W. 3678

Sampling the Fermi-Dirac Density;

MASTER

Sampling the Fermi-Dirac Density

E. D. Cashwell
C. J. Everett

[^0]
SAMPLING THE FERMI-DIRAC DENSITY

by
E. D. Cashwell and C. J. Everett

ABSTRACT

A method is given for sampling the nonrelativistic Fermi-Dirac electron energy density for all values of the "degeneracy parameter" η on the range $-\infty<\eta \leqslant 50$. The efficiency of the various rejection techniques employed is never less than 30%, and drops below 50% only for a short range of η values around $\eta=2$. The range can certainly be extended beyond $\eta=50$, the efficiency there being 71%, and decreasing very slowly.

I. THE FERMI-DIRAC DENSITY

The nonrelativistic Fermi-Dirac density for the electron velocity (Ref. 1, p. 333) is given by

$$
\begin{align*}
& P\left(v_{x}, v_{y}, v_{z}\right) d v_{x} d v_{y} d v_{z}=\frac{2 m^{3}}{n h^{3}} \Phi(E) d v_{x} d v_{y} d v_{z}, \tag{1}\\
& \Phi(E)=1 /\left[\exp \left(\frac{E}{9}-\eta\right)+1\right] \tag{2}
\end{align*}
$$

where $\mathrm{m}=9.1096 \times 10^{-28} \mathrm{~g}$ is the electron mass, n is the number of electrons per $\mathrm{cm}^{3}, \mathrm{~h}=6.6262 \times 10^{-27}$ erg sec is Planck's constant, $\mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$ erg is the electron energy, with $v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}$, and $\theta=k T$ erg is the "temperature," $\mathrm{k}=1.3806 \times 10^{-16} \mathrm{erg} /{ }^{\circ} \mathrm{K}$ being the Boltzmann constant. In Eq. (2), η is the "degeneracy parameter," depending on n and θ in such a way as to make

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P\left(v_{x}, v_{y}, v_{z}\right) d v_{x} d v_{y} d v_{z}=1 . \tag{3}
\end{equation*}
$$

If $Q(v, \theta, \phi)$ denotes the corresponding "spherical coordinate density," then $Q(v, \theta, \phi) d v d \theta d \phi=\frac{2 m^{3}}{n h^{3}} \Phi(E)\left(v^{2} \sin \theta\right) d v d \theta d \phi$, and the speed density is, therefore, given by
$q(v) d v=\frac{8 \pi m^{3}}{\mathrm{nh}^{3}} \Phi(E) v^{2} d v, 0<v<\infty$.

Since $E=\frac{3}{2} m v^{2}$, we obtain for the energy density
$f(E) d E=q(v) \frac{d v}{d E} d E=\frac{8 \sqrt{2} \pi m^{3 / 2}}{n h^{3}} E^{\frac{1}{2}} \Phi(E) d E, 0<E<\infty$.

Setting $y=E / \theta$, the y density is seen to be

$$
\begin{align*}
p(y) d y & =f(E) \frac{d E}{d y} d y=\frac{8 \sqrt{2} \pi m^{3 / 2} e^{3 / 2}}{n h^{3}} \cdot \frac{y^{\frac{1}{2}} d y}{e^{y-n}+1} \tag{6}\\
& \equiv C^{-1} \frac{y^{\frac{1}{2}} d y}{e^{y-n}+1}, 0<y<\infty \tag{7}
\end{align*}
$$

From the necessary relation

$$
\int_{0}^{\infty} p(y) d y=1
$$

it follows that the $n, 9$-dependent parameter η must be determined so that

$$
\begin{equation*}
I(n) \equiv \int_{0}^{\infty} \frac{y^{\frac{1}{2}} d y}{e^{y-n}+1}=\frac{h^{3}}{8 \sqrt{2} \pi m^{3 / 2}} \cdot \frac{n}{\theta^{3 / 2}} \equiv C . \tag{8}
\end{equation*}
$$

It is easy to verify that $I(n)$ and $I^{\prime}(n)$ are positive
for $-\infty<\eta<\infty$, while

$$
\begin{aligned}
& I(\eta)=\int_{0}^{\infty} \frac{y^{\frac{1}{2}} e^{-y} d y}{e^{-\eta}+e^{-y}}<\frac{\Gamma(3 / 2)}{e^{-\eta}} \rightarrow 0 \text { as } \eta \rightarrow-\infty \\
& I\left(n_{1}\right)>\int_{0}^{\eta} \frac{y^{\frac{1}{2}} d y}{e^{y-\eta}+1}>\int_{0}^{\eta} \frac{y^{\frac{1}{2}} d y}{2}=\frac{\eta^{3 / 2}}{3} \rightarrow \infty \text { as } \eta \rightarrow \infty .
\end{aligned}
$$

Thus $I(n)$ strictly increases from $I(-\infty)=0$ to $I(\infty)=\infty$, and for every $C>0$ in Eq. (8), there is a unique η on $(-\infty, \infty)$ such that $I(n)=C$.

