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ABSTRACT
A previously reparted algorithm for solving the problem of coupling electromagnetic
energy in the LHRF from a phased array of identical rectangular waveguides to a plane—
stratified, magnetized ccld plasma is numerically i&plemmted. The resulting computes
codes are sufficiently general to allow for an arbitrary number of waveguides with finite
dimensions in both poloidal and toroidal directions, and are thus capable of computing
coupling to both alow and fast waves in the plasma. Some of the details of the imple-
mentation and the extension of the algorithm to allow study of the Fourier spectrum of
slow and fast waves launched by the array are discussed. Good agreement is found with
previously reported, less general work for the slow wave launching case. The effect of
phasing multirow arrays in the poloidal direction is studied, and an asymmetry between
phasing ‘up’ and ‘down’ is found that persists in the case where the plasma adjacent t»
the array is uniform. A 4 x 3 array designed to Iaunch fast waves of high phase velocity is
studied. By using the optimal poloidal phasing, low reflection coeficients {|£2|?<20%)
are found under som¢ aot unrealistic edge plasma couditions, but most of the input
power is trapped in the outermost layer of the plasma. Implications of cur results for

fast wave current drive experiments are discussed.
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1. INTRODUCTION

In the past decade, plasma waves in the Lower Hybrid Range of Frequencies
(i € w ~ wp € 0,) have experimentally been proven to be effective for
plasma current drive and heating [1,2] . While several types of wave Jaunching
structures have been employed in small, low power experiments, the antenna
design used for high power tokamak experiments in the LHRF is the phased
waveguide array. The simplicity and flexibility of these antennas has led to
their important rol: in recent tokamak reactor designs [3] .

From a practical point of view, the maximmm amount of power which can
be delivered to the plasma by a phased waveguide array can be limited by the
appearance of significant reflection at the array-piasma interface; high voltage
standing waves in the guides can cause breakdown in the guides. Consequently,
it is important to be able to predict the refiection coefficients as a function of
plasma conditions in front of the array. Furthermore, the layer of plasma in
front of the array, which we will henceforth call the coupling region, acts as a
filter, only permitting part of the launched power spectrum to reach the core
of the plasma. The detailed spectrum of the waves that reach the hot plasma
core is clearly important f.: wave absorption, and hence for heating and current
drive.

For these reasons, a theory to describe waveguide array—plasma coupling has
been developed and implemented in the form of computer codes [46] . These
codes are limited to modelling arrays composed of rectangular guides with the
shorter edge paraliel to the torvidal field (slow wave coupler), and treat coupling
only to the slow wave [7] . The results of these codes have been compared in
some detail with slow wave lannching experiments [8,9] . Ref. 10 incivdes the
parasitic coupling to the fast wave from a slow wave coupler, while Theithabe:
and Bers [11] consider coupling to the fast wave with an zrray of guides with
the longer edge parzllel to the toroidal field (fast wave coupler). All of this
work shares a set of assumptions: plane-stratified cold plasma in the coupling
region, special density profiles that can be treated analytically, arrays of infinite



extent in the poloidal direction so that the poloidal wave number is zero, and
decoupled differential equations describing slow and fast wave propagation.

Berger, Perkins, and Troyon [12] and McWilliams and Mok [13] have con-
sidered the effect of nonzero poloidal wave number on fast wave propagation,
and in Ref. 13 arbitrary density profiles were allowed as well. In both of these
stadies, however, it was assumed that the antenna launched une particular plane
wave at a time, and thus these authors did noi match the fields at the plasma
edge to those of a realistic coupler. Furthermore, these studies also decoupled
the slow and fast wave differential equations.

While the assumptions made in all of these studies are well justified for slow
wave launching, as we shall see below, they are not as justifiable for fast wave
launching. The finite pol=idal extent of the array is more significant for the
fast wave case, and the launching o high phase velocity fast waves for efficient
current drive will necessarily involve relatively large amounts of power in the
inaccessible part of the wave spectrum. (Of course, the latter point is true for
the launching of high phase velocity slow waves as well.) For the waves near the
minimum accessible wave number, the assumptions which allow decouplirg of -
slow and fast wave differential equations break down. Also, phasing the array
poloidally may allow much improved coupling efficiency to the fast wave, as was
emphasized in Ref. 13 .

Bers and Theilhaber [14] outlined a computational method which allows the
removal of most of these assumptions, though no numerical work was reported.
The following approximations remsin: the plasma is plane-stratified, the DC
megnetic field is purely toroidal, and the coupling region is treated using cold
plasma theory. Other assumptions will be discussed below. The density and
toroidal field profiles are arbitrary, the siow and fast wave differential equations
do not have to be decoupled, and the airay is of Snite extent in both poloidal and
toroidal directions. This method bas been implemented to t:.at coupling from a
single large waveguide to the plasma for the Ion Cyclotron Range of Frequencies
[15] . In the present work, e implement this method for the LHRF and use
the resulting code to study waveguide array—plasma coupling using an array



designed for a fast wave current drive experiment [16] .

