the semiconductor



diode laser is tuned, and is thus considerably superior in accuracy to the

technique of calibration by etalon fringes which is more comonly used in

laser diode spectroscopy,
46

Much greater accuracy can now be achieved by

13
sub-Doppler saturation spectroscopy than by heterodyne calibration of

Doppler-limited spectra,

Assignment of the SF6 U3 band10-13 was made possible by Doppler-limited

spectra covering a large range near the Vs band center,47 (Fig. 3) in SF6

at temperatures where more than 90% of the SF6 molecules are in the ground

vibrational state, and by knowledge of the nuclear spin-statistical

48,49
weights which made it possible to recognize the pattern or “finger-

print” of fine-structure lines associated with each value of the total

10
angular ❑omentum J. At first only the V3 P and R branches could be assigned;

later the Q branch was also assigned 11 (Fig. 4). More recently, satura-

tion spectroscopy of the V3 band of SK6 has made it possible to deter-

mine a more accurate set of vibration-rotation spectroscopic parameters,

13
and to uncover effects of nuclear hyperfine splitting.

Prior to the publication of the assignment of the V3 band of SF6, a

number of stlhdiesof coherent propagation effects suggested, or depended

upon, certain qualitative aspects of the spectroscopy of the ‘V3 band.

Observations of optical nutation
3,5

were interpreted to give rather

different values of the V3 transition dipole moment, one of whichs com-

50
pared favorably with later determinations based on the V3 band strength

51
and the intensity of single lines in the high-resollltion spectrum.

Self-induced transpar~ncy
52

was inferred to occur in SF6 irradiated by a

pulsed C02 laser;J although some details of the process of inference

were not in agreement with ttieoretical predictions for two-level systems,
7

3
self-induced transparency was later unambiguously observed in SF6 ir-
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radiated by some (but not all) of the C02 laser lines overlapping the SF6

V3 band (Table I). At first it was argued that self-induced transpar-

ency (and coherent propagation effects in general) could occur in SF~ only

if the value of the total angular momentum of the initiol state were very

low. It was later shown theoretically
8,9

that coherent propagation

effects can occur even for very high values of .J, became of a “cluste’:-

ing” of the transition moments for different initial valu~s of the spatial

quantum numbsr M. We shall discuss this point in greater detail below,

after deriving the form of the transition moments for a spherical-top

2,28
molecule. Experimental and theoretical studies of photon echoes in

SF6 have led to incomplete agreement between the observed and predicted

relationship between the pump polarizations and the echo polarization.

Finally, infrarzd-infrared double resonance experiments
53-55

and shock-tube

56
studies of the SF6 absorption contour gave important semiquantitative

information on the magnitude of SF6 J values fcr states interacting with

the various C02 laser lines. More recent double-resonance studies of SF6

have provided data which challenge theoretical efforts at assignment.
20,57

Vibration-Rotation Basis

The vibration-rotation basis statas for a spherical-top molecu’.e may

conveniently be taken as linear combinations of products of vibrational

wavefunctious and rotational wavefunctions, within the framework of the

Born-Oppenheimer approximation. Two vibration-rotation bases which are

widely used in the theory of spherical-top molecules employ vibrational

V2
wavef~nctions @m which are adapted to spherical symmetry, and rigid-rotGr

waveftinctions D
J
KM”

In the

V2 .
of the products 1)~ @m 1s

bAIR
basis ‘unctions *K M . ln

38
coupled spherical basis, a linear combination

taken which results in co’~pled angular-momentum

the symmetry-adapted basis introduced by Moret-



12

58 J VP.
Bailly, a different linezr rombina~]on of ~he products D

KM ‘m
1s taken,

such that the sum belongs to one row of an irreducible representation of

the molecular point group. Both of these bases are important for a discus-

sion of spherical-top energy levels and transition moments.

The vibrational wzvefunctions ~
V2

in thf!spherical basis are eigcn-
m

functions of the Lotal number oi v~brational quan~a (v), the vibrational

angular momentum (1 = v, v-2, .... 1 or 0) and the px’ojecLion of the

vibrational angul r momentum along thr molecule-fixed z axis (m = -1,

-1+1, .... 1). Explicitly, as functions of the normal coordinates ql,

59
q2, C!3of a triply-degenerate Vik)ratlonal mode, t.hcyare

where

j=l

; = h-Ipq2,Y3)

N ❑ {2[W-9)I!)$ {l$(v+f+3)]! )-$VJ?

(Ij

(2)

(3)

(4)

((l)
and‘here‘Qm is a spherical harmonic; L IS an associated Laguerre

P
60

polynomial.

The rigid-rotor wavefunctions for a given total angular momentum J,

with the projection of J along the molecule-fixed axis and space-fixed

axis being, respectively, K and M, are proportional to the elements of thr

represe,ltatiol.‘ of t“k rotation group,
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J

[–1

2J+I 4 J
W(II= ~n2 ‘Ktl

(0-1) (5)

where flis the 3x3 matrix which rotates the components of a vecLor in the

laboratory-fixed frame into the components of the same vector in the mole-

cule-fixed frame:

+.
x = !-Llah .
mo 1

(6)

E(4. (5) is a direct consequence of the symmeLry of a spherical-to~ molecule,

61,62
and may be established by purely group-thcoreLica] arguments.

The coupled spherical vibration-rotation basis vectors are

(7)

where KR = K-m. To obi.ain (7) one must subtract the vibrational angular...— -

m~mcnturn ~ from the LOLa] angular momentum ~ to obLain the purely roLa-

lional angular momenLum of the molecular framework:

-*
R= 3-Z. (8)

Thr symmetry-adapted basis functions are eigenfunctions of the rota-

tional angular momentum R, and the laboratory-fixed z component of total

angular momentum M, and also belong to a specific row of a specific

irreducible point-group representation. The symmetry-adapted basis may be

~bLai:led58’64 from the coupled spherical basis by a unitary transformation

matrix
(R)G:

w
vlm’1 r (R)GKR@:g:
ptl ‘L p

‘R
R

(9)
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In (9), the indices

c = (ry) and p = C(*l) (lo)

are composite labels consisting of the irreducible representation I_,the

row y of that representation, and an index n which distinguishes the

different state vec~ors with the same point-group symmetry which arise

in the reduction of DR into irreducible representations of the molecular

(R) 64,65point group. The elements of G have been calculated for Iiup to 130,

and are tabulated58 for R <20..

