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ABSTRACT 

A previously reported algorithm for solving the problem of coupling electromagnetic 

energy in the LHRF from a phased array of identical rectangalar waveguides to a plane-

stratified, magnetized ccld plasma is numerically implemented. The resulting computer 

codes are sufficiently general to allow for an arbitrary number of waveguides with finite 

dimensions in both poloidal and toroidal directions, and are thus capable of computing 

coupling to both alow and feat waves in the plasma. Some of the details of the imple­

mentation and the extension of the algorithm to allow study of the Fourier spectrum of 

slow and fast waves launched by the array are discussed. Good agreement is found with 

previously reported, less general work for the slow wave laiim-liw.E case. The effect of 

phasing multirow arrays in the poloidal direction is studied, and an asymmetry between 

phasing 'up' and 'down' is found that persists in the case where the plasma adjacent t > 

the array is uniform. A 4 x 3 array designed to launch fast waves of high phase velocity is 

studied. By using the optimal poloidal phasing, low reflection coefficients (|iZ|2&20%) 

are found under somt not unrealistic edge plasma conditions, but most of the input 

power is trapped in the outermost layer of the plasma. Implications of OUT results fur 

fast wave current drive experiments are discussed. 
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1. INTRODUCTION 

Is the past decade, plasma waves in the Lower Hybrid Range of Frequencies 
(fii « w ~ «,» < n e ) have experimentally been proven to be effective for 
plasma current drive and heating [1,2] . While several types of wave launching 
structures have been employed in small, low power experiments, the antenna 
design used for high power tokamak experiments in the LHRF is the phased 
waveguide array. The simplicity and flexibility of these antennas has led to 
their important roL in recent tokamak reactor designs [3] . 

From a practical point of view, the maximum amount of power which can 
be delivered to the plasma by a phased waveguide array can be limited by the 
appearance of significant reflection at the array-plasma interface; high voltage 
standing waves in the guides can cause breakdown in the guides. Consequently, 
it is important to be able to predict the refiection coefficients as a function of 
plasma conditions in front of the array. Furthermore, the layer of plasma in 
front of the array, which we will henceforth call the coupling region, acts as a 
filter, only permitting part of the launched power spectrum to reach the core 
of the plasma. The detailed spectrum of the waves that reach the hot plasma 
core is clearly important fci wave absorption, and hence for heating and current 
drive. 

For these reasons, a theory to describe waveguide array-plasma coupling has 
been developed and implemented in the form of computer codes [4-6] . These 
codes are limited to modelling arrays composed of rectangular guides with the 
shorter edge parallel to the toroidal field (slow wave coupler), and treat coupling 
only to the slow wave [7] . The results of these codes have been compared in 
some detail with slow wave launching experiments [8,9] . Ref. 10 includes the 
parasitic coupling to the feist wave from a slow wave coupler, while Theilhabe; 
and Bers [11] consider coupling to the fast wav« with an eiray of guides with 
the longer edge parallel to the toroidal field (fast wave coupler). All of this 
work shares a set cf assumptions: plane-stratified cold plasma in the coupling 
region, special density profiles tht-t can be treated analytically, arrays of infinite 
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extent in the poloidal direction so that the poloidal wave number is zero, and 

decoupled differential equations describing slow and fast wave propagation. 

Berger, Perkins, and Troyon [12] and McWi'liams and Mok [13] have con­

sidered the effect of nonzero poloidal wave number on fast wave propagation, 

and in Ref. 13 arbitrary density profiles were allowed as well. In both of these 

studies, however, it was assumed that the antenna launched one particular plane 

wave at a time, and thus these authors did not match the fields at the plasma 

edge to those of a realistic coupler. Furthermore, these studies also decoupled 

the slow and fast wave differential equations. 

While the assumptions made in all of these studies are well justified for slow 

wave launching, as we shall see below, they are not as justifiable for fast wave 

launching. The finite poJoidal extent of the array is more significant for the 

fast wave case, and the launching of high phase velocity fast waves for efficient 

current drive will necessarily involve relatively large amounts of power in the 

inaccessible part of the wave spectrum. (Or* course, the latter point is true for 

the launching of high phase velocity slow waves as well.) For the waves near the 

minimum accessible wave number, the assumptions which allow decoupling of 

slow and fast wave differential equations break down. Also, phasing the array 

poloidally may allow much improved coupling efficiency to the fast wave, as was 

emphasized in Ref. 13 . 

Bers and Theilhaber [14] outlined a computational method which allows the 

removal of most of these assumptions, though no numerical work was reported. 

The following approximations remain: the plasma is plane-stratified, the DC 

magnetic field is purely toroidal, and the coupling region is treated using cold 

plasma theory. Other assumptions will be discussed below. The density and 

toroidal field profiles are arbitrary, the slow and fast wave differential equations 

do not have to be decoupled, and the airay is of finite extent in both poloidal and 

toroidal directions. This method has been implemented to tr;at coupling from a 

single large waveguide to the plasma for the Ion Cyclotron Range of Frequencies 

[15] . In the present work, we implement this method for the LHRF and use 

the resulting code to study waveguide anay-plasma coupling using an array 
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designed for a fast wave current drive experiment [16] . 