The organization of the paper is as follows. In Sec. 2, we discuss the details
of the implementation of this numerical scheme. The nex: section discusses a
comparison of the results of our code with the results of a slow wave coupling
code which has been previously described [5] , and presents results from a study
of fast wave launching with a 4 x 3 phaved array. An asymmetry between
coupling obtained with ‘up’ and ‘down’ poloidal phasing, which exisis even if
the plasma in the coupling region is uniform, is discussed. The Fourier spectrum
of siow and fast waves lawnched by the array is studied. We Lst our conclusions

in Sec. 4.

2. NUMERICAL METHODS

The method we use to calculate waveguide array-plasma coupling has been
described in detail in several previous publications [10,14,15] , so the following
discussion emphasizes the aspects of the present work which are new or have
not Leen previously described. The model array consists of an arbitrary number
of identical rectangular waveguides loaded with dielectric. The dimensions of
the guides are such that only the TEs, or TE;, mode propagates at the excited
frequency, but ar arbitrary nmamber of evanescent TE and TM modes may be
retained in the coupling calculation. The coordinate system used is illustrated
in Fig. 1. Apart from the waveguide apertures, the z = { plane consists of a per-
fectly conducting sheet, so that the transverse electric field vanishes everywhere
on z = 0 except in the wavegnide openings. Since the number and dimensions
of the waveguides are finite in both the y and z directions, we can investigate
the effect of phasing the array in the direction perpendicular to Bo.

The Fourier transform of the trausverse electric field in the plasma matches
onto the transform of the wavegnide fields at * = 0. The transverse magnetic
fields match only in the wavegnide onenings, so that one cannot simply match
the Fourier—transformed transverse magnetic fieids at ¥ = 0. The transforms
of the transverse electric and magnetic fields at ¢ = (t are related by the
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admittance matrix ¥(ny, ;) defined by

(By(r' =0t, ny:nz))

B.(z = o, nya”z)

(Yll(nyanz) le(nyanz)) (Ey('—” = 0+’nyon=)) )

y&!(ny,nz) .Y2’2(ny’ nz) E,(-'C = O+t Ny, "‘:)
(1)

{In this paper, we normalize wave numbers by the vacuum wave number kg =
w/e, thus defining the index of refraction in the y-direction, for example, as
ny = ky/ko = kyc/w.) The admittance matrix is calculated in the manner
described by Refs. 14 and 15 : for a particular (ny,»;)}, the polarizations of the
pure slow and fast modes are calculated in the plasma at a point sufficiently far
to the right that a radiation condition applies. That is, the modes carry energy
only towards the right, away from the launching structure. If for this (ny,n.)
a mode is evanescent and therefore carries no energy towards the right, the
sc!+tion which decays towards the right is chosen. These two solutions are then
taken in turn as initial conditions for the integration back to z = 0% of Maxwell's
equations incorporating the linear cold plasma dielectric teasor. These four
coupled, first order ordinary differential equations include the =z dependence
of the electron density and B,, and the terms involving spatial derivatives of
dielectric tensor elements are retained. This integration yields the electric and
magnetic fields at 2 = 0%, from which the following set of four equations for the
four unltmown admittance mwatrix elements may be constructed:

B (z = 0% ,n,,n.) = Vsl n)EJ ™ (& = 0%,y ) + Yia(ngs ) EI% (2 = 0%,y )
BJ** (2 = 0%, ny,n;) = Ya1(ny, n, ) EI* (2 = 0%, ny, ) + Yau(nyy n2 ) EL*% (z = 0F g, 1)
By™(z = 0%, ny,n.) = Yaa(ny, m, ) By ™ (z = 0%, ny,n,) + Yiz(ny, o )EF (x = 0%, my, m.)
BYew(z =0t ng,n.) = Yzl(ny,n,)E;"""(: = 0%, ny, n;) + Yaz(ny, . ) EX(z = 0%, ny, n,)
(2)

in which the superscript denotes which solution was taken as initial condition at

the far right. The solution of this set yields Y(n,,n.). This procedure must be
. carried out for enough points in the (ny, n,) plane to allow the inverse Fourier
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transform integrals to be computed accurately. The radius in the (ny, 2.} plane
out to which the inverse Fourier transform integrals are calculated is determined
by the launched spectrum of the array; the circle must include al! the sigrifi-
cant energy launched by the array. (This is certainly sufficient for the present
coupling calculation, but for detailed current drive studies, the exponentially
small amounts of launched energy at large values of |n;| may partially fill in the
‘velocity zap’ [17] .)

In the integration of Maxwell’s equations in the plasma, several numerical
problems may arise. Starting in the bigh density region at the right with a
unit amplitude mode, the wave amplitude may grow to a value larger than
the precision of the computer if the wave is evanescent in the lower density
to the left. If ope of the modes is much more evanescent than the other, the
equations are ‘stiff’ [18] . In the LHRF, the density below which the slow wave

is evanescent is approximately

4, m
ne|o = 5t +nd - 1)/(n ~ 1)

for n? > 1, while the fast wave is roughly as evanescent as it is in vacuum

(nz 2 i(nZ + nZ — 1)!/2) for densities below

fast ™
e | = 4w;2wﬂe(n:+nf—-1)’/2(nf—1)1/2‘

For n, = 0, we see that

aat

n,;o.w 29-5(113—1) > 1,

"elcn': v

except for a parrow range of n221. Further, waves for which the high density
region at the far right is inaccessible undergo exponential growth towards the
left until the mode conversion point is reached. The spatial growth rate in the

