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ABSTRACT

In this paper we summarize recent theoretical studies of coherent
propagation effects in SF6 and other polyatomic molecules, beginning with
an account of relevant aspects of the high-resolution spectroscopy of the
Vy band of SF6' We show that a laser pulse propagating in a molecular
gas can acquire new frequencies which were not initially present in the
pulse, and that, in fact, a wave is coherently generated at the frequency
of every molecular transition acce sible from the initial molecular energy
levels. We discuss the possihle consequences of coherent generation of

sidebands for the mulltiple-pholon excitation of SF6 and other polyatomic

molecules.



1. INTRODUCTION

This paper is a brief account of recent theoretical developments in
the theory of propagation of laser pulses through a molecular vapor, and of
closely related topics in high-resolution molecular spectroscopy, which
may help provide some insight into the role of coherence in the laser-
driven multiple-photon excitation of SF6 and other polyatomic molecules.
High-resolution infrared spectroscopy and coherent propagation effects are
closely linked in SF6, both conceptually and historically. Early experi-
menl:all-5 nd theoretical6-9 studies of coherent propagation effects
in SF6 either suggested or depended upon specific models of the partici-
pating SF6 energy levels and transition moments. Recent high-resolution
spectroscopic studieslo-l3 have provided assignments of thousands of

transitions in the v, fundamental of SF6, 2nd have helped provide a frame-

work for the sitill speculative discussionlq of excited-state transitions
in SF6. The experimental linewidth observed in saturation spectroscopy of
SF613 is less than 10 kHz, which we may rewmark appears to be inconsistent
with a postulatedzl intramolecular thermalization time of 30 ps. In Part
Il of this paper, we shall summarize the current state of knowledge of the
v3 fundamental (v3 =0 > vy = 1) of SF6.

characterize the energy levels and transition moments of the statcs of the

Although we cannot yet fully

03 mode of SF6 with more than one vibrational quantum, we shall decscribe a
model which we believe to possess many of the qualitative features of the
energy levels and transition moments of the real SF6 molecule.

In Part I1II of this paper, we shall direct most of our attention to
certain coherent propagation effects which may have a major influence on

the development of the spectrum of an initially moncchromatic, nearly

resonant laser pulsc 2s it propagates through a vapor of polyatomic molc-



cules. Physically, the process of optical propagation consists of the
creation of a coherent, macroscopic electromagnetic polarization by the
incident optical electric field, and the interference of the optical elec-
tric field radiated by this macroscopic polarization with the incident
field. The total field produced by this interference acts on the molecular
sygtem, and the macroscopic polarization produced thereby must be self-
cohsistent with th= total field. Such a self-consistent, nonlinear coupl-
ing is well known from Lamb's theory of the laser22 and theories of laser
pulse propagation in simplified two-level systems Jeveloped by Hopf and

24 We shall summarize a general derivationZS

Scul]y23 and Icsevgi and Lamb.
of the equations governing the propagation of a laser pulse interacting
with an ensemble of multilevel molecular systems, within the framework of
the slowly varying amplitude and phase approximation (SVAPA) and the
rotating-wave approximation (RWA). We shall apply this formalism to the
specific case of propagation of laser pulses in SF6 vapor, in the limit of
an optically thin sample. The coherent effects which arise in optically
thin samples are optical nutation,6 optical free induction decay26 and

2,27,28 Optical nutation6 arises from the fact that the

photon echoes.
macroscopic polarization produced by the incident optical electric field
contains, in addition to the frequency w of the incident laser field, new
frequencies higher or lower than w by an amount equal to the Rabi frequency
of the transitions excited by the incident field. The macroscopic polariza-
tion then radiates a field which contains Rabi sidebands; th: interference
of the radiated field with the incident field makes the sidebands evident

as a temporal oscillation of intensity of the total field. If a system is

pumped nonresonantly by a laser pulse, the Rabi frequency is very nearly

equal to the detuning, so that the frequency of one of the sidebands very



nearly coincides with the resonant transition frequency of the system. The
molecular excitation produced by this nearly resonant, coherently generated
field may, of course, greatly exceed the excitation which would be produced
by the nonresonant incident field acting alone, depending on the magnitude

of the new field coherently generated in the medium.z"'29

As is to be
expected for coherent effects, the intensity of the field radiated by the
macroscopic molecular polarization is proportional to the square of both
the malecular number density N and the distance z traveled in the sample.
Order-of-magnitude estimates presented below suggest that Rabi sidebands
may well be of significant intensity for conditions often encountered in
experiments on multiple-photon excitation of polyatomic molecules (pressure
~ 0.1 torr, z ~ 10 cm).

The major conclusion of the work summarized in this paper following
our initial suggestion29 is that the optical field coherently radiated by
a molecular vapor subjected to an incident optical field contains a rich
spectrum of sidebands, covering essentially the full vibration-rotation
band with which the incident field interacts. The new, coherently generated
field -auses coherent cycling of population between the states radiatively
coupled by the incident optical field. In a two-level system not subject
to relaxation processes (e.g. collisions), the occurrence of coherent
cycling of population would mean that, on a time scale long compared to the
resonant Rabi period in the coherently generated field, approximately half
the population would appear in the upper state and half in the lower state.
This is a qualitatively important effect, which can greatly increase the
theoretically predicted effectiveness of multiple-photon excitation of
polyatomic molecules. The excitation of many rotational levels in SF6 at

surrrisingly low laser intensities has been observed experimentally.30



It is, of course, possible to give a phenomenological interpretation
of the strong excitation of many molecular energy levels not resonant with
the incident laser field as teing the result _f rapid collisionless intra-
molecular energy transfer.zl Such an intramolecular phenomenon would be
completely independent of N and z, so that it should in principle be
possible to distinguish unimolecular from collective coherent phenomena
experimentally by a properly conducted study of the dependence of laser
energy deposition in the sample (for example) on N and z. Effects due to
coherent generation of Rabi sidebands should be a function of the product
Nz, for optically thin samples, and for a given (fixed) incident laser
intensity. It is, of course, certain that some effects of sideband gener-
ation have already been observed experimentally, but it is very easy to
ascribe these effects to other causes. For example, effects due to the
increase of sideband electric field as N (for fixed z) could be identified
as effects of collisions among the molecules pumped by the laser. However,
the effects of sideband generation will also depend on z (for fixed N), and
are thus distinguishable in principle from collisional effects.

Although we are aware that the ideas about coherent propagation effects
described in this paper are at odds with some published concepts of multiple-
photon excitation, we are hopeful that our work will at least stimulate new

experiments, and new interpretations of already published data.



II. HIGH-RESOLUTION SPECTROSCOPY OF

THE Vy BAND OF SF6

In this section we shall summarize the current state of high-resolu-

3 fundamental band (v3 =0~ vy = 1) of SF6

shall indicate some current ideas on the structure of SF6 states with two

tion spectroscopy of the v , aund

or more v3 quanta. The spectra of the infrared-active modes of tetrahedral
and octahedral spherical-top molecules are highly complex, owing in large
part to the fact that these vibrational modes are triply degenerate. 1In

cctahedral spherical-top molecules, the two triply-degenerate infrared-

active modes, v, and Vo both belong to the (three-dimensional) F1u repre-

3
sentation of the octahedral point group Oh (Fig. 1). The v, mode in SF6
involves primarily stretching motions, while the Yy mode involves both

stretching and bending motions.31 The complexity of the vibration-rotation
spectra of these triply-degenerate modes is the result of many physical
effects: (a) splitting of levels with two or more vibratiomal quanta by
vibrational anharmonic effects; (b) Teller Coriolis splitting (and
Coriolis interaction between different vibrationa  states) due to inter-
actions between vibrational and rotational angular momenta,; (c) splitting
of each rotational level (which is (2J+1)-fold degenerate in the molecule-
fixed field frame) into as many states as are allowed by the molecular
point-group symmetry, due to tensor vibration-rotation interactions; (d)
nuclear hyperfine splitting. All of these cffects are significant in
understanding and assigning the experimentally observed high-resolution
spectra of the SF6 v, band. Even the nuclear hyperfine splitting has been
resolved, and some additional vibration-rotation spectroscopic constants

determined, in recent sub-Doppler studies of SF6.13



However, essentially nothing is firmly established with regard to the
spectroscopic constants of states in SF6 with two or more vibrational
quanta. In view of this fact, all we can attempt in this brief review
with regard to vibrational overtone states is to outline a model which
possesses some important qualitative features of the overtone states and
excite 1-state transition moments of the real SF6 molecule. The model
we shall outline, which has the virtues of computational convenience and
physical reasonableness, has been used in the numerical studies of coherent
propagation effects in SF6 which we shall describe in Section III of this
paper.