Vibration-Rotation Hamiltonian.— ——— .——..—

It was shown in the pioneering work of Hecht,
38

Morct-Bailly
65

and

Louck66 that many advantages accrue from expressing the vibration-rotation

Hamiltonian for a spherical-top molecule in terms of spherical tensor

operators. The greatest advantage is that the Racah-Wigner angular

momentum calculus allows one to take the coupled-basis matrix elements

‘klkzk) of a spherical tensor operator T(k1k2k) ~fof the qth component T— q
(kl)rank k (formed by coupling a purely vibrational tensor operator Tvib

(kz) of rank k2) in a completelyof rank k] to a purely rotational operator Trot

systematic manner:

-: 6H.M(-1)
R+%(;R : :;)

[(2k+l)(2R+l)(2R’+1)]+ (11)

{}

J!’ Q kl

J J k2 @241J>. <v’f’llT$;:)l lvD<JllTrot

R’Rk
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Only the reduced matrix elements need to be evaluated (once!) by a calcula-

(kl)tion involving the explicit forms of the operators Tvib andTf~:). The

reduced matrix elements needed for most operators in the SF6 vibration-

38 67rotation Hamiltonian are tabulated by Hecht and Robiette et al.

To construct a vibration-rotation Hamiltonian which is invariant

under the operations 01 the molecular point group, it is in general

necessary to form linear combinations of the spherical tensor components

T(klkzk) In fact,
~“

the octahedrally (or tetrahedrally) invariant linear

combinations are

(klkzk) = 2 (k)Gq T(k]kzk)
‘A~ Al q

q

(12)

where A~ is the totally symmetric representatiotl of the point group. In

terms of the symmetry-adapted basis (9), we can use (12) to reduce (11) to

the form

v-Q”JR-
(Yp .M .

, T(klk2k) Y;;JR)
‘1

H
J?’ Q kl

= b~l. J J k2 [(2k+l)(2R+l)(2R’+1)]$

R’Rk

(h+lJ>(-l)R F~~.~J(kl)
,.

. <v”fl”llTvib llVf> <JllTrot

where the Moret-Bailly F (k) coefficient58 is defined as

#.R’R) = >
p’ ‘d:;:,:)(k) ‘1 (R”)Gm2 (R) ‘3

Alp-p ‘A~
‘lm2m3

(13)

(14)
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The off-diagonal (R”#R) F
(4)

and F(6) coefficients have been calculated

numerically by Krohnxx for R- ~ 98, R ~ 98, and the diagonal (R” = R)

F(4) and F(6)
64

coefficients have been calculated for R ~ 120.

In agreement with Robiette et al.,
67

we adopt the following notation

for the tensor operators appearing in the vibration-rotation Hamiltonian:

(15)

where < is the operator giving the total number of v
3
vibrational quanta.

In this notation, the vibration-rotation Hamiltonian for the U3 mode of

SF6 including all allowed operators up to and including rank k = 6, is

shown in Table I. The fiatrix elements of this Hami.ltoniar.may be calcu-

lated using (11) or (13) (or using other bases), and the Hamiltonian may

be diagonalized numerically,

Fitting of Spectroscopic Parameters

It is evident from (11) or (13) that the Hamiltonian will, in general,

not be diagonal in the rotational angular mome~turn R. For not too large

values of J (in SF6, for J ~ 25) the off-diagonal elements in (13) lead to

negligible effects on the energy eigenvalues. In that case the diagonal

VJ2JR
contribution to the energy eigenvalue E of a particular tensor

pM

operator may be written down directly from (13). Evaluation of the 9J

symbols and reduced matrix elements for the operators appearing in Table

I leads to the parametrization of the fundamental transition frequencies

= +W+M - ~O,O,R,RVR(R,p) PM (R branch, J +J+l)
prl

= ~l,l,R,R - ~O,O,R,R
VQ(R,P) ~M (Q branch, J +J)

pm

1 l,R-l,R - ~O,O,R,R
VP(R,P) = Ep~ (P branch, J +J-1)

pM
(16)



TA13LE I..

VIBRATION–ROTATION HAIW’IILTCMWAN
FOR A TRIPLY DEGENERATE MODE

(K. T. Hecht, J. Mol. Spectrosc. 5, 355 (1960); A. G. Robiette,
D. L. Gray and F. W. E3irss,!Vlol.-Phys. 32, 1591 (1976))

H= w~T’&
02

+B T
‘2

– q Tllo
o 000

+ G~~ $ + T~~ Tm

11
— aT T+ a220 220

T+ ’224 224

– Do T% – D@ Tw + Fllo T:jO + ~lm TIM

– (D-DO) T& – (Dt–Dm) TIO + G220 T:;4
044 -

+G
244’244 + ’246’246

– H4t T& + H6t Tm6
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_TABLE 3..

BOBIN–FOX PARAMETRIZATION OF
SPHERICAL-TOP TRANSITION FREQUENCIES

● NOTATION: R = ROTATIONAL ANGULAR MOMENTUM

P = OCTAHEDRAL OR TETRAHEDRAL SYMMETRY

SPECIES AND INDEX
~@l?R)

Alpp
= NORMALIZED EIGENVALUE OF DIAGONrAL

BLOCK OF HAMILTON IAN (MORET-BAILLY)

INCLUD!NG OPERATORS OF RANK k IN R

M= -R(P BRANCH) OR R+l (R BRANCH)

A(R,P) = OFF-DIAGONAL CORRECTION (IN 9)

● P AND R BRANCHES:

Vp ~ (R, p) = m + nM + PM* + qM3 + SM4 ‘C tM5 + XM6,

(-I)R
+ (g-hM+ kM2 + i!M3 + jM4) — F(4RR)

D,F (R) AIPP

(-l)R
+ (z’ + Z“M + z’” M2) — ~(6RR)

D’, F’(R) AIPP

, (R,P)+JPR

● Cl BRANCH

vQ(R’, p) = K + vR(R+l) + W[R(R+1)]2

I I
(-l)R

+ -Zg + uR(R+l) + zIR(R+l) ]2 —
F(4RR:

E(f?) Alpp

(-l)R
+ [-22’ + z’” R(R+l) ] ~ #6 RR)

A1pP

+ ~a (R,p)
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FUNCTIONS APPEARING IN
BOBIN–FOX PARAMETRIZATION

2R (2 R-1)
D(R) =

[(2R–3) .- “ (2R+5) ] 1’2

2R (2R-1)
D’(R) =

[(2 R-5

(2R+2)

)“”* C?R+7) ]1/2

(2R+3)
E(R)= ‘- -

E’(R)

F(R)

F’(R)

[(2R-3) -- “ (2R+5) ] 1/2

(2R+2) (2R+3)

[(zR–s) . . “ (2R+7) ] 1/2

2R (2R+2)

[(2R-3) . ● ● ( 2R+5) ] 1’2

2R (2R+2)

[(2-5) ● ● ● (2R+7) ] 1’2
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68
shown in Table 11. These expressions have been extensively used in

10-12
fitting Doppler-1imited spectra of SF6 . The relationship between

the Hamiltonian parameters appearing in Table I and the spectroscopic

parameters appearing in Table 11 is complex, and will be discussed in a

future publication.
70

AIs(J, in Table 11, the quantities Ap(R,pj, AQ(R,p),

and ~(R, p) are, by definition, the difference between the transition

frequencies determined through exact diagonalizat~on of the Harniltonian

including matrix elements cif-diagonal in R, and the transition frequen-

cies calculated using approximate energies calculated using the purely

diagonal (in R) form of (13).

