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ABSTRACT

Wz present a discrete theory that meets the measurement problem in a new
way. We generate a growing universe of bit strings, labeled by 2127 4 136 :trings
organized L'y some representation of the closed, faur level, combinatarial hier-
archy, of bit-length Nyse > 139. The rest of the strings for each label, which
grow in both length and number, are called addresses. The generating alge-
rithm, called PROGRAM UNIVERSE, starts from a random choice between the
two symbols “0" and “I” and grows (a) by discrimineting between two randomly
chosen strings and adjoining a novel result to the universe, or when the string
so generated is not novel,by (b) adjoining 2 randomly chosen bit at the growing
end of each string. We obtain, by appropriate definitiona and interpretationg,
stable “particles™ which satisfy the usual relativistic kinemaiics and quantized
angular mementum without being localizeable in a continuum space-time. The
labeling achermne is congruent with the “standard model” of quarks and leptons
with three generations, but for the problem at hand, the implementation of this
aspect of the theory is unimportant. Whut mattera most is that (a) these com-
plicated “particles” have the periodicities familiar from relativistic “deBroglie
waves” and resolve in 2 discrete way the “wave-particle dualism” ard (b) can be
“touched” by our discrete equivalent of “sofi photons” in such a way as to iollow,
macroscopically, the usual Ruthetford scattering trajectories with the associated
bound states, Thus our theory could provide a discreta description of “measure-
ment® in a way that allows no conceptual barrier between the “micro” and the
“macro” worlds, if we are willing to base our physica on counting and exclude

the ambiguities associated with the unobservable “continuum™.
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1. INTRODUCTION

In our view, if the summation of “soft” photons by St.appal'2 indeed leads to
the conclusion that he has constructed “classical® electromagnetic fields whose
sources are the “hard” scattering events of quantum Beld theory, the “measure-
ment problera™ as conventionally posed has been successfully understoed. There
is no barrier beiween the “micro” and “macro™ worlds. When to this is added
the work of Stapp and others on the ERP *paradox”, which has been carefully
reviewed by him in a forthcoming paper3 , the door has been apened to an ob-
jective understanding of quantum mechanics with the characteristic that events
in space-like separated regions cannot communicate causal effects, but do change
the probabilities of events before any light signal transmitied from one of the
space-like separated reglons can be received in the other. We are in full agree-
ment with the conclusion that the past is fixed but that current events affect
the probabilities of future occurances anywhere in the known universe. We also
believe that quantum mechanical practice in many cases of interest gives us an

effective technique for caleulating these probabilities.

However, there are still conceptual difficulties in taking this result at face
value. For example, Chew has attempted to ground the underlying quantum
theory in a “topological boctstrap theory"‘ with considerable success, and has
related this approach to Stapp's result® . However, as Chew himsell admits® , he
has had to assume that he can associate continuous momenta with his underlying
“graphs”, an idea at variance with the diecrete foundations of the theory he is
developing. In this prper we argue that a fully discrete foundation for the whole-
problein can be provided, with a considerable gain as to both conceptual clarity

and future“developments.



Our theory has a long e:;u-ly"ﬁ9 and later!®7'® history, which we will not
explore here, since it would raise more philosophical, mathematical and physical
questions than we can treat with accuracy in a short presentation. Fortunately
for the purpose at hand recent results allow a reasonably coneize framework of
discussion to be extracted.

The basic entities in the theory are ordered strings of the symbaols “0,1"
labeled by a set of symbols @, 5,.. which are defined by *S¥) = (... bp, ... )N,

where %by € 0,1 and n € [1,2,..., N]. These strings combine by diserimination,
defined by

Dr oSS = (1B 43 "bnye )N = (oony (*bn =2 82)2, 3

to produce new strings, if N > 2. Here + is addition modulo 2, or “exclusive o1”,
or binary addition. Calling the null string Opr, and using @ for discrimination,
a5 @ %S = On, and for a,b,c distinct we have the symmetric relation for any
discrimination

S 'Se °S=0p

Since it is w2ll known in particle physics that we need at least four “particles”
to start to pin down an cbservation, and in geometry that we need at least four
“points™ not in a plane to start constructing a 3-space, we extend this basic

structure to define an “event” by
o ] < de
Se'SoSe ‘S=0y

In order to convince the reader that this structure will allow us to discuss physics,

we show that this basic relation, when we have four instances of it involving
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four labeled strings cf sequentially increasing length, allows us te <tabilize our
version of a “particle”. Within our discrete restrictions our “partic satisfy the
usual constraints of relativistic particle kinematics and gquantized o .al angular

momentum, including “vector” conservation laws.

The next step is to generate the strings themselves. This we do by a simple
computer algorithm called PROGRAM UNIVERSE, which provides a growing
universe of bit strings using two basic operations. The first is discrimination,
which, if the string produced is nol, already in the universe, increases the “size”
(i.e. number of strings) of the universe. !f the string produced by discrimina-
tion is alrcady contained in the universe, the “length” of the strings (i.e. N) is
increased by adjoining a single bit, randomly chosen between 0 and 1 for each
string separately, at the growing end. It will be seen that this is called into play
when we have encountered an event as defined above. The operation is called
TICK. Hence the universe “ticks” “whenever” and “wherever” an event occurs.
We will see that it iy this feature of the ennstruction which provides ns with both
the randomness and the “non-locality” a.ready familiar in conventional quantum

mechanics.

Tao label the strings we invoke the property of discriminate closure and by
mapping the discriminately closed subsets of a lower level in such a way as to
provide a linsarly independent basis for the next level, construct the combinatorial

hierarchy, i.e. the sequence
(2,22 - 1=3) (3,2 - 1=7) (7,27 1 =127) (127,2'F .} ~ 1.7+ 10°%)

This sequence termineles with the fousth level because the mapping cannet be

cantinued beyand that point. In this way we generave the cumulative cardi-
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nals 3,10,137,2'%7 4 136 and use our construction to assign the corresponding
2177 4 136 finite length strings as labels {called ¢, b, ¢, d, ... above) for the growing
portions of the strings, called addresses, which the program centinues to gener-
ate. Note that for each label, both the number of address strings and their length
continue to grow. We identify the third cumulative cardinal, 137, as a first ap-
proximation for he/e?, and the jast cardinal, 2!27 4- 136 - 1.7 x 10%8, as a first
approximation for fic/Gm;, steps which have to be justified during the Farther
development of the theery. The second identification sets the mass scale for the
theory as my, the mass of the proton. Since no more dimensional identifications
can be made, from here on in we must caleulate everything else. We emphasize
that this approach is not a prieri or “Pythagorean™. I at a later stage we come
to a conclusion in conflict with experiment, we must understand why, and failing

that either modify our approach or abandon the theory altogether.

Our next step is to investigate the labeling scheme in more detail, and to show
that this scheme allows us to describe both (massless) chiral and (potentially
massive) achiral “leptons” which are assaciated only with “velocities” £1 (in
physical dimesional units ¢). This takes care of levels 1 and 2 of the hicrarchy.
We develop here only enough of the theory to show that at level 3 we can interpret
the labels as describing two types of “hadrons”, with quantum numbers conserved
in events thal distinguish “protons™ and “neutrons™, with their “antiparticles”,
from the level 2 achiral leptons. We can then derive the basic formalism of
a covariant quantum scattering theory for systems with finite particle number,

. . . 17-121
which can be developed in a more conventional way.