The organization of the paper is as follows. In Sec. 2, we discuss the details 

of the implementation of this numerical scheme. The next section discusses a 

comparison of the results of our code with the results of a slow wave coupling 

code which has been previously described [5] . and presents results from a study 

of fast wave launching with a 4 x 3 phased array. An asymmetry between 

coupling obtained with 'up1 and 'down' poloidal phasing, which exisis even if 

the plasma in the coupling region is uniform, is discussed. The Fourier spectrum 

of slow and fast waves launched by the array is studied. We ĵ st our conclusions 

in Sec. 4. 

2. NUMERICAL METHODS 

The method we use to calculate waveguide array-plasma coupling has been 

described in detail in several previous publications [10,14,15] , so the following 

discussion emphasizes the aspects of the present work which are new or have 

not been previously described. The model array consists of an arbitrary number 

of identical rectangular waveguides loaded with dielectric. The dimensions of 

the guides are such that only the TE 0 i or TEio mode propagates at the excited 

frequency, but an arbitrary number of evanescent TE and TM modes may be 

retained in the coupling calculation. The coordinate system used is illustrated 

in Fig. 1. Apart from the waveguide apertures, the x = 0 plane consists of a per­

fectly conducting sheet, so that the transverse electric field vanishes everywhere 

o n i = 0 except in the waveguide openings. Since the number and dimensions 

of the wavoguides are finite in both the y and z directions, we can investigate 

the effect of phasing the array hi the direction perpendicular to Bo. 

The Fourier transform of the trausverse electric field in the plasma matches 

onto the transform of the waveguide fields at x = 0. The transverse magnetic 

fields match only in the waveguide openings, so that one cannot simply match 

the Fourier-transformed transverse magnetic fields at x — 0. The transforms 

of the transverse electric and magnetic fields at x = 0 + are related by the 
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admittance matrix Y(ny,nz) defined by 

By{x=Q+,n9,n1!)\ _ fYu(ny,nz) Yu{ny,nz)\ /Ey{x = 0+,nv,nz)\ 

Bz[x = 0+,n„,nx))~\ Y2i(ny,nz) Y22(ny,n«)) \Ez(x = 0 + ,n y ,»•. ,) J ' 

(1) 

(In this paper, we normalize wave numbers by the vacuum wave number feo = 

ijj/c, thus denning the index of refraction in the y--direction, for example, as 

ny = ky/ko =• kyc/w.) The admittance matrix is calculated in the manner 

described by Refe. 14 and 15 : for a particular (r^, nx), the polarizations of the 

pure slow and fast modes are calculated in the plasma at a point sufficiently far 

to the right that a radiation condition applies. That is, the modes carry energy 

only towards the right, away from the launching structure. If for this (*iy,nz) 

a mode is evanescent and therefore carries no energy towards the right, the 

section which decays towards the right is chosen. These two solutions are then 

taken in turn as initial conditions for the integration back to x = 0 + of Maxwell's 

equations incorporating the linear cold plasma dielectric tensor. These four 

coupled, first order ordinary differential equations include the x dependence 

of the electron density and Bx, and the terms involving spatial derivatives of 

dielectric tensor elements are retained. This integration yields the electric and 

magnetic fields at x = 0 + , from which the following set of four equations for the 

four unknown admittance matrix elements may be constructed: 

£*"'(x = 0+,ny,nt) = Yu(nu,n,)B*-i(x = O+n^nJ + ^ ( n , , »«)£/"*(* = 0+,ny,nz) 

Bl"\x = 0+ ny,nz) = ^ ( n ^ n j ^ ' f * = O+.r^.n,) + l ' a ( n p n I ) B f - ' ( i = 0 + , nu,nz) 

By'™{x = tt*,n,,n.) = Yli.{n9,n,)Ejf0"ix = Q+,ny,n1)+ Y12(nv,nt)E'Jow(x = Q+,ny,nz) 

B*™{x = 0+, riy,^) = Y2l(ny, nz)E'y

low(x = 0 + , n s , ns) + y ^ t i , , n , )£^°"(x = 0 + , n„, n.) 

(2) 

in which the superscript denotes which solution was taken as initial condition at 

the far right. The solution of this set yields Y ( n y , n z ) . This procedure must be 

carried out for enough points in the (fty, nz) plane to allow the inverse Fourier 
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transform integrals to be computed accurately. The radius in the (ny, nz) plane 

out to which the inverse Fourier transform integrals are calculated is determined 

by the launched spectrum of the array; the circle must include all the signifi­

cant energy launched by the array. (This is certainly sufficient for the present 

coupling calculation, but for detailed current drive studies, the exponentially 

small amounts of launched energy at large values of |n, | may partially nil in the 

'velocity gap' [17] .) 

In the integration of Maxwell's equations in the plasma, several numerical 

problems may arise. Starting in the high density region at the right with a 

unit amplitude mode, the wave amplitude may grow to a value larger than 

the precision of the computer if the wave is evanescent in the lower density 

to the left. If one of the modes is much more evanescent than the other, the 

equations are 'stiff' [18] . In the LHRF, the density below which the slow wave 

is evanescent is approximately 

<^^2« + nl-l)/(nl-l) 
for r?z > 1, while the fast wave is roughly as evanescent as it is in vacuum 

(nx ~ i(n\ +n\- 1 ) 1 / 3 ) for densities below 

For ny = 0, we see that 

tfamt 

I stow 
crit 

~ - 2 ( n ^ - l ) S> 1 , 

except for a narrow range of nfJil. Further, waves for which the high density 

region at the far right is inaccessible undergo exponential growth towards the 

left until the mode conversion point is reached. The spatial growth rate in the 

plasma to the right of the mode conversion point can be much larger than the 

growth rate in the low density region near x = 0 + . 