plasma to the right of the mode conversion point can be much larger than the

growth rate in the low density region near z = g%.
Our algorithm for dealing with these difficulties proceeds as follows. After an
integration of Maxwell’s equations, the ratio of the field magnitudes at = = 0+
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to the magnitude at the start of the integration at £ = Tpign: is computed. If
this ratic is larger than 168, then the WKB dispersion relation is examined at
2ll peints between = = 0" and & = T,;ppe to search for mode conversion points,
i. e. , points where the two roots for n2(z, ny, n.) coalesce. Upon finding such a
point, the integration is restarted one quarter of a local wavelength to the right
of the leftmost mode conversion point. If no mode conversion point is found,
or if the new integration still results ic a ratio greater thau 103, the problem
was due not to the presence of a mode conversion layer, but to evanescence at
low density. In this case, the integration is restarted at & = Z,ight/2. Each
time the integration is restarted at a new point, the two polarizatiors which
carry energy towards the right or decay towards the right must be recalculated
at the new starting point. The error incurred by neslecting the waves which
carry energy towards the left or decay towards the leit is exponentially small,
since thess waves represent reflections from higher density further to the right
and therefore are reduced in amplitude by a factor of exp(~2 [T/ Im(n.)dz),
where z,,,,, is the new starting point ard z,.y is the reflection point at the right.
Note that Znew < Tref < Tright. Amending the basic techuique for calculating
the admittance matrix in this way, we find that in the LHRF we need not resort
to decoupling the differential equations for fast and slow waves, as was done
for the ICRF in Ref. 15 . Had this deconpling been required in the LHRF, the
utility of the numerical method would have been questionable, as the lainching
of high phase velocity waves for efficient current drive inevitably en.aiis the
launching of significant power into the inaccessible part of the spectrum. These
waves undergo mode conversion within the coupling region, and the accuracy of
any decoupling scheme will, of course, break down in the neighborhood of the
mode conversion points, where the two polarizations are indistinguishable.

A different numerical difficulty arises when calculating inverse Fourier trans-
form integrals. As discussed in Ref. 10 , several kinds of standing waves iu the
coupling region lead to singularities in the Y matrix elements which occur for
certain real values of (ny, n.). For simplicity in the following discussicn, let us
temporarily suppose that n, = 0, and find the contour in the complex k. plaue



for the inverse Fourier transform integration. The manner in which this path
avoids the singularities on the real axis is dictated by causality. The method used
to determine the correct cuntour is exactly analogous to the standard technique
used to resolve a similar difficulty in the Landau problem [19] . In the Landau
problem, an integral over velocity has a singularity occurring in the integrand
on. the path of integration. The correct way to circumnavigate the singularity
is found by treating the problem as an initial value problem, employing the
Laplace transform in time, and requiring that the solution be causal.

In the present problem, the singularities occur when computing an integral
over k;. To determine the correct contour, then, we consider the initial value
problem, wherein the forward propagating waveguide mode of frequency w =
Wezcited 15 ‘turned on’ at t = 0. If we take the Laplace transform in time, the
integration path in the complex w plane for the inverse Laplace transfor.: runs
above the real w axis, since the excited mode yields a singularity on the real w
axis at W = Wezeized: We Dext invert the Fourier transform, before inverting the
Lapiace transforza. Consider a singularity in the Y matrix occurring at n, = n,q.
A singularity in the inverse Fourier transform integrand then occurs at k; =
{£)n.0. Since we introduced a positive imaginary part to w for causality, and we
take Re(w) > 0, then w — [w|exp(i#) with 8 > 0. Then the singularity occurs at
k; = (n;0/c)w| exp(i@), i. e. , the singularity has been rotated counterclockwise
off the real k. axis, The path for the inverse Fourier transform coincides with the
real k. axis, and does not encounter any singularities. But as we let Im(w) — 0
from above, the singularities in the complex k. plane rotate back towards the
real axis. Then the unique analytic continuation of the inverse Fourier transform
requires that the path be distorted so as to run above the singularities on the
negative real k, axis and below the singularities on the positive real &, axis.

A simple example should clarify this. The singularities of the Y matrix
elements for a vacuum are of the form (1 ~n2)~Y/2 (with n, = 0). In this case,
the singularities occur at k, = (+1/c)lw]exp(if). The inverse Fourier transform
path and the branch cuts are illustrated in Fig. 2a. Then as Im\w) — 0 from
above, the branch cuts rotate back to the real &, axis, and the path must be




deformed as shown in Fig. 2b. Finally, from this point on, we consider Im(w) = 0
so that the path in the complex n, plane is of the same form as the path we have
found in the k. plane., Identical conclusions concerning this contour have been
reached by Brambilla [4] and Theilhaber and Bers /11] . In practice, we follow
this prescription by giving n. (and, analogously, n,) in the Maxwell equatioas
a small imaginary part as follows: for n, < 0, n; — n; + il¢j, and for n, > 0,
n; — n; —i|e|. Thus, the ¥ matrix which we find by integrating these equations
is evaluated along the conmtour shown in Fig. 2c. We take |¢)] < 1 because
we have replaced only the n, that appears in ¥ with this complex value; the
other factors involving n, that multiply the elements of Y in the inverse Fourier
transform integrals are entire functions of n,, so that we are effectivziy carrying
out the integrals along the path described.