At level three, our construction guarantees (3+ 7+ 127 = 137} labels of length

Niz > 12 and the first initial bits of a level 4 label consisting of all “0" s (O,,)
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or of all “I" s {1p,,). From our definition of discrimination , the first leaves
any Iasbel unaltered, and hence is our candidate for a “soft (coulomb) photon™.
Bui, with our definitions of “velocity” and the particle-antiparticle dichotomy,
which incorparate a discrete version of the usual Feynman rules, the anti-null
string 1y both reverses velocities and changes particles to antiparticies, sv in our
framework i indistinguishable in its effecis from the “soft” null string. Since this
label string occurs with probability 1/137, we justify our initial approximation for
¢*/he. An in the “coulomb gauge” approach to more conventional theories, spin
dependent interactions will give corrections of order 1/137, and consequently
corrections to our value that will allow us, ultimately, to calculate a second
approximation for the observed value of ¢? /hc. Our scatlering theory allows
us to sum the “soft photons™ in such a way as to give Rutherford scattering
“trajectorics™ in macroscopic {laboratoary) space, thus ty in the “micro” to the
“macro” worlds. Invoking the high energy experiments which “find QED valid
down to 1071° em”, we then argue that the use of the €*/r Coulomb law in the
Parker-Rhodes calculation of m,/m, is justified. Following Parker-Rhades'? we
then show, using appropriate statistical arguments, that the achiral leptons of

level 2 can acquire an electromagnetic mass in the experimentally observed ratio

to our standard m,,.

Further, our composite “particles” will contain high momentum components
tesponsive to hard photons, and 8o are consistent with the successful “parton”
model. A similar treatment of the level 4 Newtonian “graviton™ completes the
picture, but is not explored in detail. Spin 2 corrections should lead ta the “weak
fiald" version of the Einstein theory, as is discussed in more conventional terms

by, for exaraple, Weinberg” - As with the next order calculation of e?/He, these
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corrections could get us into serious trouble if they fail to work out. We claim at
this stage to have a digital version of quantum mechanica that warks at least as
well as the Stapp-Chew approach using a much simnpler conceptual basis. This
claim rests, in pact, on a covarisnt finite particle number scattering theary'7—2!

which we do not discuss here.

Granted this, we need only show that our composite “particles” exhibit the
usual wave-particle dualism of relativistic “deBroglic waves™. This requires us to
connect an “internal” dichotomous spin-label with our address sirings to provide
a signed “vector” that can leed to interference nulls. We conclude this section
by showing why we helieve that our approach allows us to understand the EPR
situation and the other “paradoxes” of mearurement theory in a new way made
possible by our avoidance of any need for completed infinities. Hence we argue
that by sticking to a discrete [ramework compatible with constructive mathemat-
ics and the participatory philosophy being developed:iz one of us” the non-loeal,
“fixed past -uncertain future” quantum mechanical theory dagé!oped during this

century can be understood in terms simpler than those which, histeiteally, came

firat.

2. BIT STRING PARTICLES

We now construct the particles of our theory from four sequential events, ¢ach
of which involves four labeled bit strings 2S®) 50 e 5O d5) . {¢1,2,3,4 of
length NY with N = Ny, N® = Ny + N3, N® = Ny + Nz + Ny, NI =
Ny + N» 4 Ny + Ny, where 1,2,3,4 refer to the four events characterized by the
four positive integers Ny, N3, V3, Ny, These strings have an internal structure

about which we know only that it haa been constructed by the random chaices



mentioned briefly in the introduction and described in the next chapter. This
algorithm (PROGRAM UNIVERSE) generates label strings “L,w € a,b,e,d of
bit length N;, which is fized, and address strings v AD(N;) where for § > 1
the length of the string, from thc definitions abave, only refers to the random
bits added by the “ticks™ subsequent to Ay. The strings have the structure
©§(4) = (“L, *AV(N;)]. Our definition of event

a g(¥) & s a° 50 g¢ S(f) = Opce
therefore implies that
ag, eb Lat Led L= On,; GA(i) eb Am a° Am @‘ A(i) =0,

1t is important to realize that we do not have access to the actual bit string
content of either the label or the address strings. These are indistinguishables
in the sense of Parker-Rhodes’ theory!?, Of the label strings we have by con-
struction the fact that they form a represeniation of the combinatorial hicrarchy
with exactly four levels, 30 we are allowed Lo base qur definition of a particle on
exactly four |abels. Again by construction, any address string has a unique !abel
which remains fnvariant as the bit string universe evolves, and which changes by
the addition of 2 random bit with each Ytick™ at the growing end of the string.
This generation process leaves the lebel and the enrlier bits in the address string
unchanged. There will be many addresses with the same label after the construc-
tion has praceeded to large values for N;. What we have done by apecilying the

above four events is to pick out a specific example in each case.

In the enrrent construction, we make use of the fact that cach address string

of length N cia be characterized by two parameters, N' and N°, giving the

9
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number of ones N' = BN b, and the number of 2zeros N° = N - N? in the
string, independent of th+ ordering parameter along the string n. The fact that
the strings engage in ¢venls gives us further siructural information independent
of order. We organize this informatlon as follows, For our immmediate purposes we
take label d as cur referent at reference event (1}, with address string 400 M)
characterized by the two integers My, 4N%(1). For the sccond event, which occurs
Nz “ticks™ after the reference event, we define tha eight positive or zero integers
Ta, My, Rey Rabs Rocs Theas Mabe, No added In the N3 “ticka™ after the reference event
with the significance that n, (my,n.) & the number of the ones in the addreas
string 9 ANy, (*A®) (M) f AP} (N2)) which do not coincide in their ordered
position n with the ones in strings b or ¢ (¢ or ¢,b or c), Ras(Mse, nep)the number
of ones whict coincide in the designated pairs, ng, the nurmber of ones which
coincide for all three strings, and ng tho number of zeros which coincide. It

follows immediately from our definition of diserimination and event that
Ng =n; +np +ne + gy + Ny + Neg + Agpe + Mo
that the number of ones in a is
ENY2) = na + ngh + Nes + Ny
that the number of ones in b is
SNL(2) = ny + Ray + Rpe + Bope
that the number of onesin ¢ ia

EN2) = ne + nye + nep + Mgk

10
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and that the number of ones in d is
ENL(QY == 1y 4 01y + e+ 11ghc

Since these refar to event (2), we extend the notation by 5, — 125(2), 55 — n{2)...
and so on.

For the third event, (3), which occurs N3 “ticks” after the second event
we deflne tho number of ones added in appropriate positions by Nz = An, +
Any + An, 4+ Ang + Any, + Ang + Angy + Ang, and the obvious extensions
Ang = Ang(3) and 50 on, Cleazly we also have in terms of these eight integers
obvlous definitlons for A®N1(8) and 8o on. Similar definitions apply to the fourth,
and last, event. We see that the string content, ignoring the order of the symhols
but keeping track of the correspondences between zeros and ones required by
the discriminations, for the three events subsequent to the reference event is
deflned by 24 positive or zerc integers which must increase from event to event
in a random way generated by PROGRAM UNIVERSE, but with the structural
restrictions we have taken some eare to define.

For what follown, il iz easier to visualize what is going on if we think of
the four events 1,2,3,4 as situated at the four corners of a tetrahedron with six
dirocted edges: (1} — (2),(1) - (3),(1) = (4),(2) - (3).(2) - (4).(3) = (4),
or (12}, (13), (14), {23), (24), (34) for short (see figure).

