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ABSTRACT

The fields of sensitivity and uncertainty analysis have
traditionally been dominated by statistical techniques when large-scale
modeling codes are being analyzed. These methods are able to estimate
sensitivities, generate response surfaces, and estimate response proba-
bility distributions given the input parameter probability distributions.
Because the statistical methods are computationally costly, they are
usually applied only to problems with relativively small parameter sets.
Deterministic methods, on the other hand, are very efficient and can
handle large data sets, but generally require simpler models because of
the considerable programming effort required for their implementation.
The first part of this paper reports on the development and availability
of two systems, GRESS and ADGEN, that make use of computer calculus
compilers to automate the implementation of deterministic sensitivity
analysis capability into existing computer models. This automation
removes the traditional limitation of deterministic sensitivity methods.
The second part of the paper describes a deterministic uncertainty
analysis method (DUA) that uses derivative information as a basis to
propogate parameter probability distributions to obtain result proba-
ability distributions. The last part of the paper demonstrates the
deterministic approach to sensitivity and uncertainty analysis as applied
to a sample problem that models the flow of water through a borehole.
The sample problem is used as a basis to compare the cumulative distribu-
tion function of the flow rate as calculated by the standard statistical
methods and the DUA method. The DUA method gives a more accurate result
based upon only two model executions compared to fifty executions in the
statistical case.



I. INTRODUCTION

The Office of Nuclear Waste Isolation (ONWI) is performing

sensitivity and uncertainty studies as part of its performance assessment

of a high-level nuclear waste repository in salt.[1,2] The role of the

sensitivity analysis is to provide a means to limit the scope of the more

complicated problem of quantifying uncertainties. Uncertainty analyses

will be performed to support design reliability studies, to produce a

cost-benefit analysis in conjunction with cost estimates, to insure

compliance with regulatory criteria, and to help identify important

research and development needs.

The sensitivity analysis of computer-generated results consists

of determining the effect of model data upon the calculated results

of interest. Because computer model equations can be differentiated

analytically, sensitivities can be precisely defined and calculated in a

deterministic fashion using both direct and adjoint methods.[3-10] The

deterministic approach is particularly suited to large-scale problems for

which direct perturbation of the model data becomes impractical from a

cost standpoint. The main drawback to the deterministic approach has

been the initial manpower investment to add the computational capability

for calculating the necessary derivatives into existing computer models.

For quantification of uncertainties in computer-generated results,

the problem can be expressed more precisely as the propagation of input

uncertainties through models by the laws of probability to obtain output

uncertainties. (The uncertainty associated with whether the computer

model accurately reflects the physical phenomena is a problem of model

validation and is not addressed in this paper.) Uncertainties of compu-

ter results are of primary interest in applications such as repository

performance assessment in which experimental validation is not possible



or practical. Because of ths complicated nature of the computational

structure of large computer models, and because of the large number of

input and data parameters associated with such models, to date almost

all uncertainty analysis of computer results has been performed using a

statistical approach.[11-14]

This paper presents a comprehensive approach to sensitivity and

uncertainty analysis of large-scale computer models that is analytic

(deterministic) in principle and that is firmly based on the model equa-

tions. The theory and application of two systems based upon computer

calculus, GRESS [15,16] and ADGEN [17], are discussed relative to their

role in calculating model derivatives and sensitivities without a pro-

hibitive initial manpower investment. A Deterministic Uncertainty

Analysis (DUA) method [18] that retains the characteristics of analyti-

cally computing result uncertainties based upon parameter probability

distributions is then introduced. Finally, the role of sensitivity

analysis and the DUA method are demonstrated on a sample problem

describing the flow of water through a borehole.

II. DETERMINISTIC SENSITIVITY ANALYSIS

A brief description of general sensitivity theory is given here as

an aid to understanding the problem of applying this theory to computer

models. The example to be discussed will be that of a general set of

non-linear equations given by

U)



where y represents the dependent variable being solved for, c represents

the user-specified model data or parameter set, and F defines the model

equations. Th«* particular form chosen in Eq. (1) is one th«t can be

used generally to represent equations coded in the FORTRAN programming

language. The left side of the equation can represent the stored value

of the variable calculated from the functional formula on the right side.