The derivation of the quantum-mechanical Hamiltonian for a vibrating,
rotating polyatomic molecule has been the subject of discussion and study
for many years; we refer the reader to a small subset of the literature for
a detailed summary.32-35 A full derivation of the effective vibration-
rotation Hamiltonian for a single (degenerate) mode of a spherical-top
molecule, starting with a power-series expansion of the vibration potential
energy, involves a sequence of contact transformations to bring operators
of successively higher order to approximately diagonal form. Such a
transformation has been carried out for a triply-degenerate mode of a tetra-
hedral molecule,36 but has not yet been attempted in the octahedral case.
An alternative approach which is very useful for the assignment of spectra
and the determination of spectroscopic constants is to expand the vibration-
rotation Hamiltonian in terms of &ll operators (up to a given order ino the
vibrational normal coordinates, vibrational and rotational angular momenta,
etc.) which are allowed by the molecular symfnetry group.37 The phenomeno-

logical constants which multiply the different operators appearing in such

an expansion can, of course, be expressed in terms of the parameters charac-



terizing the molecular force field, the equilibrium moment of imertia, etc.
and such expressions are known for the tetrahedral case.38 Because of the
far greater complexity of the vibrational Hamiltonian for octahedral
molecules,39 only the phenomenological approach of regarding the constants
which appear in the vibration-rotation Hamiltonian as independent para-
meters, and adjusting these parameters to give a least-squares fit to

experimentally measured spectral lire positions, has been followed for SF

10-12

6

and other octahedral molecules.
The amount of spectroscopic detail which can usefully be studied
theoretically depends to a great extent on the degree of resolution which
can be achieved experimentally. Grating spectra"o of SF6 at room
temperature show a smooth band contour uninterrupted by rotational struc-

ture. A grating spectrum of SF, at a temperature of 153!(41 (Fig. 2), at

6

which 80% of the SF6 molecules are in the vibrational ground state, shows
an irregular contour which is not noise, but is also not recognizable as

rotational structure. A real understanding of the SF, spectrum depended

6

on obtaining experimental spectra with a resolution limited only by the SF6

Doppler width (30 MHz at room temperature). The application of semiconduc-

. . . . 2 .
tur diode lasers to vibration-rotation spectroscopy resulted in

Doppler-limited spectra of SF, covering a frequency range of approximately

6
*1 GHz near the CO2 laser lines overlapping the SF6 Vg band.45 Although
these spectra went unassigned at that time, they proved to be very useful

lat‘.erlo-12 owing to the fact that they had been calibrated by heterodyning

the tuncble semiconductor dinde laser with a fixed~frequency CO2 laser
stabilized at the center of the CO2 laser line.45 This technique gives a

direct measurement of the frequency difference between the center of the

CO2 laser line and the spectroscopic feature to which the semiconductor
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diode laser is tuned, and is thus considerably superior in accuracy to the
technique of calibration by etalon fringes which is more commonly used in

laser diode spectroscopy.46 Much greater accuracy can now be achieved by

sub-Doppler saturation spectroscopy13 than by heterodyne calibration of

Doppler-limited spectra.

Assignment of the SF6 v, bandw-13 was made possible by Doppler-limited

spectra covering a large range near the v, band cent.er,a7 (Fig. 3) in SF

3 6

at temperatures where more than 90% of the SF6 molecules are in the ground

vibrational state, and by knowledge of the nuclear spin-statistical

48,49

weights which made it possible to recognize the pattern or "finger-

print" of fine-structure lines associated with each value of the total

angular momentum J. At first only the vy P and R branches could be assigned;

later the Q branch was also assigned11 (Fig. 4). More recently, satura-

tion spectroscopy of the Vg band of SF6

mine a more accurate set of vibration-rotation spectroscopic parameters,

has made it possible to deter-

and to uncover effects of nuclear hyperfine splitting.13

Prior to the publication of the assignment of the v, band of SF6, a

3
number of studies of coherent propagation effects suggzested, or depended
upon, certain qualitative aspects of the spectroscopy of the Vg band.

Observations of optical nutation3 were interpreted to give rather

different values of the vy transition dipole moment, one of which5 com-
pared favorably with later determinations based on the v3 band strength50
and the intensity of single lines in the high-resoluvtion spectrum.51
Self-induced transpara1cy52 was inferred to occur im SF6 irradiated by a
pulsed CO2 laser;l although some details of the process of inference

. , . 7
were not in agreement with taeoretical predictions for two-level systems,

self-induced transparency was later unambiguously observed3 in SF6 ir-

0
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radiated by some (but not all) of the CO2 laser lines overlapping the SF6
vy band (Table I). At first it was argued that self-induced transpar-

ency (and coherent propagation effects in general) could occur in SF6 only
if the value of the total angular momentum of the initial state were very

low. It was later shown theoreticallyg’9

that coherent propagation
effects can occur even for very high values of J, because of a "cluster-
ing" of the transition moments for different initial values of the spatial
quantum numbzr M. We shall discuss this point in greater detail below,
after deriving the form of the transition moments for a spherical-top

molecule. Experimental and theoretical studie52 of photon echoes in

SF6 have led to incomplete agreement between the observed and predicted
relaticnship between the pump polarizations and the echo polarization.
Finally, infrarad-infrared double resonance experiment553_55 and shock-tube
studies of the SF6 absorption contour56 gave important semiquantitative
information on the magnitude of SF6 J values frcc states interacting with
the various CO2 laser lines. HMore recent double-resonance studies of SFe
20,57

have provided data which challenge theoretical efforts at assignment. '’

Vibration-Rotation Basis

The vibration-rotation basis states for a spherical-top molecu'e may
conveniently be taken as linear combinations of products of vibrational
wavefunctious and rotational wavefunctions, within the framework of the
Born-Oppenheimer approximation. Two vibration-rotation bases which are
widely used in the theory of spherical-top molecules employ vibratiomnzal
wavefunctions ¢;2 which are adapted to spherical symmetry, and rigid-rotor

. J 3 . 38 . . .
wavefunctions DKM' In the coupled spherical basis, a linear combination

of the products DiM ¢;2 is taken which results in coupled angular-momentum

basis functions ¢;2gR. In the symmetry-adapted basis introduced by Moret-
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Bai]ly,58 a different linecr combination of Lhe products Din ¢;2 is taken,
such that the sum belongs to one row of an irreducible rapresentation of
the molecular point group. Both of these bases are important for a discus-
sion of spherical-top energy levels and transition moments.

