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Ohmic Dissipation During Vacuum Transport 
E. P. Lee and W. A. Barletta 

Lawrence Livermore Laboratory 

Abstract 
The energy loss of a highly relativlstic beam transported in an 

evacuated pipe of finite conductivity is calculated. 

I. INTRODUCTION AND SUMMARY 
We consider an axisymnetric beam transported in a vacuum pipe whose 

walls have large but finite electrical conductivity. The required 
focusing elements do not enter the present calculation, which is 
concerned only with the induced current in the pipe wall and its reaction 
on the beam. It is found that the rate of change of pulse energy (U) is 
accurately given by the formula 

3U _ i/lVfct -
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(1) 

where I is pulse current, L is pulse length, R is inside pipe radius 
and a is wall conductivity. This loss is generally small. However the 
axial electric field varies along the pulse causing a loss of 
monoenergeticity; this field is calculated for a general current pulse 
form. 

The derivation of the energy loss and longitudinal electric field 
only requires a solution of Maxwell's equations. This solution is 
obtained using several good approximations: 

•Gaussian units are used. gsif?m:^Lir,'^- •' : ills BObOi-Sri'i" J§ : 
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1. The beam propagates in the z direction speed of light with 
unchanging pulse form. All functions (except energy) depend only on 
the independent variables r = /1 r± \ and the "retarded time" 

x = ct - 2 . (2) 

2. Conductivity is large enough that the induced currents form a 
layer inside the pipe which is thin compared with the pipe thickness 
and radius. 
3. If L is the scale rise length of the current pulse, then we 
assume 

a L r 
-f »1 , (3a) 

C ^ 

II. REDUCTION OF MAXWELL'S EQUATIONS 
The relevant Maxwell equations are 

8 E z _ 3 B o , % 

(3b) 

(4) 3r 3ct " 3z ' 

F 9 T r E r = ^ - 5 r » ( 5 ) 

hhrh'*r*v£ • ( 6 ) 

In vacuum the only component of current is 

J, 
-=• * p = beam charge density , (7) 
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while in the pipe wall 

J = OE . (8) 

We note that the conducting wall w i l l not support an internal charge 

density; charge continuity gives 

I f there is no i n i t i a l charge, p always vanishes. There i s , however, a 

charge layer at R. 

Using the assumed dependence on (z, t ) (see Eq. 2), equations (4)-(6) 

become 

3E 

zT - h { Be " M • W 

i s 3 E z 
f l f r E , . - * rp + - g | , (11) 

1 1 0 , 3 E 7 

F t r r B e = 4 l T r + 3r • < 1 2 > 
Taking the difference of equations (11) and (12), we have 

?hr{% - E r ) = ^ { r - p ) • ' (w> 
Differentiating both sides of Eq, (13) with respect to x and substituting 
from Eq. (10) then gives 

r ar r 3r " , 7 r 3x \c~ " p / * (W) 
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In vacuum the rhs of Eq. (14) vanishes and (rejecting the solution 
which is singular at r = 0) one has 

Hence for r < R, 

E 2 = EZ(R, x) . (16) 

Equations (11) - (13) yield 

2 I r r 3 E z 

where I r is the current inside radius r: 

I r = 2" f dr' r' I„ = ai | dr' r' Jz(r', x) , (18) 
o 

Inside the pipe wall (r > R) Eqs. (14), (8) and (9) give 
1 3 _ r ! ^ = 5rra!!z ( l g ) 

r 3r r 3r c ax ' u*' 

which is the only differential equation that needs to be solved. This 
is deferred to Section III. 