The assignment of an actual spectrum falls into three stages: (a)

provisional assignment, using approximate parameters obtained by a hand

calculation, etc. ; (b) determination of preliminary constants given a

provisional assignment; (c) assignment of additional lines and final

determinatic,n of constants. Stages (a) and (b) may be accomplished using

the modified Bobin-Fox parametrization
68

shown in Table 11, with

~,Q,R(R)P) = 0. The values of ~ ~ ~(R,p) may then be determined by an))

exact diagonalization (including matrix elements off-diagonal in R) using

the parameters determined in (b). The resulting numerically determined

values of
%, Q,R(R$P) may be

inserted in the modified Bobin-Fox expressions

(Table IT), new constants determined, and so on until the iteration

10-12
converges on a consistent set of parameters. The values and standard

deviations of the SF6 spectroscopic parameters obtained using line positions

measured by high-resolution saturation spectroscopy are shown in Table

111.13
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In Fig. 5 we show a saturation spectrum
13

of a portion of the fre-

70
quency interval (near the P(16) C02 laser line at 947.7417363 cm-]) in-

cluded at lower resolution in Figs, 3 and 4. The positions of the lines

marked with a bullet in Fig. 5 were measured by the technique of frequency

71
offset locking to an accuracy of a few kHz (with respect to the reference

C02 laser line). The total tuning range in Fig. 5 is approximately

f250 ~z, The experimental linewidth is less than 10 kllz.

Transition Moments— -.

To complet-eour survey of spherical-top spectroscopic theory, we give

a brief derivation of tiletr~nsition moments for dipole-allowed transitions

in which one vibrational quantum changes, in the bases (7) and (9).
71-75

The spherical c~mponents of the dipole transition operator in the labora-

tory-fixed frame, P(7,are physically the quantities which interact with

an externally applied optical electric field E, through the dipole

Hamiltonian. Consequently we shall calculate the matrix elements of the

laboratory-fixed components pa, which are related to the molecule-fixed

components of th~ vibrational normal coordinates by the equation

(17)

where A is a constant ch~racteristic of the vibrational mode. For an

individual with extensive experience in tensor operators it is easy

to see from (17) that the dipole operator is of tensor form, with kl = 1,

- 1, and k = O, so that the matrix elements :O11OW directly from (11)
‘2 -

74,75
or (13), A more pedestrian approach is the follnwing: express the

VLJR V’1’

‘tates ‘K M
using (7); use the Wigner-Eckart theorem to evaluate (Qm- ,

q~$~i); evaluate the rotational ❑atrix elements using the well-kncwn inte-

gral over a product of three DJ’s; and resum all the resulting 3J symbols
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to 6J or 9J symbols. The results are
73-75

(0; :; :J‘R“, vLJR
Pa @pM )

= A6M.

“[3(2R+

I

l?-

. J’

R’

)(2J+1)(2J’+1)] $ <Vfllqllv-fl->

l?l

Jl

RO 1

The reduced matrix element is ‘

[

[(V+!L+3)(l+l)/2]$ when v’ = v+], J2’= J?+l

<vAllqllv”!2-> =

[(v-l+2)fl/2]* when v- =V+l, 1’=9-1

The selection rules evident from (19) are:

R-=R

P
--
-P

v- = Vtl

9’ = JZtl

J- = J or J*I

M. = M+u

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

Selection rules (22) and (23) are expected to hold for all dipole-allowed

infrared transitions; physically they imply that one vibrational quantum is

changed in the transition. Select’on rules (2G) and (21) are applicable
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vlLrR
only when the functions O are nearly eigenfunctions of the ~xact

pm

Hamiltonian. However, several of the tensor operators in Table 1, including

the possibly important vibrational an-harmonic operator T40L, mix states

with different R. When this happens, (20) no longer applies. Also, the

nuclear hyperfine interaction mixes states with different point-group

symmetry type p (particularly in the gro-!ndvibrational state
13

), so that

(21) is also an approximate selection rule. Transitions which do not

obey the selection rules (20)-(21) may have a substantial effect on the

76
process of multiple-photon excitation, through n?arly resonant enhance-

ment of multiphoton transitions. It is not clear that transitions which

~~iolate (20)-(21) are necessarily orders of magnitude weaker than transi-

tions which obey {20)-(21), since the mixture of states with different

values of R and p need not be negligible.

It should be r.oted from (18) that the transition moment is always

proportional to the 3J symbol

[26)

regard?.ess of the mixture of states produced by the vibration-rotation

interaction. (If the nuclear hyperfine interaction is strong, J and M

must be replaced by F and MF. ) The presence of the 3J symbol in (18) is

a direct consequence of spherical symmetry.

A Model for the V3 Mode of SF6

In this work we have dedicated ourselves to a study of coherent effects

in ❑ultiple-photon excitation, and to an investigation of whether processe?

which in the past have been ascribed to unimolecular or collisional relaxa-

tion are in fact the result of coh~rent processes. The details of our

model axe conditioned by this physical approach. We assume that the mole-
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cule remains in the v
3

Vibrational mode, i.e. that there is no intra-

molecular relaxation of population. In this case the basic physics of the
,

interaction of a single ❑olecule with a laser field is multiphoton

77-80
excitation. The molecule goes from V3 =-O to V3 = N by absorption

of N photons , without necessarily making resonant single-photon transitions

along the way. The resonant laser frequency for an N-photon transition

from v3 =otov3= N is given by

~NMR . N-l NLJR - ~O,O,R,R
ptl

[EPM ~H ] (27)

As the proliferation of indices in (27) indicates, there are many nearby

N-photon resonances (for all the allowed values of g,J,R, and p) with a

wide range of resonant frequencies. The population which can bt excited

to v
3

= N in an N-photon resonance can, in principle, be large; the highest

and lowest levels can engage in coherent Rabi oscillations, much like the

upper and lower levels of a two-level sys:em, If levels between V3 = O

and v
3
= N are also significantly excited (due to a near-coincidence of

NQJR
with one.or more single-photon transition frequencies, for example)

“’pM

then the analogy with a two-level system is no longer applicable, but the

total number of molecules excited from v
3

= O may be higher. Certain

physical effects can, in fact, lead to a high probability of coincidence of

single-photon transition frequencies with multiphoton resonant frequencies,

and thereby compensate the expected enharmonic decrease of the transition

frequencies from V3 to V3+1 with increasing V3. Both rotational energy
77,81

14
and vibrational enharmonic splitting can at least partially compensate

the effects of vibrational anharmonicity on single-photon transition fre-

quencies. Both of these effects are present in our model. We have included

rotations by including the terms



,

22

(28)

from the first line of Table II. Enharmonic splitting is provided in our

model by the spherically symmetric enharmonic contribution

(29)

from Tabie 11. We have neglected the octahedrally symmetric enharmonic

contribution

T
33 ’404

(30)

in Table II, which also Froduces enharmonic .sI,litting,because this term

VLJR
couples states V with different values of P (and R) and thereby com-

pM

plicates the model. Neglecting (30) entails a neglect of transitions

which violate selection rulr (20).