The wvibrational wavefunctions ¢;2 in the spherical basis are cigen-
functions of the total number of vibrational quanta (v), the vibrational
angular momentum (£ = v, v-2, ..., 1 or 0) and the projecition of the
vibrational angu) r momentum along the molecule-fixed z axis (m = -£,

-2+1, ..., 2). Explicitly, as functions of the normal coordinates 9y

9, Q4 of a triply-degenerate vibrational mode, they are59

BT =N Y, @/141eTT T2 (R Ly, (45 (1)
where
¢¢ = f% o2 = 1417 (2)
j=1
q= (4,,9,,494) (3)
Nyg = 215(v=2)]11% {[(veer3)]1) 2 (4)
(a)

and where YEm is a spherical harmonic; Lp is an associated Laguerre
polynomial.60

The rigid-rotor wavefunctions for a given total angular momentum J,
with the projection of J along the molecule-fixed axis and space-fixed

axis being, respectively, K and M, are proportional to the elements of the

represedtation ' of t''e rotation group,
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%

J _[|2J+] J -1

wm—[ 2} Dy () (5)
Bn

where Q is the 33 matrix which rotates the components of a vector in the

laboratory-fixed frame into the components of the same vector in the mole-

cule-fixed frame:

., -+
Xmol = Fpap - (6)

Eq. (5) is a direct consequence of the symmetry of a spherical-to, molecule,
and may be established by purely group-theorelical argument.s.6]'62

The coupled spherical vibration-rotation basis veclors are

VIR _ _ ve o J
"'KRM = §<2J,mKIRKR> [6 "1 Uiy (7)

where K, = K-m. To obiain (7) one must subtract the vibrational angular
momentum £ from the total angular momentum J Lo obtain the purely rota-
tional angular momentum of ti.e molecular framework:
R=J-1. (8)

The symmetry-adapted basis functions are eigenfunctions of the rota-
tional angular momentum R, and the laboratory-fixed z component of total
angular momentum M, and also belong to a specific row of a specific
irreducible point-group representation. The symmetry-adapted basis may be

obtained58'64

(R)G:

from the coupled spherical basis by a unitary transformation

matrix

K
VAR _ S (R). R ,v&JR
A T (9)
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In (9), the indices
C=(r = ¢
= (Ty) and p=¢C (10)

are composite labels consisting of the irreducible representation I', the
row Yy of that representation, and an index n which distinguishes the
different state vectors with the same point-group symmetry which arise

in the reduction of DR into irreducible representations of the molecular

(R) 64,65

point group. The elements of G have been calculated for R up to 130,
and are tabulated58 for R < 20.

Vibration-Rotation Hamiltonian

1t was shown in the pioneering work of Hecht,38 Moret-Bail]y65 and

Louck66 that many advantages accrue from expressing the vibration-rotation
Hamiltonian for a spherical-top molecule in terms of spherical tensor
operators. The greatest advantage is that the Racah-Wigner angular

momentum calculus allows one to take the coupled-basis matrix elements

of the qth component Téklkzk) of a spherical tensor operator rlkikzk) o
rank k (formed by coupling a purely vibrational tensor operator TS?é)

(k2)

of rank kl to a purely rotational operator Trot

of rank kZ) in a completely

systematic manner:

V2 JR" . (kjkzk) o VAJR

(¢ 4 ” T )
R KM
R*KS (R kR’ .
: 8y y(=1) ] 1@zKe1) (2R*1) (2R 41) ] (11)
K 0 -Ky
2 2 K
. 3P (k1) (k2)
33 kyy et veantiiey e
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Only the reduced matrix elements need tc be evaluated (once!) by a calcula-

(¥1) and T(kz). The
vib rot

tion involving the explicit forms of the operators T
reduced matrix elements needed for most operators in the SF_ vibration-

6
. , . 38 ) 67
rotation Hamiltonian are tabulated by Hecht and Robiette et al.

To construct a vibration-rotation Hamiltonian which is invariant
under the operations oi the molecular point group, it is in general

necessary to form linear combinations of the spherical tensor components

p(K1kak)
q

combinations are

In fact, the octahedrally (or tetrahedrally) invariant linear

Téklkzk) (12)

pkikzk) _ 3 (k)qq
A A
1 q

1

where A1 is the totally symmetric representation of the point group. In

terms of the symmetry-adapted basis (9), we can use (12) to reduce (11) to

the form
v e'IR" (kikok) ,v2JIR
(wp,n, , TAl WpM )
A
1 _ y
= S - J k, p [(2k+1)(2R+1)(2R"+1)]
" R k
. 79 - (ky) (ky) L r-1\R (kR R)
<v’e IITvib | |ve> <JI|Trot [ 1I>(=1) FAlp'p (13)
: (k) . .58 . ,
where the Moret-Bailly F coefficient is defined as
(kR'R) _ 'ZE (k) m,y (R") m, (R) m3 R k R
F," .~ = G G_*- G (14)
Alp P m._m,m A1 P P m m, m
17273 2 1 3
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The off-diagonal (R #R) F(A) and F(6) coefficients have been calculated
numerically by Krohn™® for R” < 98, R < 98, and the diagonal (R* = R)
F(a) and F(6) coefficients have been calculated64 for R < 120.

In agreement with Robiette et al.,67 we adopt the following notation

for the tensor operators appearing in the vibration-rotation Hamiltonian:

= 15
k.k k;q q (15)

where n is the operator giving the total number of v, vibrational quanta.

3

In this notation, the vibration-rotation Hamiltonian for the v3 mode of
SF6 including all allowed operators up to and including rank k = 6, is

shown in Table I. The matrix elements of this Hamiltoniar. may be calcu-
lated using (11) or (13) (or using other bases), and the Hamiltonian may

be diagonalized numerically.

Fitting of Spectroscopic Parameters

It is evident from (11) or (13) that the Hamiltonian will, in general,
not be diagonal in the rotational angular momertum R. For not too large
values of J (in SF6, for J < 25) the off-diagonal elements in (13) lead to
negligible effects on the energy eigenvalues. In that case the diagonal
contribution to the energy eigenvalue E;:JR of a particular tensor
operator may be written down directly from (13). Evaluation of the 9J
symbols and reduced matrix elements for the operators appearing in Table

I leads to the parametrization of the fundamental transition frequencies

- gl,1,R+1,R _ -0,0,R,R
vp(R,p) EpM EPM (R branch, J » J+1)
- z1L,1,R,R _ -0,0,R,R
VQ(R,P) EPM EpM (Q branch, J » J)
1,1,R-1,R _ [0,0,R,R

vp(R,p) = E (P branch, J » J-1) (16)

pM pM



“TABLE 1.

VIBRATION-ROTATION HAMILTONIAN
FOR A TRIPLY DEGENERATE MODE

(K. T. Hecht, J. Mol. Spectrosc. 5, 355 (1960) ;: A. G. Robiette,
D. L. Gray and F. W. Birss, Mol. Phys. 32, 1591 (1976) )
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TABLE 1.

BOBIN-FOX PARAMETRIZATION OF
SPHERICAL-TOP TRANSITION FREQUENCIES

® NOTATION: R
p

i

ROTATIONAL ANGULAR MOMENTUM

OCTAHEDRAL OR TETRAHEDRAL SYMMETRY

SPECIES AND INDEX

FL“RR) = NORMALIZED EIGENVALUE OF D!AGONAL
"*®  BLOCK OF HAMILTONIAN (MORET-BAILLY)

INCLUD!NG OPERATORS OF RANK k IN R
M = —R(P BRANCH) OR R+1 (R BRANCH)
A(R,p) = OFF-DIAGONAL CORRECTION (IN B)

® P AND R BRANCHES:

i

Vp g (R,p) = m + nM + pM2 + gM3 + sm? = tM5 + xm®

(—1) R
2 3, .m4 (4RR)
+ (g—hM + + ¢
la=hM+ k7 + M+ i) S
P M M) SR pleRn

' D'F(R) * App

+ AP'R (R.p)
® Q BRANCH

vg(R.p) = m + vR(R+1) + wlR(R+1)]?