Concentrating on individual steings, the actual order in which the symbols
0,1 occur in the address string ia unimportant, but their numbers N°, N! with
NO® 4 N! = N are, These aflow us to define a parameter # Hounded by -1 and
+1 and the selated parameter 43 by

11



——_———————— - — T Ta g T ——————— et L e A A A S Ll

(2)
/
/%
] \

&
()

// 13 \ L
(1= il 7{"")

NA(N,N) = 2N ' - N; 7't =1 -1

With each label we asscciate a parameter my,, which It will eventually be the task
of the theory to compule, and two additional quantitie B, [N.N‘]’ = m3A?,
pu(N.N')? = mi~3 4% This has been done, transparently, so that E¥ - p? w !
and hence so that the assignment of the parameter my to label ¥L Is invariant
no matter how N and N? change as the universe evolves. Thus aur basic entities
support the necessary properties for relativistic kinematics including, when we
come to physical interpretation, the limiting velocily ¢. Note that when the
address string is 1y, § = +1, and when it is Oy, § = —1. For thess special casea
4 in undefined and we must take m = 0, F & p for consistency,

With each of these six “edges” we can thon assoclate six (rational fractlon)

“velocity” parameters 8, namely B(12y, F(aay B(sapr B(3a}s Araays Biss) defined by

Napry = 20N (2} - N,

[N3 + NajBis = 2[APNE(2) + APNY(3)] -~ (Vs + N;]

12



[Nz + N3 + Nyjfy = 2|A°N'(2) + A°N'(3) + AN (4)] — [Nz + N3+ Ni]
Nafaa = 2A°N'(3) — Ny
[Ns + NB2e = 2[APNY(3) + APN(4)] - [ N3 + Ny
Nyftyg = 2A°NY(4) - N,
If these definitions of the edges are examined with care, it will be seen that
we have assigned a to {12) and to (34), i to (13) and to (24), and ¢ to (14) and
to (23). It is important to realize that these assignments are arbitrary; all that

matters is that each of the three labels is assigned to two edges in such a way that

earh of the three Jabels is associated with each of the three events (2),(3), (4).

There are also six “velocity” parameters associated with the referent
d, namely

NaBs(12) = 2N)(12) - N,
[Nz + N3l84(13) = 2N}(13) — [Na + N3l
| Nz 4+ N3 + NajBa(14) = 2N1(1) — [N + N3 + Ny
N3B4(23) = 2N}{(23) - N5
N3 + NylBas(24) = 2N}(24) [Na + Ny

N¢By(34) = 2N} (34) - N,

13



where

INT(12) = Ana(2) + Any(2) + Ang(2) + Ang(2)
¢N(13) =1 N'(12) + Any(3) + Any(3) + Ane(3) + Ang,(3)
dN'(14) = N'(13) + Ang(4) + Any(4) + Ane(4) + Ang.(4)

4Nt (23) =* N{13) -* N'(12)
4N (24) =% N1(14) —* N'(12)

4N (34) =¢ N'(14) -4 N'(13)

Ilence we can replace 12 of our unknown integers with these 12 velocity param-
eters which we interpret as the velocities with which quantum numbers corre-

sponding to the labels a, b, ¢ move along the edges af the tetrahedron.

Mach showed long ago that the most compelting way to define maass, or more
precisely speaking mass ratios relative to some arbitrary standard, is by invoking
Newton's third law in particulate collisions. We extend this definition to the
relativistic case by requiring relativistic energy-momentum conservation at the
four eveats. Noting that since these events involve 4 as well as a,b, e this fives
four more parameters in terms of the masses m,, my, ., my. For consistency, this
requirea that the six velocities §4(12}, 84(13), Ba(14), B2(23), B4(24), 82(34) all be

the same, fixing six more parameters. The remaining two parameters N, N! are

14



replaced by our initial condition
Nlﬁd(l] = 2N}{l) - Ny

and the correspoading energy Eg = myy. In this way we claim to have proved
that our four sequential events describe a particle d of mass rn; moving with con-
stant velocity B4(1) comaining three internal partons of mass m,, my, m, which
conserve relativistic energy and momentum, but whoee internal momenta are

otherwise arbitrary.

We now note that the choice of the referent d, like the assignment of a,4,¢ to
the three events (2), (3}, (4), was arbitrary. We will show in Chapter 4 that the
labels ar b LeL 2L can be interpreted in terms of familiar particulate quantum
numbers which are also conserved in events. Thus our system (ebed) resembles in
detail the “four point function” of S-mattix theory. In particular we will see later
that this symmetry ia related to the usual CPT symmetry of Feynman diagrams.
Which of the four quantum numbers becomes the referent will then depend on
how the “bonndary conditiona™ described in Chapter 5 are set. We thus claim to
have established the casential kinematics for S-matzix theory in 3+1 momentum-
energy space directly from our discrete bit string structure. This justifies us in
introducing our first physical dimensional constant ¢ with dimensions [L/T]. Of
course, only muss ratios are thus defined, relative to sutme mass standard which,

go far, remains arbitrary,

To get our corresponding . 7it of length, we adapt Stein’s basic idea that
relativity and ‘he uncertainty principle come from random walke of finite step

length!® to the bif string context by 2ssuming . it an addres: string of finite

15



length can be interpreted as an element from a random walk in which“1" repre-
sents a step in the positive direction and “0" a step in the negative direction. In-
troducing the dimensional constant & with dimensions |ML? /T, we take the atep
length to be he/E. This completes the definition for m = D, in which case all steps
are in the same direction with v = +¢. For finite masses we then have that, for
example, the distance from {1} to (2) is given by r1z = (h/mac)|Braly/1 — A1, Nz,
and 8o on. Thus our tetrahedron acquires a spacial significance in 3+1 space-
time, even though its “edges” ar~ not “lines” composed of points. Thanks to
the usual algebraic connection between the sides of a {riangle and the angles, eg
cosbzy1a) = (riz + riy — rd)/2r1ar13, we can now give & meaning to divections
even though we have not started from a continuous space. Further, the usual
definition of orbital angular momentum I, = R x P gives, we believe, the usual
integral restrictions on the zcomponent thanks to the fact that our construction
allows only certain angles to accur. The details have not been worked out as of

this writing, but will he available at the Symposium.

Despite the pictorial character of our tetrahedra, it is impertant to keep in
mind that these “edges” are not “lines”. Interactions can occur, once we have
introduced the degrees of freedom needed for a complete scattering theory, at
“points” within the tetrahedra, but only in terms of the finite step length he/E.
Thus we can find “points” at discrete intervals which can made as close together
as we like if we use high enough energy “probes”, but nowhere “in between™;
these interactions can mvolve any of the “partons”. Hence if, as we anticipaie,
our theory contains QED we expect that the conventional interpretation of nigh
energy experiments which show that “QED is valid down to 10™%m” will sur-

vive. But we will be debarred from going to the continuum limit and can never

18



construct the “space® of Euclidean {or Minkowski) geometry. It is in this way
that we keep our theory discrete, and never get into having to use “continyous

lines®, We €laim that this is a real <onceptual triumph for our approach.

3. GENERATING AND LABELING THE BIT STRINGS

Our computer algorithm (Program Universe 2}“ staris from nothing (in the
computer, other than program and available memory) and generates s growing
universe characterized by two cardinaly: SU,N € integers. For computer oper-
ations any element of the universe may be simulated by an ordered string of the
symbols 0,1 containing /N such symabols which we can eall Ufi],i € 1,...,8U. We
use two operavions to increase these cardinals:{1) PICK, which picks any string
from the universe with probability 1/SU and a second string (shown to be differ-
ent by discrimination) with the same prior probability and generates 2 string by
discrimination; if the new string is not already in the universe it s adjoined and
SU I3 incressed hy one. If the siring produced by PICK is already in the universe
we invoke (2) TICK which picks a bit for each UJi), randomly chosen between
ihe two symbols 0,1, adjoins it at the head of the string, and hence increases ¥
by one; the code then returns to PICK. As slready noted, this defines an event.
The: flow js thus PICK — [novel{adivin) OR contained(TICK)) — FiCK... .

