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SAMPLING THE FERMI-DIRAC DENSITY

by

E. D. Cashwell and C. J. Everett

ABSTRACT

A method is given for sampling the nonrel-
ativistic Fermi-Dirac electron energy density for
all values of the "degeneracy parameter' n on the
range - ® < n < 50. The efficiency of the various
rejection techniques employed is never less than
30%, and drops below 50% only for a short range of
n values around n = 2. The range can certainly be
extended beyond n = 50, the efficiency there being
71%, and decreasing very slowly.

I, THE FERMI-DIRAC DENSITY
The nonrelativistic Fermi-Dirac density for the electron velocity (Ref. 1,

p. 333) is given by

3
2m
P(vx,vy,vz) dvx dvy dvz = ;;? O(E) dvx dvy dvz , (1)
. E
®(E) = 1/|exp - 0]+ 1] , ] (2)

28

where m = 9,1096 x 10" “" g is the electron mass, n is the number of electrons
1

=27
per cms, h = 6.6262 x 10 “° erg sec is Planck's constant, E = % mv2 erg is the

electron energy, with v2 = vi + v2 + vi, and 8 = kT erg is the "temperature,'

- y
k = 1.3806 x 10 16 erg/°K being the Boltzmann constant. In Eh. (2), n is the

"degeneracy parameter,'" depending on n and 6 in such a way as to make

o] o0 o]
f f f P(vx,vy,vz) dvX dvy dvZ =1 . (3)
-0 =00 -C0



If Q(v,6,4¢) denotes the corresponding ''spherical coordinate density," then

3
Q(v,6,¢) dv db d¢ = Zﬂg d(E) (v2 sin 8) dv d@ d¢, and the speed density is,
nh
therefore, given by
g 2
q(v) dv = ﬂ? $(E) vidv, 0 < v < (4)
nh
Since E = 4 mv2, we obtain for the energy density
3/2 1
£(E) dE = q(v) §§ dE = fiigl%li—- E? ¢(E) dE, 0 < E < = . (5)
nh

Setting y = E/6, the y density is seen to be

3/2 ,3/2 Y
dE 8 VZm 8 d .
p(y) dy = £(B) = dy = " e (6)
y nh AL
1/2
= ¢} _z:_éz__ ,0<y <o . (7)
AL
From the necessary relation
[2o]
f p(y)dy = 1,
0
it follows that the n,9-dependent parameter n must be determined so that
® y% dy h3 n
1(n) zf = . =C . (8)
0 AL | 8 vZ mmol% g3/2

It is easy to verify that I(n) and I'(n) are positive

for -~ © < n < =, while



1
I(n)=f r_e & <r(§,/12) >0asn> =
c

ARSI
n L n
..d, ]/ k
1(_r.)>f A >f yray L
e’ + 1 0 2 3
0

Thus I(n) strictly increases from I(-«) = 0 to I(«®) = «, and for every C > 0 in
Eq. (8), there is a unique n on (-»,») such that I(n) = C.
Values of I(n) have been tabulated (Ref. 2,3) at intervals of 0.1 for

-4 < n< 20. Table T below gives an idea of the variation of I(n) on this range.

TABLE 1 Outside of these limits the fol-

THE FUNCTION 1(n) lowing approximations are recommended

(Ref. 3):
n I(n) e
L~ YT .n
-4 .016128 In) = 5-e, n< -4, )
-3 . 043366
-2 .114588 1(n) ;%n3/2’ n>20 . (10)
-1 .290501
0 .678094
; é'gggig , One may note that fg e-4 = .016232,
2.5 3.1966 while % (20)3/2 = 59.628, as compared
i 3'3;822 with the values I(-4) and I(20) in
5 7.83797 TABLE I
6 10.1443 ;
7 12.6646 :
8 15.3805 ! II. PRELIMINARY DETERMINATION OF C
9 18.2776 AND n
1? gi'ggiz For a given density n and tem-
12 27.9518 perature 8 = kT, one first computes
;i ;é'jzgg the value of
15 38.9430
16 42.8730 3
17 46.9286 | c - h . .n
18 51.1061 | B 3772 3/2
19 55.4019 | 8/2mnm 8
20 >9.8128 ~ 1.835 x 10 *© L (11)
T



Guided by the above remarks we then determine the corresponding n as fol-
lows:

(a) If C < .016128, n is given by e = 2 C,

(b) if .016128 < C < 59.8128, n is found from the tables cited (Ref. 2, 3},

(¢) if C > 59.8128, then n = (3c/2)%/3.

