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Ohmic Dissipation During Vacuum Transport
E. P. Lee and W. A. Barletta

Lawrence Livermore Laboratory

Abstract
The energy loss of a highly relativistic beam transported in an

evacuated pipe of finite conductivity is calculated.

I. INTRODUCTION AND SUMMARY
We consider an axisymmetric beam transported in a vacuum pipe whose
walls have Jarge but finite electrical conductivity. The required
focusing elements do not enter the present calculation, which is
concerned only with the induced current in the pipe wall and its reaction

on the beam. It is found that the rate of change of pulse energy (U) is

accurately given by the formu]a* Tt apon wes prirand u s acsoomt of work

cobiacton, mbcomracton, of thel employeet, caken

BU ~ g I 2 < mvuﬂu;ﬁ'ummku (1)
5z~ Tw\c 2 pelidppirmoln Aisisbenreirigeaierr i
R*c Eiage iy oweed . o e

where I is pulse current, L is pulse length, R is inside pipe radius
and o is wall conductivity. This loss is generally small., However the
axial electric field varies along the puise causing a loss of
monoenergeticity; this field is calculated for a general current pulse
form,

The derivation of the energy loss and longitudinal electric field
only requires a solution of Maxwell's equations. This solution is

obtained using several gaod approximationu:

R S el

*Gaussian units are used. T M T Y LHIS POGULENT I UMLIEYRER &tl\
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1. The beam propagates in the z direction speed of 1ight with

unchanging pulse form. A1l functions (except energy) depend only on

the independent variables r = / Ire F and the “retarded time”

X=Ct.-2. (2)

2. Conductivity is large enough that the induced currents form a

layer inside the pipe which is thin compared with the pipe thickness

and radius.

3. If Lr is the scale rise length of the current pulse, then we

assume
oL
Tr >1, (2a)
ol 2
z:.[» B’f . (3b)
L
r

: 11. REDUCTION OF MAXWELL'S EQUATIONS

: The relevant Maxwell equations are

3E. 9B OE

_Z2_._8,_r

3 5t Tz (4)

3

13 _ z

FarT B S0 -5, (5)
: J.  3E

13 = gy 2 z

rarrBe'qnc_'+ﬁ . (6)

In vaceum the only component of current is

dJd
¥ 2z = :
i : T =p= beam charge density , (7)

[y




while in the pipe wall

J=of. (8)

We note that the conducting wall will not support an internal charge

density; charge continuity gives

0= +7 3=+ 7 of =284 dup . (9)

If there is no initial charge, p always vanishes. There is, however, a

charge layer at R.

Using the assumed dependence on (z, t) (see Eq. 2), equations {4)-(6)

become

-£), (10)

oF
1ls _ z
For T B w5, (11)
d 3E
12 _ A Z
F—ar r Be = 4n ‘—c + —x . (12)

Taking the difference of equations (11) and {12}, we have

J
%g_',r(ae-sr)ww(c—z-p) . ' (13)

e

Differentiating both sides of Eq. (13) with respect to % and substituting
from Eq. (10) then gives

3 3
13, 2. 4,2 (2
rar T VR (c - p). (14) .
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In vacuum the rhs of Eq. (14) vanishes and {rejecting the solution

which is singular at r = 0) one has

S2=0. (15)
Hence for r < R,

E, = E,(R, x) . (16)

Equations (11) - (13) yield

21 13
e 5 r %2
E. = Be % 7w (17)

where I, js the current inside radius r:

r
1= I dr' r' J(r', x) , (18)
0

Inside the pipe wall {r > R) Eqs. (14), (8) and (9) give

13 13
13 Z _4no °z
rarTw ¢ ax (19)

which is the orly differential equation that needs to be solved. This
is deferred to Section III.