Since the number of components of the vector y calculated in any

typical large-scale modeling problem is large, it is useful to define a

generic result for such a calculation that is of particular interest to

the model user. Typically many results will be needed for analysis but

in most cases they form a much smaller set than the actual set of y

component values. A typical result will be defined as

R - h(y) ( (2)

where R is a single number that is a function of the solution to Eq. (1).

For notational ease, the generic parameter a^ will be used to denote any

individual parameter. The total number of parameters in the problem will

be assumed to be H so that the index on a^ will run from 1 to M.

The basic problem in any sensitivity study is to find the rate of

change in the result R arising from changes in any model parameters. For

the generic parameter a^, then, the quantity of interest is the numerical

value of dR/do^ given analytically by

dR_ _ |h dy_ (3)
daj 3y daj



Since the functional dependence of R on y through h(y) is defined

analytically by the model user, only dy/da^ needs to be generated in

order to evaluate Eq. (3). The procedure needed to get dy/da^ is to

differentiate Eq. (1) as follows:

dy _ JF Jy_ + _aF_dc_ (4)
d dy daj[ 3c d

Rearranging Eq. (4) yields the following set of coupled equations to

solve for

( ' • * )

dy _ §¥ dc_ t (5)
d 8c d

or in more compact form,

Ay[ - Si , i - 1 M f (6)

t

where I is the identity matrix and A, y^, and s^ are given by

yi - dy_ , (8)
dai

and
si » §1 d£_ .

3c

If Eq. (6) were solved directly for y^, the result could be used

in Eq. (3) to evaluate dR/daj. This method of sensitivity analysis is

called the "direct" approach and is a classical methodology that has

received a great deal of attention in the literature.[3,7] Since Eq. (6)

must be solved each time a new ct£ is defined, the direct approach is most



suitable for problems with relatively few input parameters of interest,

for problems in which the solution of Eq. (6) is very inexpensive com-

pared to the solution of the model itself, or for analytical problems

in which the inverse of A can be explicitly determined.

For large-scale models with a large data base in which the ultimate

objective is still the evaluation of dR/daj, the intermediary step of

solving for dy/da^ and its inherent computational inefficiency can be

avoided. For such problems the "adjoint" approach is far more appli-

cable. In this methodology, use is made of the fact that Eq. (6) is

linear in yj, and appropriate adjoint equations can therefore be

developed specifically to evaluate Eq. (3).

Defining the matrix adjoint of A as A* and using the usual

definition of this adjoint give the identity,

utrAv - vtrA*u , (10)

where u and v are arbitrary vectors and A* is defined as

A* - Atr . (11)

Here the tr superscript represents the transpose of the vector or matrix.

If specific vectors for the problem at hand are chosen for u and v,

the problem-specific adjoint equation can be set up as follows:

A*y* - s* , (12)

where

A* - A t r - /T . « \ • (13)



Choosing s* as

s* - (dh/dy)tr , (14)

Eq. (3) can now be evaluated as follows:

dR _ y * t r 3F dc i _ x M (15)
d dc dai

where y* is now the solution to

r)(T 3F^

The simplicity of the adjoint approach lies in the fact that

Eq. (16) needs to be solved only once to get any and all sensitivities

in the problem. This is a result of Eq. (16) being independent of the

definition of Q^. The particular choice of aj is only reflected in the

evaluation of Eq. (15), which involves simple vector products. In

essence, the adjoint approach reduces the computational effort needed

to evaluate dR/da^ from solving many coupled linear equations to the

evaluation of several vector products. For large-scale systems with

many thousands or even millions of parameters, this represents orders

of magnitude in computational efficiency.

It should be noted here that both the direct and adjoint equations

(i.e., Eqs. (6) and (16)) are in any case far easier to solve than the

original model (Eq. (1)). Both Eqs. (6) and (16) are linear while

Eq. (1) is nonlinear. The direct and adjoint approaches, however,

require the results of the original model equations to be available in

order to set up Eqs. (6) and (16), since the A matrix and the vectors s,

and s* depend on y.