Our algorithm for dealing with these difficulties proceeds as follows. After an 
integration of Maxwell's equations, the ratio of the field magnitudes at x = 0+ 
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to the magnitude at the start of the integration at x = xr,ght is computed. If 

this ratio is larger than 10 s , then the WKB dispersion relation is examined at 

ell points between s = 0 + and x = bright *° search for mode conversion points, 

i. e. , points where the two roots for n%(x, ny, nz) coalesce. Upon finding such a 

point, the integration Ls restarted one quarter of a local wavelength to the right 

of the leftmost mode conversion point. If no mode conversion point is found, 

or if the new integration still results ic a ratio greater than 10 s , the problem 

was due not to the presence of a mode conversion layer, but to evanescence at 

low density. In this case, the integration is restarted at x = z ri?ht/2. Each 

time the integration is restarted at a new point, the two polarizations which 

carry energy towards the right or decay towards the right must be recalculated 

at the new starting point. The error incurred by neglecting the waves which 

carry energy towards the left or decay towards the left is exponentially small, 

since these waves represent reflections from higher density further to the right 

and therefore are reduced in amplitude by a factor of exp( -2 J'"' hn{nx)dx), 

where xnetl> is the new starting point and xTCf is the reflection point at the right. 

Note that x n e u > < xref < bright- Amending the basic technique for calculating 

the admittance matrix in this way, we find that in the LHRF we need got resort 

to decoupling the differential equations for fast and slow waves, as was done 

for the ICRF in Ref. 15 . Had this decoupling been required in the LHRF, the 

utility of the numerical method would have been questionable, as the laimching 

of high phase velocity waves for efficient current drive inevitably en^iis the 

launching of significant power into the inaccessible part of the spectrum. These 

waves undergo mode conversion within the coupling region, and the accuracy of 

any decoupling scheme will, of course, break down in the neighborhood of the 

mode conversion points, where the two polarizations are indistinguishable. 

A different numerical difficulty arises when calculating inverse Fourier trans­

form integrals. As discussed in Ref. 10 , several kinds of standing waves in the 

coupling region lead to singularities in the Y matrix elements which occur for 

certain real values of (7iy,nz). For simplicity in the following discussion, let us 

temporarily suppose that ny = 0, and find the contour in the complex k. plane 
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for the inverse Fourier transform integration. The manner in which this path 

avoids the singularities on the real axis is dictated by causality. The method used 

to determine the correct contour is exactly analogous to the standard technique 

used to resolve a similar difficulty in the Landau problem [19] . In the Landau 

problem, an integral over velocity has a singularity occurring in the integrand 

on the path of integration. The correct way to circumnavigate the singularity 

is found by treating the problem as an initial value problem, employing the 

Laplace transform in time, and requiring that the solution be causal. 

In the present problem, the singularities occur when computing an integral 

over kz. To determine the correct contour, then, we consider the initial value 

problem, wherein the forward propagating waveguide mode of frequency w = 

Excited is 'turned on' at t = 0. If we take the Laplace transform in time, the 

integration path in the complex ui plane for the inverse Laplace transform runs 

above the real ui axis, since the excited mode yields a singularity on the real u> 

axis at o> = wanted- We next invert the Fourier transform, before inverting the 

Laplace transform. Consider a singularity in the Y matrix occurring at nz = n.0. 

A singularity in the inverse Fourier transform integrand then occurs at k. — 

{^)nzo- Since we introduced a positive imaginary part to w for causality, and we 

take Re(w) > 0, then w —• |u»| exp(i0) with 6 > 0. Then the singularity occurs at 

kz = (TIIO/C)|UI| exp(i0), i. e. , the singularity has been rotated counterclockwise 

off the real fc. axis. The path for the inverse Fourier transform coincides with the 

real kz axis, and does not encounter any singularities. But as we let Im(w) —* 0 

from above, the singularities in the complex k- plane rotate back towards the 

real axis. Then the unique analytic continuation of the inverse Fourier transform 

requires that the path be distorted JO as to run above the singularities on the 

negative real kz axis and below the singularities on the positive real kz axis. 

A simple example should clarify this. The singularities of the Y matrix 

elements for a vacuum are of the form (1 — n,^) - 1^ 2 (with riy = 0). In this case, 

the singularities occur at kz = (±l/c)|u/j exp(£0). The inverse Fourier transform 

path and the branch cuts are illustrated in Fig. 2a. Then as Im(cij) —• 0 from 

above, the branch cuts rotate back to the real kz axis, and the path must be 
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deformed as shown in Fig. 2b. Finally, from this point on, we consider Im(c*j) = 0 

so that the path in the complex nz plane is of the same form as the path we have 

found in the kz plane. Identical conclusions concerning this contour have been 

reached by Brambilla [4] and Theilhaber and Bers fll] . In practice, we follow 

this prescription by giving n. (and, analogously, ny) in the Maxwell equations 

a small imaginary part as follows: for n, < 0, nz —* nz + i|e|, and for nz > 0, 

nz —* nz —i\e\. Thus, the Y matrix which we find by integrating these equations 

is evaluated along the contour shown in Fig. 2c. We take |e| <K 1 because 

we have replaced only the nz that appears in Y with this complex value; the 

other factors involving n, that multiply the elements of Y in the inverse Fourier 

transform integrals are entire functions of nz, so that we are effectively carrying 

out the integrals along the path described. 