(-1 R ;
2 (4RR,
+ | —29 + uR(R+1) + z[R(R+1)] E(P) FA1PP

[ (XX} (-1)R
+1-22 + 2" RIR+) ] T Ff’::’
1

+ 44 (Rp)
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TABLE T (cont-)

FUNCTIONS APPEARING IN
BOBIN-FOX PARAMETRIZATION

2R (2R-1)
D(R) = [(2R—3) - - - (2R+5)] V2
, 2R (2R—1)
D'(R) =
[(2R=5) - - - (2R+7)] V2
(2R+2) (2R+3)
E(R) =
[(2R-3) - - - (2R+5)] /2
, (2R+2) (2R+3)
E(R) =
[(2R=5) - - - (2R+7)]1V/2
2R (2R+2)
F(R) =
[(2R-3) - - - (2R+5)] V2
, 2R (2R+2)
F(R) =

[(2R-5) - - - (2R+7)] V2
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shown in Table II.68 These expressions have been extensively used in
fitting Doppler-limited spectra of SF6]O-12. The relationship between

the Hamiltonian parameters anpearing in Table 1 and the spectroscopic
parameters appearing in Table 1] is complex, and will be discussed in a
future publication.70 Also, in Table II, the quantitijes AP(R,p), AQ(R,p),
and AR(R,p) are, by definition, the difference between the transition
frequencies determined through exact diagonalization of the Hamiltonian
including matrix elements c{f-diagonal in R, and the transition frequen-
cies calculated using approximate energies calculated using the purely
diagonal (in R) form of (13).

The assignment of an actual spectrum falls into three stages: (a)
provisional assignment, using approximate parameters obtained by a hand
calculation, etc.; (b) determination of preliminary constants given a
provisional assignment; (c) assignment of additional lines and final
determination of constants. Stages (a) and (b) may be accomplished using
the modified Bobin-Fox parametrizat.ion68 shown in Table 11, with
AP,Q,R(R’p) = 0. The values of AP,Q,R(R’p) may then be determined by an
exact diagonalization (including matrix elements off-diagonal in R) using
the parameters determined in (b). The resulting numerically determined
values of AP,Q,R(R’p) may be inserted in the modified Bobin-Fox expressions
(Table I7), new constants determined, and so on until the iteration
converges on a consistent set of parameters.lo-lz The values and standard
deviations of the SF6 spectroscopic parameters obtained using line positions
measured by high-resolution saturation spectroscopy are shown in Table

111,13
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In Fig. 5 we show a saturation spﬁ-ctrum]3 of a portion of the fre-
quency interval (near the P(16) CO2 laser line70 at 947.7417363 cm-l) in-
cluded at lower resolution in Figs. 3 and 4. The positions of the lines
marked with a bullet in Fig. 5 were measured by the technique of frequency
offset locking71 to an accuracy of a few kHz (with respect to the reference
CO2 laser line). The total tuning range in Fig. 5 is approximately
+250 MHz. The experimental linewidth is less than 10 klz.

Transition Moments

To complete our survey of spherical-top spectroscopic theory, we give
a brief der.vation of the transition moments for dipole-allowed transitions
in which one vibrational quantum changes, in the bases (7) and (9).72-75
The spherical components of the dipole transition operator in the labora-
tory-fixed frame, H,» are physically the quantities which interact with
an externally applied optical electric field E, through the dipole
Hamiltonian. Consequently we shall calculate the matrix elements of the

laboratory-fixed components Hyo which are related to the molecule-fixed

components of the vibrational normal coordinates by the equation
b= AZD1 @ g (17)
o T T’

where A is a constant characteristic of the vibrational mode. For an
individual with extensive experiencc in tensor operators it is easy
to see from (17) that the dipole operator is of tensor form, with kl =1,

kz =1, and k = 0, so that the matrix elements [ollow directly from (11)

4,75 express the
states ¢V2JR using (7); use the Wigner-Eckart theorem to evaluate (¢v-2 ,
K M m

qt¢;2); evaluate the rotational matrix elements using the well-kncwn inte-

or (13). A more pedestrian approach is the follnwing:7

gral over a product of three DJ's; and resum all the resulting 3J symbols
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to 6J or 9J symbols. The results are73-75

v'2°JR’ v2JR
(¢p'M' » Mg ¢pM )

. J 1 J°
= A6, -6 . ('])J+M 1 ( >
RR™ “pp M g -M~

[3(2R+1)(2J+1) (23 "+1)] % <v2|lql|v L >

27 2 1
J° J 1 (18)
R°" R 0

The reduced matrix element is

1
[(v+i+3)(2+1)/2]% when v~ = v+#1l, £ = 2+1
<wvlllgllve™> = (19)

1
[(v-2+2)2/2]1 when v~ = vtl, £ = 2-1

The selection rules evident from (19) are:

R* =R (20)
P =P (21)
v’ = vtl (22)
27 = g1 (23)
J° = J or Jt1 (24)
M"=M+o (25)

Selection rules (22) and (23) are expected to hold for all dipole-allowed
infrared transitions; physically they imply that one vibrational quantum is

changed in the transition. Select‘on rules (2G) and (21) are applicable
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only when the functions oY

M are nearly eigenfunctions of the exact

Hamiltonian. However, several of the tensor operators in Table I, including
the possibly important vibrational amharmonic operator TAOA’ mix states
with different R. When this happens, (20) no longer applies. Also, the
nuclear hyperfine interaction mixes states with different point-group
‘symmetry type p (particularly in the gro:nd vibrational statel3), so that
(21) is also an approximate selection rule. Transitions which do not
obey the selection rules (20)-(21) may have a substantial effect on the
process of multiple-photon excitation,76 through n2arly resonant enhance-
ment of multiphoton transitions. It is not clear that transitions which
violate (20)-(21) are necessarily orders of magnitude weaker than transi-
tions which obey {20)-(21), since the mixture of states with different
values of R and p need not be negligible.

It should be roted from (18) that the transition moment is always

proportional to the 3J symbol

(J 1 J'>
M o -M° {26)

regardless of the mixture of states produced by the vibration-rotation
interaction. (If the nuclear hyperfine interaction is strong, J and M

must be replaced by F and M_..) The presence of the 3J symbol in (18) is

F

a direct consequence of spherical symmetry.

A Model for the v3 Mode of SF6

In this work we have dedicated ourselves to a study of coherent effects

in multiple-photon excitation, and to an investigation of whether processer
which in the past have been ascribed to unimolecular or collisional relaxa-
tion are in fact the result of coherent processes. The details of our

model are conditioned by this physical approach. We assume that the mole-
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cule remains in the v, vibrational mode, i.e. that there is no intra-

molecular relaxation of population. In this case the basic physics of the

interaction of a single molecule with a laser field is multiphoton

excitation.77-80 The molecule goes from Vg 7 0 to vy = N by absorpticn

of N photons, without necessarily making resonant single-photon transitions

along the way. The resonant laser frequency for an N-photon transition

from vy = 0 to vy = N is given by
NZJR _ -1 NZJR _ -0,0,R,R
Wy S N [1~:pM 1-:pM ] (27)

As the proliferation of iudices in (27) indicates, there are many nearby
N-photon resonances (for all the allowed values of £,J,R, and p) with a
wide range of resonant frequencies. The bopulation which can be excited

to vy T N in an N-photon resonance can, in principle, be large; the highest
and lowecst levels can engage in coherent Rabi oscillations, much like the
upper and lower levels of a two-level system. If levels between £ =0

and vy = N are also significantl)y excited (due to a near-coincidence of
wgﬁjR with one or more single-photon transition frequencies, for example)
then the analogy with a two-level system is no longer applicable, but the
total number of molecules excited from vy F 0 may be higher. Certain
physical effects can, in fact, lead to a high probability of coincidence of
single-photon transition frequencies with multiphoton resonant frequencies,
and thereby compensate the expected anharmonic decrease of the transition
frequencies from vy to v3+1 with increasing vy- Both rotational energy77’81
and vibrational anharmonic splitting14 can at least partially compensate

the effects of vibrational anharmonicity on single-photon transition fre-

quencies. Both of these effects are present in our model. We kave included

rotations by including the terms
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01 s
BTooo = 2BEy Tyyo = BJ

- amg, 33 (28)

from the first line of Table II. Anharmonic splitting is provided in our

model by the spherically symmetric anharmonic contribution

2
Gys 33 (29)

from Tabie II. We have neglected the octahedrally symmetric anharmonic

contribution

T33 Taoa (30)

in Table II, which also rroduces anharmonic splitting, because this term

couples states WVRJR

ph with different values of 2 (and R) and thereby com-

plicates the model. Neglecting (30) entails a neglect of transitions
which violate selection rulc (20).
Iu our numerical calculations we at first82 lumped together in a

single "effective st_ate”83 |v@IR> all the states W;ﬁJR

with given (fixed)
values of v, £, J and R. This reduces the rumber of c_ates involved in the
computations, but forces one to employ instead of (18) a 'typical" transi-
tion moment, which we take to be the root me:n square of (18):

<v’2°J R IulveJr>
v ful typ

= A v 2lqllv’e™> W(2 2J°J;1R) (31)

where W is a Racah coefficient. 1In other words, this approach makes a
simplification in assuming that both energy levels and transition moments
are independent of p and M.

