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SAMPLING THE FERMI-DIRAC DENSITY

by

E. D. Cashwell and C. J. Everett

ABSTRACT

A method is given for sampling the nonrel-
ativistic Fermi-Dirac electron energy density for
all values of the "degeneracy parameter" ri on the
range - °° < n < 50. The efficiency of the various
rejection techniques employed is never less than
30%, and drops below 50% only for a short range of
H values around n = 2. The range can certainly be
extended beyond rj = 50, the efficiency there being
71%, and decreasing very slowly.

I. THE FERMI-DIRAC DENSITY

The nonrelativistic Fermi-Dirac density for the electron velocity (Ref. l>

p. 333) is given by

3
P(vx,vy,vz) dvx dvy dvz = ̂ L *(E) dvx dvy dvz , CD

*(E) = l/|exp(| - nj + 1 , . (2)

where m = 9.1096 x 10" g is the electron mass, n is the number of electrons
3 -27 2

per cm , h = 6.6262 x 10 '' erg sec is Planck's constant, E = % mv erg is the2 2 2 2
electron energy, with v = v + v + v , and 8 = kT erg is the "temperature,"

-16 x y z j
k = 1.3806 x 10 erg/°K being the Boltzmann constant. In Eq. (2), n is the
"degeneracy parameter," depending on n and 6 in such a way as to make
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If Q(v,e,<f>) denotes the corresponding "spherical coordinate density," then
? 3 2

Q(v,e,4>) dv d6 d4> - =~ $(E) (v sin 6) dv d6 d<{), and the speed density is,
nh3

therefore, given by

q(v) dv = ̂ - <£>(E) v 2 dv, 0 < v < °° . (4)
nh

9
Since E = % mv , we obtain for the energy density

nh
f(E) dE = q(v) ̂  dE = 8 ^\m Eh *(E) dE, 0 < E < - . (5)

Setting y = E/8, the y density is seen to be

'*
PCX) dy = f (E) -^ dy = -3 ^-^~ (6)

' nh e' + 1

= C"1 y2 dy , 0 < y < co . (7)
ey~n + 1

From the necessary relation

P(y) dy = 1,

it follows that the n,9-dependent parameter n must be determined so that

E /

dy _ " . n _ f m

-372 - C . (8)

It is easy to verify that I(n) and I'(n) are positive

f o r „ co < r) < «>, while



as T\

Thus I (n) strictly increases from I(-°°) = 0 to I (°°) = °°, and for every C > 0 in

Eq. (8), there is a unique n on (-00,00) such that I(n) = C.

Values of I(n) have been tabulated (Ref. 2,3) at intervals of 0.1 for

-4 < n < 20. Table I below gives an idea of the variation of I(n) on this range.

TABLE I

THE FUNCTION I(n)

n

-4
-3
-2
-1
0
1
2
2.5
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
3
5
7
10
12
15
18
21
24
27
31
35
38
42
46
51
55
59

Kn)
.016128
.043366
.114588
.290501
.678094
.39638
.50246
.1966 (
.97699 ;
.77073
.83797
.1443 )
.6646 !

.3805 !

.2776

.3445 j

.5718

.9518

.4775 |

.1430

.9430

.8730 j

.9286 !

.1061 i

.4019

.8128

Outside of these limits the fol-

lowing approximations are recommended

(Ref. 3):

ICn) = f e n , n < - 4

Kn) = | n 3 / 2 , n > 20

(9)

(10)

One may note that j e = .016232,

while | (20) 3 / 2 = 59.628, as compared

with the values I (-4) and 1(20) in

TABLE I

II. PRELIMINARY DETERMINATION OF C
AND n

For a given density n and tem-

perature 8 = kT, one first computes

the value of

C =
8 /2 * m 3 / 2

-16 n
s 1.835 xlO

r3/2
(11)



Guided by the above remarks we then determine the corresponding n as fol-

lows:

(a) If C < .016128, n is given by en = -^ C,

(b) if .016128 < C < 59.8128, n is found from the tables cited (Ref. 2, 3),

(c) if C > 59.8128, then n = (3C/2)2/3.

For the known values of C > 0 and ri on (-00,00) one must now sample the den-

sity

-l yh

PCX) = C — £ , 0 < y < - (12)
ey"n + 1

for y > 0, and set the energy E = 6y. Due to the curious nature of the function

p(y) we are forced to use two different methods depending on the value of r\.