To get the program staried we assign the first string in the universe the
value R (i.e. a random choice between 0 and 1) and the second again the value
R, provided only it differs from the first. We now enter the main program at
PICK, and continue till doomsday. We say that each tick follows an event. Note
that by this specification of events and the integral ordering of the ticks (even
though, outside of the computer simulation, it turns out to be unknowable) we

17
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have abandoned the concept of simullaneity, and not juat “diztant simultaneity”

as is customary in special relativity.

To bring out the structure generated by this simple program, we consider firat
the short stringa generated in the ipitial stage, and show that these can be used
to generate a representation of the combinatorial hieraschy. We start from the
concept of discriminate ¢losure initially introduced by John Amsen®. Using + for
discrimination, gince a + @ = 0, and a,b lincarly independent {1.i.) ifa +3 £ 0,
there are sets of sirings which ¢lose under discrimination called diseriminately
closed subsets (DCsS). For example, if a and b are Li., the set {a,b,a+ b} closes,
since any two when discriminated yield the third. Similarly if ¢ is 11, of both
a and b, we have the DCs8 {a,b,¢,a + byb+ ¢,¢ + ¢, + b 4 ¢}. Provided we
call singletons such as {a} DS’ as wall, it is clear that from n Li. strings we
can form 2" — 1 DCaS, since this is simply the number of ways we can choose nn

distinct thing one, two,... up to n at a time.

The first construction of the hlerarchy® started from discrimination using
ordered bit strings as already defined. Starting from strings with two bita (N=2)
we can form 27 — 1 = 3 DCsS's, for example {(10)},{(01}}, {(10),(01),{11)}. To
preserve this information about discriminate closure we map these three sets by
non-singular, lineasly independest 2 x 2 muatrices which have only the membera
of these sets as eigenvectors, and which are Jinearly independent. The non-
singularity is required s that the matrices do not map onto zero. The linear in-
dependence is required so that these matrices, yearranged as strings, can form the
basis for the next level. Defining the mapping by (ACDB)(xy)=(Ax+-Cy,Dx+By)
where AB,C,Dxy € 0,1, using standard binary multiplicotion, and writing the
corresponding strings as (ABCD), three sirings mapping the discriminate closure



at level 1 ave {1110), {1101), and {1100) respectively. Clearly this rule provides
us with a linearly jndependent set of three basis strings. Consequently these
strings form a basis for 2° — 1 = 7 DCaS%. Mapping these by 4x4 matrices we
get 7 strings of 16 bits which form » basis for 27 = 1 = 127 DCsS%. We have
nov orgenised the information content of 187 stvinga into 3 levals of complexity.
We can repeat the process once more to obtain 2137 — 1 o 1.7 x 10°® DCsS™s
composed of strings with 256 bits, but canaot go further because there are anly
256 x 256 linearly independent matrices avallable 1o map them, which is many
to few. We have in this way generated the critical numbers 137 = he/2x¢* and
1.7 x 10° = he/2rGm} and » hierarchical structure which terminates at four
jevels of complexity: (2,3),(3,7), (7,127), (127,219 — 1), It should be clear that
the hierucl_:y defined by these rules is unigue, a result achieved In a different way
by John Amson®d,

Ir the context of program unlverse, alnce the running of the program pro-
vides us with the strings and also an intervention point (adjoin the novel string
produced by discrimination from two randomly chosen strings) where we can or-
ganize them conceptuslly without Interferlng with ihe running of the program,
we can achieve the construction of a representation of the hiararchy in a eimpler
way. The procedure is to construct flrst the basis vectors for the four levels by
requiring finear jndependence both within the levels and between levels. Since
adding random bits at the head of the string will not change the linear indepen-
dence, we can do this at the time the string is created, and make a pointer to
that Uls] which is siaply ¢, and which does not change as the string grown.

Once this is nnderstood, the coding in siraightforward, and has been carried
through by Maathey'®:34, Each time a novel string is produced by discrimina-



tion, it is a candidate for a basis vector for soms level. All we need do is find
out whether or not it i Li. of the current (incomplete) basis array, and £ill
the levels succemively. Calling the basis strings Bgjm)] wheee ¢ € 1,2,3,4 and
m € 1,-, B[ with B{1]..Bj4} = 2,3,7,127, we see that the basis array will be
complete once we bave gensratod 139 1L sirings. Since the program fills the
levels successively, it is easy to prove that if we dieeriminate two basis strimgs
from different levels we must obiain one of the basis strings in the highest level
available during the construction, oz level 4 when the constrection is complete,
ie. if 1 # 7 and both < Ly then B; + By w some By,

Ozce we have 130 L1. basis strings, which will happen when the bix string
length Ni3o la greater than or equal to 139, we can insure the generation of
some representation of the combinatorial hlerarchy by going to TICK. Then
the only alteration of these Ny initlal bits that can occur from then on will
be the filling up, by dlscriminsie elo;ura, of any of the remalning elements of
the hierarchy in this representation as a consequenca of the continuing random
discriminations, Since we keep on choosing stringe at random and dizeriminating
them, discriminate closure insures that we will aventually generate all 2127+ 136
elements of the hierarchy {BUT NO MORE). Of course there will eventually come
to be many different strings with the same initial bits, Nysg. We fix this number,
and from now on call the firt Nysp bita in & string the fabel, and the remnining
bits the address. Finally we note that when the label array ia complete we know
that among the labels [; at any one (svel we can find exactly B(i) Li. strings and
no moxe; it becomes arbitrary which of the many possible choices we make, so the
“basis” becomes a structural fact and does not single out any particular strings.
It follows immediately that if 7 # J and both < lgue then Li+ Ly = some Ligy.
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4. QUANTUM NUMBERS, LEPTONS AND BARYONS

In Chapter 2 we have seen that, given four labeled &‘rings Y5 where w €
a,b,¢,d and these distinct labels are themselves strings of bit length Ny, and
given iour sequential events ¢ € (1),{2},(3),(4) charazcterized by four integers
N; and address strings ®A{N;), we can construct particles {abed). Any one of
ihe four labels can be taken as the referent, and moves with constant velocity,
energy, momentum and mass my. The remaining three labels describe partons
with erbitrary (under specified digiial restrictions) velocities, envrgy, momenta
and angular momenta satisfying the usval conservation laws, and with arbitrary
maus ratios to the referent mass. Qur next step is to investigate these mass2s in
more detail using the iabels generated by PROGRAM UNIVERSE and organized
into the four levels of the combinatorizl hierarchy.

PROGRAM UNIVERSE “starts up” in such a way that we reach the the
situation with SU = 3, Ny = 2 composed of the thr= s.cings (10),(01),(11),

which is the first level of the hierarchy. Since
(10) & (01) & (11) = (0O)

the universe must then “tick™. This tick adds either a one or a zero . * the end
of each :vring; we can now interpret the first two bits as labels with N, = 2 and
the third bit as an address. Since this corresponds to ff = +1, these level 1 labels

must be assigned ezactly zero mass

As the programn chooses and discriminates between these strings, we can

generate eight labeled strings corresponding to m = 0 which are

(00)(0), (09)(1), (10)(0), {10)(1), (01){0), (01)(1), (:1){0), (a1}(1)
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It can al!so happen that the universe “ticks” for a while in such a way that 0
becomes Oy and 1 becomes 1, which obviously dues not change this structure, It
is important to realize that once we have introduced the label-address dichotomy,
the string 0, which is exciuded in the hierarchy construction itself, can have

interpretable sipnificance,

We now turn te physical interpretation by taking the critical step of defining
a “quantum number” 2kl for the level 1 labels, (“b,,” b3), where w tak%s on
the valuea a = (10),b = (01),¢ = (11),d = (00), as ZhL =¥ by —* by, with the
consequence that by = +1/2,hy = —1/2,h. = 0 = hy. [i is easy to show, in the

current context, that this quantum number is conz:irved in all events.