To complete the formal development, it remains to specify boundary
conditions and a jump condition at R. Clearly we want fields to vanish
as r+«, 35ince the beam velocity equals ¢, the fields also vanish for
X <Xgs where X, marks the beam front. The most convenient jump
condition is the continuity in r of Ez and Be (the current layer near R

cannot be of infinitesimal thickness when 7 # «):

Be (R+) = Be(R_) ) EZ(R+) = EZ(R-) . (20)
To r'g]ate By to E; at R_ we use Eq, {17):




]

3E_(R)
_2I Rz
BB(R_) ol + 7 - (21)

An expression for Be (R,) is found by integrating Eq. (12) over R <

< e, Using Jz = oEz we have

< 3E
4

B,(R,) = -1 I drt vt [c—" o, + 57= ] . (22)
Equations (20) - (22) give the relation between I (in vacuum) and E, in
the wall

= 9E 3E_(R)
l ) m _Z B. 4 = Z_I
'RJdrlr[c Ez+ Bx]'z ox *Re - (23)

IIT, SOLUTION FOR EZ
Equation (19) is solved subject to the condition eq. (23) and the

boundary condition Ez(r + o) = 0. We adopt the thin layer approximation

1

ar

q;h)lm
e ™
-

drr—drR, (24b)

so the problem has slab geometry.
It is convenient at this point to employ the Fourier transform of 1

and Ez :

~_
© . =
= 10X T
I, = f dx '@ 1(x) , {253)
I(x) = %— I do e-imx I, (25b) 3
41 W i



-6-

with Im{w) > 0 in the definition of I, (recall I =0 for x < x )3

E, is defined similarily. Equations (19) and {23) give

2

a°E .
20 . _ dngi
ar [ EZm ! (26)
L gpfmoe e | +Buwe -+2 (27)
“R c Tz T Mtz 2 Ey c
R
The decaying solution of Eq. (26) is
E,, = E5, (R exp[- -'i"%"l“’ (r--R)]. (28)
Inserting this expression into Eq. (27) we find
e, 0 (L R 4 oy E ¢ By (29)
z T c oy Tnoiw” 2 ) Re

The high o approximation is now employed to justify d- iping the second
and third terms on the lhs of Eq. (29). Note that ¢ , S 1, so the

three terms to be compared are in the ratios

ol
r .|t . R
c "qfs ' T (30)

Only the first term is appreciable by the orders of Eg. {3}, and we have
21
= 1 W
E,,, mJ = i - (31)

On transformation back to the x-domain, Eqs. {31) and (25b) yield

the formal solution

+ootie

= _1 -iwx ’ c 21@
Ez(r <R) = EZ(R) =5 I dy e iw Tnoia R (32)

~otig

.




iy

The transform variable {u) can be completely eliminated as follows.

First we integrate by parts in the definition of Im to obtain

+oo i +oo ux? r
- Tuk! (o= o N R O
= [ o e | o (33)

-00
-0

This expression is inserted in Eq. (32) to get, after some rearrangement

of terms,
+00 +ort i ol
_ 1 C 3l o~ Tulx=x")
e -mmym | & = o ==—r (34)
/-Tw
-00 ~otig
The operator +oobic
e-im(x-x')
F(x - x') = dw (35)
v =lw
-wtig

is to be evaluated. Note that for x < x' the inversion contour may be

closed in the upper w half plane, which cont~ins no poles or cuts, hence
F{x <x') =0. (36)

This result should be expected on casual grounds; we write

F = H{x - x") [dm ——‘;_in_lx-x l s (37)
. 3

where H is the unit step function.

The only non-analytic feature of the integrand in the lower half-
plane is a branch cut along the negative imaginary axis. The eriginal
contour of integration may be deformed to the contour C shown in

figure 1,
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figure 1

v plane

original contour

deformed contour

Since yYuchanges sign across the cut, we have

‘--e o~ iulx=x"]
F=Hx -x')2 . o =—4—, (38)
T
Joomg

This form is essentially a Fresnel integral, which can be evaluated by the

substitution iw = ul:

-
|

2 gt
= H(x - x')-2 (M)e_"i"_f (39)

i /;Z_

© 2
=H(x - x')af due! jx=x*|
[+ o
2
= Hix - x') 82— -v
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F=H(X‘X') 2 ’]T:T—;T . (40)

Substitution of £q. {40) into Fq {34) yields

J_J dx! L Jx_:“_'). (41)

WTx - x|

- ch

We note here that the value of Ez far behind the pulse is
independent of the details of I(x}. Integrating Eq. (41) by parts and

taking the limit x >> x' gives

400
i I(x') _ 1 c _
EZ =] + ‘ch Jo__f dx' 2 /r = 21TR ﬁ_s ’ (42)

+0
Q- ‘-dx% (43)

EY-

where

is the total charge in the pulse.