III. THE CASE (-«> < n < 5/2)

For a value of n ̂  5/2, we write

p(y) dy = C"1 T(3/2) en • ̂  *~ dy • 1—~ (13)
1 + e

= A~ • p,(y) dy • h(y) ,

where p.(y) is the density

Pj(y) = YH e"y/r(3/2), 0 < y < co , (14)

h(y) is the "acceptance factor"

0 < h(y) = 1/(1 + en"y) < 1, 0 < y < °° , (15)

and the efficiency of the corresponding rejection technique is

A = 2 C//F en . (16)

Following the usual method (Ref. 4, R 7), we sample p1(y) for y on (0,°°),

and accept y with probability h(y).



The density p.(y) is easily sampled (Ref. 4, C 32); a brief indication of

the routine follows:

Sampling y"z e"y/r(3/2) for y on (0,°°).

1. Generate random numbers, r., r9 on (0,1).
2 2

2. Is S = r + r < 1? Yes (advance to (3)), No (return to (1)).

Set u. = - log S
T\, i = 1,2.

Generate next random number r.

Set y = - log r + u..

(Two samples of y are obtained, which may be used successively.)

The efficiency A in Eq. (16), based on the values of C = I (r|) in TABLE I,

are listed for various values of r\ < 3 in TABLE II. Note that, for the recom-

mended approximation e = 2 C//TF (n < -4), the efficiency A appears to be 1,

although, of course, there may be some rejection.

In principle, the above method applies for all n. We have drawn the line at

H = 5/2 simply because the method of the next part is relatively easy to apply

for n > 5/2, as will appear. If enough trouble were taken in finding the min-

imum h in part IV, the r) dividing line could be pushed to the left, with a

resulting increase in efficiency.

IV. THE CASE (n > 5/2).

We first note that the function

P(X) =
,-1

TABLE II

EFFICIENCY A

n

-4
- 3
- 2
-1

0
1
2
2 .5
3

A

. 99

.98

.96

.89

.77

.58

.38

.30

.22

is decreasing for y > Hj provided ri

exceeds 1. For, an easy computation

shows that the inequality p'(y) < 0

follows from the relation (2y - l)ey~n

> (2TI - 1) e° > 1.

If we define

4 =J p(y) dy, > (17)



we may sample A1 p(y) dy on (0,n) with probability A , and A~ p(y) dy on (ri,<»)

with probability A (Ref. 4, C 3).

(a) The first of these is simple, for we may write

A"1
 P(y) dy - A"

1 C"1 ((2/3) n
3 / 2) ( e ^ * I ) " 1 - ̂ ^ j ' ̂ -^~ . (18)

1 (2/3) n ' ey"n + 1 .

Thus we easily sample the density ŷ /((2/3) n ) for y = ri r on (0,ri), accept-

ing y with probability (e + l)/(e + 1) < 1, the efficiency of the technique

being

ex = 3 A1C(e'
n + l)/2n3/2 . (19)

This certainly exceeds %. For,

3/2, _-l 3/21 y%dy > r 1 ce/3) n3/2) _ c

3/2
Thus 3 AjC > n ' and el > h (for any n > 0).

Note that the value of A, is irrelevant for the rejection technique, except

insofar as it enters into the efficiency e1. However, A, jLs_ required for the

probabilities in Eq. (17).

It is clear that

Aj = B/C , (20)

n h
y

0
/

n h ••
y dy

0 *y-n+l

Hence the value of B as well as C is required for each n > 5/2 which arises.

These values are listed for n = 3, 4, ..., 50 in TABLE III, and were obtained by

numerical integration using Simpson's rule. It may be helpful to include the

following routine.



/

n -2 ,
- ^ — ^ — , n = 3,4, ..., 50

0

1.

2.

3.

4.

5.

6.

7.

8.

10.

1/100 -> cl.

ed + F.

3 -> n-

N = loo n-
o + y0-

e~ n •+ E Q.

0 •+ ZQ.

0 -> n.

V = V +
yn+l yn
E , = E E.
n+1 n

12. n + 1 -> n.