In more recent computations we have employed the effective states
| v&IR;M>, in which states with different octahedral symmetry types (p) but

the same quantum numbers v, £, J, R and M are lumped together. In this



tase the tste-.o-state transition moments (18), which are jindependent of
p, must be uued, The approximation made jin this case is to neglect the
dependence of the ene-gy levels on p; i.¢. we neglect the vibration-rota-
tion fine structure. 1In both cases we have, of course, also neglected
the effects of nuclear hyperfine effects, which would mix states with
different symmetry type p; these are already lumped together in our

effective-states approaches,



IV.  COHERENT PROPAGATION EFFECTS IN SFb
Electromagnetic Field Equations
We consider an infinite plane, quasimonochromatic electromagnetic
wave Lraveling in the +7 direction, with a real electric field
£ = éE(2,1) (32)
to be incident on a uniform gascous medium with molecular number density
N. In (32), ¢ is a unit polarization vector, such that
oe= (33)
The incident field sets up a polarization density
P = éP(a,1) . (34)
The propagation of F in the medium is described by the one-dimensional

wave equation (in MKS units)

2,

2. 2
A°E 1 9K . ¢k IE 9°p
P . = =M Y o (35)
azz cZ DLZ 2 an 0 HLZ

In (395), ¥ is a linecar attenuation cuvefficient introduced to allow for
scattering losses, ete.  In order to make further progress, we make the
slowly varying amplitude and phase approximation (SVAPA): we assume that

the tield and polarization are of the form

E(z,t) = E"(2,t) cos {(z,t) (36)
P(z,t) = C(z,t) cos L(z,t) + S(z,t) sin {(z,t) (37)
t(z,L) = kz - wt + ¢(z,t) (38)

where E°, C, S, and ¢ are slowly varying in the sense that

of of
|$| << |kf| |5-| << |wf| (39)
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where f is E°, C, S or ¢. If we insert (36)-(38) in (35), and make the
SVAPA (39), then we find that
€= @ (40)

k
250

™
Q:lo::
N

-+

e R
QJ!QJ
ps

-+
NIX

where we have introduced the complex electric field
E(z,0) = E"(z,0)e'®(Z V) (41)
and complex polarization density
P (z,t) = [S(z,t) + iC(z,1)]e (@t (42)
In terms of the retarded-time variables
z" =2, t = t-z/c (43)
(40) becumes
[£ﬂ§]5=§2—6’. (44)
0
As it stands Eq. (44) is simply an approximate form of Maxwe.. s
equations adapted to a particular physical situation, and is thercfore
incomplete. To complete (44) we must give a prescription for calculating
P, which we shall do below. In general @ depends on 6 in a highly non-
linear manner, so that (44) is one of a set of coupled, nonlinear partial

differential equations. A self-consistent solution of these equations can

ovdinarily be obtained only by numerical calculations.



26

Calculation of the Polarization Density

The polarization in a dilute medium is simply the product of the
molecular number density N and the quantum-mechanical expectation value

of the dipole operator:

P=N tr(pp-é*) = N er(pp ) - (45)

vwhere p is the reduced density matrix for the vy mode of SF6.84 In terms
of a basis of states |vA>, where v is the vibrational quantum number and A
denotes the remaining guantum numbers, (45) becomes
P=2 2 Pya,uB PvA,uB (46
Vylu A,B
In keeping with the SVAPA, which removes harmonics from Maxwell's

equations, we shall employ the rotating-wave approximation (RWA), which

removes harmonics from the equation of motion for the density matrix

p. Let
i(Qu-Qv)t’ .
va,uB =€ va,uB (47)
where
Q = v . (48)
v

Since -wt = kz-wt by (43),(47) removes the rapid spatial and temporal

oscillation of p created by the incident field. The equation of motion

for p is84
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"
——
1)
|
—_
.-
1)
™

~—

(1

- & ¢
YvA,uB 6Vu AH)’ va,uH

Lo, -
5 E(z,t) 5% Iva,qC qu,uB va,qC “qC,uBI

- & - . G
buvOnk qZC [Bun,vn ™A, qc ~ Pac,qc "qC,val (a4t
where YvA,uB = YuB,vA is the dephasing rate of an otf-diagonal density-
matrix element and WA uR is the rate of population transter (per mole-
’

cule) from vA to uB., For a two-level system, the relationship between the

y's and w's and the more familiar relaxation constants T1 and Tz is

-1 _ 1 )

(T]) =5 (“12 * W, (50)

r )']=Y -y (1)
2 12 21 '

We regard the physical origin of the y's and w's as collisions, not intra-
molecular transitions.
We implement the RWA by substituting (47) into (49), using (36), (41)
and (48), and discarding terms which vary as exp(22iwt "). The result is
3p

A8 L gi(qo, - E¥R) - (@, - EPA))

) YvA,uB - 6vu6nB)} va,uB

i ~ 9
7 a (ve)c p(v+1)c,ula6



) -
Hoa, (v-1)¢ P(v-1)C,uB

T Poa,v-1)c Mv-1)c,uB 6
va,(v+1)C p(v+1)C,uB é !

- 0 , -5 , £
vulak qzc toua v va,qc T Pqc qc ¥qc.va! (52

Only slowly varying quantities appear in (52).
The transformation (47) also enables us to express the slowly varying
complex pularization directly in terms of p: :

vA,(v-1)B va,(v-l)B (13)

Rz 1) = 2iN 2 b
AB
(Eq. (53) follows directly from (46), after some algebra.) Eqs. (52) and
(53), together with initial conditions for B, define the complex polariza-
tion  which appears in the field propagation equation (44).
Thin-Sample Approximation

The field equation (44) has the formal solutiorn

(2 t") = lexp(-kz"/2)1 6 (0,t7)
+ 5 .7. {explk(z"-2")/2]} P(z"",t )dz "~ (54)
26, % P ’ '
= £mc(z',t') + £rad(z',t') (55)

Physically, the first term in (54) is the incident field, and the second
term is the field radinted by the macroscopic polarization p; their sum is
the total field £. The spectral content of € will differ from that of

5. to the ext=nt that é;a

inc contains frequencies (or, equivalently, a

d
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time variation) not present in éinc' We shall call the components of é;a

at these new frequencies sidebands.

d

To facilitate our analytical and numerical studies of the alternation

of the spectrum of the field thruugh propagations, we consider the limit

in which

1€

rad

| << 161,

inc
so that we may take™™
€@ty =6 (27,0

in calculating the polarization 6’by use of (52) and (53).

implies

iR

ey =X e P00

rad

If the linear attenuation k is small (i.e. kz~ << 1) then

rad

N T .
6 (z",t7) = 55'6@(0,1" )

(56)

(57)

Then (54)

(58)

(59)

Eq. (59) is fundamental for making analytical (and numerical) estimates of

the magnitude of the sidebands.

To continue our investigation, and to make the presence of sidebands

in é;ad obvious, we make the additional assumption that é;nc

pulse:

is a step

(60)

In what follows we shall also set the linear attenuation K equal to zero.

In view of (60), the coefficients in the density-matrix equation of motion
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(52) are independent of time, suggesting an eigenfunction expansion of 5.