To complete the formal development, it remains to specify boundary 
conditions and a jump condition at R. Clearly we want fields to vanish 
as r*<=. Since the beam velocity equals c, the fields also vanish for 
x < x 0, where x 0 marks the beam front. The most convenient jump 
condition is the continuity in r of E 2 and B (the current layer nesr R 
cannot be of infinitesimal thickness when a t «>): 

Be (R +) = B e(RJ , E Z(R +) = E Z(RJ . (20) 
To relate B e to E z at R. we use Eq. (17): 
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?T R 3 M R ) w£*!-t- • (21) 

An expression for B a (R.) is found by integrating Eq. (12) over R < 
r <_ ». Using J z = oE z we have 

B e ( R
+

) = - | f * T ' [ £ ^ + ^ 1 . (22) 
R J L 

Equations (20) - (22) give the relation between I (in vacuum) and E in 
the wall 

•i ['"•'•['? \^]-i 
9E (R) 2 I 

III. SOLUTION FOR E z 

Equation (19) is solved subject to the condition eq. (23) and the 
boundary condition E (r -»• ») = 0 . We adopt the thin layer approximation 

dr r — dr R , (24b) 

so the problem has slab geometry. 
It is convenient at this point to employ the Fourier transform of I 

and E z: 

/ " 
I w = dx e""* I(x) , (25a) 

1 w = fc \ *> a"1"* I u • (25b) 
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with 5n(u) > 0 in the definition of I(,> (recall I = 0 for x < x Q ) ; 
E is defined similarily. Equations (19) and (23) give 

3 2E 
-^..iHk^, ( 2 6 ) 

.J J*. R [ ^ E Z u - i . E a ) ] + | i w E Z u ) = + § * . (27) 
R 

The decaying solution of Eq. (26) is 

2u ~Z(j EZ( j(R) e x p T - i ^ a J a t r - R) 1 . (28) 

Inserting this expression into Eq. (27) we f ind 

The higher approximation is now enployed to j us t i f y 6- jping the second 

and th i rd terms on the Ihs of Eq. (29). Note that L < 1, SO the 

three terms to be compared are in the ratios 

(30) 

Only the first term is appreciable by the orders of Eq. (3), and h'e have 
21 

Ez u W f̂er-i** ' ( 3 1 ) 

On transformation back to the x-domain, Eqs. (31) and (25b) yield 
the formal solution 

i 21 
(32) 

-«*ie 
Ez(r < R) = E2(R, . J- | *.-<« i . ^ j ^ 
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The transform variable (u) can be completely eliminated as follows. 
First we integrate by parts in the definition of I to obtain 

I u - I d x ' e - I(x')=- I d x ' f i ^ | } r . (33) 
+00 

f dx' e i a*' I(x') = - f 

This expression is inserted in Eq. (32) to get, after some rearrangement 

of terms, 
+00 ^+<a+ ie 

i<u(x-x') ^ = -^^¥j d x ' l^[ du e 
cz ' " HSc" ^ m | u * W I U U ) ; = ~ ~ • (34) 

- iu 
^o+i e 

The operator +o°+5E 

F(x - x ' ) = I 
- iu(x-x') 

du = = (35) 
/ -iou 

-oo+i e 

is to be evaluated. Note that for x < x' the inversion contour may be 
closed in the upper m half plane, which contains no poles or cuts, hence 

F(x < x') = 0 . (36) 

This result should be expeeted on casual grounds; we write 
,-iwlx-x'l 

- , (37) 
- i i i ; 

du 5 — 
A" 

where H is the unit step function. 
The only non-analytic feature of the integrand in the lower half-

plane is a branch cut along the negative imaginary axis. The original 
contour of integration may be deformed to the contour C shown in 
figure 1, 



figure 1 

o) plane 

original contour 

deformed contour 

Si nee ^changes sign across the cut, we have r -1(0 X - X " 
e ' i F = H(x - x') 2 j <*" 

J A i u > 
(38) 

This form is essentially a Fresnel integral, which can be evaluated by the 
substitution itu = u^: 

o 
F = H(x-x').2|(^iLy=-' ( 3 9 ) 

H(x 

= H(x - x') 4 

du e" u i x- x'l 

— I dv e -

x - x'j I 



- 9 -

F = H ( x - x ' ) 2 \ * . (40) 
^| |x - x ' | 

Substitution of Eq. (40) into Fq. (34) yields 

E z " irRc 
i _ f£ J dx' 2JL H(x - x') ( 4 1 ) 

We note here that the value of E far behind the pulse is 
independent of the details of I(x). Integrating Eq. (41) by parts and 
taking the limit x » x' gives 

l4tB 

+ j - i r f d x. K»'i - i [ I 
* uRc Vc I 7 ^ - 3 2irR \ c / *" 3 

where 

' 4 w 

/ 
dx I (43) 

is the total charge in the pulse. 