>

The next critical fact to nota is that the string {11)(1) reverses both the sign
of this quantumn i.umber and the sign of the velocity parameter # when any steing
is discriminated with n. Thus labe'= fall into two classes, L and L = L & 1y,
which we call particles and antiparticles respectively. Further, the reversal of the
sign of the velocity caused by discrimination with the address string 15 app. s
just as well to sirings with |#] < 1 as to the case we are censidering at the
moment. We are now in a position to identify the quantum numbers Al and
h; as the two helicity stat.s of some massless particle-antiparticle pair. Since
the heticity does not reverse when we reverse the velocity (but not the overall
time sense, which is currently undefinable), these are“psendovectors™, and if we
take the dimensional unit of this quantum number as h, we can identify them as
strictly massless chiral two-component neutrinos. From now on we will refer to
labels with |kz| = 1/2 in terms of the unit & as particles and (when we encounter
them later on) with |k] = 0,1 as guants. We also see that if we think of the

reversal of the velocity as the reversal of the time sense instead we have the usual
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Feynman rule that a particle “moving forward in time” will be equivaler’ to an
antiparticle *moving backward in time™. Therefore we have eatablished the CPT

theorem in our context.

Two of the remaining four strings, namely {00)(0) and (11){1) are of par-
ticular interest, s.ace the former leaves any 3t-ing untouched on discrimination,
while the second, thanks to the CPT theorem, has the same effect. If we ar-
ticulate our basic event structure further in the case of neutrino-antineutrino

“scattering” (w, w' € a,5) by writing
veav' §—cS=vSa¥Ss

we see that ¢ & ¢,d end that these two strings can be “exchanged” without
altering the gystem. They are therefore ocur candidates for “soft™ quanta, which
are necessarily massless - a peint which Stapp and Chew emphasize., As we will
see, our scattering theory will aliow us to sum any number of such processea and
will then lead to the kinematics of Rutherford scattering in an appropriate large
rumber approximation, when we are in 3+1 “space”. As yet we do not have
sufficient structure to define either this space or the coupling constam., Further,
because we can encounter either address siring associated with either neutrino
in the “final state”, this primitive scattering process already has the “crossing
gymrmetry” on which conventionnl S-matrix theory is based.

Befora we leave this primitive universe of masslsss neutrines and quanta, it is
interesting to note that they will remain constituents of the univerae as it evolves
and provide an ultimate (but ever increasing) boundary. Since we do not as yet
have enough structure to define directions, this boundary is iwtrogic. Once we

have developed cnough siructure for them to scatter from massive constituents,
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the first scatterings will define an “event horizon” whose isotropy or Iack of it
will depend on the details of the way PROGRAM UNIVERSE generates theso
scatterings. About this we will only be able t» make statislical statements,
Strings which engage in scatter-ings after these first “horizon” eventa wili then
define, statistically, the energy and particle density of the universe. Wz will not
discuss cosmology further in this paper,

The level 1 structure we have discussed will persist until we encounter an ad-
dress string with the structure (1x0) or (Oy1). Then the program will start
to construct level 2. The basis will close off when we have three Li. basis
strings, whith are also 1.i. of the level 1 sirings, and their discriminate clo-
sure in a total of seven sirings. The simplest representation of this situation is
to use level two label strings with the structure (00){b3bybs) with basis strings
(00)(100), (00)(010), (00){001)., The mapping matrix canstruction can give the
equivalent set (11G9),(1110),(1102). Since we have previously werked out a lot
of the details using this basis, we will stick to it here. After the labels close off, we
can again encounter the situation in which, for a while, the only address strings

will be 1y and Op, so we continue our discussion in terms of the structure for

the first level

level 1: (‘b “53)(000)(1x oropy}

where 1 € 1,2,3,4 and, to be specific, 1: (10}, 2 : (01), 3 : (11}, 4 : (00). Note

that 1 = 2 and 3 = 4, The corresponding structure for the second level is
tevel 2: {00)(%3 by Sbs 14} (1 or On); ba = by

where j € 1,2,3,4,5,6,7,8 and, again to be specific, 1: (1110, 2 : {(0001), 3:
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{1101), 4: {0010), &: (1200), 6: (0O11), 7: {nil). 8 : (0000). Again note that
1=3,3=4,5=8, 7=8.

Within level 2, we: now define helicity by 2k; =7 b3+ fby — Ibs— Ibg and find
that by = kg = +1/2; ha =ha = =1/2; by = 413 kg = —1; hy = hg = 0. We
now have enough structure to define a second quantum pumber within this level,
8 =Ff b3 — Iby 4 by —7 by with the consequence that & = +1, £ = —1, & =
-1, & = +1, & = & = {7 = & = 0. By appropriate invocation of the Feynman
rules, we again can show that these quantum numbers are conserved in events,
that the elementary scattering diagrams have crossing symmetry, and that the
CPT theorem in satisfied, now in the 3+1 energy-momentum space, which we now
have enough structure to construct. Clearly £ can now be identified as lepton
number. Thus, with both level 1 and level 2 before us, we claim to have, still
maszless, chiral (two component) neutrinos, achiral (four component) leptons and
massless vector and =calar quanta with zero lepton number. We do not explorz
here the coupling between level 1 and level 2, since by our constructive algorithm
for the hierarchy this recessarily involves level 3 labels. We note that, in contrast
with the conventional theory, and in agreement with the topological bootstrap
theory, our basic neutrinoe and scalar and vector quanta are massless. When we
go on to the next two levels, we wili see hew the achiral leptons acquire mass.

Onee agaln, once we encounter an address string of the form 150 or Oyl
PROGRAM UNIVERSE requires us to start constructing level 3. In analogy

with oyr previous step, we now use for the third level structure
level 3 : (00){0000) (%87 %85 *bg *b10 b1y *813 *b15 *b14) (1 orOp)

with &k € [1,2,3,...,128]. We also add 0y at the end of the level 1 and leve) 2



labels, before starting the new address labela. For the moment we will restrict
ourselves to the situation in which by = by3 = by3 = b4 = 0, and consider only
the 16 strings generated from some Li. choice of four basis vectors of length 4.
Consider first the strings (1110), {0001), {1101), (0010) we enconntered before,
and the four new ones now available {1011), (0100}, {0111), (1000). We define
the quantum numbers 2k, =* b +* by —% b ~E byp, B =F by =% bg +% by —% bigund
2i; =* by —* by —* by +* byo. Using the usual Gell-Mann Nishijima relation
Q = i,+B/2, we have precisely the quantum nurmbers for protons and antiprotons
vith baryon number and charge B = 1 = @ and neutrons and anti-neutrons
with B = %1, Q = 0; the twa helicity states £1/2 also cccur in the correct way.
As before, all the usual rules of S-matrix theory work out.