We shall write (52) in the finite-dimensional matrix form

where we assume the basic [vA> has been truncated to M vectors; we regard 5
as a (szl) column vector, and A as an (M2XM2) matrix whose components may
be read off from (52). Since (61) is linear in 5 and first-order in time,

it possesses a solution of the form

p(t") = V(t7,t0) plty) (62)
where V must satisfy the initial condition

V(td,té) =1. (63)

If we put (62) into (61) and note that 5(t6) may be completely arbitrary,

we find the following equation for V:
—3 = AV . (64)

The form of (64) suggests we expand V as

-A(t -t )
» - - O
(t ,to) -%e cval)urB»(A) D

Vo A* u'B’ v, uB o, (65)

This expansion is in the same spirit as the eigenfunction expansion of p

85

used by Goodman and Thiele. The initial condition (63) implies that

% Cv'A',u'B'(A) DvA,uB()\) = 6v’v('su'uéA’A\éB'B ’ (66)

i.e. that the matrix DVA UB(A) (with rows ordered by A and columns by
y



31

{(vA,uB)) is a right inverse of the matrix CV'A' u'B'(A) (with columns
¥

ordered by A and rows ordered by (v'A",u'B")). Since a right-inverse

matrix is alsoc a left inverse,

Z z CVA,UB(A) DvA,uB(A ) = 6}\)\' . (67)
v,u A,B

Relations (66)-(67) are to be expected for an eigenfunction expansion of
the evolution operator v.

We now indicate how the matrix C in (65) may be determined. If we
put (65) into (62), we find the following eigenvector-eigenvalue equation:

=AC(A) = AC(AN) (68)

where C(A) is a column vector as noted abhove.

1f we assume the eigenvalue problem (68) has been solved, then the
time development of the reduced density matrix E(L') (considered as a

column vector) is given by (62) and (65):

=A(t -t)) 2_ Z
~ . 0
va,uB(t ) _§ € vu  A'B’ CvA,uB(M 9'1\',u'B'(A)
“Pyrarup(te) (69)

From (53) and (69), the slowly varying complex polarization 6>is

A (t -t )
Fo,e) =2 0 (?A (70)
A
where
&a;= 2iN 2: p(v-l)A,vB vZ;' AZE' C(v-l)A,vB(A) Dv'A',u'B'(A)

v,A,B

~ »

) pv'A',u'B'(to) ' (71)
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Equations (70)-(71) are a fundamental result of this paper.

Spectral Content of the Radiated Field

It is evideni from (70)-(71) that sidebands will be present in glwhen-

ever the eigenvalues A have a n(vzvro imaginary part. We shall now invest-
igate under what physical circum;xfnces this will occur. First, we note

%
that the eigenvalue A = 0 corresporMs to a steady-state solution of (52)

or (61), i.e. a solution in which radiative pumping by the field is exactly
balanced by relaxation due to collisions. (In the steady state, BBSS/BL' =
0.) Consequently we may identify the eigenvector C(0) corresponding to
the zero eigenvalue as the steady-state density matrix (this establishes

the normalization of C(0)):

58

p°% = c(0) . (72)

It follows from (72), (65) and (67) that if 5(t6) = p°%, then

va,uB vu A'B ,u'B'(A)

N At =)
(t7) = ;« 0 Z Z . CvA,uB(’\) D, -5~

v
v

3

]
On
~
o

<
R
c
o
~—
>
L

~585

va,uB (73)

Eq..(73) expresses the ﬁhysically reasonable statement that if the system

is in the steady state, then it‘%tays in the steady state. Equation (77)
also imBlies, however, that there are no sidebands when the system is in

the steady state. It follows that the existence of sidebands is a transient

phenomenon, and that the sidebands persist only while the system is evolv-

ing toward the steady state.
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To calculate the spectral content of the real optical electric field
(36), which is expressed in terms of £as
E(z,t7) = e {e ™ E(z7,17)} (74)

we calculate the autocorrelation function
1 T 2
G(t) = T*r [E(z",t"+1) E(z".t") - E(z",t")"]ldt” (75)
0

which, according to the Wiener-Khinchin theorem, is the Fourier transform
of the power spectrum of E. Since the random process represented by E is
not stationary, T should not be taken to be longer than the length of the

laser pulse. From (74), (70) and (58), we find

1 - T e rr)on e
G(t) = %T [5—2—] {e'““TZ Z J. M (t +1)-A"t @,.@’dt,
A Ao

250 AA

+ complex conjugate} (76)
where Zi means a sum on all the eigenvalues
A=A+ 1A, (77)
r i

for which Ai #0. In (77), Ar is a relaxation rate, and Ai is the fre-
quency of the sideband corresponding to the eigenvalue A. Eq. (76) holds

in the limit in which
IArTI <«< 1 (78)
(i.e., the laser pulse length T is short compared to relaxation times) and

IAiTI >> 1 (79)
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(i.e., the laser pulse length T ‘s long ccmpared to the period of any of

the sideband frequencies). Carrying out the integral in (76), we obtain

1 [z 12 10)\'2 COMAOT. (N i) (-A-iw) T
G(r)=—[L]Z————(1-e ) (efTh TIWIT 4 QlTATIW

P o2 - 2) (80)
4T 250 X A+A
provided we assume that
IAi-A{I T> 1 for A# A (81)

(i.e., the sideband frequencies are all sufficiently different that none
of their beat notes are comparable tc T_]).

Physically, Eq. (80) says that the intensity of the sideband with

frequency (w+Ai) is

-2 -2A T -A
This result clearly shows the decay of the sideband intensity to zevro for
laser pulses which are long compared to the relaxation times of the system.
This may be cather simply understood: the system gradually evolves toward
the steady state, with time constants which are given by Ar’ according to
(69); and in the steady state there are no sidebands.

If the laser pulse is switched on adiabatically starting with EO = 0,
then the system will always be in the steady state corresponding to the
present value of EO. Although the eigenvalues and eigenvectors will also
evolve adiabatically, and although there may be some eigenvalues with
nonzero imaginary part, there will nevertheless be no observable sidebands

because 6; will vanish for A # O.
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The sideband frequencies are (w+Ai) according to (80). For a

qualitative study of Ai’ we turn to simple systems with only a few levels,

which are supposed to represent the one vy = 0 and three vy = 1 levels
shown in Fig. 6. If we label the vy T 0 level as 0 and the three vy = 1

levels as 1, 2, and 3 in order of increasing energy, and if we assume the
laser frequency w is such that the 0 » 1 tLransition (P(JO) in Fig. (6) 1s

resonant, then the detunings 2A2 and 24, of levels 2 and 3 respectively are

3
such that A3 > A2 > 0 and A3 z 2A2. Further, we shall assume for simplicity
that the "typical"” transition moments (31) for the 0 » 1, 0 > 2 and 0 - 3
transitions are all equal to p. We shall also assume that all relaxaiion

rates are negligible

compared to the resonant Rabi frequency (in Hz)

Q:Eh—_ (83)
The sideband frequencies in the limit
Q> 4, , Q> Ag : (84)

are shown in Table 1V, along with the associated polarizations 6), as
determined by an approximate eigenvalue analysis. It will be noticed
that the strongest sidebands correspond tv w * 2, and that the next
strongest sidebands are at frequencies which (to order Q) are resonant
with the frequencies of the transitions 0 » 2 and 0 » 3. The electric
field strengths at these nearly resonant transition frequencies are

f(j)

rad

o —P—N't:z AQ (85)
07j
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wherc j = 2 or 3.

1f we assume, for example, that EO = 3X107 V/m (corresponding to an

9 -
incident intensity of ~ 1.2)(108 W/-m“), then {/c ~ 1 cm 1. Let us assume

2J2/c ~ 4 cm_], as would be the case for pumping an SF, P-branch transition

6
with the P(20) laser line of CO2 (w/2nc = 944 cm_]). We take the transi-
tion moment to be p = 0.3 Debye (10-30 MKS). We assume a total molecular

number density N ~ 3><1015 cm-3, corresponding to a pressure oi ¥ 0.] torr.

