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Nonlinear Gyrokinetic Equations for Low-Frequency

Flectromagnetic Waves in General Plasma Equilibria

by

E. A. Frieman” and Liu Chen
Plasma Physics lahoratory, Princeton niversity

Princeton, Xew Jersey O0ORS544

ABSTRACT

A nonlinear gyrokinetic formalism for low-frequency (legs than the
cyclatron frequency) wmicroscopic electromagneric perturbations in general
magnetic fleld configuratiecns 1s developed. The nonlinear equations thus
derived are valid in the strong-turbulence regime and contain effects due to
finite larmor radius, plasma Inhomogeneities, and magnettc fleld
geometries. The specific case of axigymmetric tokamaks is then considered,
and a model nonlinear equation 4s derived for electrostatic drift waves.
Also, applying the formalism to the shear Alfv'én wave heating scheme, It 18
found that nonlinear jon Landau damping of kinetic Bhear-Alfvén waves 1is
modified, both qualiratively and quantitatively, by the diamagaetic drift
effects. In particular, wave energy is found to cascade in wavenumber

instead of frequency.

*Present address: Sclence Application Inc., la Jolla, CA 92038 and
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I. INTRODUCTION

Electromagnetic 1instabilities with frequencies lower than the ion-~
cyclotron frequency and perpendicular (to the magnetic field) wavelengths
comparable to the jon larmor radius are believed to be important for the
transport processes In wmagnetically conflined plasmas. One complicating
factor 1n analyzing these low-frequency microscopic instabilities, which ave
driven by plasma inhomogeneities and shall be 1loosely termed kinetic
drift~Alfven waves, 18 that the destabilizing mechanisms are sensitive to
effects assoclated with magnetic fleld configurations guch as magnetic
shear, magnetic gradient and curvature drifts, and trapped particles. To
overcome this difficulty, Rutherford and friemanl ae well as Tayler and
Hastie? have developed, 1independently, a formalism, now known as the
gyrokinetic formalism, to treat the linear aspects of kinetic drift waves in
general magnetic configurations. Recently, the }inear gyrokinetic formalism
has heen extended to include electromagnetic perturhationa3-l‘ associated
with shear and compressional A]fvén waves. Since the transport induced by
the instabiticizs (s ultimately determined by the nonlinear processes, it
1z, therefore, desirabl. to further extend the gyrokinetic formalism into
the nonlinear regime while retaining crucial features such as finfte larmor
radius and arbltrary magnetic fileld configurations. This constitutes the
principal motivation of the present research.

In this work we develop the nonlinear gyrokinetic formalism basedi on a
multiple-scale expansion-5 That is, microscopic fluctuations wvary on the
fast (linear) time scale (i.e., typically, the diamagnetic drift frequency
time scale), while macroscopic quantities are assumed to vary on the slow
transport time scale. Here the cyclotron f{requency time scale 18 the

fagteat time gcale. Furthermore, congistent with experimental
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observations,5'7 our formulation allows mnonlinear time scales to be
comparable to the 1linear -nes and, hence, the results are valid in the
strong-turbulence regime.

Section II contains the theoretical formulation and derivations of the
nonlinear gyrokinetic equati. ... The specific cese of axisymmetric tokamaks
is further considered in Sec. IIT using the ballooning-mode representa-
tiona'm and a nonlinear drift-wave equation 1is derived in & limiting
cage. Noring that our results are also applicable to nonlinecar heating via
externslly launched low~-frequency waves, we algo consider, in Sec. IV,
nonlinear fon landau damping (ion induced scattering) of the mode-converted
kinetic (shear) Alfv;n wavesll and find that the inclusfon of diamagnetic
drift effects madiffes, hoth qualitatively and quantitatively, the decay

processes. Final conclusions and discussion are given in Sec. V.