In order to solve either the direct or adjoint sensitivity analysis,

then, the model user must first generate the matrices BY/by and dF/dc



from the original nonlinear computer model. For large-scale problems

this generally requires a great deal of painstaking human effort. First,

the model equations must be extracted from the computer coding. They

must then be differentiated with respect to all parameters of interest,

and finally direct or adjoint sets of equations must be set up for com-

putational solution. Successful automation of this procedure greatly

reduces the human effort involved, potentially by orders of magnitude.

The advantage of automation of sensitivity model development is therefore

great indeed. The next two sections discuss two automated systems that

use calculus precompilers to add capability to existing FORTRAN computer

models for solving the direct and adjoint equations procedures.

Ill. 6RESS

An Automated System for Solving the Direct Sensitivity Problem

For large-scale computer models, the equations are usually very

complex and tied closely to and embedded in complex model logic and

data-handling routines. In addition, for nonlinear problems, the

numerical solution procedure often precludes an easy separation of the

modeling equations from other parts of the model coding structure. For

these reasons, a general system was developed to automate the application

of computer calculus in existing codes. The system first developed for

solving the direct sensitivity problem was the GRadient-Enhanced Software

System (GRESS). Details of the GRESS system are given in Refs. 15 and

16, and the underlying ideas are briefly summarized herein.

The basic principle of GRESS is to read the model source program

and search for model equations. These are identified uniquely by the



appearance in the FORTRAN source program of the "-" symbol. Since all

FORTRAN "equations" so identified occur in the form of Eq. (1) (i.e.,

with a single dependent variable on the left side of such an expres-

sion) , GRESS can search for and analyze each equation in terms of its

functional dependence on y and c. The basic computer calculus operations

of GRESS are then used to compute the successive elements of dF/dc and

dF/dy as each expression is encountered. The differentiation is car-

ried out analytically using calculus software for all permissible

FORTRAN functions and operators and the results are computed and stored

numerically using the local (current) values of the independent and

dependent variables. GRESS takes advantage of the fact that in solving

Eq. (5), the matrix (I - dF/dy) is lower tridiagonal and the y vector can

be computed by forward substitution. The important point is that the

components of y are solved successively as each equation is differen-

tiated and that the (I - dF/dy) matrix does not have to be stored. (The

adjoint problem requires the storage of this matrix, as will be discussed

in the next section).

GRESS only recognizes real-variable store operations as valid equa-

tions (i.e., the left side variable in a FORTRAN equation nust be real),

since continuous derivatives are to be calculated. Also, the left hand

side of an equation is treated as a separate component of y each time it

is executed (including each execution in a DO LOOP). The calculation of

dF/dy and dF/dc in effect means that GRESS can be used to calculate the

derivative of any real variable in the model with respect to any other

real variable in the model. All derivatives are available for both

internal and/or external use. For example, the derivatives dR/da^ are

used in the DUA method to be described later.



The application of GRESS Co an existing FORTRAN model is illustrated

in Fig. 1. In the preliminary preprocessing step, the FORTRAN model is

separated into*two subsets. The first, which contains all main sequence

computations, is hand modified for submission to the GRESS precompiler.

The amount and nature of these modifications depend on the particular

application at hand and the limitations of the current version of GRESS.

GRESS presently recognizes all FORTRAN 77 functions with the exception

of complex functions. The second subset (possibly null) is composed of

subroutines whose only communication with the first subset is through

the arguments in their calling sequence. These subroutines are usually

associated with input, output, and peripheral program-analysis functions.

They do not require GRESS compilation and may usually be submitted

unchanged to the FORTRAN compiler.

The next step is the GRESS precompilation in which the automated

code translation necessary to compute derivatives is performed using

automated computer calculus. This step consists primarily of a rear-

rangement of the program data structure and a substitution of calls to

GRESS interpretive software in place of all arithmetic lines of coding.

All arithmetic operations of the original model are precompiled into a

pseudomachine code (the GRESS P-code) for use during program execution.

The two output files of this step ere the enhanced model and the binary

P-code file. These two files and a set of GRESS software subroutines

supporting the enhanced model are compiled and run as a normal FORTRAN

program to produce both the reference model results and gradient infor-

mation. The gradients and reference results are used to calculate the

sensitivities.
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GRESS has undergone extensive verification during its development.