What about by; — by4? Since we already have four Li. basis vectors, only 3
of these are allowed ta be Li to complete the basia for level 3. We take the basis

to be the familiar (1100), (1110), (1101), but now with the interpretation given
in Table L :

Although for brevity in the caption we have called this the “SUS octet”,
speaking with more recision what we have is just the discrete quantum numbers
which are conventionally discussed in terms of that octet. From our point of view,
all we have is a transparent ruie for defining elght zets of quantum numbers for
cight bit strings we have derived from the cumbinatorial hierarchy, Wa believe
that it is n conceptual advantage in our a;proar.h that discrele quantum numbers
are just that, and need never be referred to “cantinuous groups®. All we encounter
in high energy experimental physics are discrete quantum numbers and their
connections. These are all we need to, or intend to, construct.
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The BUS octet for *LU,V spin™

Table I

(htbn&uin} 2L

STRING: 1110
%10

ALy = byy 4+ byy ~ bis ~ Hras
2 o -2hyy - bps + Sy ~ B
2V = —byy -+ 2yg 4 bra — 2hyy

+1
~1
+2

2
+I
-1

o o e YT e e

U, W, m¥{L + U,))

41

4
-1
0

+1
-
-1

+3
+1
+3

We nonw have » ready Interpretation for level 3. 'We ldentify this octes with the
*color actet” of QCD. We started our discussion of baryons by taking these four
bits to be {0000). Hince, x5 we can see from Table I, either this string or(1111)
yepronent & “colox ainglet” our initial diecussion of nucleons snd snti-nucleons,
with asocinted mesons gensrated by discrimination, remains valid. But with
color added, these two-particle, two-sntipsrticle apin states con bacome*up™ and
*3ows" guarks and antlguatke. A1l that semging is to show that the only states
we can form as particles cotrespond to {guq) and {53}, and that the quarks and
sssaciated ghuoos remain in the picture as “partons™ along the lines of Chapter

n
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2. This has not yet been accomplished as of this writing, but we are confident
that we will have more to say along these Hnes at the Symposiumn.

To go on to level 4, we see that we have two baain vectors with the structure
of (B)2012 at level 1, three with structure 0s(B)40p at level 2 and seven with
structure 0g(B)y at Jevel 8. According to our constructive algorithm, we can
immediately put together 2 X 8 x 7 = 42 of these to farm 42 of the bhasis vec-
tors for level 4, without changing the maxsless address sttings Ox and 1y. But
this does not complete the 127 basis strings needed for constructing the level.
Hence, for the last time, we argue that PROGRAM UNIVERSE will eveatually
produce an address string with the structurs 0,2 or 1x9 and from then on will
have to continue adding to the labe] siring ensemble untll at some label length
Np + Nyso = 139 the basis is complete and the label length fixed from then till
doomaday. If we are content to stick with the ﬂm\three level labels as an approx-
imation and interpret these added bits an addresses, we sse that they correspond
to syatems with |3] < 1, and hence to massive particles. In this way our hardons
are shown to have to be massive but the firat generation leptans and electromaag-
netic quants romain exactly moaseless. We will discuss below how the electrons
and positrons acquire mass. Further discrlminations wlll eventually produce all
2% 1 136 non-null labels at this label length, while the addresses continue to
grow both in bit length and in number as long as the progtam continues.

Clearly the eventual structure, with this number of distinet quantum number
states, is immensecly complicated in detail, but we can already make some vsefol
comments about some of the connections which will have to emerge. One is that
shere ave thres simple structures of the form (B)140ss, 014{B)14014, Dss(B)ra
where (B) are the 42 basis vectors already discussed. Thia gives 3 x 42 =126 of
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the 127 basls vectors needed to close the hierarchy. Yet each of them will also
close on itself, so we anticipata that the coupling between these three structures
will bo weak. The first one loaks like it still has a massless address label, but
if wo use instead simply three identical repetitions, i.e. (B)14(B)14{B}is, the
properties will be the same, and we {rust can be discussed ignoring, in first
approximation, the antlcipated weak coupling to the rest of the scheme. If we
now considar only the label 134 or its equivalent 0,4 which couples “softly™ to all
of the first thres levals, this will occur with probability 1/137 and we can now,
with confidence, accept this a» our first approximate evalvation of the strength
of the coulomb interaction. With this in hand, we can then expect inat the
structures we first encounter in particle experiments at low energy will be the
famillar ¥4, Do} €&, 73 9, , %, A With the weak vector bosons, up and down quarks,
and gluons coming along In due course. At least we have the right quantu .

numbers for the first generation of the standard model, and believe we have made
it look worth while to sce if the couplings can be worked out and compared with
experiment, Further, the atructure we discussed above suggests that the next two
ganerations will also he thare, Finally, when we ask about the 127°* basis vector,
14z with the associated Oy; which oceuts with probability 1/{2'*" + 136) and
couples 1o evarything, we can also with confidence assume that this is the “soft”
Newtonlan gravitational interaction with this number as a first approximation to
the coupling eonatant Gmg /e, and choose our final dimensional constant to be

elther my or G according to our taste.

From here on in we have to calculate everything, so it is time to indicate how
wa proposa to do that,



5. SCATTERING AND MEASUREMENT

In our construetion nf 3 particle [abed) with referent d and partons a,b,e
we ignored one critical fact about the kinowmatics, namely that we cannot satisfy
all the constraints by treating the “edges® of the tetrahedron using the classical
kinematics for free particles. The clue as to how to procesd was given us long ago
by Wick® in his discussion of how the enegy principle ia reapected ezternally
when i system is discussed at short distance in the light of the unecertainly
principle and the limiting velacity of apecial relativity. He concluded that at
short enough distances and times the energy can have arbitrarily large values, In
particular, since he was discussing Yukawa’s meson thanry“ y he assumed that If
two nucleons are conpled to what we are calling a *parton” of mass my responalble
for nuclear forces, the range of the nuclear forca s limited by r < #/mgqe. Further,
if the rest energy myc® is supplied by a sufficlently energetic measuremant, this
nuclear torce quantum can appear as a free particle in the Anal state. We conclude
that the missing parameter in the treatment of Chapter 2 is the virtual energy
E, between the first and the last event, which can have any value, fixed for
the particular example under discussion. Once thia is grasped, our kinematice

becomes consistent.

The critical step here is to recognize that the probability with which dls-
crete quantem numbers move along any edge of our tetrahedron (or any internal
“line" in a scatiering process with external energy Ey) occurs la propartional to
1/(E% — B4 - i0%), where the i0* is there 1o remind us that to calculate any
observable quantily we mast sum over all kinemaiically allowed values for K
and toke the limit B} — By. Given this, and the quantum namber restrictions
in events we have alre.dy derived, it is possible to derive the integral equations
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(sums for the discrete theory) of momentum space scattering theory. The critical
ingredients remaining are manifest covariance, proper attention to the degrees of
freedom implied by the finite number of degrees of freedom set by the number
of particles considered (in technical terms “unitarity”, and “clustering” - i.e the
proper asymptotic separation of clusters of subsystems into a consistent simgler

description. This theory exists® and will be assumed in what follows.

In the non-relativistic limit, the scattering equations for the scattering of
two finite mass particles due to the exchange of a quantum of finite mass m,
are the same a3 that due to a potential energy proportional to e~™ 7 /r. Since
we have already showed that the coupling constant for “soft” {coulomb) zero
mass quants e?/ke is given in first approximation by 1/137 we have available to
us the whole momentum space formalism of atomic and nuclear physics, and in
particular the coulomb poteuiial ¢2/r. Corrections due to spin will be of order
1/137 snd can be computed in a straightforward way from the scattering theory.
Since, experimentally, QED is good down to 10-"%cm, wa claim we are justified
in using this potential energy as an internal virtual energy in our calculations.