Illour numerical calculations we at first
82

lumped together in a

83
single “effective state” Iv!LTR>all the states V“~m with given (fixed)

values of v, !2,J and R. This reduces the ~umber of c-ates involved in the

computations, but. forces one to employ instead of (18) a “typical” transi-

tion moment, which we Lake to be the root me;n square of (18):

<v”~-J”R-l~lvflm>
typ

= A <~-911qllv’2’> W($!’flJ’J;lR) (31)

where W is a Racah coefficient. In other words, this approach makes a

simplification in assuming that both energy levelr and transition moments

are independent of p and t!.

In more recent CompUtdtlOIIS we have employed the effective states

IvIJR;M>, in which states with different octahedral symmetry types (p) but

the same quantum numbers v, 1, J, R and M are lumped together. In this
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L(Jt](,irl(idf’nL on a UIIIform g;Is(IousMI’,!ium k’iLh mi)](.culiir r~llmhrrdcn!iity

a+ - 1 a%+(“K ah a%❑-po2.
L)X2 L’2 at2

2 al
aL

(35)

III (“!’)), K is d I inc;iraf.tcnual ion c~eff”i(.i~nL introduced to a]]ow for

sC’ilLlf’ruing ](JSSf ’S, t’~(.. in ord[’r Lo make f’urthcrprogress, we make the

slowly varying irmi)liLudr and phasr approximation (SVAPA): we assume that

the firlt!iin(lp{]larization are of the form

E(z,t) = E“(z,t) COS ~(z,t)

P(z,t) = C(z,t) cos ~(z,t) + S(z,t) sin ~(z,t)

~(z,L) = kz - Wt + $l(z,t)

where E“, C, S, and $ are slowly varying in the sense that

(36)

(37)

(38)

II<<Ikfl , ~’ << Ilufl (39)
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where f is E“, C, S or $. If we lnserL (36)-(38) in (35), and make the

SVAPA (39), then we find that

[
a_+~a_+g
az

]& ~P
Cat2 = 2&.

where we have introduced the complex electric field

~(z, t) =E”(z, t)ei$(z, t)

and complex polarization density

p(z,t) = [S(z,t) + iC(z,t)]eiO(z’t) .

In terms of the retarded-time variables

z ‘--z , t’=t-z/c

(40) becomes

(40)

(41)

(42)

(43)

(44)

As it stands Eq. (44) is simply an approximate form ~,fMaxwt, s

equations adapted to a particular physical situation, and is therefore

incomplete. To complete (44) we ❑ust give a prescription for calculating

~)which weshall do below, Ingeneral (?depends on&in a highly non-

linear manner, so that (44) is one of a set of coupled, nonlinear partial

differential equations. A self-consistent solution of these equations can

o~ciinarily be obtained only by numerical calculations.
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Calculation of the Polarization Density

The polarization in a dilute medium is simply the product of the

❑olecular number density N and the quantum-mechanical expectation value

of the dipole operator:

P = N tr(p~”~~r) = N tr(ppo) . (45)

84
where p is the reduced densi~y matrix for the U3 mode of SF6. In terms

of a basis of states IvA>, where v is the vibrational quantum number and A

denotes the remaining qllantumnumbers, (45) becomes

P=zz ‘vA,uB ‘vA,uB “
V,U A,B

(46:

In keeping with the SVAPA, which removes harmonics from Maxwell’s

equations, we shall employ the rotating-wave approximation (RWA), which

removes harmonics from the equation of motion for the density matrix

P. Let

i(~u-~v)t ’ _

‘vA,uB = e ‘vA ,UB
(47)

where

f-l=Vtu. (48)
v

Since -uJt’= kz-wt by (43),(47) removes the rapid spatial and temporal

oscillation of p created by the incident field. The equation of motion

for p is
84
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apVA,IJ14.——
aL ‘

= {- ~ (IVA - p) - ‘vA,uh
(1 - t,v,,f,AR

‘i ‘JvA,u~

(4’!]

where y
❑ ‘uH,vA

is thr dc~jllasingrat~’of”an off-diagonal (l(*n:,ity-
vA,uf\

matrix cl(’mcnt and w is the riit(’of ])(~pUlatiOnIransf{’r tp(’rm~jl~’-
VA)U13

CUI(’) from VA to 1]~, For a two- lvvf}lsystf’m, Lt)[.r(’l~iLir)rlshil)t)eLwf’(’11LII[

y’s dnd w’s and th(’m(jrc Iami]iiirre]~xtrLiorlc’ollsL:ir)Ls‘r]aIId‘1’2IS

(’12)-’ = y12 = y2, .

(:)0)

(51)

We regard the physical origirlof”Lht’y’s and w’s as collisions, noL intra-

molecular transitions.

We implement the RWA by substituting (47) into (49), using (361, ~41)

and (48), and discarding terms which vary as exp(t2iwt ”), The result is

a;vA , UB
at

= {i[(Qv - EvA/fi) - (flu- EuB/R) ]

- ‘vA,uB ‘1 - 6vu6,iB)] 6vA ,uB

-% %A,(v+l)C ‘(v+l)C, UB
F
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(57)

I’h[ trallsiormi~tion(47) also rnat)les us to express the slowly varying

(omplex pularizat ion dirt,ct]y in Lrrms of p:

(‘:3)

(~(1.(5’\)follows directly from (46), afLf’rsome algebra. ) Eqs. (52) and

(53), Logt’Lh[>rwith initial conditions for ~, define the complex polariza-

tion wl)ich .lp~)carsin thr field propagation equation (44).

Thin-Saml]l~’Approximation

TIIe fivld equat

&(?.’,t’) = Iexp

on (44) has the formal solutior,

-Kz’/2) g(o,t”)

(54)
k+ -—--

.

‘). 1’{exp[K(z’”-z’)/2]]@(z””,t”)dz-’ ,
‘“0 o

5 &, (Z”,t’) +&rad(z’,t’)
lnc

(55)

Physically, the first term in (54) is the incident field, and the second

term is ~he field radinted by the macroscopic polarization @; their sum is

the total field&, The spectral content of & will differ from that of

6. to the extent that &rad contains frequencies (or, equivalently, a
lnc
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time variation) not present in 6 We shal 1 call the component.s of
lnc” 6rad

at these new frequencies sidebands.