To date, five major computer models of interest to ONWI have been

enhanced using*GRESS, with direct comparison of GRESS-calculated deri-

vatives to perturbation-derived derivatives being made for each enhanced

model.[19-23]

IV. ADGEN

An Automated System for Solving the Adoint Sensitivity Problem

The adjoint problem is defined by Eqs. (12-16). As previously

mentioned, the calculation of the adjoint solution vector y* from

Eq. (16) is not a function of the selection of input parameter a± and

thus need only be performed once to determine the derivatives of a

response of interest with respect to any parameter of interest. The

matrix dF/dc must also be determined but it too is independent of the

parameter of interest. The only parameter dependent operation required

to calculate the derivative dR/da^ is the simple matrix multiplication

operation (y*tr)(3F/3c)(dc/da£) in which the vector dc/da^ is a function

of aj. A system to automate the calculation of derivatives based upon

the solution of the adjoint equations has been developed.[17] The system

is named ADGEN (ADjoint GENerator) and uses a GRESS-like precompiler

named EXAP (Extended Arithmetic Processor) which will enhance any FORTRAN

code with the computer calculus necessary to calculate all required

derivatives of the 3F/3y and 3F/8c matrices.

Recall that GRESS solves Eq. (5), taking advantage of the fact that

the matrix (I - 3F/3y) is lower tridiagonal and the solution by forward

substitution requires only that the vector dy/da be stored. However, to
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solve the adjoint problem, the EXAP precompiler must calculate and store

all derivatives that constitute the n x n matrix (I - 3F/3c)tr , where

n - total number of equations, counting each time an equation is solved

in a DO LOOP as a separate equation; the left hand side of each equation

in a DO LOOP is treated as a separate element of y. Although only the

non-zero elements are saved, the storage of the matrix (I - 3F/3c)tr

may require a substantial amount of storage capability. The storage

difficulties are counterbalanced by features of Eqs. (15) and (16) that

make the ADGEN calculation of y* both practical and cost efficient. Note

that the matrix (I - 3F/3c)tr is upper tridiagonal and that the column

vector (dh/dy)tr is a simple user-defined vector (for most cases a vector

with a single non-zero entry of unity). Thus Eq. (16) is easily solved

by back substitution and the values of y* can be successively stored in

the space allocated for the (dh/dy)tr vector. The calculation of dR/da^

from Eq. (15) must be performed for each <*i but this requires only

trivial matrix multiplications and very little computer cost.

The ADGEN system is shown schematically in Fig. 2. Like GRESS, the

ADGEN precompiler EXAP produces a binary file that essentially contains

all the arithmetic operations of the code being enhanced. The enhanced

code has CALL .statements that access the P-CODE and calculates the normal

model results as well as the derivatives making up the dF/dy and dF/dc

matrices. One major difference from the GRESS schematic (Fig. 1) is the

requirement to store the (I - 3F/3c)-r matrix and the need for a post-

processor solver routine to calculate the adjoint solution.

The testing and verification of ADGEN has been performed on the

PRESTO-II computer model [24], which has approximately 6,900 lines of
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coding. The sample problem included in Ref. 24 calculates a time-

dependent radiation dose to man from transport of 42 radionuclides. The

problem has a large data base of approximately 69,000 input parameters.

ADGEN was used to calculate the derivatives of the dose to all 69,000

parameters and direct perturbation was used to verify selected deriva-

tives. For this problem the (I - 3F/3y)tr matrix had approximately

870,000 rows, requiring about 19,700 Kbytes of memory.

V. DETERMINISTIC UNCERTAINTY ANALYSIS

The analytical propagation of input uncertainties through a calcu-

lational model is unfeasible, if not impossible, for all but the most

simple models. The difficulty lies in mapping probability density

functions from an M-dimensional space of input parameters to the singly

dimensioned output distribution function. To circumvent this problem,

the most common approach is to randomly sample the input distributions

and then calculate the model output of interest, constructing a proba-

bility distribution of the output by rerunning the model for each sample

set of input parameters. The input probability distributions and any

parameter correlations are handled, in a statistical sense, in the

sampling procedure.[13,14] The information available from probability

propagation is lost, but hopefully the sampling procedure will lead to an

output distribution that is representative of that which would result

from the actual propagation of input probability distributions. As the

number of sampling sets increases, the difference between the calculated

and "true" output distribution diminishes. The problems occur in

practice when the number of runs of the computer model needed to assure a

large enough statistical sample becomes too expensive.