What is still missing in our fundamental theory are the mass ratios of the
particles relative to our standard my. Since we have electrons in the theory
which are Initially massless we aggurmne, following Parker-Rhodes'?, that this mass
comes from the internal energy due to the coulomb interaction, i.e. that m.c? =<
etfr >. Since this calculation has been published several times!®133,15.16 o
are brief here. The .inimal mesningful distance in a zero velocity system with
spherics] symmetry is the Compton radins &f2mye; r must start from this value,
and scales a random variahle y greater thau or equal 1o one. Similarly, since

charge is conserved, < e? >= (hef[27 x 137]) < z(1 - =} >, where in both cases
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we have replaced discrete by continuous variables; in the case of charge = shoyld
properly be an average over the charges in the 137 4 136 zvailable guantum
number labels. Hence mpfm, = 1377/ < z(1 - 2) »< 1/y >. Since we have
now established our space ea necessarily three-dimensional, the discrete steps in y
must each be weighted by (1/y) with three degrees of freedom. Hence < 1fy >=
[0/ wyt ey [y* U (1/y)*dy/y?] = 4/5. Since the charge must both sepnrate
and come together with a probability propartional to x(1 — 2z) at each vertex,
the other weighting factor we require is 22(1 — z)3, For one degree of freedom
this would give < £(1 — z) >= [f3 281 — )3d=]/[j} z*(1 — z)%dz] = 3/14. Once
the charge has separated into two luraps each with charge squared proportional
to 22 or (1 ~ =)* respectively, we can then write a recursion relationl®1%:13:15,16
K = [J5{z*(1— )%+ Kn-12%(i— ) '{d2] /({3 52(1— =) dz] and hence Ky = 314+
(2/7) K1 = (3/14)B05(2/7) Therefore, invaking again the three degrees of
freedom, we must take < z(1—2z) >= Kj and we cbtain the Parker-Rhodes result
mpfm, = 137 /[(3/14){1 + (2/7) + {2/7)%}(4/5)} = 1836,151497...in comparison
with the experimmental value of 1836.1515 - 0.0005

The success of this calculation encourages to believe that the seven basis
vectors of level 3 wili I2ad to & first appraximation for my/my s« 7 with corrections
of order 1/%7, hut this has yet to be done. In any case, we now have enough
structure to go on to our discussion of the wave-particle dualism and the probiam

of measurement.

The lahoratory paradigm we start with is two “counters™ with volumes
AzAyAz whose geometrical dimensions are measpred by siandard macrescopic
techniques and a time resolution A¢ measured by slandard clocks, When two

counters separated by a macroscopic space and time interval larger than the
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volumes and {ime resolutions of the counters have fired, some random walk con-
necting those two volumes has occured. The connection to the bit string universe
is the understanding that what we have called an event, and connected construc-
tively to relativistic quantum scattering theory, initiates the chain of happenings
that end in the firing of a counter or equivalent natural “event”, eg the ionization
of a hydrogen atom (which we now know how to describe in terms of our scat-
tering theory). But we do not know within those macroscopic counter volumes

where this random walk started and ended.

To meet this problem, we construct an ensemble of “objects” (i.e labeled en-
sexmbles with a specified rational fraction 3 for the velocity parameter) alt char-
acterized by the same vector velccity ¥ and i'ie same label (or mass) chosen in
such a way that, after k steps, each of length £ = (h/me)[1 — (v/c)*]M? = he/E,
the peak of the random walk distribution will have moved a distance £ in the
direction of . Our basic “quantization conditior” is E = he/f, which defines a
second length by p = k/X. We take as our unit of time the time to take one step,
6t = #{e. Once “time” is understood in this digital sense, the velocity of the peak
of each subensemble in this coherent ensemble has 2 velocity ¢/k. We call this
eoherent ensemble of enzembles a free quantum particle of mass m, velocity ¥,
and momentum 7= m&/[1 — (v/e)3]!/2. There is a second “velocity” associated
with this ensemble of ensembles, namely tlat with which “something” moves
at each step always in the direction 0. We call this vy; clearly vpp = k¢, and
vy, = ¥, Since this velocity exceeds the limiting velocity it cannot support any
direct physical interpretation, and in particular any which would aliow the supra-
lurninal transmission of information; of course it can provide for the supraluminal

correlations ‘experimentally demonstrated in EPR experiments. Associated with
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each of the two velocities and the label (or mass} there are two characteristic

lengths Agy = & = he] E; A = k€ = h[p.

Now we consider two basis atates for a spin 1/2 fermion which we write as
(10'p' and (01)g where & stauds fo: an address epsernble triple. We have seen
that such a “particle” can scatter from another and lead to ;ﬁnal state in a dif-
ferent direction. But there ave only two possible states in the new direction. To
preserve the (asymptotic) rotational invariance of our theory therefore requires
that the new state be expressabie as a eoherert sum of the two states referring
to the new dirertion. Then Lorentz invariance leads directly to the usual spin
1/2 formalism using two-component epinors and Wigner rotations. The npera-
tional consequences can be foliowed through and lead to the ugual density matrix
formulation with all the “interference™ phenomena reduced to probability state-

menis.

Since we have now established a digital version of quantum scattering theory
and the wave particle dualism correctly tied to achieveable Jaboratory m;zasnre-
ments, our results differ little in practice from stzndard quantum mechanics.
But the conceptual foundation is quite different. We have managed to get rid
of both the space-time continuum and continuous energy and mumentum, with-
out disturbing the successful contact betweer current experiments and the usua!
formalism as used in practice. Since wz bave, in a sense, “poinis® where events
can occur due to discrete discriminations, but no “lines” connecting them, our
particles can “pass through” cach other, someiimes scattering and sometimes
not; only the probabilities can be computed. The interference phenomens of the
“wrve theory™ come about because we have internal “spin dinections™ which can

be given external and macroseopic (statistical) significance directly from labora-
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tory connting experiments. The overall coherence of the theory is provided by
the “ticking" universe.

Although the strings themselves are indistinguishodles and the “ticks™ aze
unobeervable, this overall non-local hackground provides the necessary distant
correlstions needed to reproduce the experimental results of the double slit ex-
periment, the EPR experiments and, no far an we cun see any other current
observations. In contrazt approaches baved on the von Neumana "projection op-
erator” and consequent “collapse of the wave function” make such experiments
appear paraduxical, and in some sense in require a “conscious observer” for their
imterpretation., For us, all of this controversy over the foundations of quantum
mechavies can disappear into the mints of history. The critical connection be-
tween; the micyo and the macro worlde provided by the “soft photons” and their
summation comes to us through the familiar finite equations of quantum scat-
taring theory, and does not require us to make a detour into the mysterles and
paradoxes of the quantum theory of continuous flelds. We claim that we can
have our cake in the sense of successful contast with expesiment, and eat it too
in the sense that we have an underlying digital algorithm which can be directly
grounded in constructive mathematics and which never need Invoke completed
infinities. Thus we claim to have arrived at am oljective quantum mechanics
with all the need. 1 properties.



8. CONCLUSIONS

The objectiva of this paper has been to provide discrete, constructive foun.
dations for quantun: theory in terms of which the “measurement problem” takes
on a simpler conceptual form, closely related to the counter technology and in.
terpretive practice used in high energy physics. We start from the -ymbols 0,1,
binary addition, sequence regresented by the integers, and & random operator R
which gives us either 0 or 1 with equal prior probability. From these we construct
the discrimination opesation for ordered bit strings and the strings themseives
emphbg?WUNNBRB&WeMM-hmmipqr}mifuﬂy
evaluated it provides an algorithmic definition of events sequentinlly ordered by
the integers but nccessible fox purposes of interpretation only by statistical argu-
ments. We use the combinatorial hierarchy to orga.iize the information content
of the carly stages of the construction into four Jevels characterized by the cumu-
lative cardinals 3,10,137 and 2!37 4 136, When the information casrying capacity
of this construction ia exhausted, we use these elements as labels to organize the

Zrowing universo of strings Into labeled ensembles of addresses.