13. Is n < N? Yes (return to (9)), No (advance to (14)).

14. B = 4- [Z + ZM + 4(2, + Z 7 + ... + Z.. J +2(ZO + Z. + ... + Z M „)].
n 3 0 N 1 3 N-1J K 2 4 N-2'J

15. Is n < 50? Yes (n + 1 •* n> return to (4)), No (advance to (16)).

16. Print B B , ..., B5Q.

(b) To sample the second density (and this is the whole difficulty) we

wr.i te

-y -1
.-i , . , -1 _-l ri r „ ye dy H 0 0 1A, P(y) dy = A7 C e T H • ̂  • -j- — — , (22)

n Fn vh(l * en-yl ' •y 2 d + e • ')

where

H = max l/[y^(l + en~^) ] for r\ < y < °° , (23)

rn =/* ye"y dy = (n + 1) e"n . (24)

n

Hence, if we determine

h = min [y^(l + en"y) ] for n < y < °° , (25)



the density (22) becomes

A"1 C"1^ + 1) h"1 • ̂ — • -, - . (26)

n y2(l + e1 7)

We propose to sample ye~y/T for y on (n,°°), accepting y with probability

h/[y\l * en~y)] < 1 , (27)

the efficiency of the technique being new

E2 = A2 C h/Cn + 1) • (28)

Recalling that A, = 1 - A., and A.. = B/C, this becomes

e2 = (C - B) h/Cn
 + 1) , (29)

where B is defined by Eq. (21), and tabulated in TABLE III.

Thus the minimum value h in Eq. (25) is required not only for evaluating

the efficiency e2, but also for the acceptance probability (27). We next turn

to the determination of h.

For the function

h(y) = yh (1 + e n " y ) , y > n , (30)

one may show that h(r.) = 2n^, h(<») = °°, with

h'(y) = [1 - (2y - 1) ^'y]f2yh • (31)

Thus h1 (ri) < 0, hf(°°) = 0, and the minimum of h(y) occurs at some y > n. We

therefore require the unique y,. > r\ for which h'(y) = 0, that is to say, for

which

g(y) S (2y - 1) e11"^ -1 = 0. (32)



Now g(n) = (2n - 1) -1 > 0 since;in > 1, and g(°°) = -1. However, it can be

shown that g(y) is decreasing on (n.00) only if r\ > 3/2, and is concave up only

if T) > 5/2. Hence, Newton's method for the zero y0 of g(y), with an initial

y = T), is safe only if n > 5/2, and this has dictated our requirement n > 5/2 in

the present method. The values of h for n = 3, 4, ..., 50 are listed in TABLE

III, together with the corresponding efficiencies e_.

The zero y~ and associated minimum h of h(y) were computed by the following

routine.
I- n-v

Newton's method for h = min [y (1 + e ') ], n = 3, 4, ..., 50.

3

n y.

r = y
y - i) -i

(2 y - 3) e^

Is y' - y < .001? No (y' -• y, return to (3)), Yes (advance to (5)).

hn = {y)
h (i + e

n-y').

Is n < 50? Yes (n + 1 + n, return to (2)), No (advance to (7)).

Print h_, h,, ..., h^.

It only remains to indicate how the "tail end" of the T-density ye'^/T ,

H < y < °°, is to be sampled for y > n- For this, we employ the ingenious method

of Carey and Drijard (Ref. 5), which in our case may be formulated by the fol-

lowing routine.

1. Set P = e"11, A = e"n(l + n), B = 1/(1 + n).

2. Geneiate random numbers p., p_ on (0,1) .

3. Is pj < B? Yes (advance to (4)), No (advance to (5)).

*Jt;L 1- — rtp.., x« — U« I dvj vdiLL-C LU 1 D I ) •
1 J. Z. /

5. Set r^ = P e x p [ ( l + n) Pj - 1 ] , r 2 = p 2 P / r j (advance t o ( 6 ) ) .

6. Set y = - log i^r , , .

The justification of this is based on the remarks below.

(a) To sample the density ye"y/r(2) on its full range (0,°°) (Ref. 4, C 22),

one generates random numbers r.,r. and sets

y = -log r1r2,

where (r^r.,) may be thought ofj as a point uniformly distributed in the unit

square.



n

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

10

3.

5

7.

10.

12.

15.

18.

21.

24.

27.

31.

35.

38.

42.

46.

51.

55.

59.

64.

68.

73.

78.

83.

88.