15

Another approach is to discretize the input probabilities into

histograms and evaluate the model output of interest for all possi-

bilities of parameter combinations to form a probability tree.[25] All

parameter correlations are incorporated into the probability tree struc-

ture. This method does not rely on random sampling and probabilities are

easily propagated in probability trees by simple multiplication. The

histogram probability distributions are not actually propagated, but

rather mean or endpoint parameter values are used. This method is quite

feasible for models with a small number of parameters or even for a large

number of input parameters if the model is simple (inexpensive). Again

the problem arises when the computer model has numerous input parameters

and/or is expensive to run.

A third approach is the response surface method in which the com-

puter model is replaced with a simple analytical expression.[26] The

expression is constructed by fitting the computed values of the model

output to the corresponding input parameters, or more generally, to

chosen functions of the input parameters. The uncertainty in the com-

puted value of the expression is then determined in the usual statistical

sense by sampling of the input distributions. The advantage of replacing

the model with the response surface is the drastically reduced computa-

tional time to compute the expression result compared to running the

computer model. The disadvantage is the introduction of error in the

calculated output by replacement of the model with a simple expression.

The Deterministic Uncertainty Analysis (DUA) method [18] combines

the characteristics of the response surface method and probability trees.

Statistical sampling is not required and probabilities are propagated

analytically within discretized numerical meshes that encompass the
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parameter space. The approach underlying the deterministic calculation

of uncertainties in the DUA method relies upon (1) a replacement of the

computer model %ith an analytical function relating the responses of

interest to the parameters of interest and (2) discretizing the parameter

space and calculating the expected value of the response within each

discrete parameter space "mesh." The parameters of interest are chosen

to be those that are "uncertain," meaning that they have known or assumed

probability distributions. The parameters of interest may often include

the entire set of data used by the computer model.

This deterministic approach differs from the response surface

methods in two ways. First, the analytical function is constructed based

upon the response value of interest as well as the partial derivatives

of the response with respect to each of the parameters. The classical

response surface method constructs the surface (analytical expression)

based only upon the response value at each parameter space point. Thus

the degrees of freedom with which to fit the response to the parameter

values is much greater in the DUA method than in the response surface

methods. There is of course no reason to distinguish this aspect of the

DUA method from response surface methods if the response surfaces are

constructed using derivative data; but in the classical response surface

methods these derivatives are assumed to be unavailable, most likely

since the response surface methods grew out of experimental design fields

in which only set noints of the control variables (parameters in our

terminology) and the experimental measured values (responses) are known.

As the response surface methods came to be used for replacement of large,

complex computer models, again the derivative information was not used

because of the difficulty of calculating partial derivatives chained
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through complex computational paths. However, the development of

efficient methods for calculating derivatives and sensitivities for

large-scale computer model results has progressed steadily based upon a

firm theoretical foundation. Moreover, with the availability of GRESS

and ADGEN, the calculation of derivative information for the purpose of

improving the formation of response surfaces is both practical and cost

effective. This availability of derivative information is a key compo-

nent in the DUA method.

The second feature that distinguishes the DUA method from response

surface methods, and a feature that it has in common with probability

tree methods, is that the entire parameter space is spanned. In the

response surface methods, the construction of response surfaces has been

primarily used to dramatically increase the number of sampling points in

a statistical determination of response probability distributions since

the evaluation of the analytical response surface expression is much

less expensive to obtain than the corresponding computer model result.

However, only by spanning the entire parameter space can probabilities

be propagated, either through a computer model or through an analytical

expression. Spanning the entire parameter space is practical only if the

discretization of parameter probability distributions is performed over

a reasonably large mesh. In probability tree methods, for example, the

probability distributions are typically replaced with the high and low

values of the distribution. The DUA method extends the probability tree

methods into a more rigorous propagation of probabilities in two ways:

(1) Since an analytical expression relates the response to the param-

eters, the expected value of the response over each discretized mesh can

be calculated analytically and thus gives a more meaningful value than

just a single sampling point within the mesh. (2) Because the computer
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model is replaced with an analytical expression, a finer mesh size can be

constructed over the parameter space and a more accurate representation

of the parameter probability distributions of most interest can be

obtained.