IV. ENERGY LOSS DURING BEAM TRANSPORT 
Having determined the form of the longitudinal electric field, we may 

compute the ohmic dissipation for specified current waveforms. To begin, 
we consider the simple pulse form 

( 

0 x < 0 
I(x) = < I 0< x< L (43) 

0 x> L 

In this case, the source of E z to be inserted in Eq. (41) is 

f = I [fi(x) - 6(L - x) J . (44) 
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We have 

E_ -4-JF'[^-"^]-
The rtle of energy loss from a pulse is in general given by 

/ 

(47) 

which for the specific case of (Eq. 43) becomes 

0 
This expression is similar to the ohmic loss formula for a long beam pulse 
in a plasma 

(U) - ( F ) 2 • <«> 
\ /beam-plasma \ ' 

The extra factor /cL/R a is usually small compared with unity and 
represents the shielding power of the wall against current penetration. 
A square root of a appears because the eddy current is concentrated in a 
thin but expanding skin. 

As a numerical example we consider a beam with the profile described 
by Eq. (43), transported in aluminum pipe: 

I = 10 4 Amps = 3 x 1 0 1 3 esu, a = 1 0 1 7 s" 1 = c f l ] (49a) 
L = 3 m = 300 cm , R = 10 cm 

Inserting these numbers in Eq. (47) we obtain 

3U 
gj = - 604 erg/cm . (49b) 
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Hore generally, and in mixed units: 
. 1/2 1/2 

s-t"" 1-")^) • »• 
A possible criticism of Eq. (47) is that it is derived from singular 

E,, cc x ' ; it may therefore be a poor approximation for a pulse with 
finite rise length. For comparison, the energy loss associated with the 
Gaussian profile 

I(x) = ^ | ~ I e " 5 x / L , (51) 

which has the same net charge and rms width is the flat profile, is 
reduced only 21%. Hence we regard Eq. (47) as representative unless the 
current is internally modulated within the pulse (say I <r sin u

0 x } . 
The energy loss formula for general I(x), obtained by inserting the 

form Eq- (41) into Eq. (46) is 

-00 -CO 

Often a convenient alternative to the evaluation of Eq. (52) is the 
use of the Fourier transforms of I and E z. An application of 
Parseval's Theorem to Eq.(46) gives 

+«. +"+ic 

3Z cj ^ \ l - m - - 2 ^ ^ a ^ ) "a r — ^ - l , * (5.J) 
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V. EVALUATION OF E 
Expression (45) gives {inside the pulse) 

Ez = 
1 i /~c rr 

_ 1 r C V ? L T > / X 
(54) 

Recalling I/c = 100 1 ^ and 3 x 10 4 volts/m equals one statvolt/cm, 
we have the numerical expression 

k l / 2 
Ez = - f52.3 («->^)h^\-i«&r{i) (55) 

This field produces an averaged loss of beam energy in the transport 

system which is not significant for most applications. A more serious effect 

may be the variation in beam energy along the pulse caused by an x-dependent 

E . Equation (55) is actually a poor measure for this effect since the 

infinitisimal rise length has produced singular loss at x = 0. To obtain 

a better estimate of E (x) we have evaluated the case of linear ramps at 

the head and tail of the pulse: 

0 x < 0 , 

0 < x < L , 
I(x) 

x 

L r < x •: L 

L-x 
L„ L r < x < L (56) 

we find 

c ! o 
To c L r 

H(x) ,jx~- H(x - L r ) J x - Lr 

H(x - L + L r) ^ I + L r + H(x - L) ^ x - L (57) 
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The peak field, which occurs at x = L r, is 

1/2 This value is larger than the mean field by a factor of (L/L r) 

(KJ 
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