II. THEORETICAL ANALYSES

(1) Guiding-center transformgtion and the two spatial scales. As in

the lipear formalism,lizr12 it iIs more convenient to carry out the anaiysis
in the guiding-center phase space (Z, g) which 18 related to the particle

phase space (x, v) via the following guiding-center transformation

T=xtyxeg/0, (1)
Vo= v(e, u, oy , (2)
where € = v2/2 + qﬁolm y Bo= vi/ZB, & and B sre, respectively, the

wacrogcopic (equilibrium) electric potential and magnetic field, 0 = gB/me,

ey = B/B, a is the gyrophase, and



-

v =v, (e cosa+te
Pt ~

1) 2 gin a) , (3)

with e e, and e, being the local orthogonal unit vectors. Furthermore,
noting that perturbations of interest here have perpendicular (to 5)

wavelengths of the order of the Larmor radius, p, which is much smaller thaan
the macroscople scale length, L,y (1.2, A = pfL 1s a small parameter), we
may separate physical quantities inte microscopic and macroscoplc parts by

ave;aging over the microscopic spatial variations. Thus

p=EF+8p , (4)
where
= 2 2 =
B=laty, pf Mafg, =y £
~lo
(6?>x = 0 and %1 corresponds to fast perpendicular spatial variations.
T o

In the (X, V) phase space, the Vlasov equation then becomes

Lgf = ~(q/m)(SREY , (6)
where

L, = 8/3t + Y/, + BX/BteT, + vy oT,

+owehy, + A) + (a/m)(E - B D)oy 3/2e
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+ (q/m)E[(y, /B)(3/au) + (g /v )(3/3a)]

+ yp*¥p = 0 0/oa , (7

Agp = L7 Lley/M Yy o ®

hpp = (I, W(R/0) + (7 a)(d/2) €))

Th = ~TulB + vnyxgn-xlllﬂ . (10)

T (Tep)e + (/YDGE T, X gy an

&R = ég'gv - 65'!v + 62 x s‘/Q-zx , (12)

8a = 6E + y x 6§/c ) (1%

By = ~% 3, Rg = -8] Bin a + gy cos «, and Yg = cE x ¢,/B. Hete L,

contains ?V/dt and 3%/dt because the macroscopic quentities are in general

time—-dependent. Performing spatial averaging on Eq. (6), we obtain

L F = —(q/m)<6REFD> ) (14)
e X
~io
and
Lgép = ~(q/m)[8RF + SRSF - <6R6F>x 1 - 15}
~lo

(i1) Ordering. T proceed further with Eqa. (14) and (15), we adopt



the following orderings for the microscopic fluctuvations

{asael/la]l ~ lp e

ey Tyl ~ 18¥/F] ~ Jqsa/|

~ |88/B] ~ 1vElvtI ~ 0, (16)

ve 18 the charactersitic (thermal} velocity, and

levg | ~oc1) . an
lo

For wmacroscopic quantities, however, since they evolve on the transport

{including that fnduced by turbulence) time scale, we take

Jasae|/la] ~ oady 1s)
in addition te

|pgx| ~ 0N . 9

We remark that the ordering adopted here 1 consistent with
experimental observations as well as most of the proposed phenomenclogical
anomalous tramsport mechanisma.6,7 Furthermore, since the nonlinear
term, SR6F, 48 of 0(}\2), i.e., comparable to the linear temm, Lgsr, our
ordering in principle contains strong-turbulence effects. Also, as will be
shown later, fn Eq. (47) the ordering of the transport time scale, Eq. (18),
is consistent with that of the fluctuations, Eq. (16).

(111) Solution of F. Using the small parameter A, We have with F =



1,2
FD+ Fl + seuy

- H (4]
F,o=F (e, 1 XD (20)

that is, EH.-‘?—XFo -0 ,
F o= (B/B)(BF /2p) (21)
& (¥ (dat . - 2y ee, /21} (22)
B=-{yyovy + [ (de'/o)fv, (¥ *V e vy ) - v,V *g,/2]} ,
Y-—D a Kﬂ + XEO N (23)
2 2, .
Yy =gy ¥ [(vl/2)lenB +vye, an]/() , (24)

and Fl Is the g-dependent part of F;. 7o determine the u~independent part
of Fy» One needs to go to 0(7\2), where turbulence effects, <6R6F>x , would
also enter. In fact, following the procedures of neoclasgical :é:ary,lz; &
formal transport theory including turbulence could be developed; this is,
however, bheyond the scope of the present work and will be left for future
investigations. For the present purpose of obtalning a noalinear

gyrokinetic equation from Eq. (15), knowing F and ?1 1s sufficient.