After the inverse Fourier transforms have been carried out, one is left with a
matrix inversion which finally yields the “scattering matrix” {20] . This matrix
connects the incident and reflected amplitudes of each mode in each waveguide.
Once this matrix is obtained for a particular density profile, B, profile, etc.,
the reflection coefficients of each mode in each guide for any incident phasing
in the z (toroidal) and y {poloidal} directions may be trivially calculated by a
single matrix multiplication. Furthermore, one may find the launched spectrum
of slow and fast waves at any given = between 2 = 0 and = = Z,iyn With the
expenditure of a relatively small amount of computer time. This enables us to
compute; for example, the amount of power launched into the slow mode by a
nominal fast wave coupler (long edges c{ the guides parallel to By).

To cairy out this decomposition of the wave power spectra into slow and
fast modes, the following elaboration of the method described above is used.
For each (ny, n:) of interest, pure slow and fast waves of unit amplitude in the
plasma region at the far right are integrated backwards across the density profile
as before. At each intermediate = position at which the spectra will be desired,
the feid values are stored. Having already solved the coupling problem, the
actual value of the transverse electric field at z = 0~ is known for a given array
phasing from the scattering matrix. The condition that the Fourier transform



of the transverse electric field matches at z = 0 yields the amplitudes of the
two initial conditions, i. e. , the mixture of slow and fast waves at the far right,
both of which satisfy a radiation condition there, that give the correct fields
at £ = 0. At each = position, then, the actual launched fields are known. At
each such point, we may define a rightgoing fast wave, a leftgoing fast wave,
a rightgoing slow wave, and a leftgoing slow wave in terms of a hypothetical
uniform plesma, the parameters of which are everywhere the same as the plasma
at that = position. The actual fields may be broken up into a sum of these four
eigenvectors; the four transverse field components give exactly the necessary

amount of information to carry out this decomposition.

3. RESULTS AND DISCUSSION

To benchmark our code, we compared its results with those of a code de-
scribed by Stevens et al.[5] . The array consisted of four guides driven at 2
GHz, each 2 cm wide and 13 cm high, separated by 0.3 cm, arranged with the
aarrow edge along the z direction (slow wave coupler). For the Stevens code,
the ion mass and the toroidal field strength Bp are irrelevant due to the ap-
proximations used, while for our code we took the working g=s to be deuterium
and By = 20 kG. The density profile consisted of - :amap starting at 1.5 x 101}
em~? at z = 07 rising with a gradient of 2 x 10! gun~*. While the Stevens code
retains no evarescent wavegtide modes, we kept two evanescent TE modes and
the evanescent TM;; mode.

The results of the comparison are displayed in Figs. 3 and 4. The reflec-
tion coefficient in each of the four guides as a functicn of the phasing angle is
compared, as is the net transmission coefficiznt for the array. The agreement
is satisfactory. The outer two guides have lower reflections than the inner two
at phase angles near 180° because the outer two have neighboriug guides on
only ope side, and therefore “ct more like a single waveguide {5] . The spectrum
ex-ited by a single guide is peaked around n, = 0 and therefore matches best to

a vacuum, in which only waves witk [n,| < 1 propagate. The inner two guides
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couple best at an edge density of 5 x 10*! cm™32, since at a phasing of 180°
the specirum is pealed at n, =~ 3.3 and, according to Ref.5, optimal coupling
occurs at 2 density “f npye = nemie 12 = (5 x 101 cm=3)(3.3)%. Since the edge
density in this example i rauch less thun the optimal depsity, the outer two
guides couple better than t*- inner two. Similarly, for phase angles near 0° the
outer guides have lower reQertions than the inner tivo, because the width of the
peak at =, = 0 for 4 single guide is greater than that of an array phased at
0°, so the spectruni of a single guide has a smaller proportion of epergy in the
inaccessible range of wave numbers, Other qualitative features of coupling fom
a slow wave array t¢ a plasma with the type of density profile in chis example
are discussed in dotail in Ref.5 .

In the next example, we consider conpling from a fast wave array. We model
the array to be used for the PLT fast wave current drive xxperiment [1C] . twelve
guides driven at 800 MHz, each 8.6 cm in the tozoidal direction by 5.4 cm in the
poloidal direction, arraved in four columns of three. The septum betwseeu the
guides toroidally is 0.67 cm, and the poloidal separation is 2.9 cm. The gides
are filled with a dielectric with ¢ = 8.0. As is well known, to obtain reasgpeble
ceupling cfficiency to the fast wave in the LHRF, a relatively high density is
required. We therefore take the density at the limiter (located at r = 40 cr) to
be ngim = 5 x 10'2 ecm™3, rising parabolically over 40 cm to a central deusity of
np =5 x 10" ¢cm™3, and an exponential decay of the density from the limiter
radius outwards with an e—folding distance of 2 cru. This ‘standard’ density
profile is shown in Fig. 5. The 1/R variation of the toroidal field, which is taken
to be By = 20 kG at the acray face, is included, although this amounts to an
increase of B; of only 6% over the 10 cm we take to constituwe the coupling
region. The working gas is deuterium.