To facilitate our analytical and numerical sturliesof the alternation

of the spectrum of Lhe field through propagations, we consider the llm]t

in which

(56)

so that we may takexx

E(z”, t’) :6. (z’,L’)
lnc

(57)

in calculating the polarization Pby use of (52) and (53). Then (54)

implies

,,

~rad(z”,t’) %2:- f-@K-:.-!2Jp(o,t-)
o

lf the linear aLLenuaLion K is smal] (i,r. KZ- ff 1) then

(sad(z-, t’):;g?o,t’) .
0

Eq. (59) is fundamental for making analytical (:~rldnum..’rical)esl.imates of

the magnitude of the sidebands.

To continue our investigation, and to make the presence of sidebands

in 6 obvious , we make the additio~]al assumption thaL 6.
rad

is ,3step
lnc

pulse:

\

‘inc(o,t”)= 0 ‘or t’<~

‘o
for t’ > 0 .

(6o)

In what follows we shall also set the linear attenuation K equal to zero,

In view of (60), the coefficients in the density-matrix equation of motion
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(52) are independent of time,
.

suggesting an eigenfuncti~n expansion of p.

We shall write (52) in the finite-dimensional matrix form

(61)

where we assume the basic IvA> has been truncated to M vectors; we regard p

as a (!12xl)column vector, and A as an (M2xM2) matrix whose components may

be read off from (52). Siilcc (61) is linear in p and first-order in time,

it possesses a solution of the form

~(t”) = v(t”,t~) ~(t;)

where V must satisfy the initial condition

V(t;,t;) = 1 . (63)

If we put (62) into (61) and note that ~(t~) may be completely arbitrary,

(62)

we find the following equation for V:

a~?
.=AV,—-.

at

The form of (64) suggests we expand V as

z -A(t ’-t~) ~
v (t”,t~) = e “B’(A) ‘vA,@(A)v“A’,u”B”;vA,uB

A
v’A’,u

(64)

(65)

This expansion is in the same spirit as the eigenfunction expansion of ~

85
used by Goodman and Thiele. The initial condition

L c ●B?(A) DVA,UB (A) = 6V.V6U.U6A.A6B.B ,
A

vOA”,u

i.e. that the matrix DVA “B(A) (with rows ordered by
)

(63) implies that

(66)

A and columns by
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(vA, IABJ) is a right inverse of the matrix Cv~A., u.B.(A) (with columns

ordered by A and rows ordered by (V-A-,U ‘B-)). Since a right-inverse

matrix is also a left inverse,

22 c
VA,,.,B(A)‘vA,uB(A”) = 6AA’ ~

V,U A,B

Relations (66)-(67) arr to be expected for an eigenfunrtion expansion of

the evollJtior,operator v.

We now indicate how the matrix C in (65) may be determint”d. If we

put (65) into (62), we find the following eigerlvector-eigenvallleequation:

-AC(A) = AC(A) (68)

where C(A) is a column vector as noted shove.

If we assume the eigenvalue problem (68) has b~en sc,lved, then the

time developm~~t. of”the reduced density matrix p(t’) (considered as a

column vector) is given by (62) and (65):

I
-A(t”-t~) ~ ~

~vA,uB(t ’) = e
A

v-u” A-B’ cvA,ui$A) h’,U’k(A)

“ i$/@”~ .(t:) .

From (53) and (69), the slowly varying complex polarization (? is

(’g(o,t’)=L -A(t O-tmA
A

where

(P
A

= 2iN z p(vl)A,vBv{A~ C(V1)A,VB,A) DV.A.,U.B.,A]
,.. . -

V,A, B -

(69!

(70)

(71)
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Equatiorls (70)-(71) arr :4fundamental result of this paper.

S~ectral content of thr Radiat~d Fiel(l

IL is eviden~ from (70)-(71) thaL sidf~l)andswill be present in & when-

ever Lhe eigen~’a]ues A have a n’{yzero imaginary part. We shall now invest-

igate under what phys

LhaL the eigrnvalue A

or (61), i.e. a SOIUL

\
cal circums antes this wi 11 occur. First, wc note

“\= O corresponds to a strady-sLate soluLion of (52)

on ill~’hich ra~Jiativepumping by the field is exactly

balanced by relaxation due Lo collisions. (In Lhe steady staLe, i3~ss/~L- =

O.) Consequently wc may identify the eigenv@cLor C(0) corresponding to

the 7rro f’igenvalt]f’as tt]pstrady-statr density matrix (this establishes

Lhr n[,rm:]]izaLionof C(0)):

-ss
P = c(o) , (72)

It follow:, from (72), (67) and (67) that if ~(t~) = ~ss, then

z -,’.(t

‘vA ,UB
(t’) = c

‘-Q ~ ~

V-U. A“LJ-CVA,UB
(A) DV.A., U.B.(A)

A

● CV.A. .B.(oj
,U

), -ss
❑ ‘vA,uB

(73)

Eq. (73) expresses the ptl~sically reasonable statement that if the system

is in the steady state, then it’~~tays in the steady state. Equation (7?)

\
also im~lies, however, ~hat there are no sidebands when the system is in

the steady state. It follows that the existence of sidebands is a transient

phenomenon, and that the sidebands persist only while the system is evolv-

ing toward the steady state.
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To calculate the spectral content of the real optical electric field

(36), which is expressed in terms of 6 as

E(z”,t”) = e {e-i”’t%(z-,t”)} , (74)

we calculate the autocorrelation function

f

T
G(T) = ; [E(z-,t-+~) E(z’.,t’) - E(z-,t’)2]dt- (75)

0

which, according LO the Wiener-Khinchin theorem, is the Fourier transform

of the power spectrum of E. Since the random process represented- by E is

not stationary, T should not be taken to be longer than the length of the

laser pulse. From (74), (70) and (58), we find

+ complex conjugate}

where ~“ means a SUM on all the eigenvalues
A

A= Ar+iA.
1

(76)

(77)

for which Ai # O. In (77), Ar is a relaxation rate, and Ai is the fre-

quency of the sideband corresponding to the eigenvalue A. Eq. (76) holds

in the limit in which

lArTl << 1 (78)

(i.e., the laser pulse length T is short compared to relaxation times) and

lAiTl >> 1 (79)
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(L.c., the laser pulse length T ~s long ccmpared to the period of any of

the sideband frequencies). Carrying out the ifitegrai in (76), we obtain

provided we assume that

lAi-A~l T >> 1 for A# A“ (81)

(i.e., Lhe sideband frequencies are all sufficiently different that none

-1
of their beat notes are comparable tc T ).