After the inverse Fourier transforms have been carried out, one is left with a 

matrix inversion which finally yields the "scattering matrix" [20] . This matrix 

connects the incident and reflected amplitudes of each mode in each waveguide. 

Once this matrix is obtained for a particular density profile, B. profile, etc., 

the reflection coefficients of each mode in each guide for any incident phasing 

in the z (toroidal) and y (poloidal) directions may be trivially calculated by a 

single matrix multiplication. Furthermore, one may find the launched spectrum 

of slow and fast waves at any given x between x ~ 0 + and x — x r i 9 M with the 

expenditure of a relatively small amount of computer time. This enables us to 

compute, for example, the amount of power launched into the slow mode by a 

nominal fast wave coupler (long edges d the guides parallel to Bo). 

To carry out this decomposition of the wave power spectra into slow and 

fast modes, the following elaboration of the method described above is used. 

For each (nv, nx) of interest, pure slow and fast waves of unit amplitude in the 

plasma region at the far right are integrated backwards across the density profile 

as before. At each intermediate x position at which the spectra will be desired, 

the fieid values are stored. Having already solved the coupling problem, the 

actual value of the transverse electric field at x = 0" is known for a given array 

phasing from the scattering matrix. The condition that the Fourier transform 
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of the transverse electric field matches at x = 0 yields the amplitudes of the 

two initial conditions, i. e. , the mixture of slow and fast waves at tho far right, 

both of which satisfy a radiation condition there, that give the correct fields 

at x = 0. At each x position, then, the actual launched fields are known. At 

each such point, we may define a right going fast wave, a leftgoing fast wave, 

a rightgoing slow wave, and a leftgoing slow wave in terms of a hypothetical 

uniform plrsma, the parameters of which are everywhere the same as the plasma 

at that x position. The actual fields may be broken up into a sum of these four 

eigenvectors; the four transverse field components give exactly the necessary 

amount of information to carry out this decomposition. 

3. RESULTS AND DISCUSSION 

To benchmark our cods, we compared its results with those of a code de­

scribed by Stevens et ai.[5] . The array consisted of four guides driven at 2 

GHz, each 2 cm wide and 13 cm high, separated by 0.3 cm, arranged with the 

narrow edge along the z direction (slow wave coupler). For the Stevens code, 

the ion mass and the toroidal field strength B0 are irrelevant due to the ap­

proximations used, while for our code we took the working g-iS to be deuterium 

and J?o = 20 kG. The density profile consisted of : lamp starting at 1.5 < 10 1 1 

c m - 3 at x = 0 + rising with a gradient of 2 x 1 0 1 1 cm~ 4 . While the Stevens code 

retains no evanescent waveguide modes, we kept two evanescent TE modes and 

the evanescent T M n mode. 

The results of the comparison are displayed in Figs. 3 and 4. The reflec­

tion coefficient in each, of the four guides as a function of the phasing angle is 

compared, as is the net transmission coefficient for the array. The agreement 

is satisfactory. The outer two guides have lower reflections than the inner two 

at phase angles near 180 s because the outer two have neighboring guides on 

only one side, and therefore "urt more like a single waveguide [5] . The spectrum 

ejri ted by a single guide is peaked around n . = 0 and therefore matches best to 

a vacuum, in which only waves with \nx\ < 1 propagate. The inner two guides 
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couple best at an edge density of 5 x 1 0 1 1 c m - 3 , since at a phasing of 180° 

the spectrum is peaked at n , Z£ 3.3 and, according to Ref.5, optimal coupling 

occurs at a. density vf n^t = n.-rit n? = (5 x 1 0 1 0 cm~ 3 )(3.3) : i . Since the edge 

density in this example is uuch less than the optimal density, the outer two 

guides couple better ihan t'--; inner two. Similarly, for phase angles near 0° the 

outer guides have lower re Sections than the inner two, because the width of the 

peak at i : = 0 for a single guide is greater than that of an array phased at 

0°, so the spectrum of a single guide has a smaller proportion of energy in the 

inaccessible range of wave numbers. Other qualitative features of coupling from 

a slow wave- array to a plasma with the type of density profile in nhis example 

are discussed in detail ia Ref.5 . 

In the next example, we consider coupling from a fast wave array. We model 

the array to be used for the PLT fast wave current drive axperimait [?.€] . twelve 

guides driven at 800 MHz, each 8.6 cm in the toroidal direction by 5.4 cm in the 

poloidal direction, arrayed in four columns of three. The septum betwseii the 

guides torojdaliy is 0.67 cm, and the poloidal separation is 2.9 cm. The guides 

are filled with a dielectric with e = 8.0. As is well known, to obtain reasonable 

coupling efficiency to the fast wave in the LHRF, a relatively high density is 

required. We therefore take the density at the limiter (located at r = 40 ar,.) to 

be n i i m = 5 x 1 0 1 2 c m " 3 , rising parabolically over 40 cm to a central density of 

no — 5 x 1 0 1 3 c m - 3 , and an exponential decay of the density from the limitev 

radius outwards with an e-folding distance of 2 cm. This 'standard* density 

profile is shown in Fig. 5. The 1/R variation cf the toroidal held, which is taken 

to be B0 = 20 kG at the array face, is included, although this amounts to an 

increase of Bz of only 6% over the 10 cm we take to constitute the coupling 

region. The working gas is deuterium. 