We now investigate the effect of moving the position of the array from its
nominal position 3 ¢cm outside the limiter, with a fixed phasing and density
profile. The phasing is chosen to be 90° in the toroidal direction and 0° in
the poloidal direction. The resulting power reflection coefficient is plotted as a
function of the distance between the array face and the limiter in Fig. 6. An
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optimum density at the array face exists, of about 1.8 x 10!? cm™3, at which
the reflection coefficient is about 44%. However, as suggested by McWilliams
and Mok [13] , the coupling may be improved significantly by poloidally phasing
the array. With a 90° phase difference of the appropriate sign between adjacent
guides in the y—directicr. while maintaining the 90° phase difference in the z-
direction, the lower reflection coefficients also plotted in Fig. 6 are obtained. The
reflection coefficients with the optimum poloidal phasing are considerably lower
than those with zero poloidal phasing for all array positions; at the nominal
position, 22% power reflection is obtained in the former case, compared with
46% in the latter.

We further investigate the effect of poloidal phasing by fixing the array face
position a¢ its nominal value of r = 43 cm, maintaining the toroidal phasing of
90°, and varying th« poloidal phasing from —180° to 180°. {As noied in Sec. 2,
having found the “scattering matrix,” the reflection coeflicient for any phasing
is found by a single mairiz multiplication.) The power reflection coefficient thus
found is plotted in Fig. 7a. The reflection coefficient is strongly dependent ca
the sign of the poloidal phase angle, with the optimum occurring at about —70°
This asymmiet>y is in contrast to the deper dence of the reflection coefficient on
the toroidal phase angle with fixed poloidal phase; such « plot, with the fixed
peloidal phase angle of 0°, is shown in Fig. Th. We may display the reflection
coefficient for any phasing in both directions by plotting contours of constant
power reflection in “phasing angle space.” The power reflection contour plot
for the standard case under discussion here is shown in Fig. 8. The z-phasing
symmetry and the y-phasing asymwmetiry are immediately obvious in this plot.

Another interesting feature of Fig. 8 is generally found for density profiles
and toroidal field strengths such that good coupling (|R]* ~ 30% or less) exists
for some phasing: the minimum reflection coefficient is achieved for a particular
y-phasing, but does not sirongly depend on the z—phase angle. This is displayed
in Fig. 7c, which shows the reflection coefficient as a function of z—phasing angle
with the y—phasing angle fixed at —90°. The existence of an optimal poloidal
phasing at which not only the minimoum reflection coeflicient is obtained, but
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at which the toroidal phase angle can be varied across a wide range without
adversely affecting the coupling efficiency, is of obvious significance for fast wave
current drive experiments.

However, the mechanism by which poloidal phasing improves coupling in
this case is not primarily the one described by Berger, Perkins, and Troyon
[12] and McWilliams and Mok [13] , which involves the spatial derivative of
the off-diagonal plasma dielectric tensor elements. This is demonstrated by
recomputing the standard case, replacing the density and B, profiles by a uni-
form plasma with parameters n, and By equal to their values at z = 07 in the
standard case: n, = (5 x 10!2 cm~?) x exp(~3 cm/2 cm) = 1.1 x 102 cm~?,
and By = 20 kG. The power reflection coefficient contours are shown in Fig. 9.
Though all the gradients in the plasma are now zero, the effect of poloidal
phasing remains substantially the same as with the realistic density profile.

The strong asymmetry between phasing ‘up' and ‘down’ which is apparent
in Fig. 9 may at first appear to be counterintuitive; in a un‘form magnetized
plasma with a straight magnetic field, no direction perpendicular to the mag-
netic field is preferred. However, a ‘uniform’ plasma bounded by a conducting
sheet is manifestly not truly uniform, in that¢ the normal to the sheet (), the
magnetic field direction (%), and their cross product form a basis with a par-
ticular handedness, with vespect t~ which an unique ‘up’ direction is defined.
For fast wave launching into a uniform plasma, this effect may be seen more
explicitly by approximating E- 2 o~ 0, which is the usual decoupling assumption
for fast waves [13,15] , in which case the relevant admittance matrix element
Ya1(ny,n;) is given by [15]

B. ni**(5—n?)—-iDn,

Yo o =% =
2 _ 2
E, §—n2-n?

, (3)

in which nf®* = nf3*(z,n,, n,) is the index of refraction for the fast wave in
the x—directirn. For ny,7n. such that Im(nf?*) # 0 (evanescent waves), this
is clearly asymmetric with respect to the interchange n, — —n,. Thus, the
reactive part of the plasma impedance depends on whether the array is phased
‘up’ or ‘down’ for a uniform plasma.
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If the antepna structure is idealized so that a single plane wave with a
particular (ny,n.) is launched, as it was in Refs. 12 and -13, no asymmetry
between coupling with n, = +ny and n, = —ny will be observed for a uniform
plasma, because for propagating waves Eq. (3) shows that the magnitude of
Y2, is unchanged under the interchange n, — —n,, while the evanescent waves
which introduce the asymmetry carry no energy away from the antenna. Tv is
the constraint that the fields at the edge of the plasma must match onto the
fields of a ~ealistic antenna model which forces the launching of evanescent waves
into the plasma along with the propagating waves, and the svanescent waves
introduce the up-down asymmetry. That evanescent waves are required to be
able to match the plasma and waveguide fields is most obvious for a single mode
in a single waveguide: the ratio of incident power in the evanescent part of the
spectrum to that in the propagating part is fixed for this case.