(iv) Nonlinear gyrokinetic equations. We now concentrate on Eq. (15)

for the fluctuating &F. Since only terms up to O(A2) are of interest here,

the macroscopic background can be treated as frozem, and Ip becomes accurate

to D(A),

Ly = Lge = 8/0t + vy Ty + 12(Rg; + Apy)



+ (q/-)gor(gl/n)(a/ap) + (Eulvl)(a’a“)]
+ on.zX - Qd/3a . (25)
Following the linear formaliem,® 4 ywe let
6F = (q/m)éFa + 8¢ (26)
where
ﬁFa = [580/de + (&2 - vlﬁAn/c) aIBﬁu]F; , (27)
in order to remove the O(A) term, 6RFD, in Eg. (15). We note that we have
adopted & and &A as field variables. Thus, 6B = Ex x §4 and SE
= -(vxacb«L abA/eat). Substituting Eqs. (25) and (26) into Eq. (15), we
obtain
LgffG = -(Q/m)(Rz + Rn)?.) , , 28

where Rg is the linear term3:% given by

= R +
R "Ry PRy TRyt Ry s (2%

S
x

o1 = (SL/BLI(OF [oe) = § 6L x e /<L F (30)

6L = 63 - vebAle , (31)

m
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m

> S (32)

&<)

R, = (aFO/nap)(a/at +v

12 AL (33

23 ™ f&b(v"gn + gn)-gx - & gl-}lenn

~(T,B) T 60 + Q6OB)!(8/8c + B/Bow)|(BF, /BOn) (34)

RM = -(1/(:){'vI (z-gxsl)-éé + 6A||(3'.YE|)'!

+ (qlm)ﬁiI -‘EOSAH - vnéAI!-lenB
= (TP 17, (¥*64) - (ve¥ )8A]

+ .O.('ﬁvn6A‘ )(’I(alnauﬂ(aro/nau) , (35)

R = 6R &F - <6R°6F>§lo , (36)

tR= 620-22 + ﬁgo x Enm.fv-o » (37)
ba, = =7 55 + [V (ve84) - (v °¥ )6A)/e , (3%)
and (a)& = da/dc. Expanding 5G = 6(;0 + 6(;1 + ... and noting that the

right=hand side of Eq. (2R) 18 of 0(12), we have, for 0(n),

béco/aa =0 . (39)
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Gyrophase averaging the O(Az) equation then yields

Lpe> 86, = —(afm)<R, + R >, €40)
i
where N [
|
L = . .
< gf>n: alat + v.'!En zx + En _v~o s (41)
2
and <...> = (1/2m) [ da(...). If we further let
0
6Go = —(q/m)<6L>a aFOIBau + GHO N (42) ;
Eq. (40) becomes
(Lgf>a6H° = (—q/m)(sn + 822 4 <Rn2>a ) (43)
where
= - f . A
511 (a<aL>u/at)(aF0/ae) _Y°<6L>a x E.-;Q S’xFo s (&)
542 = (aFolnau){vn<gn-gxén>a - Vnsn'y—x<51‘>a :