Values of $I(\eta)$ have been tabulated (Ref. 2,3) at intervals of 0.1 for $-4 \leqslant n \leqslant 20$. Table I below gives an idea of the variation of $I(n)$ on this range.

Table I
THE FUNCTION I (n)

n	$I(n)$
-4	.016128
-3	.043366
-2	.114588
-1	.290501
0	.678094
1	1.39638
2	2.50246
2.5	3.1966
3	3.97699
4	5.77073
5	7.83797
6	10.1443
7	12.6646
8	15.3805
9	18.2776
10	21.3445
11	24.5718
12	27.9518
13	31.4775
14	35.1430
15	38.9430
16	42.8730
17	46.9286
18	51.1061
19	55.4019
20	59.8128

Outside of these limits the following approximations are recommended (Ref. 3):

$$
\begin{align*}
& I(\eta) \cong \frac{\sqrt{\pi}}{2} e^{\eta}, \eta<-4 \tag{9}\\
& I(\eta) \cong \frac{2}{3} \eta^{3 / 2}, n>20 . \tag{10}
\end{align*}
$$

One may note that $\frac{\sqrt{\pi}}{2} \mathrm{e}^{-4}=.016232$, while $\frac{2}{3}(20)^{3 / 2}=59.628$, as compared with the values $I(-4)$ and $I(20)$ in TABLE I
II. PRELIMINARY DETERMINATION OF C AND η
For a given density n and temperature $\theta=k T$, one first computes the value of

$$
\begin{align*}
& \mathrm{C}=\frac{\mathrm{h}^{3}}{8 \sqrt{2} \pi \mathrm{~m}^{3 / 2}} \cdot \frac{\mathrm{n}}{\theta^{3 / 2}} \\
& \cong 1.835 \times 10^{-16} \frac{\mathrm{n}}{\mathrm{~T}^{3 / 2}} \tag{II}
\end{align*}
$$

Guided by the above remarks we then determine the corresponding n as follows:
(a) If $C<.016128, \eta$ is given by $e^{\eta}=\frac{2}{\sqrt{\pi}} C$,
(b) if . $016128 \leqslant C \leqslant 59.8128, \eta$ is found from the tables cited (Ref. 2, 3), (c) if $\mathrm{C}>59.8128$, then $\eta=(3 \mathrm{C} / 2)^{2 / 3}$.

For the known values of $C>0$ and η on $(-\infty, \infty)$ one must now sample the density

$$
\begin{equation*}
p(y)=c^{-1} \frac{y^{\frac{1}{2}}}{e^{y-\eta}+1}, 0<y<\infty \tag{12}
\end{equation*}
$$

for $y>0$, and set the energy $E=\theta y$. Due to the curious nature of the function $p(y)$ we are forced to use two different methods depending on the value of η.

1II. THE CASE $(-\infty<\eta \leqslant 5 / 2)$
For a value of $\eta \leqslant 5 / 2$, we write

$$
\begin{align*}
p(y) d y & =C^{-1} \Gamma(3 / 2) e^{\eta} \cdot \frac{y^{\frac{1}{2}} e^{-y} d y}{\Gamma(3 / 2)} \cdot \frac{1}{1+e^{n-y}} \tag{13}\\
& \equiv A^{-1} \cdot p_{1}(y) d y \cdot h(y),
\end{align*}
$$

where $p_{1}(y)$ is the density

$$
\begin{equation*}
p_{1}(y)=y^{\frac{1}{2}} e^{-y} / \Gamma(3 / 2), 0<y<\infty, \tag{14}
\end{equation*}
$$

$h(y)$ is the "acceptance factor"

$$
\begin{equation*}
0<h(y)=1 /\left(1+e^{n-y}\right)<1,0<y<\infty, \tag{15}
\end{equation*}
$$

and the efficiency of the corresponding rejection technique is

$$
\begin{equation*}
A=2 C / \sqrt{\pi} e^{\eta} . \tag{16}
\end{equation*}
$$

Following the usual method (Ref. 4, R 7), we sample $p_{1}(y)$ for y on ($0, \infty$), and accept y with probability $h(y)$.