For the known values of C > 0 and n on (-«,*) one must now sample the den-

sity

piy) =c P X" o<y<w (12)

for y > 0, and set the energy E = 6y. Due to the curious nature of the function

p(y) we are forced to use two different methods depending on the value of n.

/2)

III. THE CASE (-» < n <5
5/2, we write

<
For a value of n s

. %oty
clray e 2 8- dy, 1 (13)

r(3/2)

It

p(y) dy

AL ep ) dy sy

where pl(y) is the density

) =y eI/, 0 <y < (14)
h(y) is the "acceptance factor"

0<h@y) =1/Q+e"My<1,0<y<o , (15)
and the efficiency of the corresponding rejection technique is

A=2C//r el . (16)

Following the usual method (Ref. 4, R 7), we sample pl(y) for y on (0,),
and accept y with probability h(y).



The density pl(y) is easily sampled (Ref. 4, C 32); a brief indication of
the routine follows:

Sampling y‘l/2 e Y/T(3/2) for y on (0,%).

1. Generate random numbers, ry, T, on (0,1).

2. Is § = ri + rg < 1? Yes (advance to (3)), No (return to (1}).
lE%_ﬁ . ri, i=1,2,

4. Generate next random number r.

3. Set Ui = -

5. Sety=-logr + M, -

(Two samples of y are obtained, which may be used successively.)

The efficiency A in Eq. (16), based on the values of C = I(n) in TABLE I,
are listed for various values of n < 3 in TABLE II. Note that, for the recom-
nended approximation e = 2 C/V71 (n < -4), the efficiency A appears to be 1,
although, of course, there may be some rejection.

In principle, the above method applies for all n. We have drawn the line at
n = 5/2 simply because the method of the next part is relatively easy to apply
for n > 5/Z, as will appear. If enough trouble were taken in finding the min-
imum h in part IV, the n dividing line could be pushed to the left, with a

resulting increase in efficiency.

IV. THE CASE (n > 5/2).
We first note that the function

ply) = C”

TABLE I1I is decreasing for y > n, provided n

EFFICIENCY A exceeds 1. For, an easy computation
shows that the inequality p'(y) < 0

1 A follows from the relation (2y - 1)’
-4 .99 > (-1 & > 1.
-3 .98 .
> "96 If we define

-1 .89

0 .77

1 .58 A= " (v) dy, A, = 1 - A,, (17)
2 .38 17 PLY) &, Ay 1°

2.5 .30 0

3 .22




we may sample Ail p(y) dy on (0,n) with probability A;, and Aél ply) dy on (n,x)

with probability A2 (Ref. 4, C 3).

(a) The first of these is simple, for we may write

L -n ’
-1, y dy e +1 ) (18)

@/3 n3/2' e+ 1

e ay = a7t clem o H e - 1)

/ 2/3

1
Thus we easily sample the density yﬁvﬂ2/3) n3 2) fory=nr on (0,n), accept-

ing y with probability (e_n + 1)/(ey~n + 1) < 1, the efficiency of the technique
being

e, = 3 AC(T + /2072, (19)

1

This certainly exceeds %. For,

-1 _3/2
n3/
3

n Y 3/2 :
A = f cl X dy C-l((2/3)2n ) _C
AL

3/2 > % (for any n > 0).

Thus 3 AIC >n and €

Note that the value of A1 is irrelevant for the rejection technique, except
insofar as it enters into the efficiency €y However, A1 is required for the
probabilities in Eq. (17).

It is clear that

A = B/C |, (20)
n %
where B = —llffbi—— . 2D
y-i
0 e + 1

Hence the value of B as well as C is required for each n = 5/2 which arises.

These values are listed for n= 3, 4, ..., 50 in TABLE III, and were obtained by
numerical integration using Simpson's rule. It may be helpful to include the

following routine.



n
Simpson's method for B =f

o

1. 1/100 - d.
2. ed -~ F,
3. 3 ->n.
4. N = 100 n.
5. O_: Yo*
6. e - EO.
7. 0~ ZO‘
8. 0~ n.
9. Yool = ¥n * d.
10. E = E E.
n+1 n
L
7 = <
1. “n+l T Ynel

12. n + 1 - n.