- y 9 <SL> = <v &B> +¥ InB
~D ~X 14 ~L o ~x

-~ <gv8-g°6®>a - <g-65/e>a - (z-&j_l/c)av!sl-gxlnﬂ

+ v CyBA, /0> *Y, InB + <(TyB) [T (L*64)
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- (!'go)bylwu - VH<(3'ZxEH)-6§/c>a
- <5A!(gogx)g'-g/c>“ - (q/m)il-go@.&'/c)a) , (45)
and, after some algehralc manipulations,
<Rnl>a - <6R°6Fo>a - <6R°[(Q/m)6Fa + 66, ]>a
= —'\ZQ(BL)u x S‘/Q-_\ZOCZIO . (46)
Here we have noted that
<<6R°6F°>a>§lo =0 . (47)

Fquaticn (47) indicates that effects of turbulence on the a-independent part
of F 1s of 0()\3) and, therefore, consiastent with the ordering of the

tracsport time geale, Bg. (18). OCombining Pgsa. (43) and (46) gives
LgBHD = {3/at + veey iy *+ [vp + (CIB)EH x Eo<5L>a]-2°}6HO
= = + .
(afm)(S,) +5,.) (48)
Equation (48) 1is the desired nonlinear gyrokinetic equation. Combining
Maxwell's equations and &F, givem by Egqs. (26), (42), and (48), the

nicrogscopic dynamics is then, in principle, ~ompletely determined.

Since che theoretical analyses employ two spatial sgcales, it is
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instructive to proceed further with the following WKB ansatz
. - xl
8F(x, ¥y = § 8F(x, v; k) expft [0 K edx ]

X
- = . ~lo . _ .
boOSF(X, V3 k) empft 770k edx, - ML(K)) (49)

where L(El) = El'x x EI/Q, and 5F asa  well as Ei contain slow  spatdil

variations. Equation (48) then reduces to

[B/8E + vye, Vo + tk oy 168 (k) + (c/B) Voo ek, x kD)
k'+k "=k
SRR
<eL> (kD6 (k) = ~(a/m)Sy (k) (50)
where
<eD> (k) = [88 ~ v 6& /e] I (y) + v I (N ke , (51)
Sy1(k) = [(BF /3e)(3/3t) + 1g, x gl/n-gxso]wi)a(gl) ) (52)

y = klv,/Q, and slz(kl) is of highet order and ignorable here. Equation
(50) and, hence, Eq. (48) show that t.e nonlinearity arisecs from a

gyrophase~averaged 2{feccive 5Eef x B-Vx coupling. Here,

f

6§eff - —zo(ém - x'éélc) . (53)

It 18 interesting to mnote that the nonlinear polarization drift is

contained, not very obviously, within the finite Larmor radius corrections

———— -
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in J, and Jy- In fact, the electroatstic nonlinear drift-wave eguation
first obtained by Rssegaws and Mmald can he readiiy derived from Tq. (50)
in the appropriate limits, i.e., adiabatic electrons and cold fluid lons
(Sec. ITI). Equation (4R) f[or Eq. (50)], of course, is much more general
and also is not easy to solve. In the next two sectlous, we consider more

gpecific applications of the general resulta obtained so far.

ITI. AXISYMMETRIC TORAMARS

(1) General formmlation. Here we consider the specific case of

8-10,15

axigymmetric tokamaks and, using the ballooning-mode representatton,
further explore the properties of the nonlinear gyrokinetic equation, KEq.
(4R) ., Thus, employing the ¢ {poloidal flux), ¥ {toroidal angle),

and y (poloidal a=gle-like) coordinates, we have

B~V E X T4+ I OLE (54)
FO = Fo(lb‘ W E) » (55)
¢
61 = F T 6h (4, v) expli(n - my +a [ k dy] , (56)
[ nom n,m -~

By s 2 = [ 48, o (0, 80 wBy (3 (s7)