Physically, Eq. (80) says tl,atthe intensity of the sideband with

frequency (w+Ai) is

[-1

kz’2 1
-2ArT -Ar~

2&.
~A~ (e - 1) IOA12 e (P2)

This result cleally shows the decay of the sideband intensity to zero for

laser pulses which are long compared to the relaxation times of the system.

This may be father simply understood: the system gradually evolves toward

the steady state, with time constants which are given by Ar, according to

(69); and in the steady state there are no sidebands.

If the laser pulse is switched on adiabatically starting with E, = O,

then the system will always be in the steady state corresponding to the

present value of E,. Although the eigcnvalues and eigenvectors will also

evolve adiabatically, and although there may be

nonzero imaginary part, there will nevertheless

because @A will vanish for A # O.

some eigenvalues with

be no observable sidebands
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Generation of Sidebands at Resonant Molecular Transi~ion Fre~uencies.—-—— —-—— . . .-...-—..-. — .——.—— .—-.—.

The sideband frequencies are (w+Ai) according to (80J. Fr>ra

qualitative stud;{of A. we turn to simple systems with only a few’levels,
1’

which are supposed to represent the one v = O and three V3 = 1 levels
3

shown in Fig. 6. If we label t-beV3 = O level as O and the three V3 = 1

levels as 1, 2, and 3 in order of increasing energy, and if we assume the

laser frequency w is such that the O + ] Transition (P(JO) in Fig. (6,1is

resorldnt, then the detunings 2A2 and 2A
3

of levels 2 arid3 respectively are

such that A
3

> A2 > 0 and A3 ? 2A2. Further, wc shall assume for simplicity

that the IItypi(.allltransition moments (31) for the O ~ 1, 0 T 2 and O ~ 3

transitions are all equal to p. We shall also assume that all relaxa~.ion

rates are negligible

compared to the resonant Rabi frequency (in }lz)

IJEO
(-l=K. (83j

The sideband freqllencies in the limit

Q>>A2, Q>>A3 (84,)

are shown in Table IV, along with the associated polarizations @
A’ as

determined by an approximate eigenvalue analysis. It will be noticed

that the strongest sidebands correspond to u t 2Q, and that the next

strongest sidebands are at frequencies which (to order 0) are resonant

with the frequencies of the transitions O + 2 and O + 3. The electric

field strengths at these nearly resonant transition frequencies are

(85)



whert.j = 2 or 3.

If we asswne, for example, that EO = 3X107 V/m (corresponding LO an

incident intensity of - 1.2X108 U/cm2j,
-1

then Q/c - 1 cm . Let us assume

2A21c
-1

-4cmp as would be the case for pumping an SF6 P-branch tra[lsition

-1with the P(20) laser line of C02 (uJ/2nr~ 944 cm ). We takl, the transi-

tion moment to be p E 0.3 Debye (10‘3” MKS). We assume a total molecular

15 -3
number density N - 3xI0 cm , corresponding Lo a pressure 01-% O.1 torr.

Wc also assume that only those transitions well within a frequency interval

~ of the resonantly pumped line, with roughly g R IC
-1

of the total

population, col]tribute to 6(J) atthefrequenry w+2Aj, so that thepopula-
rad

Lion LO be used in (85) is gN rather than N. Then

(86)

We shall give a brief qualiL*tive discussion of the consequences of the

?henomenon of resonant sideband generation for multiple-photon excitation

in Section V,

Table IV. Approximate Eigenvalues and Associated

Polarizations for an Undamped Four-Level System

Sideband frequency w+Ai P,
-.—
~yzfl ~ iNp/2

u+2A

2
- Q + 0(!J2/A2) - iNpfl/2A2

u+2A

3
- Q + 0($12/A3) - iNpQ/2A3

Effects of Spatial (M) Degeneracy

The dependence of the transition dipole moment between the effective

states lv~;fl>

symbol in (26).

are radiatively

VU-R
or the molecular eigenstates W is given by the 3J

pl’1

In view of the M selection rule (25), the levels which

connected to an initial M are not radiatively comected too
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a different initial !l~# MO. l,eLI ~ I (vOflOJOitO;MO)hf’the Sf?t of ]C’V(’]S

wh]ch are radiativcly connected to the initial stat~ with quantum numbers

P 26
‘vA,uB ‘

(67)
vA,uFI I(vAj,T(d3j

where 6 is the Kroneckcr delLa. The sum in (46) then becomes

‘hysically, (88) implies that the Lotal polarization is Lhe sum of”the

polarizations due LO each subseL 1 of rad

view of (69) and the normalization condit

it is convenient to define the population

gl = I z‘vA,vA = VAE1 ‘vA,vA
VAEI

and the normalized density matrix for the

atively connectc’d sLates. I n

on

(89)

fraction for the Ith subseL—

(90)

Ith subset—.

-(I)
‘vA,uB ❑ (8])-1 ~vA,uB (where vA,uB&I) .

With these definitions (88) becomes

P = N ~gl z z ‘1)‘vA,uB ‘vA,u~ ‘
I VACI uB&I

(91)

(92)

where pl and ~1 ❑ay be calculated as in our previous examples. It may

happen, of course, that collisional relaxation couples p
(I) ~lth p(l’);

for the sake of simplicity we have excluded this possibility in deriving

(92), although this is not an essential assumption in our general formalism,
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One expecLs LhaL ut]enall molecules are initially in the vibrational

ground state,

?, = + g(JO)

whpre J
o

is the initial value of J, and

with ground-state anguidr momentum J
0“

Since the transition dipole momrnt

(93)

g(Jo) is the fraction of molecules

(18) appears to depend strongly on

M, and sinl:ecoherent effects in a resonantly pumped sysLem depend on Rabi

frequencies which are directly proportional to the transition dipole

momenL , it was initially believed that no col,erent effects could appear

in a system with a large value ~f J
o“

Subsequently, however, it was

pointed out by IIopf,Rhodes and Szoke8 and by Gibbs, tlcCalland Salamo9

that the 3J symbol (26), to which the transition dipole moment (18) is

proporLiona] , has t.hrproperty that for certain value of J’ and u

many of the values of (26) are very close

ing” of LransiLion moments means that the

values (for a resonantly pumped two-level

nearly equa], thus enabling the different

to one another. This “cluster-

Rabi frequencies for many M

system, for example) are very

contributions (I) in (92) to

osrillate in ph~se for a large number of cycles.