Another point to be made in favor of propagating probabilities

through an expression that can only approximate the original computer

model, and one that makes the DUA method possible for computer models

with a large number of parameters, is the integral nature of the proba-

bility distribution of the response. The probability distribution of

the response of interest is an integral quantity and errors introduced

by replacement of the computer model with an analytical expression are

most often washed out when the parameter space is completely spanned.

Formation of Response Surface Using Derivative Information

The DUA method replaces the computer model with a response surface

by relating the response of interest as calculated by the computer model

to the parameter values by techniques that incorporate knowledge of the

partial derivatives of the response with respect to the parameters of

interest. The simplest form of a response surface is one formed by

linear extrapolation from reference space points to each mesh of the

discretized parameter space. Within each mesh the response surface

is linear with respect to the parameters, and the calculation of the

expected value of the response within the mesh, given parameter proba-

bility functions, is straightforward. An extrapolation scheme that

makes use of the sensitivities is outlined in Ref. 18.

A more general approach for construction of a response surface is a

least-squares fitting technique. Possible schemes for incorporating
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derivative information into the standard fitting technique are presented

in Ref. 18. Basically, to construct a response surface to a given order

of expansion, the use of derivative information reduces the number of

computer runs required to uniquely determine the expansion coefficients

by a factor of approximately 1/M, where M is the number of parameters.

One can either construct a global response surface or define local

response surfaces over subregions of the parameter space. A local fit

of the response values and derivatives using a low-order function may

be more desirable than a global fit using a higher order function to fit

a large portion of the data because a higher order fit involving many

response points may result in a very radically behaved function in the

parameter space not near the fitted points. For this reason most of our

research to date has focused upon either local fitting or linear extra-

polation from reference parameter space points. By careful selection of

these parameter space points for which model results will be obtained

(using Latin Hypercube Sampling, for example), the number of computer

runs can be held to a small fraction ( « 1/M) of the number required for

the conventional construction of a response surface.

Finally, sensitivity analysis plays an important role in the forma-

tion of the response surface by eliminating those parameters that have a

negligible effect on the result of interest based on their sensitivities

and uncertianty ranges. Also, the derivative information from the refer-

ence model runs can be used to identify the occurence of parameters that

occur exclusively in a given combination. Such identification reduces

the parameter space by replacement of the individual parameters with the

particular combination. For example, if the derivative of the response

with respect to each of two paramters is the same at each reference space
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point sampled, the two parameters most likely appear in the model as a

sum of each other, and a single parameter representing the sum of the two

can be used in-the formation of the response surface in place of the two

individual parameters. The sample problem exemplifies these uses of

sensitivity and derivative data in the formation of the response surface.

Propagation of Probabilities

The propagation of parameter probability distributions from the

multidimensional parameter space to the singly dimensioned res ilt space

is determined by the governing system of equation:; and the input variable

probability density functions (pdf's). In theory! tn*-s propagation can

be performed analytically by convolution of the ii tegral of the parameter

space into a discrete number of integrals of the singly-dimensioned

response space, in which each integral is over a monotonically changing

function representing the result. However, because the identification of

the convolution integrals, in particular the limits of the integrals, is

virtually impossible for all but the simplest problems, and because the

model equations are nonlinear and complexly intertwined in general, the

propagation of probability distributions through computer model cannot

be treated analytically in the strictest sense.

The propagation of parameter probability distributions in the DUA

approach is performed by discretizing the M-dimensional parameter space

(M - number of parameters) into L meshes, each mesh denoted by mj. The

probability of mesh mj> occurring within the entire parameter space,

p(mj>), is calculated as well as the expected value of the response func-

tion within the mesh, E(R^), where R^ represents the response function



21

within mjj. The probability p(mj;) is assigned to E(RJJ) to obtain the

probability of E(Rj>) vithin the discrete space of expected values. The

pairs of p(m^) "and E(R^) are reordered such that E(R^) < E(R2> < . . .

E(RL) and as such constitute the probability density function of the

response R over the parameter space. The cumulative distribution

function (CDF) of R, C(R) , is the running sum of the reordered p(mi)

paired with the corresponding value of E(Rjg) . In the limit as L » «,

C(R) approaches the true cumulative distribution function of R as

calculated using the response function.