. . b .
gn’m<en) = exp{i(ag - n P vaeyy (58)

v~ 13/8%,80d 3 = (34 x Y.Eeg )" 18 the Jacoblan.  Equation {(48) or,

equivalently, Eg. (43} then decomes



~l4- ¥
7
;
» ]
f_.. o ,gn“(en){[a/a: + (v, /IRY(3/36) + 1k ey )60 J
+ (a/m)5, } = ~(afm)<R > (w,m) (59)
where v
al\ - -
k= (“B’“x)(fa x Ed:) - nRBx[ ,ro (av/ag) dp - kY, (673
§,n = [(BF_/Be)(d/at) - 1(nB/O)(3F /au) 8L, (61)
6Ln = Jb(Y)(5¢ - vnéAn/c)n + Jl(y)vlébln/klc , (62)
1 ® ~ had -
R_D> (mn) =-35 7 ) ¥ [ a0, 46..g8., .,
nla 2 “;ﬁ“" mLEm" ﬂ'Eﬁﬁn"k" e B, m'Tnl,m
8o m Co ,n"(“‘n"s“n" = &L .8h ) (63)

~

e . ~
(¢, /a)e(k! x kv) = (Ba'/@){n" [ % (av/ee) 40

Q
]

n'

+ ok’ - k)] , (64)

and, again, y = klvl/Q. After some wmanipulat’ons, Eq. (62) can be shown to

be
L - - -
<R > (m,n) = r_' a8, &, A(0)(Rpgdy (65)

where
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(ini)n = - $ ¥ ¥ exp(~1in"2xpQ)
“;#‘" n' kf_i“!'k" P
En,'n. f_a 6., &8, - 8.,) f_, 48, 88 . - £ = 2nP)
(8L h . - 8L .6h .} (66)
2n -
o= (1/2m) [ vde , (67)
[s]
and
E“, o0 ¢ (Bn'/0)[n"27p(30/2¢) + n(k' - k)] . (68)

Combining Eqs. (59 and (65), we finally derive the nonlinear gyrokineti:

equation for axisymmetric tokamaks

[o/0t + (v /JB)(8/06 ) + 1k =y idh = -(a/m)E, + (R )1 -
(69)

We now make some gualiratrive remarks. For aimplicity, we shall ignore
global gmplitude modulations by letting k = k' = k" = 0 and, heuce,
En',n“ @ p. For flute~like modes, which are highly localized about the
mode-rational surfaces, exp(-in"2mpQ) = 1 and 6h as well as §L are weakly
dependent on 9. Therefore, we have, roughly, <En1)n «Jp=0; e,
nonlinear coupling 18 much reduced, which may be expectred becl.’ause there 1a
lictle overlap between the modes in the ¢ (radilal) coordinate. On the other

hand, for modes which are strongly ballooning, and hence,

(65. ai)(é + p2n) = 0 for p # O; the nonlinear coupling, again, is small.
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This is because, in this 1limit, radial structures are rather broad, and
hence the 6{. x E-ZX coupling 18 rendered ineffective. Thus qualicatively
apeaking, Eg. (66) appears to indicate that the most effective noalinear
coupling occurs among modea which are moderately ballooning.

{11) Electrostatic drift waves with sdlabatic electrans and cold fluld

ioms. We assume, for simplicity, F, to be a local Maxwelllan; i.e.,
FO hd FMC‘J’I €) v (70)

and neglect any equilibrium electric potential tbc- S8ince electrons are
adiabatic, thelr unonlinear contributfons are negligtble, and the gquast-

neutrality condition becomes

U+ e, =2 [ B [ dv, ohy U (vy) & &0 . (71>
Here, %n = e&%ane’ T = Te/Ti > 1, and Jo(yi) = 1~ yi/b. Meanwhile,

neglecting the lon~saund term, we wmultiply the fon Eg. (69) by Jc(-yi?: and

carry ouat the velocity integratfon to obtain

(a/3¢ + 1&1' = 1{1 - bi)(a/ac - w64,

Ya1)5%4,

- Cetmpon [ B [ vy T0r (R Y,
(72)

where, for 1 =~ e, 1,

Vay* &y ¥ (viﬂ)(gxmn +5;-g,g«)mj . (%
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wyy = (vyuB/20p)latan, /2] (74)