By consldering four sequontlal eventa epecified hy four integers involving four
distinct labels (abed} we construct a tetrahedron which, by taking any one of
the labels o a referent, describes a particle with three internal partons, Ficking
four yuasses (later to be computed) cocrespanding to the labels and defining mass
by relativistic energy-momentum conservatioa at the four events, we show that
ve can replace the (unknowable) hits in the strings by physically interpretolie
parameters. This allows un to construct a discrete version of 3+1 momentum
spuce in which the referent bas the mass, enetgy and momentum of = free pasticle
and the partons and particle have aome unknown internal energy E'. In terms of



thin moss and energy the partons satisfy the usual conservation laws, including
quantized crbital angular momentum.

By examining the construciion in detal] we show that the first three levels
contain the quantum number structure of familiar particles, but only acquire
mams when the construction is completed at Jevel 4 of the combinatorial hizrar-
chy. The quantum numbers are suggestive of the standard model of quarks and
leptons with three generations, byt the details are yet to be worked out, Iden-
tifying the “propagator” for quantum numbers “moving” along the “edges™ of
the tetrahadron with the 1/(E' ~ E — i0+) of quantum scattering theory, the fi-
nite particle number quantum ecattering theory follows In a straightforward way.
Since the construction necessarily containa “soft” masaless quanta, the scatter-
ing theory allows us to surn these and Identify the coulomb potential energy ¢*/r
with #e/e3 = 187+ O(1/137). This allows us to relate our theory to macroscopic
counter experiments. Using a random walk paradigm, this baundary condition
allows ua to idantify the lnternal periodicities of relativistic deBroglie “waves”.
Our identification of “spin® ties tha internal and external degrees of freedom to-
gether, explaining “wave-particle dualism” and “quantum wave interference™ in
agreement with current experiments.

The construction requires the dimensional physical parameters ¢, & and my orG
for interpretation, but once these are fixed, everything else must be compwied.
Taking the mass unit as m, gives a prediction for G good to order 1/137. The
hadrons are massive, but the leptons and electromagnetic quanta remain mass-
less; Electrons and positrons acquire mass theough their electromag-.etie inter-
actions, but electron-type neutrinos and an‘i-neutrinos temain massiess. Identi-
fying the internsl coulomb energy of the electron (or pasitron) compased of the




partons given by cur construction, we calculate its mase ratio to the proton masas
standard in agreement with experiment.

Independent of these details, the conceptus) framework we ba: » established
dissolvss for us the “paradoxes” of messurement theory and leads to an objee-
tive quantwm mechanics, as is argued at the end of the preceding chapter. We
therefore clajm to have met the problem of understanding why quantum theory
predicts that causal effects cannot ba fransmitted faster thet the limiting ve-
locity, yet requires thet quantum events change the probabilities of subsequent
events in space-like separated reglons, Thus the universe we have constructed

has a fixed past, but a future which we can only predict In terms of probabilities,
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manufscturer, or otherwise does not necsssarily constitute ar imply its endorsement, recom-
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United States Goverament or say ageacy thereof.



—

REFERENCES

1. H.P.Stapp, Phys. Rev. D 28, 1386 (1083}
2. =, *Time and Quantum Process®, presented at Conference Physics and the

Ultimate Significance of Time, March 16, 1983, Center for Process Studies,
Claremont, CA 91711, and LBL-17578 preprins.

3. —, "Bell’s Theorem and the Foundations of Quantum Mechanics”, Amer,
J. Phys. (in presa) and LBIL-16482 preprint.

4. G.F. » Found. of Phys. 18, 273 (1983)

5. G.F.Chew, "Gentle Quantumn Events 28 the Sousce of Explicate Order”,
LBI-5811 preprint.

6. G.F.Chew, talk at the First Annual Regional Meeting of the Alternative

Natural Philosophy Association, Stanford, Nov. 28.95, {084, avaflable from
HPN.

7. E.W.Bestin and C.W.Kilmister, Proc. Roy. Soe., A 313, 850 (1052).

8. =Proc. Camb. Fhil. Soc., 60, 254, 278 (1054), 51, 434 (1058); 68, 463
(1957); 55, 66 (1959).

9, T.Bastln, Stedic Philasaphica Qandensio, 4, 17 (1968).

10. T.Bastin, H.P.Noyes, J.Amson and C.W Kilmister, Fut J Theor. Phys,
18, 455488 (1979).

11. 1.Stein, Seminar at Stanford, 1978, and papers at the 2nd and 3rd wnnual
Thectings of the Alternative Natural Philosophy Association, Cambridge
1980, 1961

12, A.F.Parker-Rhodes, The Theory of Indistinguishables, Synthese Library,
150, Reidel, Dordrecht, 1981.

9



18. H.P.Noyes, In The Waue-Particle Dualism S.Diner, et al., (edn), Reidel,
Dotdrecht, 1984, pp. 537556,

14. M.J.Manthey and B.M.E.Moret, Comununications of the ACM, 26, 137-
148, 1983.

1S. H.P.Noyes, C.Qelwart nud M.J Manthey, in Proc. 7th Int'l Conp. on Lopie,
Methodology and Philosophy of Science. Salzburg, 1982 (in press) for a much
more detailed version see — “Toward & Conztructive Flysies”, SLAC-PUB-
3118 (rev. September 1963).

16. H.P.Noyes, M. Munthey and C.Gefwert "Constructing a Bit String Uni-
versa: & Progress Report”, Proc. of the Oxford Quantum Gravity Discus-
sion Conference (in prees) and SLAC-PUB-2200.

17. §.V Lindesay, Ph.D Thesls, Stanford, 1081, svailable as SLAC Report No.
243,

18, H.P.Noyes, Phys. Rev. C 38, 1858 (1982),

19, H.P.Noyes and J.V.Lindesay, Australian J. Phys., 38, 601 (1983).

20. H.P.Noyes and G.Pastrana, Proc. Few Body X, Karlsruhe, 1983,

21, J.V.Lindesay and A.Murkevich, Proc. Few Body X, Karlsruhe, 1983.

22. $.Weinberg, Grovitation and Cosmology, Wiley, Rew York, 1972, pp. 285-
280,

23. C.Gefwert, A Pasticipator: the Mclophysical Subject, SLAC-PUB-32T7 (De-
cencher, 1088) and The Proposition-as-Rules Idea, SLAC-PUB-3303, (Mareh
1944), to be submitted to Synthcse; On The Logical Form of Primitive Ro-
cursive Functions, SLAC-PU B-3334 (May 1984} and On The Logical Form
of Mathematical Language, SLAC-PUB-3344 (May 1984), to be submitted

40

mme - e

i



M.

25.

27,

to the Jowrnal of Philosophical Logie.

For Program Universe It Ref. 15 ; Program Universe 2 has also been
coded by M.J. Manthey in Paseal with concurrency, an ¢ffort which made
thiz paper poasible.

G.C.Wick, Nature, 142, 993 (1938).

. H.Yukawa, Proc. FPhys. Math, Soc. Japan, 17, 48 (1934).

J.V.Lindesay, H.P.Noyes, A.Markevich and G_Pastrana (in preparation).

41