13. Is n < N? Yes (return to (9)), No (advance to (14)).
+ ZN_l) +2(Z2 + Z
15. Is n < 50? Yes (n + 1 -+ n, return to (4)), No (advance to (16)).

d

14. B = —[2_ + ZN + 4(21 + Z3 + ol

n 3 0

16. Print By, B,,

(b) To sample the second density (and this is the whole difficulty) we

write

-1
354 ply) dy = A

where

/(1 +

o -y
Polelr ne X

5 n-y
H=max 1/[y“(1 +e /)] forn<y <o ,

Tn =J/. ye_y dy = (n + 1) e "

n

Hence, if we determine

1 -
h = min [yé(l + ")) for n < y <o

N-2)1-

(22)

(23)

(24)

(25)



the density (22) becomes

1 , -y
Stctmenpntoxel . b (26)
no yH1+e"Y)

We propose to sample ye—y/]"n for y on (n,»), accepting y with probability

3
2

h/ly3(l + "1 <1, (27)

the efficiency of the technique being ncw
€y = A2 Ch/(n+ 1) . (28)

Recalling that A2 =] - A1 and A1 = B/C, this becomes

€,=(C-B)h/(n+1) , (29)

where B is defined by Eq. (21), and tabulated in TABLE III.

Thus the minimum value h in Eq. (25) is required not only for evaluating
the efficiency €5, but also for the acceptance probability (27). We next turn
to the determination of h.

For the function
1 -
hGy) =y? (1 +e"), y2n , (30)
1
one may show that h(r) = 2n%, h(®) = «, with
N-Yy 19,

h'(y) = [1- (2y - 1) e 7]/2y* . (31)
Thus h'(n) < 0, h*(«) = 0, and the minimum of h(y) occurs at some Yo >n. We
therefore require the unique Yo > n for which h'(y) = 0, that is to say, for

which

g(y) = (2y - 1) eV -1 = 0. ' (32)



Now g(n) = (2n - 1) -1 > 0 sincehh‘> 1, and g(*) = ~1. However, it can be

shown that g(y) is decreasing on (1n,®) oﬁiy if 1 > 3/2, and is concave up only
if n > 5/2. Hence, Newton's method for the zero Yo of g(y), Qith an initial

y = n, is safe only if n > 5/2, and this has dictated cur requirement n > 5/2 in
the present method. The values of h for n = 3, 4 «.., 50 are listed in TABLE

ITI, together with the corresponding eff1c1enc1es €y-
The zero Yo and associated minimum h of h(y) were computed by the following

routine.
Newton's method for h = min [y%(l + en-y)], n=235,4, ..., 50.
(n,*)
1. 3 ~-»n. |
2. n-~>y.
3 y'~y+(ZYT1)en_y'l.

2y-3) &Y

4. Is y' -y < .0017 No (y' -y, return to (3)), Yes (advance to (5}).

5. b= 07 e,

6. Isn <50? Yes (n + 1+ n, return to (2)), No (advance to {(7)).

7 Print h3, h4, cees hSO'

It only remains to indicate how the 'tail end" of the I'-density yer/Fn, ,
n<y<®, is to be sampled for y > n. For this, we employ the ingenious method

of Carey and Drijard (Ref. 5), which in our case may be formulated by the fol-

lowing routine.
1. SetP=c¢e"", A=e(1+n),B=1/(1+n).
Generate random numbers Py P, ON (0,1).
Is 04 < B? ‘Yes (advance to (4)), No (advance to.(5)).

1
Set y = -log TIT,.

The justification of this is based on the remarks below.
(a) To sample the density ye 7/T'(2) on its full range (0,*) (Ref. 4, C 22),

2

3

4. Set L Apl, T, = 0, (advance to (6)).

5 Set r, = Pexp[(1 +n) Py - 1], r, =0, P/r1 (advance to (6)).
6 :

one generates random numbers TI5T, and sets

y = -log T,

where (rl,rz) may be thought of as a point uniformly distributed in the unit

square.
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
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TABLE I1II