and bi - kipilz. In deriving Eq. (72), we have noted that fn the zeroth-

order approximation, 6hin = 6ninP¥u. Expanding the J,'s in (Rnx)in and

using the quasi-neutrality condition, 'Eq. (71), it 1s then straightforward

to derive

22 =
1+ klps)(alat) - iEl.~dE + im*elﬁwn

5 - - - -
=ac, ¥ T oexp(~tn"2rpQ)€& , . [ a6, &(6_ -8 ,)
& Lran” n‘k'+2"k" p n',n e T n n!
=n E0)
[ a6, 6h . -6 - 2mpdet1Ckn? - (k1216056 (75)
. n" n" n Pglli, L n' "a" ?
where c: = 1vf/2 and Py = Cslci- Equation (75) may be regarded as the

tokamak version of the nonlinear drift-wave equation of Hasegawa and
Mima.}% It contains the poloidal mode-coupling effects due to the th and
curvature drifta and employs the ballooning-mode representation. The
agsumption of adiabatic electroms and cold fluid 1oms thus vTesults in g
single nonlinear equation Instead of coupled ones, as 1in more general
cases. 7 make Eq. (75) more tractable, we further assume concentric,
circular magnetic surfaces and 1gnore the global wavenumbder (k). ‘“Equation

(75) then reducee to

~2 2 - - ~
[(1 + K[n )(2/0t) - 1wy T (8) + fw, 186¢(n, 8)

=19y T ] exp(-1a"2m0p (K k. 2p)
“L;‘n" P n'n



={R=

~ ~t - n
&% - EpPiseca, Osen”, 6 +2m) (76)

-1
vhere w, =k p C/' , ro. ldinN/ar], k= no/r,

ns 8 n = 2rnm*elR'

w
. de
§ = r(a0/ar)/Q,

Tc = cosé + §6 siné , (77)
Ei -+ shh (78)
(ii)z = k:,(l + %%, (79)
and
den? =l + 856 + 2mp)?) (80)

We note that Eq. (76) is a two-dimensional (n, 6) nonlinear equation and may
be viewed as the simplest model equation for electrostatic drift waves i1in
axisymmetric tokamaks. Detailed studies of Eq. (76) will be reported in a

future publication.

-

IV. NONLINEAR ION LANDAU DAMPING OF KINETIC ALFVEN WAVES
As noted In Sec. I, the results obtained in Sec. II are rather general
and, therefore, are alsoc ugeful for describing =nealinezr processes
aggociated with low-freguency wave heating. ™ 1llustrate this potential
application, we consider here nonlinear ion Landau damping of the mode-

”
converted kinetic (shear) Alfven waves.l] The major difference between our
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work and Ref. 16 ig that we include the dismagneti{c drift effects. Another
minor Aifference 1s that no email ion-Larmor-radius expansion is taken here.

For the sake of simplicity, we adopt the WKB description, Egs. (49} aund
{503, and 1gnore the geometrical effects. Furthermore, F, 1s takern to be
Maxwellian and for the present purpose we can agsume a weak-turbulence
subsidiary ordering se well as ignore the compresslonal Alfv;n perturbations

5’1;\1 =0 [{.e., @ = (plasma presggure/magnetic pressure) << 1]. Thuse, the

relevant equations are

BF(k) = ~(a/ DEBOF, + 57_(K) exp{ikey x ¢ /) , (81)
and

(o = Reyw 280 (k) = (a/ Ty + w*>5r°5ic5)Jo(v>

- Kef/By T OFALOENT (v SH (k")(k » ke ),
k'+k" -
=T (82)

where 8L(K) = B30 - v 8y (0 /e, wy = KyeT/eBl,, Lt = JeinN jaxf, x i
the nonuniformity direction, and Giewperature gradients are Ignored.