A the high plasma densities contemplated for fast wave current drive, cou-
plin;, to slow waves of high phase velocity becomes difficult. This ma- be an-
ticipated from the rule-of-thumb of Ref. 5 mentioned above: at 800 Iv: Iz, the
optimal edge density for coupling at n; = 1.5 is predicted b this formula to be
napt ~ 1.8 x 10" cm™2 , while the density at the array face for our standard
profile with the array 5 cm outside the limiter is 4.1 x 10 cm~2. To make a
quantitative comparison between slow- and fast—-wave coupling with the same
density and B; profiles, etc. , we model the 6 x 1 waveguide array formerly
used in PLT lower hybrid current drive experiments at 800 MHz [21] . Each
guide is 3.53 cm wide and 22 cm high, and the guides are separated by 0.63 cm
in the toroidal direction.

Fixing the toroidal phase angle at 90°, the incidei: power speciium of
this array is peaked at n2°®* v 2,25, with a balf-width~at-half-maximum of
(An.)gwam ~ 1. The array ace would have to be located approximately 10
cm outside the limiter, given our standard density profile, to obtain optimal
coupling. The reflection coefficient for this array as a function of the distance
between the array face and the limiter is plotted in Fig., 10. Comparison of
Figs. 6 aud 10 shows that with proper poloidal phasing, the 4 x 3 fast wave
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coupler can achieve lower reflection coefficients ti:an the slow wave array. This
is further illustrated in Fig. 11, wherein the reflection coefficients for both arrays
are compared as a function of toroidal phase angle. For this comparison, the
arrays are both located 3 cm outside the limiter, and the poloidal phase angle
for the fast wave array is fixed at —70° (near tke optimal value for 90° torcidal
phasing).

The dependence of conpling on the toroidal field strength B, is quite different
for the slow- and fast-wave arrays. The cut—off condition for the slow wave is
independent of magnetic field, but at very low field and high edge density, the
accessibility cr.ndition becomes difficult; to satisfy. Under these conditions, most.
of the inci‘ent slow wave energy undergoes mode conversion to the fast wave
in the outer part of the plasma and does not escape the coupling region. The
cut—off condition for the fast wave, on tha other hand, depends on the magnetic
field, so that low magnetic fields are favorable for good fast wave coupling. At
very low field, however, the same accessibility criterion makes coupling difficult.
Hence, one expects that an optimal By exists for fast wave coupling, while for
field strengths above some value B§™, slow wave coupling will not depend on
Bg. For the § x 1 slow wave coupler, we may estimate this critical By by
calculating the field at which most of the spectral energy is accessible. At 90°
phasing, most of the incident energy is above n, = 72 — (An,)gwam =~ 1.25,
which is accessible to a density of 1.1 x 1012 cm~3 for Bo<15 k¥G. The power
reflection coefficier.t for the slow wave array as a function of Bg is shown in
Fig. 12, where the array face is 3 cm outside the limiter, the demnsity profile
of Fig. 5 is used, and the toroidal phasing is 90° . The reflection coefficien; is
indeed independent of By above B§™¢ ~ 15 kG. Fig. 13 shows the dependence of
reflection coefficient for the 4 x 3 fast wave array on By for the standard case,
with a toroidal phasing of 90° and two poloidal phasing angles. The anticipated
mipimum in reflection coefficient is seen to exist; for poloidal phasing of —90°,
the minimum reflection coefficient is approximately 15% at By ~ 10 kG.

Finally, we use our methods to consider the nature of the wave spectrum
that actually escapes the coupling region. The relatively low reflection coeffi-
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cients here obtained for fast wave launching do not necessarily imply that large
amounts of power are able to reach the plasma core; power trapped between the
edge of the plasma and the mode conversion points may only weakly affect the
reflection coefficient of the array, but is useless for heating or driving current in
the plasma beyond the coupling region. Further, for current drive experiments,
it is necessary to know the polarization of the wave energy that does escape
the coupling region. Under some conditions, fast wave arrays can launch signif-
icant amounys of power into the slow wave bra.ur.'h both by direct coupling from
evanescent waveguide modes {excited by the matching at 2 = 0) or by coupling
across the density gradient. The mechanism by which the latter coupling can
occur has been described by Skiff {22] for the similar situation wherein the fast
wave in the ICRF couples to the ion Bernstein wave.

As Brambilla [10] has discussed in detail, power trapped in the coupling
region between mode conversion points and the plasma edge causes narrow peaks
to appear in the inaccessible part of ihe Fourier spectrum of the z—component
of the Poynting flux P.(n,,n;). The peal:s have nonzero width only if some
damping mechanism exists, allowing power flowing in the z—direction to vanish
at large distances fom %ire antenna. Our introduction of an imaginary part to
ny and n, has the same effect as the introduction of an imaginary part to a
phase integral in Ref. 10, so that the power spectrum at = = 0" has the fine
structure just described. As the spectrum is calculated at x > 0, the power
in the inaccessible part of the spectrum decreases until at z = z,,4s:, Where
only waves carrying energy towards- the right or decaying towards the right are
permitted, only an exponentially small part of the power in this part of the
spectrum has tunneiled through.