The values of the 3J symbol (26) for J“ = J, J+l, and for CI= 1

(circularly polarized light) and u ❑ ‘O (linearly polarized light) arc

shown in Table V. For J’ = J+l, u = O, for example, the transition moment

is proportional to the function

f(M) = [(J+I)2 - M2]* t (94)

It is easy to see that f(fl)is a “lowly varying function of M ne.r M ❑ O,

so that many of the values of f(M) for M = -J, .... J are nearly equal

to f(o). lt should be noted from Table V that the clustering of transition



for circularly l]ol;triz~dlight (IUI = 1). t-or(Jhranfh trarlsitif,rls(.J’=.J)

th~! rf”v(*rsf” is truf’: Ltl(. trarlslt ion momurils clusLf*r for (irrillarly

polarized light hut rlr~L

The molc(lllar trans

Tahlf* IV for LII(srxamplr

or Jirl(.;jrlypr~]ifrizt~dlight.

Lion frr’~lll(irl(.it’s(shuwrl irlLh(’ last.two ]111(.:,1,1

r)f~ f(,ur-]pvf.lsystem) al whi(”h rfm~ ‘.-lant Slflf’-

banf_fS fff?V(’]fJ~l Lir(’ only wratcly aff(,ctedhy Lh[’H flf’pf’nrf(’rl (’(’ of t.ht”lriirls i -

tiorimorncnts, whi Ic Lh(-r(’sf~nalltRalli frf’(lllell(if’sftlI(”f irst 1inc of

Table IV) ~rc strongly af”frctrd. cfJllS(”:jU1’rlt]y Lhc C.(JII( lIIS if)ns (Ir;]wrl

ahovt? irl(85)-(86) art’ (’ss(’nt i a] iy ull;lltvrc(i hy Lhf ’ M df’])(.rl(l(’l](o of till’

trtinsit ion momrn Ls.

Thr Villll(’!i of @A/i summcflovrr initial Vdlllf’s (JI M for d sys Lfwl

wiLhou L (fampin~ art’shcJwIIin Fig. 7. l’lli’sysLCm C’fnl)](ly(’d Wif S Ollr S(’(”(Jllf!

cf’fertivc-status mor.fclof St~ (IvJ?JR;Mz), with u = O, JO = 68, to =

3x105 V/m, w/2nc = 944.2 cm-], v:j = Y48 cm
-1

, X,j,) = -2.54 cm
-1

, G;j:j=
..

0,303 cm
-1

,B= .0907 cm
-1

, ~3 = 0.69:).xx Thr valIIcs of @A/i ~hown in

Fig. 7, obtained by numrrica] diagonal ization followrd hy summiiLion ovrr

all (2JO+1] = 137 values of HO, clearly show the clustering of’ resonant

Rabi frequencies f) (84), which directly reflrcts thr clustering of Lhr

dipole transition moments (16). Under these conditions E. is suffirienLIY

weak that the mod~l SF6 molecule behaves nearly as a two-level system,

as far as the sidebands in the first line of Table IV are concerned,

The values of 8A/1 ~ummed over initial valuea of JO and FfO, under

conditions of ~tronger radiative driving (E. = 3x107 V/m), are show in

Fig. 8. The sidebands at small detuning correspond roughly to the first
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line of Tablr lV; the sldcbands at ldrgcr d[’tunin~s are approximately at

resonant molrtuldr transition frequencies. The calculations which

resulted in Fig. 8 invcjlvrd J sumnatioll over 49 values of JO and 11

vallIvs Of MO for each .1O.
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Table V. Values of thr 3J Symbol
62

J- 0

J 1

J 0

.1+1 I

J+ I o

( _.J 1 J’
MU _:(n+g))

(-1)
[

J-~-l.-....’-.-.J(J-V)(J+M+I) ~
2.](Jt])[2TJ+1)

(-1)
J-ti-1 rl

[. J~J+l)(2J+l)]4

J-M-1

[

(J+M+l)(J+M72)

1

+
(-1)

[2.j+lj(2:)+~j-(2j+~)

(-l)J-M [ 1.(:J:U+l)(J+f’:1) $
(J+l)(2J+l)(2J+~)

...
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v. SUMMARY AND DISCUSSION. ..-. ... .__, -.

WC have established the fr,l lowing ~(llnt$ wit}) regard t.o thr r,ptica]

field rafiiateff by the macroscopic polarization which is set up in a mr,l[’-

cUlar giIS irr~diatPd lJY a PLJISC(] ]asf’r fit2]d:

(i) The sidt~hdnd field is prCJ~fJrtlOnal to p~kz’ and the sidvt)anfl

intr’nsity is proportional L(J (pNkz-J2, in thr 1 imit wllrr~~

Lhe radiated flrld is SMal] (“{Jr’n~)ilr”f’d to thr incident fj[~]d,

an(l where no ,ignifi [’ant. reahsorptioll of th~’ radiaLod fir!~]

occurs.

(iij Tho sidrhand int(lnsity approach:; zero a:; thumo]t.culr:i

approach equilibrium I](!tween radiativv pumping anfl roll isiollal

(or intramolrcu]ar) relaxaLiorl. Sidf’harlds will bt’ ~tJS(’rvflh](!

Only if the r]scLimr of the laser pulse is short compar(~(~ to

the shortest collisions] (or intramo]erular) relaxation Limo.

(iii) Sidebands are generaLed irl near resonallr{~ wiLh I“vt,ry molrcu]ar

transition arrf’ssih]c from Lhr iniLia] stat~ of thr molr~”ulrs.

The mosL cjuallLaLive]y imporLaIIL effeCL from th(~ poil~t of viek (I

multiple-photon excitation of polyatomic molecules is (iii), sinc(’ Lh s

result implies that a laser puls~ generates essentially every transition

frequency of the molecular vibration-rotation band wiLh which it inter-

acts, as a result of the process of propagation, In particular, this

collective generation of new frequencies is the only process known to us

which can explain the very large number of rotational states in SF6

pumped by a C02 laser at rather modest laser intensities,
30

To illustrate

this point, let us consider the Rabi frequency at which molecules will

cycle population between levels O and 2 as a result of the coherently

generated field (86). The Rabi frequency for population cycling is
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[95)

(96)

For ~’(*iik(’r irlcidrllL ficlris, ((1/2A2)2 is smaller (in proportion to thr

in(’ident inLrnsiLy), and the enhancement of excitation by &(2) [for
rad

suf’fi~irnLly long laser pulses and low relaxation rates) is even greater

than in thi~ exampl(~.

Although the estimates just presented depend on the assumption of

no collisional or unimolecular relaxation during the time oi the laser

pulse (according to (ii)), this assumption should bc fulfilled for

collisional effects at the pressure (- 0.1 torr) assumed in deriving (86),

for laser pulses of length T < 100 ns. In spplying result (ii), it should

also be noted that any major change in laser

will have the effect of disequilibrating the

enabling a renewed generation of sidebands,

may be able to generate sidebands in SF6 and

pulse amplitude or frequency

molecular populations and

Even unstabilized CW lasers

other molecular gases, due to
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frequency jitter and a conse(~urnt lack of equilibrium between laser pumpin~

and collisions] relaxation.