The density $p_{1}(y)$ is easily sampled (Ref. 4, C 32); a brief indication of the routine follows:

Sampling $y^{\frac{1}{2}} e^{-y} / \Gamma(3 / 2)$ for y on $(0, \infty)$.

1. Generate random numbers, r_{1}, r_{2} on $(0,1)$.
2. Is $\mathrm{S} \equiv \mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2} \leqslant 1$? Yes (advance to (3)), No (return to (1)).
3. Set $\mu_{i}=-\frac{\log S}{S} \cdot r_{i}^{2}, i=1,2$.
4. Generate next random number r.
5. Set $y=-\log r+\mu_{i}$.
(Two samples of y are obtained, which may be used successively.)
The efficiency A in Eq. (16), based on the values of $C=I(n)$ in TABLE I, are listed for various values of $\eta \leqslant 3$ in TABLE II. Note that, for the recommended approximation $e^{n}=2 C / \sqrt{\pi}(n<-4)$, the efficiency A appears to be 1 , although, of course, there may be some rejection.

In principle, the above method applies for all n. We have drawn the line at $\eta=5 / 2$ simply because the method of the next part is relatively easy to apply for $\eta>5 / 2$, as will appear. If enough trouble were taken in finding the minimum h in part $I V$, the n dividing line could be pushed to the left, with a resulting increase in efficiency.
IV. THE CASE ($\eta>5 / 2$).

We first note that the function
$p(y)=C^{-1} \frac{y^{\frac{1}{2}}}{e^{y-n}+1}$

TABLE II
EFFICIENCY A

n	A
-4	.99
-3	.98
-2	.96
-1	.89
0	.77
1	.58
2	.38
2.5	.30
3	.22

is decreasing for $y>\eta$, provided η exceeds 1. For, an easy computation shows that the inequality $p^{\prime}(y)<0$ follows from the relation $(2 y-1) e^{y-\eta}$ $>(2 \eta-1) e^{0}>1$.

If we define

$$
\begin{equation*}
A_{1}=\int_{0}^{\eta} p(y) d y, A_{2}=1-A_{1}, \tag{17}
\end{equation*}
$$

we may sample $A_{1}^{-1} p(y)$ dy on ($0, \eta$) with probability A_{1}, and $A_{2}^{-1} p(y)$ dy on (η, ∞) with probability A_{2} (Ref. 4, C 3).
(a) The first of these is simple, for we may write

$$
\begin{equation*}
A_{1}^{-1} p(y) d y=A_{1}^{-1} C^{-1}\left((2 / 3) \eta^{3 / 2}\right)\left(e^{-\eta}+1\right)^{-1} \cdot \frac{y^{\frac{1}{2}} d y}{(2 / 3) n^{3 / 2}} \cdot \frac{e^{-\eta}+1}{e^{y-n}+1} \tag{18}
\end{equation*}
$$

Thus we easily sample the density $y^{\frac{1}{2} /((2 / 3)} n^{3 / 2}$) for $y=n r^{2 / 3}$ on ($0, n$), accepting y with probability $\left(e^{-\eta}+1\right) /\left(e^{y-\eta}+1\right)<1$, the efficiency of the technique being

$$
\begin{equation*}
\varepsilon_{1}=3 A_{1} C\left(e^{-\eta}+1\right) / 2 n^{3 / 2} . \tag{19}
\end{equation*}
$$

This certainly exceeds $\frac{1}{2}$. For,

$$
A_{1}=\int_{0}^{\eta} c^{-1} \frac{y^{\frac{1}{2}} d y}{e^{y-\eta}+1}>c^{-1} \frac{\left((2 / 3) n^{3 / 2}\right)}{2}=\frac{c^{-1} n^{3 / 2}}{3}
$$

Thus $3 A_{1} C>\eta^{3 / 2}$ and $\epsilon_{1}>\frac{1}{2}$ (for any $\eta>0$).
Note that the value of A_{I} is irrelevant for the rejection technique, except insofar as it enters into the efficiency ε_{1}. However, A_{1} is required for the probabilities in Eq. (17).

It is clear that

$$
\begin{align*}
& A_{1}=B / C \tag{20}\\
& \text { where } B \equiv \int_{0}^{\eta} \frac{y^{\frac{1}{2}} d y}{e^{y-i}+1} \tag{21}
\end{align*}
$$

Hence the value of B as well as C is required for each $\eta \geqslant 5 / 2$ which arises. These values are listed for $\eta=3,4, \ldots, 50$ in TABLE III, and were obtained by numerical integration using Simpson's rule. It may be helpful to include the following routine.