We also assume that only those transitions well within a frequency interval

Q0 of the resonantly pumped line, with roughly g = IC_] of the total

)
d

tion to be used in (85) is gN rather than N. Then

population, coutribute to 652 at the frequency w+2AJ, so that the popula-

|5£§;| ~ 2x10° V/m . (86)

We shall give a brief qualitative discussion of the consequences of the
phenomenon of resonant sideband generation for multiple-photon excitation

in Section V.

Table IV. Approximate Eigenvalues and Associated

Polarizations for an Undamped Four-Level System

Sideband frequency utA, @A

wt 20 + iNp/2
2 .

w + 2A2 -Q+ 0(Q /AZ) 1NpQ/2A2
2 .

w+ 2A3 - Q+ 0(Q /A3) 1hpQ/2A3

Effects of Spatial (M) Degeneracy

The dependence of the transition dipole moment between the effective
states |v&JR;M> or the molecular eigenstates W;ﬁJR is given by the 3]
symbol in (26). In view of the M selection rule (25), the levels which

are radiatively connected to an initial M are not radiatively connected to

0
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a different initial HO # HO. Jet 1 = 1 (VOROJONO;MO) be the set of levels
which are radiatively connected to the initial state with quantum numbers
VO’ZO’JO’RO and MO. Then by definition

Hoa,ub = O1(vA),1(uB) MvA,uB (87)

where & is the Kronecker delta. The sum in (46) then becomes

P =N 2: 2: ): p

" ' (88)
1 vAel uBel vA,uB "vA,uB

Physically, (88) implies that the total polarization is the sum of the
polarizations due to each subset I of radiatively connected states. In

view of (69) and the normalization condition
1 (89)

it is convenient to define the population fraction for the Jth subset

g, = L b =25 (90)
1 VAE] vA,VvA VAET VA, VA

and the normalized density matrix for the Tth subset

~(I) _ -1 ~
va,uB = (g]) va,uB (where vA,uBel) . (91)

With these definitioans (88) becomes

_ (1)
P=N 2:31 L 2z Pya,uB Pva,ub ° (92)
1 vAel uBel

where pI and 51 may be calculated as in our previous examples. It may

(1) with p(I‘);

happen, of coursc, that collisional relaxation couples p
for the sake of simplicity we have excluded this possibility in deriving

(92), although this is not an essential assumption in our general formalism.
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One expects that when all molecules are initially in the vibrational

ground state,

g = 23117 g(Jy) (93)
0

where JO is the initial value of J, and g(JO) is the fraction of molecules
with ground-state angular momentum JO.

Since the transition dipole moment (18) appears to depend strongly on
M, and since coherent effectls in a resonantly pumped system depend on Rabi
frequencies which are directly proportional to the transition dipole
moment, it was initially believed that no colerent effects could appear
in a system with a large value of JO. Subsequently, however, it was
pointed out by Hop{, Rhodes and Szb'ke8 and by Gibbs, McCall and Salamo9
that the 3J symbol (26), to which the transition dipole moment (18) is
proportional, has the property that for certain value of J™ and o
many of the values of (26) are very close to one another. This "cluster-
ing" of transition moments means that the Rabi frequencies for many M
values (for a resonantly pumped two-level system, for example) are very
nearly equal, thus enabling the different contributions (I) in (92) to
oscillate in phase for a large number of cycles.

The values of the 3J symbol (26) for J = J, J+1, and for ¢ = 1

(circularly polarized light) and © 0‘(linear1y polarized light) are
shown in Table V. For J° = J+1, 0 = 0, for example, the transition moment
is proportional to the function

£) = [(3+1)% - w2 (94)
It is easy to see that f(M) is a ~lowly varying function of M near M = 0,

so that many of the values of f(M) for M = =J, ..., J are nearly equal

to £(0). 1t should be noted from Table V that the clustering of transition



moments depends on Lhe the change of angular momentum | J <J| and the polariza-
tion 0 ot the incident field. For P or K branch transitions (JJ =J| = 1)

the transition moments cluster for linearly polarized light (0=0) but not

for circularly polarized light (lo| = 1). For  branch transitions (J'=1])

the reverse is true:  the transition moments cluster for circularly

polarized light but not for linearly polarized light.

The molecular transition frequencies (shown in the last two lines of
Table IV for the example of a four-level system) at which rec nant side-
bands develop are only weakly affected by the M dependence of the transi-
tion moments, while the resonant Rabi frequencies (the first line of
Table IV) are strongly affected.  Conseyuently the conclusions drawn
above in (85)-(86) are essentially unaltered by the M dependence of the
transition moments.

The values of di/i summed over initial values of M for a system

without damping are shown in Fig. 7. The system employed was our second

cffective-states model of SF6 (Iv28JK;M-), with 0 = 0, JO = 68, HO =
3%10° V/m, w/2nc = 966.2 cm |, v, = 948 em |, K., = -2.54 em |, G, =
0.303 cm-l, B = .0907 cm-l, §3 = 0.693.%*% The values of 61/i shown in

Fig. 7, obtained by numerical diagonalization followed by summation over
all (2Jo+1) = 137 values of MO' clearly show the clustering of resonant
Rabi frequencies Q (84), which directly reflecis the clustering of the
dipole transiticn moments (18). Under these conditions EO is sufficiently
weak that the model Sl-‘6 molecule behaves nearly as a two-level system,
as far as the sidebands in the first line of Table IV are concerned.

The values of 61/1 summed over initial values of Jo and HO' under

7

conditions of stronger radiative driving (EO = 3x10° V/m), are shown in

Fig. 8. The sidebands at small detuning correspond roughly to the first
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line of Table 1V, the sidebands at larger detunings are approximately at
resonant molecular transition frequencies. The calculations which
resulted in Fig. 8 involved a4 summation over 49 values of J0 and 11

values of MO for each JO'
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Table I,  Spectroscopic Parameters

13

for the . Fundamental of SF
3 f

Pa rametoer _(__.-;_u-(-_ Table 1) Value :_c ‘m__l_)_ and Standard beviation
m 947.976073307(62)
=
n 5.58173103%) - 10 °
=7
. —1.615414(8Y) 7+ 107"
. -8
q 1.236(47) - 10
o -11
4 ~6.77(2%).- 10
L ShLK09,5) - 1071
v -h.Y8T6(406) - 107
w ~0.9(1.%) - ot
" ~2,65621(32) 1077
=Y
h =1.910012) - 10
- . -11
k =1.5401L1) - 1u

u 0.6¢1.0) « 10° 1!
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V. _ SUMMARY AND DISCUSSION

We have established the following points with regard to the optical
tield radiated by the macroscopic polarization which is set up in a mole-
cular gas irradiated by a pulsed laser field:

(i) The sideband field is proportional to pNkz® and the sideband
intensity is proportional to (kaz')z, in the limit where

the radiated ficld is small compared to the incident field,

and where no significant reabsorption of the radiated field

occurs.

(ii) The sideband intensity approaches zero as the molecules

approach equilibrium between radiative pumping and collisional

(or intramolecular) relaxation. Sidebands will be observable

only if the risetime of the laser pulse is short compared to

the shortest collisional (or intramolecular) relaxation time.

(iii) Sidebands are generated in near resonance with every molecular
transition accessible from the initial state of the molecules.