We now investigate the effect of moving the positiou of the array from its 

nominal position 3 cm outside the limiter, with a fixed phasing and density 

profile. The phasing is chosen to be 90° in the toroidal direction and 0" in 

the poloidal direction. The resulting power reflection coefficient is plotted as a 

function of the distance between the array face and the limiter in Fig. 0. An 

11 



optimum density at the array face exists, of about 1.8 x 10 1 2 c m - 3 , at which 
the reflection coefficient is about 44%. However, as suggested by McWilliams 
and Mok [13], the coupling may be improved significantly by poloidally phasing 
the array. With a 90° phase difference of the appropriate sign between adjacent 
guides in the j/-directicr. while maintaining the 90° phase difference in the z-
direction, the lower reflection coefficients also plotted in Fig. 6 are obtained. The 
reflection coefficients with the optimum pokudal phasing are considerably lower 
than those with zero poloidal phasing for all array positions; at the nominal 
position, 22% power reflection is obtained in the former case, compared with 
46% in the latter. 

We further investigate the effect of poloidal phasing by fixing the array face 
position at its nominal value of r = 43 cm, maintaining the toroidal phasing of 
90°, and varying tho poloidal phasing from —180° to ISO". (.\s noted in Sec. 2, 
having found the "scattesing matrix,'' the reflection coefficient for any phasing 
is found by a single matrix multiplication.) The power reflection coefficient thus 
found is plotted in Fig. 7a. The reflection coefficient is strongly dependent on 
the sign of the poloidal phase angle, with the optimum occurring at about —70° 
This asymmetry is in contrast to the depei dence of the reflection coefficient on 
the toroidal phase angle with fixed poloidal phase; such a plot, with the fixed 
poloidal phase angle of 0°, is shown in Fig. 7b. We may display the reflection 
coefficient for any phasing in both directions by plotting contours of constant 
power reflection in "phasing angle space." The power reflection contour plot 
for the standard case under discussion here is shown in Fig. 8. The 2-phasing 
symmetry and the j/-phasing asymmetry are immediately obvious in this plot. 

Another interesting feature of Fig. 8 is generally found for density profiles 
and toroidal field strengths such that good coupling (\R\2 ~ 30% or less) exists 
for some phasing: the minimum reflection coefficient is achieved for a particular 
y-phasing, but does not strongly depend on the z-phase angle. This is displayed 
in Fig. 7c, which shows the reflection coefficient as a function of z-phasing angle 
with t ie !/-phasing angle fixed at —90°. The existence of an optimal poloidal 
phasing at which not only the minimum reflection coefficient is obtained, but 
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at which the toroidal phase angle can be varied across a wide range without 

adversely affecting the coupling efficiency, is of obvious significance for fast wave 

current drive experiments. 

However, the mechanism by which poloidal phasing improves coupling in 

this case is not primarily the one described by Berger, Perkins, and Troyon 

[12] and McWilliams and Mok [13] , which involves the spatial derivative of 

the off-diagonal plasma dielectric tensor elements. This is demonstrated by 

recomputing the standard case, replacing the density and Bt profiles by a uni­

form plasma with parameters ne and Bo equal to their values at x = 0 + in the 

standard case: u e = (5 x 1 0 1 2 c m - 3 ) x exp(-3 cm/2 cm) = 1.1 x 10 1 2 cm" 3 , 

and Bo = 20 kG. The power reflection coefficient contours are shown in Fig. 9. 

Though all the gradients in the plasma are now zero, the effect of poloidal 

phasing remains substantially the same as with the realistic density profile. 

The strong asymmetry between phasing 'up' and 'down' which is apparent 

in Fig. 9 may at first appear to be counterintuitive; in a uniform magnetized 

plasma with a straight magnetic field, no direction perpendicular to the mag­

netic field is preferred. However, a 'uniform' plasma bounded by a conducting 

sheet is manifestly not truly uniform, in that the normal to the sheet (x), the 

magnetic field direction (£), and their cross product form a basis with a par­

ticular handedness, with respect t<- vhich an unique 'up' direction is defined. 

For fast wave launching into a uniform plasma, this effect may be seen more 

explicitly by approcrimating E• z ~ 0, which is the usual decoupling assumption 

for fast waves [13,15] , in which case the relevant admittance matrix element 

J^ifay.tti) is given by [15] 

Y21~Ty~ 5-nf-ng ' ( 3 ) 

in which n{j"* = n^"t{x,ny,nt) is the index of refraction for the fast wave in 

the x-directinn. For ny,nz such that Im(n£"') ~fi 0 (evanescent waves), this 

is clearly asymmetric with respect to the interchange ny —» — TI„. Thus, the 

reactive part of the plasma impedance depends on whether the array is phased 

'up' or 'down' for a uniform plasma. 
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If the antenna structure is idealized so that a single plane wave with a 

particular (ny,nt) is launched, as it was in Refs. 12 and-13, no asymmetry 

between coupling with rij, — H-riyo and n 9 = — riyo will be observed for a uniform 

plasma, because for propagating waves Eq. (3) shows that the magnitude of 

Y21 is unchanged under the interchange riy —* — n 9 1 while the evanescent waves 

which introduce the asymmetry carry no energy away from the antenna, it is 

the constraint that the fields at the edge of the plasma must match onto the 

fields of a realistic antenna model which forces the launching of evanescent waves 

into the plasma along with the propagating waves, and the evanescent waves 

introduce the up-down asymmetry. That evanescent waves are required to be 

able to match the plasma and waveguide fields is most obvious for a single mode 

in a single waveguide: the ratio of incident power hi the evanescent part of the 

spectrum to that in the propagating part is fixed for this case. 