Simpson's method for $B=\int_{0}^{\eta} \frac{y^{\frac{1}{2}} d y}{e^{y-\eta}+1}, \eta=3,4, \ldots, 50$.

1. $1 / 100 \rightarrow(1$.
2. $e^{d} \rightarrow F$.
3. $3 \rightarrow \eta$.
4. $N=100 \mathrm{n}$.
5. $0 \rightarrow y_{0}$.
6. $e^{-n} \rightarrow E_{0}$.
7. $0 \rightarrow Z_{0}$.
8. $0 \rightarrow \mathrm{n}$.
9. $y_{n+1}=y_{n}+d$.
10. $E_{n+1}=E_{n} E$.
11. $z_{n+1}=y_{n+1}^{\frac{1}{2}} /\left(1+E_{n+1}\right)$.
12. $\mathrm{n}+1 \rightarrow \mathrm{n}$.
13. Is $n<N$? Yes (return to (9)), No (advance to (14)).
14. $B_{n}=\frac{d}{3}\left[Z_{0}+Z_{N}+4\left(Z_{1}+Z_{3}+\ldots+Z_{N-1}\right)+2\left(Z_{2}+Z_{4}+\ldots+Z_{N-2}\right)\right]$.
15. Is $\eta<50$? Yes $(\eta+1 \rightarrow \eta$, return to (4)), No (advance to (16)).
16. Print $B_{3}, B_{4}, \ldots, B_{50}$.
(b) To sample the second density (and this is the whole difficulty) we write

$$
\begin{equation*}
A_{2}^{-1} p(y) d y=A_{2}^{-1} C^{-1} e^{\eta} \Gamma_{\eta} H \cdot \frac{y e^{-y} d y}{\Gamma_{\eta}} \cdot \frac{H^{-1}}{y^{\frac{1}{2}}\left(1+e^{\eta-y}\right)} \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& H=\max 1 /\left[y^{\frac{1}{2}}\left(1+e^{n-y}\right)\right] \text { for } \eta<y<\infty, \tag{23}\\
& \Gamma_{\eta}=\int_{\eta}^{\infty} y e^{-y} d y=(n+1) e^{-\eta} . \tag{24}
\end{align*}
$$

Hence, if we determine

$$
\begin{equation*}
h=\min \left[y^{\frac{1}{2}}\left(1+e^{\eta-y}\right)\right] \text { for } n<y<\infty, \tag{25}
\end{equation*}
$$

the density (22) becomes

$$
\begin{equation*}
A_{2}^{-1} C^{-1}(n+1) h^{-1} \cdot \frac{y e^{-y}}{\Gamma_{n}} \cdot \frac{h}{y^{\frac{1}{2}}\left(1+e^{n-y}\right)} \tag{26}
\end{equation*}
$$

We propose to sample $y \mathrm{e}^{-y} / \Gamma_{\eta}$ for y on (n, ∞), accepting y with probability

$$
\begin{equation*}
h /\left[y^{\frac{3}{2}}\left(1+e^{n-y}\right)\right]<1, \tag{27}
\end{equation*}
$$

the efficiency of the technique being now

$$
\begin{equation*}
\varepsilon_{2}=A_{2} \subset h /(n+1) \tag{28}
\end{equation*}
$$

Recalling that $A_{2}=1-A_{1}$ and $A_{1}=B / C$, this becomes

$$
\begin{equation*}
\varepsilon_{2}=(C-B) h /(n+1) \tag{29}
\end{equation*}
$$

where B is defined by Eq. (21), and tabulated in TABLE III.
Thus the minimum value h in Eq. (25) is required not only for evaluating the efficiency ε_{2}, but also for the acceptance probability (27). We next turn to the determination of h.