Expanding &ff = 6H§D + 61152) +5u(? & ..., we have, in the linear arder,

[
{w + m*)k
1)y = 4, ~r BT
B TT(K) = a5y, FBL(KII (¥) - (83)

~

To calculate ﬁﬂgz)’(”, we 1ler (mk, k) and (“‘k” k') be the normal modes,

while (wg =~ - et q w}s - l:‘) iz the virtual or quasi wmode. Alse, we

-~

have 1n mind
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~ ~ ' ~ M .
|~ ey | = iy ple, <€l | Ty ) <€ Tl gl

(84)

let us now calculate the g-mode response. For the ions we find, noting

Eq. (84), that

(2) - - s oz =
5H°1 (9 Iw*ﬂe/(wﬂ q"vﬂ)lﬁl’ﬂﬁf@(p&@(k')Jo(Y)Jo(Y')Foi N (85)
where
- 2
62 = 10 fu e Tl x k' ogyl (86)
and &b = 965/1;- In deriving FEq. (RS), we have observed that

183 ~ !w&in/cknl for the k and k' modes. As to electron nonlinearity, it
is O(Iw/m*elﬂ) smaller and, hence, negligible. Furthermore, for g ¢¢ 1, we
have |w | << !qnvA], ard the g-mode response is predominzcely
electrostatic. Hare V, 18 the Aifv;n speed. The quasi-neutrality

condition then yields

1) ~ -
68 (Fliroa)apﬂéa(g)ém(g’) , (87)
where
=2 ' = J (y'
F (k, k'Y = 2n ro v dv I Iy ’Jo(*g’Fu:(vl) < NI Gy )J;(*g’>1 ,

(B8
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T‘oﬂ - Io(bg) axp(—bg) s €89)

2 2 1
vy " 49,/ snd by = alpl/2.  Tquattons (A3) and (87) then give s (a) -

Fot the k-mode, the ion nonlinear response can be shown to be

(3) » of—
(k) MP 1188k 1285a0E, (m 3 "1}5!
'rJZ'(Y')JO(V) - F1Jo(73”o(7')/r03] . 90

From Eq. (90) we can readily rnalculate 611(3)([(). Meanwhile, the electron

nonlinearicy, again 45 found to Dbe O(I‘ur/m* f ) smalier. Substicuting
()(k) and the 1linear response into the quasi-—neutrality condftion and

paraliel Ampere's law, it 1s strajghtforward to derive the following

nonlinear dispersion relation

w

- - W \Zrom s 2
Py (k) T’"f’“ziq[l (1 -— k(k AT )kg.ori.@q )

'G(Eg E') s

(91}
where DJQ(E} is the linear dispersion relation given by
Dg(p = {1t + m*e/cu)k(l - F"E) + (1 - m"e/m)k
2 2
*fl ~ "’k("’ + m*e/m)k(l - rek)/(klvAklps) | - (a2}

Sk, K'Y = ST - B, (93)

Zi‘g =z z(ugllqnlvij with 2 being the standard plasma dispersion function.



-22-

ik <1, and assuming N

w!E = m’-‘.‘& + :lto,_E with luilwrl << 1, Bg. (92) gives the known result that

there exist two branches of waves; the drift waves with

Tn the 1low-f 1limit of {nterest here, lw*e/klvA

Sy 0 w*ekr'oglu + (1 - roE)] R (946)

and the kinetic shear Alfven waves with

AR CR AL SRR SRR R S R R (95)

We note that nonlinear lon Landau damping of the drift waves, as described

by Eq. (91), has previously heen inveetigated.” Concentrating on the

kinetic sheat-Alfv;n waves, we find
o, (m*k‘ - w*z)e Im Z12 )
(=Y, , = = — Glk, k') 8Bk ysT |° .
ap koA T TS T T AT =T a7 SR K Tqgv T 170~ 7%
(96)

Comparing the Wy given by Eq. (96) to that of Ref. 16 (which, we
recall, does not incude the o, effects), we find the predent parametric-

decay growth rate 18 1larger by a factor of O(Iw |/fq"vil))1.