The conditions for efficient experimental observation of sidebands

are evidently

T K< shortest relaxation time (97]

‘f << lh/p&::~l
T >> (2Ajj-] (99)

where T is the laser pulsr length. Condition (97) is required by (ii).

Condition (98) means physically that the radiated field does not strongly

excitr any rnolcculcs,

Condition (99), which

shortest pulses, simp”

and thus is ablr to es~ape from Lhc, sampli’ ccl].

will be fulfilled in practice for all buL the

y means that thr sidebands can rxrcutc many periods

of oscillation with respect to the incident frrquenry, so that there is

a well-defined frequency for eithrr spectral or temporal observation.

Thr functional dependence of sideband-induced eff~cts on the product

pNkz’ as stated in (i) provides a way to distinguish th[l effects of

collective, coherenL generation of sidebands from unimolecular or colli-

sional relaxation. For unimolccular relaxation there should be no

dependence on N or z“. For collisional relaxation, the increase of

energy absorbed per ❑olecule due to collisions might be expected to be

proportional to N. In certain limits the molecular excitation produced

by (for example) &~~} (85) will be roughly proportional to N, for fixed

Z*; this dependence could ea~ily be ❑istaken for a collisional effect.

True collisional effects can, in principle, be distinguished from coherent

propagation effects under the conditions (97)-(99) by a study of the

dependence on z“, for a fixed N.
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In view of (ii), the experimental observation of sidebands in SF6 (or

other poiyatomlc molecules) would be evidence that the collisions] or intra-

molecular relaxation time is not much shorter in order to magnitude than

the laser pulse iengLh T. Clearly, if (for example) SF6 relaxes LO thermo-

dynamic equilibrium with resonant lase~-light in a very short time, as some

have clalmrd, 2] then no sidebands s.i~ouldbe observed according to (73).

Ex[)erlrnelltsI.Onbservc sidebiind prortur.tlonmay, in fact, provide a way to

distinguish unambigu~us]y bet~’een coherent excitation (which p~oduccs

sidrbands) and unselective laser heating of the molecules (which produces

nc !-.ld~bdI)l]S) . ~uanLiLaLive measuren)ellLsof the e[lergy transferred to

sideharlds, and romparisoll wiLh theoretical results such as (80), may bc

a useful technique for measuring (or for puLting a lower limit on intra-

molecular relaxation times.

Sidebands may, in principle, be observed eiLher spectroscopically or

temporally. l’empo~al observation (i.e., observation of optical nutation)

depends on the fact

portional to

l&(z”,L’)12=

+

that the intensity of the total field, which is pro-

&inc(L -)12 + 2Re(&inc(t ”)&rad(z”, t’1~:)

&rad(L -)12 (loo)

The advantage of temporal observation is that the heterodyne term 2Re

(~inc~’’ad) in (100), which will display temporal oscillations at the

dominant sideband frequency (Fig. 9), provides a substantial amplification

of the weak field &rad. The disadvantage of tempori’1 observation iE that

the presence of many different sideband frequencies leadg gradually to

destructive interference, causing the oscillations to decay in amplitude,
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Such a decay is a well-known consequence of the range of Rabi frequencies

6
induced by Doppler broadening. Similar phenomena in optical free induc-

tion decay have recently discussed theoretically in the context of elec-

tronic molecular transitions.
86

The advantag~ of spectroscopic observa-

tion is, of course, Lhat the sidebands may be observed even if the range

of sideband frequencies is so great LhaL only a very few temporal oscilla-

tions appear. The disadvantage is that Lhe sideband intensity may he

very weak, except for the relatively strong sidebands at the resonant

Rabi frequency (see tilefirst line of Table IV).

A number of points which we have not addressed in this work deservt’

furLher study, and will be subjects of our continuing research. First,

we have not given any quantitative treatment of the effects of sideband

generation on the energy deposited in a molecular gas by an incident laser

pulse. This promises to be a challenging problem in radiative transport.

Second, we have considered no coherent propagation effects other than

8“7
sideband generation. 1[1particular, we have not yet addressed the ques-

tion of explaining the photon-echo data in SF6.
28

Although we have made

numerical studies of optical free induction decay, space has nol permitted

us to discuss them here. Finally, we have not discussed effects due to the

transverse variation of the incident field.

We believe that our calculations reported in this paper have estab-

lished that the consequences of sideband generation for multiple-photon

excitation of polyatomic molecules deserve serious study. We expect to

report our continuing studies of this problem in future publications.
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FiRure Captions—.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Atomic displacements in one of the V3 and one of the V4 modes of

‘F6 ‘
as determined from the force-field analysis of McDowell

eL al.3’ (Figure courtesy of R. S. McDowell).

The absorption spectrum of the V3 band of SF6 at a temperature

T = 153K. (CouyLesy of K. N. Rae, S Hurlock, P. L. Houston

and J. J. SLeinfeld. 41) The P, Q, and R branches are clearly

evident, but no rotational structljre is visible.

The .?hsorpLion spectrum of the central portion of the V3 barld

-1
of SF

6
near 948 cm at a temperature of 135K, obtained with a

47
semiconductor diode laser. The center trace shows the Q

branch .

The absorption spectrum of room-temperature SF6 near the P(16)

C02 laser line at 947.7417 cm
-1

, obtained with a semiconductor

diode iascr and calibrated by heterodyning with a stable C02

laser operati. q on the P(16) line.1] SF6spectroscopic assign-

ments are indicated. Total tuning range approximately tl GHz.

The saturation spectrum of room-temperature SF6 near the P(16)

-1
C02 laser line at 947.7417363 cm , calibrated by o~fset fre-

quency locking to a stable C02 laser locked on an SF6 absorption

line.
13

Total tuning range approximately - 250 MHz to + 250 MHz.

States in SF6 radiatively connected to one value of J(=JO) in

the vibrational ground state. For clarity only V3 = O, 1, and

2 are shown.

Sideband amplitudes ( ~/i) summed over all i,nitial M values for

a single ground-state anguldr momentum Jo = 68, plotted as a



50

function of detuning (A,). All relaxation rates were zero in

this calculation. Other pa.-ameters are given in the text.

Fig. 8. Sideband amplitudes ( A/i) averaged over II initial M values

from !I= -J to +J and ever 49 initial J v:.lues from JO = 5 to

101, plotted as a function of detuning (Ai). All relaxation

rates were zero in this calculation. Other parameters are given

-1
in the text. Total frequency range: -6.91 to +6.91 cm . The

peak at +4 on the horizontal scale is a sideband in resonance

with the Q branch. The peak at +7 is in resonance with R-branch

transitions originating near Jo = 68.

Fig. 9. Amplitude [ I and phase $ of the total field (55) at z’ = 10 cm as

a function of reLarded time t“. Conditions same as for Fig. 8.

Total time interval: O to 48,3ps.
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