A the high plasma densities contemplated for fast wave current drive, cou­

pling to slow waves of high phass velocity becomes difficult. This ma- be an­

ticipated from the rule-of-thuinb of Ref. 5 mentioned above: at 800 N: Mz, the 

optimal edge density for coupling at nx = 1.5 is predicted bj this formula to be 

noj>( ~ 1,° x IO 1 0 c m - 3 , while the density at the array face for our standard 

profile with the array 5 cm outside the limiter is 4.1 x 10 1 1 c m - 3 . To make a 

quantitative comparison between slow- and fast-wave coupling with the same 

density and Bx profiles, etc. , we model the 6 x 1 waveguide array formerly 

used in PLT lower hybrid current drive experiments at 800 MHz [21] . Each 

guide is 3.53 cm wide and 22 cm high, and the guides are separated by 0.63 cm 

in the toroidal direction. 

Fixing the toroidal phase angle at 90°, the inddejL: power spec, rum of 

this array is peaked at n*?ak - 2.25, with a hadf-width-at-half-maximum of 

{^nz)awHM ~ 1- The array ace would have to be located approximately 10 

cm outside the limiter, given our standard density profile, to obtain optimal 

coupling. The reflection coefficient for this array as a function of the distance 

between the array face and the limiter is plotted in Fig. 10. Comparison of 

Figs. 6 and 10 shows that with proper poloidal phasing, the 4 x 3 fast wave 
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coupler can achieve lower reflection coefficients thin the slow wave array. This 

is further illustrated in Fig. 11, wherein the reflection coefficients for both arrays 

are compared as a function of toroidal phase angle. For this comparison, the 

arrays are both located 3 cm outside the limiter, and the poloidal phase angle 

for the fast wave array is fixed at —70° (near the optimal value for 90° toroidal 

phasing). 

The dependence of coupling on the toroidal field strength B0 is quite different 

for the slow- and fast-wave arrays. The cut-off condition for the slow wave is 

independent ov magnetic field, but at very low field and high edge density, the 

accessibility condition becomes difficult to satisfy. Under these conditions, most 

of the incident slow wave energy undergoes mode conversion to the fast wave 

in the outer part of the plasma and does not escape the coupling region. The 

cut-off condition for the fast wave, on the other hand, depends on the magnetic 

field, so that low magnetic fields are favorable for good fast wave coupling. At 

very low field, however, the same accessibility criterion makes coupling difficult. 

Hence, one expects that an optimal Bo exists for fast wave coupling, while for 

field strengths above some value B"'1, slow wave coupling will not depend on 

B0. For the 6 x 1 slow wave coupler, we may estimate this critical £Q by 

calculating the field at which aaost of the spectral energy is accessible. At 90° 

phasing, most of the incident energy is above nz = nf"* — (An r )awHM — 1 25, 

which is accessible to a density of 1.1 x 10 1 2 c m - 3 for Boi^J 5 kG. The power 

reflection coefficient for the slow wave array as a function of Bo is shown in 

Fig. 12, where the array face is 3 cm outside the limiter, the density profile 

of Fig. 5 is used, and the toroidal phasing is 90° . The reflection coefficient is 

indeed independent of Bo above Bg"' ~ 15 kG. Fig. 13 shows the dependence of 

reflection coefficient for the 4 x 3 fast wave array on Bo for the standard case, 

with a toroidal phasing of 90° and two poloidal phasing angles. The anticipated 

minimum hi reflection coefficient is seen to exist; for poloidal phasing of —90°, 

the minimum reflection coefficient is approximately 15% at Bo =; 10 kG. 

Finally, we use our methods to consider the nature of the wave spectrum 

that actually escapes the coupling region. The relatively low reflection coeffi-
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cients here obtained for fast wave launching do not necessarily imply that large 

amounts of power are able to reach the plasma core; power trapped between the 

edge of the plasma and the mode conversion points may only weakly affect the 

reflection coefficient of the array, but is useless for heating or driving current in 

the plasma beyond the coupling region. Further, for current drive experiments, 

it is necessary to know the polarization of the wave energy that does escape 

the coupling region. Under some conditions, fast wave arrays can launch signif­

icant amounts of power into the slow wave branch both by direct coupling from 

evanescent waveguide modes (excited by the matching at x = 0) or by coupling 

across the density gradient. The mechanism by which the latter coupling can 

occur has been described by Skiff [22] for the similar situation wherein the fast 

wave in the ICRF couples to t$*e ion Bernstein wave. 

As Brambilla [10] has discussed in detail, power trapped in the coupling 

region between mode conversion points and the plasma edge causes narrow peaks 

to appear in the inaccessible part of the Fourier spectrum of the x-component 

of the Poynting flux Px(ny,nz). The peaks have nonzero width only if some 

damping mechanism exists, allowing power Sowing in the z-direction to vanish 

at large distances Jrom the antenna. Our introduction of an imaginary part to 

riy and n. has the same effect as the introduction of an imaginary part to a 

phase integral in Ref. 10, so that the- power spectrum at x = CP" has the fine 

structure just described. As the spectrum is calculated at x > 0+, the power 

in the inaccessible part of the spectrum decreases until at i = 2Vtg/.ti where 

only waves carrying energy towards the right or decaying towards the right are 

permitted, only an exponentially small part of the power in this part of the 

spectrum has tunnelled through. 