DATA FOR CASE n
C B h £ A ni

3.97699 2.56919 2.539 .89 .646 |27
5.77073 4.19987 2.834 .89 .728 |28
7.83797 6.11994 2.967 .85 .781 |29
10.1443 8.29047 3.157 .84 ‘.817 30
12.66%6 10.6854 3.336 .83 .844 |31
15.3805 13.2830 3.488 .81 .864 |32
18.2776 16.0682 3.656 .81 .879 |33
21. 3445 19.0287 3.809 .80 .892 |34
24.5718  22.1544 3.956 .80 .902 |35
27.9518 25.4368 4.072 .79 .910 )36
31.4775 28.8685 4.225 .79 .917 |37
35.1430 32.4434 4.315 .78 .923 |38
38.4430  36.1558 4.440 .77 .928 | 39
42.8730 40.0008 4,557 .77 .933 |40
46.9286 43.9739 4.676 .77 .937 |41
51.1061 48.0711 4.792 .77 .941 |42
55.4019 52.2887 4.887 .76 .944 143
59.8128 56.6233 5.012 .76 .947 |44
64.1561 61.0719 5.121 .72 .952 |45
68.7928 65.6317 5.196 .71 .954 | 46
73.5361 70.2998 5.316 .72 .956 |47
78.3837 75.0740 5.401 .72 .958 |48

83.3333 79.9518 5.500 .72 .959 |49

88.3830 84.9311 5.599 .72 .961 150

> 5/2
C hoe A
93.5307  90.0099 5.691 .72 .962
98.7747  95.1863 5.786 .72 .964
104.113  100.458 5.851 .71 .965
109.545  105..25 5.941 .71 .966
115.067 111.283  6.027 .71 .967
120.680  116.833  6.115 .71 .968
126.380  122.471 6.212 .71 .969
132.168  128.198 6.274 .71 .970
138.042 134.012  6.356 .71 .971
144.000 139.911 6.438 .71 .972
150.041 145.894  6.519 .71 .972
156.165 151.960 6.598 .71 .973
162.370  158.168 6.678 .71 .974
168.655 164.337  6.757 .71 .974
175.019. 170.646 6.836 .71 .975
181.461  177.033  6.910 .71 .976
187.980 183.498 6.988 .71 .976
194.575  190.040 7.049 .71 .977
201.246  196.658 7.124 .71 .977
207.991 203.352 7.195 .71 .978
214.811 210.119 7.269 .71 .978
221.703  216.960 7.342 .71 .979
228.667 223.874  7.415 .71 .979
235.702  230.860 7.483 .71 .979



(b} But for the tail end density, one requires only such points for which
y >n, i.e., for which

M= op

Tr.r, < €

177
One could, of course, throw points (rl,rz) uniformly in the unit square, and
reject those lying above the hyperbola T, = P, but the efficiency would be
poor.

(c) The above (nonrejection) device is valid since the two transformations
in (4) and (5) both have Jacobian e (1 + n), independent of P»P,, and so
transform the two rectangular areas of the full Py:P; unit square derermined by

the line p; = B in a uniform way into the required two areas of the r;,T, unit

square; the first a rectangle of base e—n and height 1, of area e-n, and the
second lying directly below the hyperbola r;r, = e "', with base 1 - ¢ ", and
area n e .

V. VALUE OF I(n) FOR n < 0

For arbitrary n > 0, and A = e
® n-1 @ n-1 -
1) E-/' y' dy =/' y© (he™”) dy
g AL A 1+ (Ae”™Y)

Z (-1)j+1f v lae™) gy

N < 1, one may write

j=1 0
o0 j+l j © .
-1 A _.n-1 - .
- Z (—"—)T—"Uf Gy e agy)
j=1  .j
oo . j b —
(Z it A_n) ST e ez Tam r
j=1 j 0

For n = 3/2, this gives in our case

I(n) = Z(A,3/2) T(3/2) = @E(e”,z/z),

determiring n implicitly in terms of I(n).

In particular, this shows that

11



- _ j+1
I1(0) = —'/%_ ijl (—;—%/—2— = '/izT a - 7—;—) r (3/2) = .678094,

where £ is the Riemann zeta-function (cf. TABLE I).
In fact, a method (Ref. 4, R 8) for sampling p(y) can be based on the above
relations when n < 0, but the routine of Part III seems simpler and does not

restrict n to negative values.

VI. THE MARGINAL DENSITY OF vy
It is remarkable that, by introducing polar coordinates r,0 for vy,vz, the

marginal density of v, on (-«,») may be obtained in the explicit form (Ref. 1,

p- 334)

Plcvx)

(2] oo
f f P(vx,vy,vz) dvy de

2 mv2
m__e. 10g 1 4 exp n - ___x_
3 26
nh

L
For u = (m/28)7* v,» We then have the u-density

2

1 log(l + ee™ )

d(u) = (20)°
which seems a more well-behaved function than p(x), and would, of course, serve

our purpose. However, none of our attempts to sample d{u) have proved feasible.
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