Iv. ENERGY LOSS DURING BEAM TRANSPORT
Having determined the form of the Tongitudinal electric field, we may
compute the ohmic discipation for specified current waveforms. To begin,
we consider the simple pulse form
0 X< 0
I(x) = 1 0< x< L (43)
0 x> L .

In this case, the source of E; to be inserted in Ey. {41) is

% = [é(x) - 8L - x)] . (44)
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: We have
Ez='1T%' IE I[B.(LI_HL:J;)_ . (45)
a /% /X - L
The rite of energy loss from a pulse is in general given by
™ 1
sl _ X
a'z- = dx C Ez(x) s (46)

-id

which for the specific case of (Eq. 43) becomes
Wl laor(- L EL)--21) Je (47)
3z ¢ “\"mRe N o T \e Ef; -

This expression is similar to the ohmic loss formula for a long beam pulse

in a plasma

(g—lzj-)beam-plasmaz- (%)2 ] ' e

The extra factor v cl./ch is usually small compared with unity and
represents the shielding power of the wall against current penetration.
A square root of g appears because the eddy current is concentrated in a
thin but expanding skin.

As a numerical example we consider a beam with the profile described

by Eq. {43), transported in aluminum pipe:

1 =10? Amps = 3 x 1013 esu, o =107 57! %1 (49a)
L=3m = 300 cm s R =10 cm
Inserting these numbers in Eq. (47) we obtain
r; % = - 604 erg/cm . {49b)
.
o

pp—

SRR EATLE L L L 1 B2l T i n T e e

g R et ey
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More generally, and in mixed units:
172 172

L (o]
3u _ -3JdY;2 m Al
== - (.349 x 10 m)lkA R —= ) . {50)

A possible criticism of Eq. {47) is that it is derived from singular

-172

E, «Xx ; it may therefore be a poor approximation for a pulse with

4

finite rise length. For comparison, the energy loss associated with the

Gaussian profile

2,2
= & 1, (51)

which has the same net charge and rms width .s the flat profile, is
reduced only 21%. Hence we regard Eq. (47) as representative unless the
current is internally modulated within the pulse (say I « sin mox).

The energy loss formula for general I{x), obtained by inserting the

form Eq. (41) into Eq. (46) is

3_Q=_li_¢=_ dx dx* 31 H{x - x')
3z p R20_[c [(")I TR e (52)

Often a convenient alternative to the evaluation of Eq. (52) is the
use of the Fourier transforms of I and Ez. An application of

Parseval's Theorem to Eq.(46) gives
oot f e

4o
W 1 1 [ 1 Ll ..
5 cj by 1, "EJRTG g—‘j o g g e (57)

B -=tig

e T T A 2 TR IR 1 DR SR TR et e A S —

i
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V. EVALUATION OF E,

Expression (45) gives {inside the pulse)

; 11 c JL
f E === = - . (54)
; z Tc J;zLoJx

Recalling I/c = 100 Ixp and 3 x 10% volts/m equals one statvolt/cm,

we have the numerical expression

172 1/2
Ez=.(sz.3 "°1"5)1 Rl 2 (B (L) )

m kAA cm m X

This field produces an averagad loss of beam energy in the transport
system which is not significant for most applications. A more serious effect
may be the variation in beam energy along the pulse caused by an x-dependent
Ez. Equation (55) is actually a poor measure for this effect since the
infinitisimal rise length has produced singular loss at x = 0. To obtain
a better estimate of Ez(x) vwe have evaluated the case of linear ramps at

the head and tail of the pulse:

0 x<0,
?l‘._
x) r °<X<Lr’
§° 1 Lr<x<|_-|_r,
L-x
E:- L-tL o <x<tl . (56)

we find

1 —_———
2 f [
Ez=-;; EZZ&,H(X) x-H(anr)Jx-L,.-

- e T » _—

i

- Hx -L+L) 4x-L+Lr+H(x-L)"x-L ‘ (57)
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The peak field, which occurs at x = Ly, is

1
_ 2 [+ 0
E,(L) = - fJ RZ,L c (5¢)
T

This value is larger than the mean field by a factor of (L/Lr)I/ 2.
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