We may calculate the fraction of inaccessible power either by computing the
volume under this part of the power spectrum at = = 0T, or by computing
the pov er at 2 = Zyigr: and subtracting this from Pi,.(1 — |R[?), where P;,.
is the total power propagating towards the right in the array and (R]? is the
power reflection coefficient for the array. The latter scheme is clearly easier
to numerically implement and is also more accurate. However, the full two-
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dimeunsional integration over ny and n. will not be carried out in che present
work. Instead, the integration in the n, direction is replaced by an effective
spectral width, the integration over n, carried cut, and the total power integral
estimated by the product of the effective width and the integration over n.,

We consider the 6 x 1 siow wave array with the standard density profile and
the array face 3 cm outside the limiter. Assuming that the 10 cm of plasma in
front of the array constitutes the coupling region, waves with |n;| < 1.62 are
either evanescent or trapped in the coupling region. With S0° phasing, mos¢ of
the incident power is in 1.2557,:53.25, so that not much power is expected to be
trapped in the outer part of the plasma. Qur computation indicates that ~ 3% of
the incident power is unable to escape the coupling region, while the reflection
coefficient of the ~rray may be read from Fig. 10: |R|> =~ 60%. The power
spectrum Pz(2 = Zyight, 7y = 0,7.) for this case is plotted in Fig. 14, where
we have taken Pi,. = 100 k'W. We have also shown the spectra at & = Tpigne
obtained when the artoy is 1 cn and 5 cm outside the limiter. As expected
from Fig. 10, e power is coupled to the plasma as the array is pulled back.
We also find that for this array, virtually no energy that escapes the coupling
region is on the fast wave branch.

Finally, we consider the spectrum launched Ly the 4 x 3 fast wave ar-
ray. At taroidal phasing of 90°, the primary peak in the incident power spec-
trum is centered on nf*** = 1.01, with a half-width-at-half-maximum of
{An,)gway == 0.65. With the standard density profile and the array face
3 ¢m outside the limiter, it is apparent that a very large fraction of the incident
power will be trapped in the coupling region. In fact, our computation indi-
cates that ~ 70% of the incident power is lost in this way, though the refiection
coefficient of the array (with the poloidal phasing of —70° ) is only 18% (see
Fig. 6 ). Only £15% of the incideat power is able to escape the coupling region.
Toroidally phasing the array at 180°, thus moving the peak to nP**f = 2,02
while maintaining the —70° poloidal phasing to keep the reflection coetificient
low, should eliminate the accessibility probiem, and indeed we find that £10%

of the incident power is inaccessible in this case.
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We show the power spectrum P:(x = Z,igae, 2y = —0.878,n;) for the 4 x 3
fast wave array phased 90° toroidally and —70° poloidally in Fig. 15, The value
of ny, is chosen so that the path n,, — —0.878 runs along the peak of the spectrum
for this poloidal phasing. Again, we show the spectrum for three array positions:
1 em, 3 cm, and 5 cm outside the limiter. The Poynting flux at z = z,j5n: is
split up between fast and slow waves, and vre show their spectra separately. On
the order of 20-40% of the power that actually escapes the coupling region is on
the slow wave branck of the dispersion relation. The fact that the primary peak
of the incident power spectrum is almost entirely inaccessible has an interesting
consequence for current drive experiments: the array phasing in this example
directs the power towards positive z, but the directivity of the spectrum that
reaches the plasma core is 0.75 towards negative z for the case with the array
face 3 cm outside the limiter. Assuming that very little current drive results
from the dissipation of the power trapped in the cold coupling region plasma,
this yields the easily tested prediction that under these conditions, any wave
driven currents should flow in the ‘wrong’ direction.

Since the fast wave spectrum is cut off above a critical |n,;| (which also
depends on {ny|), the mechanism of Ref. 17 for filling the spectral gap may not
exist for pure fast wave cusrent drive. In this case, the slow waves also launched
by a realistic array may be important for this reason, while this parasitically
launched slow wave power is likely to complicate any experimental investigation
of any density limjt for fast wave carrent drive [1).

By employing 180° toroidal phasing te alleviate the accessibility problem, the
directivity of the spectrum is of course lost. Furthermore, raising the toroidal
field lowers the minimum accessible 1| but raises the reflection coefficient, as
in Fig. 13. Clearly, an optimal toroidal field and toroidal phase angle between
90° and 180° exists, at which a reasonably large fraction of the incident power
is able to reach the plasma core while retaining the maximum directivity. How-
ever, detailed optimization of the array and plasma parameters for current drive
experiments is left to future work.
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4. SUMMARY AND CONCLUSIONS