Let the functional form of the response within mj be given by

R? - gi(c) (17)

where gjg(c) is the response surface function within m_g resulting either

from a fitting procedure or from a linear expansion from one or more

reference space points. The vector c is the M-dimensional parameter

vector given by c - (a^, a2,...,a^)tr. Given the joint probability

function of c as P(c) - P(ori, 02,...a^)' t n e probability that c c mj is

given by

V(m£) - P(c c m i) - f P(c)dc , (18)

and the expected value of the response R within m^, E(R^), is

E(R*) - f g(c)P(c)dc/p(mi) . (19)

The values of p(mj) and E(Rj) as calculated by Eqs. (18) and (19) are

used to construct the probability density function and cumulative distri-

butions function of the response R.
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VI. SAMPLE PROBLEM

Reference 27 describes a sample problem that exemplifies the use

of uncertaintyanalysis in high-level waste applications. The sample

problem consists of three coupled equations with eight input parameters

and three dependent variables. The analysis focuses on one of the three

dependent variables, the flow rate, as the response of interest, and

statistical techniques are used to calculate the cumulative distribution

of the flow rate given probability distributions for the eight input

parameters.

The governing equations describe the downward flow of water through

a borehole that is drilled from the ground surface through two aquifers.

For a fully penetrating well and no ground-water gradient, the steady-

state flow through the upper aquifer into a borehole is given by

^ 2JT (H U - Huw) T u

in (r/rw)

where Q - flow, m^/yr

Tu-transmissivity of upper aquifer, m^/yr

H u - potentiometrie head of upper aquifer, m

H u w - steady-state potentiometrie head in borehole at upper

aquifer, m

r - radius of influence, m

rw - radius of borehole, m.

Similarly, the steady-state flow from the borehole to the lower

aquifer is given by

Q - - 2" <Hi - "wi> Ti? (21)
in (r/rw)
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where Tj> — transraissivity of lower aquifer, m^/yr

H# - potentiometric head of lower aquifer, m

HWjg - steady-state potentiometric head in borehole at lower

aquifer, m.

The flow of water through the borehole is assumed to be laminar and

isothermal and is given by

_ nvw (Hwu ' Hv?i) ̂ w (22)

where Ky - hydraulic conductivity of borehole, m/yr

L - length of borehole, m.

In Eqs. (20-22), Q, H^, and Hw>g are dependent variables; the flow

rate of water, Q, is the response of interest. The uncertainty problem

is to calculate the cumulative distribution function of Q, C(Q), given

the probability density functions of the eight input parameters rw, r,

Tu, Ti, Hu, H£, Kw, and L. The probability density functions of these

eight parameters are given in Ref. 27.

The standard statistical approach for calculating C(Q) is to define

a design matrix based upon the pdf's of the parameters. Several sampling

procedures are available for determining a suitable design matrix. For

this problem, Ref. 27 investigates the formation of design matrices based

upon the Latin Hypercube Sampling (LHS) procedure using 10 and 50 design

points. The choice of the sets of input parameters in a design matrix

hopefully removes as much bias as possible from the selection procedure

such that each calculated value of the response is of equal probability.

Thus, the probability of a calculated response is 1/N, where N is the

number of input sets in the design matrix and formation of C(Q) is
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performed by ranking the values of Q from lowest to highest and appor-

tioning a probability of 1/N to each value. Figure 3 shows the plots

of C(Q) resulting from the use of the 10-point and 50-point LHS design

matrices. Clearly, the 10-point LHS design matrix does not result in

a curve for C(Q) that closely matches that of the 50-point set. It is

important to keep in mind that a design matrix based on N input sets

requires that the computer model be run N times to determine C(Q). For

this sample problem, the "computer model" consists of Eqs. (20-22) and

these were solved 10 times for the 10-point design matrix and 50 times

for the 50-point design matrix.