The most qualitatively important effect from the point of view ol
multiple-photon excitation of polyatomic molecules is (iii), since this
result implies that a laser pulse generates essentially every transition
frequency of the molecular vibration-rotation band with which it inter-
acts, as a result of the process ol propagation. In particular, this
collective generation of new frequencies is the only process known to us
which can explain the very largelnumber of rotational states in SF6
pumped by a C02 laser at rather modest laser intensities.30 To illustrate
this point, let us consider the Rabi frequency at which molecules will
cycle population between levels 0 and 2 as a result of the coherently

generated field (86). The Rabi frequency for population cycling is
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(2)
uig ol i
rad’ _ 4,908 71 ' (95)

h

i.e. the Rabi period is ~ 3 ns, under the conditions assumed tor (86).
Averaged over in times long compared to 3 ns, then, half the molecular
population in state 0 will appear in state 2, under the influence of the

. (Z2) . . : _ . i , i
tield £r]‘. This time for nearly saturated pumping of level 2 is less than
the 50-100 ns COZ lascr pulse lengths often employed in experiments on
multiple-photon excitation of SF6. The predicted time-averaged probability

- , : . Y . 6(2) : . . .

of 0.5 for excitatjon of ltevel 2 by the field rag 1D this case should be con-

trasted with the time-averaged probability of excitation of level 2

produced by the incident field 6%"0 acting alone, which is

‘)

[22']h ~ 6x107% | (96)
p4

For weaker incident fields, (Q/2A2)2 is smaller (in propertion to the
incident intensity), and the enhancement of excitation by Eﬁgz (for
sufficiently long laser pulses and low relaxation rates) is even greater
than in this example.

Although the estimates just presented depend on the assumption of
no collisional or unimolecular relaxation during the time oi the laser
pulse (according to (ii)), this assumption should be fulfilled for
collisional effects at the pressure (~ 0.1 torr) assumed in deriving (86),
for laser pulses of length T < 100 ns. In applying result (ii), it should
also be noted that any major change in laser pulse amplitude or frequency
will have the effect of disequilibrating the molecular populations and
enabling a renewed generation of sidebands. Even unstabilized CW lasers

may be able to generate sidebands in SF6 and other molecular gases, due to
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frequency jitter and a consequent lack of equilibrium between laser pumping
and collisional relaxation.
The conditions for efficient experimental observation of sidebands

are evidently

T << shortest relaxation time (97)
(i)

T << lh/P£,3d| (Y8)

T 3> (ZAJ)-] (99)

where T is the laser pulse length. Condition (97) is required by (ii).
Condition (Y8) means physically that the radiated field doecs not strongly
excite any molccules, and thus is able to escape from the sample cell.
Condition (99), which will be fulfilled in practice for all but the
shortest pulses, simply means that the sidebands can execcute many periods
of oscillation with respect to the incident frequency, so that there is

a well-defined frequency for either spectral or temporal observation.

The functional dependence of sideband-induced effects on the product
WNkz® as stated in (i) provides a way to distinguish the effects of
collective, coherent generation of sidebands from unimolecular or colli-
sional rrlaxation. For unimolecular relaxation there should be no
dependence on N or z°. For collisional relaxation, the increase of
energy absorbed per molecule due to collisions might be expected to be
proportional to N. In certain limits the molecular excitation produced
by (for example) Ei:?, (85) will be roughly proportional to N, for fixed
z’; this dependence could easily be mistaken for a collisional effect.
True collisional effects can, in principle, be distinguished from coherent
propagation effacts under the conditions (97)-(99) by a study of the

dependence on z°, for a fixed N.
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In view of (i1), the experimental obhservation of sidebands in SF, (or

6
other polyatomic molecules) would be evidence that the collisional or intra-
molecular relaxation time is not much shorter in order to magnitude than
the laser pulse iength T. Clearly, if (for example) SF6 relaxes to thermo-
dynamic equilibrium with resonant laser light in a very short time, as some
have claimod,21 then no sidebands should be observed according to (73).
Experiments to observe sideband production may, in fact, provide a way to
distipguish unambigususly between coherent excitation (which pioduces
sidebands) and unselective laser heating of the molecules (which produces
ne sidebands). Quantitalive measurements of the energy transferred to
sidebands, and cemparison with theoretical results such as (80), may be
a useful technique for measuring (or for pulting a lower limit on intra-
molecular relaxation times.

Sidebands may, in principle, be observed either spectroscopically or
temporally. Temporal observation (i.e., observation of optical nutation)

depends on the fact that the intensity of the total field, which is pro-

portional to
e a2 oy 2 . N
167 0)1% = 16, (L)1 + 2Re(€, (£ & 4(27,t))

+ 16,4t 12 (100)

The advantage of temporal observation is that the heterodyne term Z2Re
(Einc ciad) in (100), which will display temporal oscillations at the
dominant sideband frequency (Fig. 9), provides a substantial amplification
of the weak field £rad' The disadvantage of tempor:1l observation is that
the presence of many different sideband frequencies leads gradually to

destructive interference, causing the oscillations to decay in amplitude.
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Such a decay is a well-known consequence of the range of Rabi frequencies
induced by Doppler broadening.6 Similar phenomena in optical free induc-
tion decay have recently discussed theoretically in the context of elec-
tronic molecular transitions.86 The advantage of spectroscopic ohserva-
tion is, of course, that the sidebands may be observed even if the range
of sideband frequencies is so great that only a very few temporal oscilla-
tions appear. The disadvantage is that the sideband intensity may be
very weak, except for the relatively strong sidebands at the resonant
Rabi frequency (see tne first line of Table 1V).

A number of points which we have not addressed in this work deserve
further study, and will be subjects of our continuing research. First,
we have not given any quantitative treatment of the effects of sideband
generation on the energy deposited in a molecular gas by an incident laser
pulse. This promises to be a challenging problem in radiative transport.
Second, we have considered no coherent propagation effects other than

sideband generation.87 1. particular, we have not yet addressed the ques-

tion of explaining the photon-echo data in SF6.28 Although we have mace
numerical studies of optical free induction decay, space has not permitted
us to discuss them here. Finally, we have not discussed effects due to the
transverse variation of the incident field.

We believe that our calculations reported in this paper have estab-
lished that the consequences of sideband generation for multiple-photon

excitation of polyatomic molecules deserve serious study. We expect to

report our continuing studies of this problem in future publications.
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Figure Captions

Fig.

Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig.

1.

7.

Atomic displacments in one of the vy and one of the v, modes of

SF6, as determined from the force-field analysis of McDowell

et al.31 (Figure courtesy of R. S. McDowell).

The absorption spectrum of the v3 band of SF6 at a temperature

T = 153K. (Cou-rtesy of K. N. Rao, S Hurlock, P. L. Houston

and J. J. SLeinfeld.al) The P, Q, aud R branches are clearly

evident, but no rotational structure is visible.

The absorption spectrum of the central portion of the vy band

of SF6 near 948 cm_1 at a temperature of 135K, obtained with a
semiconductor diode laser.a7 The center trace shows the Q
branch.

The absorption spectrum of room-temperature SF6 near the P(16)
CO2 laser line at 947.7417 cm-l, obtained with a semiconductor
diode laser and calibrated by heterodyning with a stable CO2

laser operati. g on the P(16) line.ll SF6 spectroscopic assign-

ments are indicated. Total tuning range approximately *1 GHz.

The saturation spectrum of room-temperature SF, near the P(16)

6

C0, laser line at 947.7417363 em" !, calibrated by offset fre-

quency locking to a stable CO

2
line.13 Total tuning range approximately - 250 MHz to + 250 MHz.

laser locked on an SF6 absorption

States in SF6 radiatively connected to one value of J(=JO) in
the vibrational ground state. For clarity only vy = 0, 1, and
2 are shown.

Sideband amplitudes ( A/i) summed over all initial M values for

a single ground-state angulsr momentum JO = 68, plotted as a



Fig. 8.

Fig.

9.

50

function of detuning (A,). All relaxation rates were zero in
this calculation. Other pa.ameters are given in the text.
Sideband amplitudes ( A/i) averaged over 11 initial M values
fromM = -J to +J and cver 49 initial J velues from JO =5 to
101, plotted as a function of detuning (Ai). All relaxation
rates were zero in this calculation. Other parameters are given
in the text. Total frequency range: =-6.91 to +6.91 cm-l. The
peak at +4 on the horizontal scale is a2 sideband in resonance
with the Q branch. The peak at +7 is in resonance with R-branch
transitions originating near JO = 68.

Amplitude | | and phase ¢ of the total field (55) at z° = 10 cm as

a function of retarded time t°. Conditions same as for Fig. 8.

Total time interval: 0 to 48.3 ps.
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