We may calculate the fraction of inaccessible power either by computing the 

volume under this part of the power spectrum at x = 0 + , or by computing 

the poi er at x = Xright and subtracting this from Pinc(l — \R\2), where Pi„e 

is the total power propagating towards the right in the array and \R\2 is the 

power reflection coefficient for the array. The latter scheme is clearly easier 

to numerically implement and is also more accurate. However, the full two-
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dimensional integration over ny and nt will not be carried out in the present 
work. Instead, the integration in the ny direction is replaced by an effective 
spectral width, the integration over nt carried out, and the total power integral 
estimated by the product of the effective width and the integration over nz. 

We consider the 6 x 1 siow wave array with the standard density profile and 
the array face 3 cm outside the limiter. Assuming that the 10 cm of plasma in 
front of the array constitutes the coupling region, waves with \nz\ < 1.62 are 
either evanescent or trapped in the coupling region. With 90° phasing, most of 
the incident power is in 1.25^7iz;$3.25, so that not much power is expected to be 
trapped in the outer part of the plasma. Our computation indicates that ~ >i% of 
the incident power is unable to escape the coupling region, while the reflection 
coefficient of tlie :rray may be read from Fig. 10: |JR|2 a 60%. The power 
spectrum Px(x = ar»gAt,«y = 0,nx) for this case is plotted in Fig. 14, where 
we have taken Pi„c = 100 kW. We have also shown the spectra at x = Xright 
obtained when the array is 1 cm and 5 cm outside the limiter. As expected 
from Fig. 10, z^iu power is coupled to the plasma as the array is pulled back. 
We also find that for this array, virtually no energy that escapes the coupling 
region is on the fast wave branch. 

Finally, we consider the spectrum launched by the 4 x 3 fast wave ar­
ray. At toroidal phasing of 90°, the primary peak in the incident power spec­
trum is centered on n*!"** = 1.01, with a haJf-width-at-half-maximum of 
{&nz)HV?BM ~ 0.65. With the standard density profile and the array face 
3 cm outside the limiter, it is apparent that a very large fraction of the incident 
power will be trapped in the coupling region. In fact, our computation indi­
cates that ~ 70% of the incident power is lost in this way, though the reflection 
coefficient of the array (with the poloidal phasing of —70° ) is only 18% (see 
Fig. 6 ). Only $15% of the incident power is able to escape the coupling region. 
Toroidally phasing the array at 180°, thus moving the peak to n*™* = 2.02 
while maintaining the —70" poloidal phasing to keep the reflection coefficient 
low, should eliminate the accessibility problem, and indeed we find that £10% 
of the incident power is inaccessible in this case. 
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We show the power spectrum Px(x = Xright,nv — —0.S78, nz) for the 4 x 3 

fast wave array phased 90° toroidally and —70" poloidally in Fig. 15. The value 

of riy is chosen so that the path n„ - —0.878 runs along the peak of the spectrum 

for this poloidal phasing. Again, we show the spectrum for three array positions: 

1 cm, 3 cm, and 5 cm outside the limiter. The Poynting flux at x = xTight i s 

split up between fast and slow waves, and vre show their spectra separately. On 

the order of 20-40% of the power that actually escapes the coupling region is on 

the slow wave branch af the dispersion relation. The fact that the primary peak 

of the incident power spectrum is almost entirely inaccessible has an interesting 

consequence for current drive experiments: the array phasing in this example 

directs the power towards positive z, but the directivity of the spectrum that 

reaches the plasma core is 0.75 towards negative z for the case with the array 

face 3 cm outside the limiter. Assuming that very little current drive results 

from the dissipation of the power trapped in the cold coupling region plasma, 

this yields the easily tested prediction that under these conditions, any wave 

driven currents should flow in the 'wrong' direction. 

Since the fast wave spectrum is cut off above a critical \nz\ (which also 

depends on \ny\), the mechanism of Ref. 17 for filling the spectral gap may not 

exist for pure fast wave current drive, in this case, the slow waves also launched 

by a realistic array may be important for this reason, while this parasitically 

launched slow wave power is likely to complicate any experimental investigation 

of any density limit for fast wave current drive [1]. 

By employing 180° toroidal phasing to alleviate the accessibility problem, the 

directivity of the spectrum is of course lost. Furthermore, raising the toroidal 

field lowers the minimum accessible \nt\ but raises the reflection coefficient, as 

in Fig. 13. Clearly, an optimal toroidal field and toroidal phase angle between 

90° and 180° exists, at which a reasonably large fraction of the incident power 

is able to reach the plasma core while retaining the maximum directivity. How­

ever, detailed optimization of the array and plasma parameters for current drive 

experiments is left to future work. 
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4. SUMMARY AND CONCLUSIONS 

The algorithm of Bars and Theilhaber [14] has been numerically' implemented 

and extended, resulting in a group of computer codes which have been used to 

study plasma-waveguide array coupling. The codes can evaluate both reflection 

coefficients and the launched power spectrum. When the guides are oriented 

with their long edges perpendicular to the toroidal field (slow wave Vauidxer), 

good agreement is found between these codes and previously reported, l t a gen­

eral codes. However, for high plasma densities in the vicinity of the coupler 

or for very low toroidal fie, "strengths, accessibility becomes a problem in the 

coupling region, and the older codes become invalid for incident spectra with 

significant energy near | n z | = 1. Under these conditions, lower reflection coeffi­

cients may be obtained with arrays oriented with the long edges of the guides 

parallel to the toroidal direction (fast wave launcher). To obtain these relatively 

low reflection coefficients, the array must be phased in the poloidal direction. 