For the function

$$
\begin{equation*}
h(y)=y^{\frac{1}{2}}\left(1+e^{n-y}\right), y \geqslant n, \tag{30}
\end{equation*}
$$

one may show that $h(r)=2 \eta^{\frac{1}{2}}, h(\infty)=\infty$, with

$$
\begin{equation*}
h^{\prime}(y)=\left[1-(2 y-1) e^{\eta-y}\right] / 2 y^{\frac{1}{2}} . \tag{31}
\end{equation*}
$$

Thus $h^{\prime}(\eta)<0, h^{\prime}(\infty)=0$, and the minimum of $h(y)$ occurs at some $y_{0}>\eta$. We therefore require the unique $y_{0}>\eta$ for which $h^{\prime}(y)=0$, that is to say, for which

$$
\begin{equation*}
g(y) \equiv(2 y-1) e^{\eta-y}-1=0 \tag{32}
\end{equation*}
$$

Now $g(\eta)=(2 \eta-1)-1>0$ since $\eta>1$, and $g(\infty)=-1$. However, it can be shown that $g(y)$ is decreasing on (η, ∞) only if $\eta>3 / 2$, and is concave up only if $\eta>5 / 2$. Hence, Newton's method for the zero y_{0} of $g(y)$, with an initial $y=\eta$, is safe only if $\eta>5 / 2$, and this has dictated cur requirement $\eta>5 / 2$ in the present method. The values of h for $\eta=3,4, \ldots, 50$ are listed in TABLE III, together with the corresponding efficiencies ε_{2}.

The zero y_{0} and associated minimum h of $h(y)$ were computed by the following routine.

```
Newton's method for \(h=\min _{(\eta, \infty)}\left[y^{\frac{1}{2}}\left(1+e^{\eta-y}\right)\right], \eta=3,4, \ldots, 50\).
```

1. $3 \rightarrow \eta$.
2. $\eta \rightarrow y$.
3. $y^{\prime}=y+\frac{(2 y-1) e^{n-y}-1}{(2 y-3) e^{n-y}}$.
4. Is $y^{\prime}-y^{\circ}<.001 ?$ No $\left(y^{\prime} \rightarrow y\right.$, return to (3)), Yes 〔advance to (5)).
5. $h_{\eta}=\left(y^{\prime}\right)^{\frac{1}{2}}\left(1+e^{\eta-y^{\prime}}\right)$.
6. Is $\eta<50$? Yes $(\eta+1 \rightarrow \eta$, return to (2)), No (advance to (7)).
7. Print $h_{3}, h_{4}, \ldots, h_{50}$.

It only remains to indicate how the "tail end" of the Γ-density $y e^{-y} / \Gamma$, $\eta<y<\infty$, is to be sampled for $y>\eta$. For this, we employ the ingenious method of Carey and Drijard (Ref. 5), which in our case may be formulated by the following routine.

1. Set $P=e^{-\eta}, A=e^{-\eta}(1+\eta), B=1 /(1+\eta)$.
2. Generate random numbers ρ_{1}, ρ_{2} on $(0,1)$.
3. Is $o_{1} \leqslant B$? Yes (advance to (4)), No (advance to (5)).
4. Set $\mathrm{r}_{1}=A \rho_{1}, \mathrm{r}_{2}=\rho_{2}$ (advance to (6)).
5. Set $r_{1}=P \exp \left[(1+\eta) \rho_{1}-1\right], r_{2}=\rho_{2} P / r_{1}$ (advance to (6)).
6. Set $y=-\log r_{1} r_{2}$.

The justification of this is based on the remarks below.
(a) To sample the density $y e^{-y} / \Gamma(2)$ on its full range ($0, \infty$) (Ref. 4, C 22), one generates random numbers r_{1}, r_{2} and sets

$$
y=-\log r_{1} r_{2}
$$

where $\left(r_{1}, r_{2}\right)$ may be thought of as a point uniformly distributed in the unit square.

TABLE III
DATA FOR CASE $\eta>5 / 2$

(b) But for the tail end density, one requires only such foints for which $y>n$, i.e., for which

$$
r_{1} r_{2}<e^{-r_{1}} \equiv p .
$$

One could, of course, throw points (r_{1}, r_{2}) uniformly in the urit square, and reject those lying above the hyperbola $r_{1} r_{2}=P$, but the efficiency would be poor.
(c) The above (nonrejection) device is valid since the two transformations in (4) and (5) both have Jacobian $e^{-\eta}(1+\eta)$, independent of ρ_{1}, ρ_{2}, and so transform the two rectangular areas of the full ρ_{1}, ρ_{2} unit square de:ermined by the line $\rho_{1}=B$ in a uniform way into the required two areas of the r_{1}, r_{2} unit square; the first a rectangle of base $e^{-\eta}$ and height 1 , of area $e^{-\eta}$, and the second lying directly below the hyperbola $r_{1} r_{2}=e^{-\eta}$, with base $1-e^{-\eta}$, and area $\eta e^{-\eta}$.
V. VALUE OF $I(\eta)$ FOR $\eta \leqslant 0$