*1q
Furthermore, noting that Im zig = Iqllvlﬂé(m!s,- wE), G;_IE, k') >0, and
w = (m*k,- m*k) = (k!', - ky); hence, the daughter wave (uk, k) has a smaller
ky but ﬁthe ~same w48 the pump wave (o 0s k') 'lhi.s'~ is qualitatively
different from the results of Ref. 18, whex?e Wy = (mk'- mk)- In fact, as

might be expected, one cen show that the results of Ref. 16 are valid for

7|,.,*ig| < ]qlvil, i.e., in the opposite limit.

Finally, we briefly discuss the implication of the present results on



the shear Alfv;n wave heating scheme. Since the pump wave (i.e., the mode-
converted kinetic shear Alfvén wave) a8 k;‘p1 ~ Q1) and
k)'rpi ~ O(pifa) <1 with a being the tokamak minor radius, we have
W o= [k = k'e ﬁllz = (k,'(ky)z, and hence nonlinear coupling becomes
appreciahle for kypi ~ (1) > k;pi; that 1s, Wy < C. Thus, our Tesults

suggest that parametric decay through nonlinear ion Landau damping will be,

in general, unlikely to occur.

V. CONCLUSIONS AND DISCUSSIONS

In this work, a pystematic formalism for the nonlinear Interactions of
microscopic low~frequency electromagnetiz waves has been developed. This
formalism exteuds the linear gyrokinetic formalism of Refs. 1 and 2 [nte
the nonlinear regime. Corresponding nonlinear gyrokinetic equations, valid
for general magnetic field configurations as well as the strong-turbulence
regime, are derived. Effects due to fully electromagnetic perturbations,
finite Larmor rsdil, plasma 1inhomogeneities, magnetic drifts, and magnetic
trapping are retained. The results are thus rather general and should have
wide application. Note that 1t i3 straightforward to extend rthe treatment
to 1include collisional effects by retaining the Fokker-Planck collision
operator iIn Egs. (7) and (15). Az a specific example of possible
applications, wz consider axisymmetric tokamaks and explore in more detail
the properties of the nonlinear gyrckinetic equations via tha ballooning-
mode representation. Furthermore, a single nonlinear equation is derived
for electrogtatic drift waves in the limit of adiahatic electrouns and cold
fluid 4onms which retains the crucigl Ffeatures of toroidal geometry and
nonlinear coupling and, therefore, may be exploited as a useful model

equation. On the other hand, we have also applied the results to the

LB T



-24- v

shear Alfvén wave heating scheme and considered the parametric decays of the
mode-converted kinetic Alfv;n waves via nonlinear ion landau demping {(ion-
induzed scattering). Here 1t im found that the diamagnetic drift effects
not only enhance the parametric growth rate but alse modify the decay
process qualirarively. “That 1s, the davghter waves tend to have smaller
serpendicular (to B and the density gradient) wavenumhers (i.e., smaller
poloidal wmode numbers for tokamak plesmas) iInstead of frequencles as
suggested by uniform-plasma calculations. This property, therefore,
suggests that the mode-couverted kinetic Alfv;n waves with small poloidal
mode numbers will not, 1in general, parametrically decay via nonlinear 1ion
Landau damping. Other possible channels, such as resonant decay to drift
waves, of course, are not ruled out and need to be inveatipated.

Let us comment on some other possible applications of the general
regults obtained here. One possible application 1g the follow.ng: by

taking the limit of adiabatic electrons and cold fluid 1ione, a sufficiently

gimple nonlinear equation a8y also be derived for the
kinetic shear—AlEv;n waves and hence could serve as a mclel equation for
stucying the nonlinear evolutlon and associated transport of kipetic
ballooning-mode 1instabilities.l®  Another interesting application 13 to
simulate plasmas employing the nonlinear gyrokinetic equation, Eq. (48} or,
more transparently, Eq. (50). This application will further extend the
gyrokineric simulation echeme iInitially proposed by Leel? for electrostatic

waves in simple (slab) geometries to fully electromagnetic pertubations in

general plasma equilibria. The details of these applications, however,

remain to be worked out.
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