The algorithm of Bers and Theilhaber [14] has been numericall - implemented
and extended, resulting in a group of computer codes which have been used to
study plasma-waveguide array coupling. The codes can evaluate both reflection
coeflicients and the launched power spectrum. When the gunides are oriented
with their long edges perpendicular to the toroidal field (siow wave \auzcher),
good agreement is found between these codes and previously reported, le.;s gen-
eral codes. However, for high plasma densities in the vicinity of the coupler
or for very low toroidal fie. -strengths, accessibility becomes a problem in the
coupling region, ard the older codes become invalid for incident spectra with
significant eneryy near |n,| = 1. Under these conditions, lower reflection coeffi-
cients may be obtained with arrays oriented with the long edges of the guides
paralle! to the toroidal direction (fast wave launcher). To obtain these relatively
low reflection coefficients, the array must be phased in the poloidal direction.
Theilhaber and Bers [11] assumed that n, = 0, and could not treat the effect
of poloidal phasing, while the method of Refs. 12 and 13, wherein the launcher
is idealized as launching a single plane wave with fixed (ny, n;}, could not treat
the up-down phasing asymmetry that exists even for a uniform plasma. This
phenomenor, which arises from the matching of the plasma fields onto those of
a realistic antenna model, appears to cause most of the up—dswn asymmetry ev-
ident in Fig. 8, for example. With a high (but not unreasonably so) edge density
and the proper poloidal phasing, reflection coefficients lower than |R[? ~ 20%
are found.

However, study of the power spectrum of the waves which actually escape
the coupling region shows that only a small fraction of the incident power is
delivered to the core of the plasma. As the peak of the spectrum approaches
n?®* v 1 to maximize current drive efficiency, a large fraction of the power is
trapped in the cutermost part of the plasma, particularly under the high density
and low torvidal field conditions necessary tc obtain lower reflection coefficients
for the fast wave array. The effect on confinement « f such large amounts of
power being dissipated in the cold, collisional outermost layer of the plasma

19



is unclear, apart from the fact that little of the power from the rf source is
actually transferred to the hot core of the plasma. For fast wave current drive
experiments, a compromise will bave to be found among the reguirements of
low array reflection coefficient, a spectrum characterized by high phase velocity
and high directivity, and a large amount of power delivered to the plasma core.
The incorporation of tuning elements into the array may help in this endeavor,

by permitting a larger reflection coefficient.
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M o il i e

Figures

Fig. 1. The general array configuration and the coordinate system employed.
Fig. 2. Dlustrating the contour dictated by causality in the complex k&, plane.

Fig. 3. Comparison of Stevens code [5] results with present work: individual
guide reflection coefficients as a function of phase angie.

Fig. 4. Comparison of Stevens code results with present work: net transmission
coefficient for 4-guide array as a function of phase angle.

Fig. 5. The density profile used for the fast wave array example. The nominal
position of the wavegnide array face is marked with an arrow.

Fig. 6. Power reflec.ion coefficient for the fast wave array as a function of the
distance between the array face and the limiter for two poloidal phasings.

Fig. 7. (a) Power reflection coefficient for the standard case as a fanction of
poloidal phasing angle, with the toroidal phase angle = 90°.
(b) Power reflection coeflicient for the standard case as a function of toroidal
phasing angle, with the poloidal phase angle = 0°.
(c) Power reflection coefficient for the standard case as a function of toroidzl
phasing angle, with the poloidal phase angle = —90°.

Fig. 8. Contours of power reflection coefficient for arbitrary uniform phasings
for the standard case.

Fig. 9. Coutours of power reflection coefficient for uniform plasma with n. =
11 x 102 cm™* , Bp =20 kG.

Fig. 10. Power reflection coefficient for the 6 x 1 slow wave array as a function
of the distance between the array face and the limiter. ‘Standard’ density
profile (see Fig. 5), Bp = 20 kG, toroidal phase angle of 80°.

Fig. 11. Comparison of reflection coefficients for the 4 x 3 fast wave array and
the 6 x 1 slow wave array as a function of toroidal phase angle. ‘Standard’
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density profile, array faces 3 cm outside the litr iter, By = 20 kG. For the

fast wave array, the poloidal phase angle is —70°.

Fig. 12. Power reflection coefficient for the 6 x 1 slow wave array as a function
of toroidal field strength B,. ‘Standard’ density profile, array face 3 cm
outside the limiter, toroidal phase angle is 90°.

Fig. 13. Power reflection coefficient for the 4 x 3 fast wave array as a function
of toroidal field strength By. ‘Standard’ density profile, array face 3 ¢cm
outside the limiter, toroidal phase angle is 30°.

Fig. 14. The Fourier transform of the Poynting fiux in the z-direction at z =
Tright, along ny, = 0, as a function of n,. 6 x 1 slow wave array with 90°
toroidal phasing angle, ‘standard’ density profile, array face 1 cm {dashed
line), 3 cm (solid line), and 5 cm (dotted line) outside the Limiter. Total
incident power Pi,. = 100 kW.

Fig. 15. The Fourier transform of the Poynting flux in the r-direction at ¢ =
Tright, along n, = —0.878, as a function of n.. 4 x 3 fast wavc array with
90° toroidal phasing angle, —70° poloidal phasing wungle, ‘standard’ density
profile, array face 1 cm {dashed line}, 3 cm (solid lina), and 5 cm (dotted
line) outside the limiter. Total incident power Pin. = 100 kW,
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