For arbitrary $n>0$, and $A \equiv e^{n} \leqslant 1$, one may write

$$
\begin{aligned}
J(n) & =\int_{0}^{\infty} \frac{y^{n-1} d y}{e^{y-n}+1}=\int_{0}^{\infty} \frac{y^{n-1}\left(A e^{-y}\right) d y}{1+\left(A e^{-y}\right)} \\
& =\sum_{j=1}^{\infty}(-1)^{j+1} \int_{0}^{\infty} y^{n-1}\left(A e^{-y}\right)^{j} d y \\
& =\sum_{j=1}^{\infty} \frac{(-1)^{j+1} A^{j}}{.^{n}} \int_{0}^{\infty}(j y)^{n-1} e^{-j y} d(j y) \\
& =\left(\sum_{j=1}^{\infty}(-1)^{j+1} \frac{A^{j}}{j^{n}}\right) \int_{0}^{\infty} x^{n-1} e^{-x} d x \equiv \bar{\zeta}(A, n) \Gamma(n)
\end{aligned}
$$

For $r_{1}=3 / 2$, this gives in our case

$$
I(\eta)=\bar{\zeta}(A, 3 / 2) \Gamma(3 / 2)=\frac{\sqrt{\pi}}{2} \bar{\zeta}\left(e^{\eta}, 3 / 2\right),
$$

determining η implicitly in terms of $I(\eta)$.
In particular, this shows that

$$
I(0)=\frac{\sqrt{\pi}}{2} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j^{3 / 2}}=\frac{\sqrt{\pi}}{2}\left(1-\frac{1}{\sqrt{2}}\right) \zeta(3 / 2) \approx .678094
$$

where ζ is the Riemann zeta-function (cf. TABLE I).
In fact, a method (Ref. 4, R 8) for sampling $p(y)$ can be based on the above relations when $\eta<0$, but the routine of Part III seems simpler and does not restrict η to negative values.
VI. THE MARGINAL DENSITY OF v_{x}

It is remarkable that, by introducing polar coordinates r, θ for v_{y}, v_{z}, the marginal density of v_{x} on $(-\infty, \infty)$ may be obtained in the explicit form (Ref. 1 , p. 334)

$$
\begin{aligned}
P_{1}\left(v_{x}\right) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P\left(v_{x}, v_{y}, v_{z}\right) d v_{y} d v_{z} \\
& =\frac{4 \pi m^{2} \theta}{n h^{3}} \log \left[1+\exp \left(\eta-\frac{m v_{x}^{2}}{2 \theta}\right)\right]
\end{aligned}
$$

For $u=(m / 2 \theta)^{\frac{1}{2}} v_{x}$, we then have the u-density

$$
d(u)=(2 C)^{-1} \log \left(1+e^{\eta} e^{-u^{2}}\right)
$$

which seems a more well-behaved function than $p(x)$, and would, of course, serve our purpose. However, none of our attempts to sample $d(u)$ have proved feasible.

REFERENCES

1. F. W. Sears, An Introduction to Thermodynamics, the Kinetic Theory of Gases, and Statistical Mechanics (Addison-Wesley Publishing Co., Inc., Cambridge, Mass., 1953).
2. J. McDougal1, E. C. Stoner, "The Computation of Fermi-Dirac Functions," Phil. Trans. Roy. Soc. A, 237, 67 (1939).
3. A. C. Beer, M. N. Chase, P. F. Choquard, "Extension of the McDougall-Stoner Tables of the Fermi-Dirac Functions," Helv. Phys. Acta, 28, 529 (1955).
4. C. J. Everett, E. D. Cashwell, "A Monte Carlo Sampler," Los Alamos Scientific Laboratory report LA-5061-MS (1972).
5. D. C. Carey, D. Drijard, 'Monte Carlo Phase Space with Limited Transverse Momentum," Journal of Computational Physics, 28, 327 (197\%).

[^0]: This report was prepared as an account of wark sponsored by the United Siazes Government. Neither the sponsored by the United Slates Government. Neither the
 Unised States nor the Unised States Departwent of United States nor the Unised States Departhiant of
 Energy, nor any of then employees, nor any of theit Energy, nor any of thetr employees, nor any of theit
 contractors, subcontractors, or their smployees, makes contractors, subrontractors, or their employees, makes any warranty, express or implied, of assumes any legal hatinty ot responsibility for the accutacy, completeness or usefuthess of any information, apparstus, product of process disclosed, or represents that its use would not infringe privately owned rights.