C

97699

•77073

83797

1443

6646

3805

2776

3445

5718

9518

4775

1430

4430

8730

9286

1061

4019

8128

1561

7928

5361

3837

3333

3830

B

2.56919

4.19987

6.11994

8.29047

10.6854

13.2830

16.0682

19.0287

22.1544

25.4368

28.8685

32.4434

36.1558

40.0008

43.9739

48.0711

52.2887

56.6233

61.0719

65.6317

70.2998

75.0740

79.9518

84.9311

h

2.539

2.834

2.967

3.157

3.336

3.488

3.656

3.809

3.956

4.072

4.225

4.315

4.440

4.557

4.676

4.792

4.887

5.012

5.121

5.196

5.316

5.401

5.500

5.599

DATA

C2

.89

.89

.85

.84

.83

.81

.81

.80

.80

.79

.79

.78

.77

.77

.77

.77

.76

.76

.72

.71

.72

.72

.72

.72

TABLE III

FOR CASE n

Al

.646

.728

.781

.817

.844

.864

.879

.892

.902

.910

.917

.923

.928

.933

.937

.941

.944

.947

.952

.954

.956

.958

.959

.961

n

27

28

29

30

31

32

53

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

> 5/2

93

98

104

109

115

120

126

132

138

144

150

156

162

168

175

181

187

194.

201.

207.

214.

221.

228.

235.

C

.5307

.7747

.113

.545

.067

.680

.380

.168

.042

000

041

165

370

655

019.

461

980

575

246

991

811

703

667

702

90

95

100

105

111

116

122

128

134

139

145

151

158

164

170

177

183

190

196

203

210

216

223

230

B

.0099

.1863

.458

.025

.283

.833

.471

.198

.012

.911

.894

.960

.108

.337

.646

.033

.498

.040

658

352

119

960

874

860

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7.

7.

7.

7.

7.

h

.691

.786

.851

.941

.027

.115

.212

.274

.356

.438

.519

.598

678

.757

836

910

988

049

124

195

269

342

415

483

e2

.72

.72

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

.71

Al

.962

.964

.965

.966

.967

.968

.969

.970

.971

.972

.972

.973

.974

.974

.975

.976

.976

.977

.977

.978

.978

.979

.979

.979



(b) But for the tail end density, one requires only such points for which

y > n, i.e., for which

One could, of course, throw points (r^r.) uniformly in the unit square, and

reject those lying above the hyperbola r.r- = P, but the efficiency would be

poor.

(c) The above (nonrejection) device is valid since the two transformations

in (4) and (5) both have Jacobian e (1 + n)> independent of p ,p2, and so

transform the two rectangular areas of the full p, ,p~ unit square determined by

the line p. = B in a uniform way into the required two areas of the r,,r~ unit

square; the first a rectangle of base e and height 1, of area e , and the

second lying directly below the hyperbola r,r? = e , with base 1 - e , and

area n e .

V. VALUE OF I(n) FOR n < 0

For arbitrary n > 0, and A = e < 1, one may write

_ f y dy _ C y

J y-^ i J "TT
.J(n) = / y dy . f y i^

(Ae"y)

o
oo00 C - D j + 1 Aj f

j = l . j " if
(jy)"'1 e"jy d(jy)

j+1 ^) f ^ e " x d x 5

For r. = 3/2, this gives in our case

r(3/2) =4f(e r

determining n implicitly in terms of I(n).

In particular, this shows that

11



+ 1 .AT
= .678094,

where t. is the Riemann zeta-function (cf. TABLE I).

In fact, a method (Ref. 4, R 8) for sampling p(y) can be based on the above

relations when n < 0, but the routine of Part III seems simpler and does not

restrict n to negative values.

VI. THE MARGINAL DENSITY OF v

It is remarkable that, by introducing polar coordinates r,6 for v ,v , the

marginal density of v on (-00,00) may be obtained in the explicit form (Ref. 1,

p. 334)

W -/f J
~OO ^

4IT m

nh

OO

6

OO

P(v

log

x'A

1

y v z ) d>

+ expln

V d vz

2
mv

X
26

For u = (m/28)2 v , we then have the u-density

2
d(u) = (2C)"1 log(l + e V u ) ,

which seems a more well-behaved function than p(x), and would, of course, serve

our purpose. However, none of our attempts to sample d(u) have proved feasible.
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