Deterministic Sensitivity and Uncertainty Analysis
of the Sample Problem

The DUA method was applied to this sample problem and the results

compared to the published statistical results in Ref. 27. The choice

of N reference points from which the response surface is formed in the

application of DUA to this problem was chosen to be a subset of the 10-

point LHS design matrix. For each reference point i, i-l,...,N, defined

by the 8-dimensional parameter vector c^ - { r , r , T , T. , H ,

tr
Hj , Kj , L ) , the derivative vector dR/dc - (dQ/drw)i, OQ/dr)i ,

) t r
, 3Q/aTg)i, <dQ/3Hu)it (JQ/dHj), (flO/SK*)it (aQ/aL)i)tr, and

the response Q(cj) were calculated deterministically. Sensitivities of Q

with respect to each parameter, defined by (ak/Q(c)i(3Q/aa]c)i were also

computed. Parameters with sensitivities and uncertainty ranges such

that their influence on Q was negligible were dropped from the parameter

space for the purpose of forming the response surface. As a result, the

parameters Tu, r, and Tj were not used in the formation of the response
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surface. In addition, the derivatives of Hu and H^ are equal but oppo-

site in sign indicating that the two parameters occur in the model in the

combination of~(HU-H^). Therefore these two parameters were replaced by

the single parameter (Hu-Hj>). The response surface was then constructed

based on only the four significant parameters (Hu-H^), rw, K,,, and L.

This reduction in the number of significant parameters and combination of

parameters illustrates the role of sensitivity analysis in the DUA method

as applied to this sample problem.

In this application, the response surface was formed by linear

extrapolations of Q from the reference points. The entire parameter

space of significant parameters as identified in the sensitivity analysis

(rw, Hu-Hjj, 1^, and L) was divided into L discrete, nonoverlapping

meshes, m^, i-1,,,L. The expected value of Q within each mesh, E(Q^),

was determined by replacing Q$ for g(c) in Eq. (19). Here, Q% - Q(c) ,

c c m^, where within m^, Q(c) was calculated by extrapolation. The

mesh probability p(nijg) was calculated from Eq. (13) using the parameter

probability distributions from Ref. 27 (p(Hu-Hi) had to be calculated

separately using the individual distributions). The probability assigned

to each E(Q^) , i—1,,,L, was the corresponding value of p(in/j). As dis-

cussed earlier, in the DUA method the number of meshes, L, is chosen

such that the entire reduced parameter space is covered by nonoverlap-

ping discrete meshes and therefore the entire probability space is

complete.

As a benchmark against which a comparison of the DUA method and the

statistical results from Ref. 27 could be compared, the sample problem

model was executed 2304 times in order to approximate the "true" CDF of

Q for this problem. A comparison of this benchmark 2304-point CDF to the
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statistical 50-point CDF from Ref. 27 is shown in Fig. 4. The CDF based

upon the 50 point LHS design matrix is a fairly accurate represention

of the true CDP"of Q. DUA method results were obtained by forming a

response surface by extrapolation from two reference model runs and

propogating parameter pdf's over a discrete mesh consising of 2304

meshes. As shown in Fig. 5., the CDF of Q calculated deterministically

based on the DUA method closely matches the "true" CDF with only two

executions of the derivative-enhanced model.

VIII. CONCLUSIONS

A comprehensive, deterministic approach to sensitivity and

uncertainty analysis of large-scale computer models is now available.

The GRESS and EXAP systems for automating the calculation of model

derivatives and sensitivities have been developed, verified, and applied

to several large-scale computer models. The availability of these two

systems greatly reduces the man-effort required to add sensitivity

capability to existing FORTRAN models.

A deterministic approach to uncertainty analysis (DUA) has been

developed, and the availability of derivative information is a key

component. The feasibility of the DUA method was verified by its

application to a sample problem previously analyzed using a statistical

approach. The sample problem results show that simple linear extrapola-

tion from two space points produces a CDF of the response of interest

that more closely matches a benchmark 2304-point CDF than does the CDF

based upon a 50-point LHS design matrix. The reduction in model runs by

a factor of 25 and the increased accuracy in calculating the CDF of the

reponse of interest is strong evidence that a substantial savings in
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computational cost is possible. This reduction is offset by the addi-

tional cost of calculating derivatives, but the deterministic calculation

of model derivatives has been shown in the published literature to be

both feasible and fairly cost efficient - certainly much less than a

factor of 25. The availability of the GRESS and EXAP systems for adding

derivative-taking capability to existing models makes the DUA approach

even more practical. The strong analytical foundations of propagating

probabilities deterministically is another desirable feature of the DUA

approach.
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