Theilhaber and Bers [11] assumed that rij, = 0, and could not treat the effect 

of poloidal phasing, while the method of Refs. 12 and 13, wherein the launcher 

is idealized as launching a single plane wave with fixed (n y , n.) , could not treat 

the up-down phasing asymmetry that exists even for a uniform plasma. This 

phenomenon, which arises from the matching of the plasma fields onto those of 

a realistic antenna model, appears to cause most of the up-dr>wn asymmetry ev­

ident in Fig. 8, for example. With a high (but not unreasonably so) edge density 

and the proper poloidal phasing, reflection coefficients lower than \R\2 ~ 20% 

are found. 

However, study of the power spectrum of the waves which actually escape 

the coupling region shows that only a small fraction of the incident power is 

delivered to the core of the plasma. As the peak of the spectrum approaches 

npeak rv i t 0 maximize current drive efficiency, a large fraction of the power is 

trapped in the outermost part of the plasma, particularly under the high density 

and low toroidal field conditions necessary to obtain lower reflection coefficients 

for the fast wave array. The effect on confinement i f such large amounts of 

power being dissipated in the cold, collisional outermost layer of the plasma 
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is unclear, apart from the fact that little of the power from the rf source is 
actually transferred to the hot core of the plasma. For fast wave current drive 
experiments, a compromise will have to be found among the requirements of 
low array reflection coefficient, a spectrum characterized by high phase velocity 
and high directivity, and a large amount of power delivered to the plasma core. 
The incorporation of tuning elements into the array may help in this endeavor, 
by permitting a larger reflection coefficient. 
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F i g u r e s 

Fig. 1. The general array configuration and the coordinate system employed. 

Fig. 2. Illustrating the contour dictated by causality in the complex kz plane. 

Fig. 3. Comparison of Stevens code [5] results with present work: individual 

guide reflection coefficients as a function of phase angle. 

Fig. 4. Comparison of Stevens code results with present work: net transmission 

coefficient for 4-guide array as a function of phase angle. 

Fig. 5. The density profile used for the fast wave array example. The nominal 

position of the waveguide array face is marked with an arrow. 

Fig. 6. Power reflec,ion coefficient for the fast wave array as a function of the 

distance between the array face and the limiter for two poloidal phasings. 

Fig. 7. (a) Power reflection coefficient for the standard case as a function of 

poloidal phasing angle, with the toroidal phase angle = 90°. 

(b) Power reflection coefficient for the standard case as a function of toroidal 

phasing angle, with the poloidal phase angle = 0°. 

(c) Power reflection coefficient for the standard case as a function of toroidiil 

phasing angle, with the poloidal phase angle = —90°. 

Fig. 8. Contours of power reflection coefficient for arbitrary uniform phasings 
for the standard case. 

Fig. 9. Contours of power reflection coefficient for uniform plasma with ne = 

1.1 x 1 0 1 2 cm" 3 , Bo = 20 kG. 

Fig. 10. Power reflection coefficient for the 6 x 1 slow wave array as a function 

of the distance between the array face and the lrmiter. 'Standard' density 

profile (see Fig. 5), B0 = 20 kG, toroidal phase angle of 90°. 

Fig. 11. Comparison of reflection coefficients for the 4 x 3 fast wave array and 

the 6 x 1 slow wave array as a function of toroidal phase angle. 'Standard' 
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density profile, array faces 3 cm outside the lkriter, B0 = 20 kG. For the 

fast wave array, the poloidal phase angle is —70°. 

Fig. 12. Power reflection coefficient for the 6 x 1 slow wave array as a function 

of toroidal field strength Bo- 'Standard' density profile, array face 3 cm 

outside the limiter, toroidal phase angle is 90°. 

Fig. 13. Power reflection coefficient for the 4 x 3 fast wave array as a function 

of toroidal field strength Bo. 'Standard 1 density profile, array face 3 cm 

outside the limiter, toroidal phase angle is 90°. 

Fig. 14. The Fourier transform of the Poynting fiux in the x-dir?ction at x = 

bright, along n y = 0, as a function of nl. 6 x 1 slow wave array with 90° 

toroidal phasing angle, 'standard' density profile, array face 1 cm (dashed 

line), 3 cm (solid line), and 5 cm (dotted line) outside the limiter. Total 

incident power Pi„c = 100 kW 

Fig. 15. The Fourier transform of the Poynting flux in the i-direction at x = 

bright, along rij, = —0.878, as a function of nz. 4 x 3 fast wavo array with 

90° toroidal phasing angle, -70° poloidal phasing <*ngle, 'standard' density 

profile, array face 1 cm (dashed line), 3 cm (solid Iin<a), and 5 cm (dotted 

line) outside the limiter. Total incident power Pinc = 100 kW. 
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