
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’S Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

–L//J”, F.. .: .6 . -
i

LA-UR--89-2618

DE89 016605

TITLE COREEVOLUTION:EMERGENCEOF COOPERATIVESTRUCTURESIN A
COMPUTATIONALCHEMISTRY

AUTHOR(S) Steen Rasmussen, Musmus Feldberg, Morten Hinsholm, and Carsten Knudsen

9UBMITYEDT0 Proceeding
Conference,
New Mexico,

of the Los Alamoe (CNLS) sponsored Annual 9th
“Emergent Computation” bald in Los Alamos,
tiy 22-26, 1989

DI.ULAIIWR

This rcpwI wns prcpcrcd an wr rnttwrnl II(work qnmorul hy m ●pvcy or Iht (hvikd SIMleo

(krvcrnmcnl Nellhcr Ihc I Imled SIMlch (krwrnmcm nor nny ●ecncy thereof, nur hny of their

cmplovem, mukct uny wnrrunly, c~prc~ or imp!! d, or unrnumcrnany Icgul Iinhilily or rc~pnd-
hllily for ihc wwrucy, LWV@clCnCSC, m usc(ulncm III uny mbrnmlmn, npfvaralkil wkll or
process dimAecd, or rqvrcernm :htii IIS usc would Vrol m(rm~c prwnlcly owned ri~his Refer.

CnL~ hermn III wry VCU(IK ctmlmcrcml Ivfmhm’1, prm”cm, or scrvicw hy Iraric Wnc. Ir#dcnlnrk,

mwrufnulurcr, or olhcrwiw tkm nol ncccmnrdy mr~lllulc or mydy iis rndorwmcnl, rctwm-

nmndrnlmn,(w (nvorlrr~ hy the [Jnncd .SImcn (i~wrrnmenl or nny tigcrwy lhcra)r Ihc Y;=~u.

●nd opnmmrn or ●uihurs cqwewl her-m du nol ncccnnnrily wmIc w rcflecl ihoce or Ihr
[lrmul SImIcn (;ovcrmncnl or any qcrwy ihered

bxml allnnosLost41amos National Laboratory
Los A1amos,New Mexico 87545

DISTRl~uTl(”)lSJ (j! I I II!, [)()(’:1JMEN1’ IS lJN1.iMI TED

+
)(

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

CORE-EVOLUTION:

EMERGENCE OF COOPERATIVE STRUCTURES

IN A COMPUTATIONAL CHEMISTRY

Steen Rasmussen’’2’”, Rasmus Feldbergl, Morten Hindsholml, and Carsten KnudsenL

1Phjrsics Laboratory 111

The Technical University of Denmark

DK-2800 Lyngby

DENMARK

2Center for Nonlinear Studies and Theoretical Division, MS-B258

Los Alamos National Laboratory

Los Alamos, NM 37545

USA

“Communication to Steen Rasnwssen

Los Akuws National Laboratory

e-mail: 9teen0caxdinal.lanl, gov.arpm

Key words:

adaptability, artificial life, biological evolution, cellular automata, complexity measure,

computational ecolo~, computer vims, emergmt comput at ion, open-ended evoiut ion, ori-

gin of life, eelf-organization, Von Neumann assembler.

ABSTRACT

We have developed an artificial ecology in the computer COTE,where one is able to evolve

a~~embler-automaton code without any predejlned evolutionary path. The ~y~tem, in the

pre~el,t version ha~ one dimension, is updated in parallel, the in~truction~ are only able zo

communicate locally, and the ~ystem t~ continuowly subjected to noise, The sjt~tem also

has a notion of computational resource8. Depending on the ~pecijied pararneter~ and the

level of cornplezity, or distance from a randomized core, this electronic garden i~ started

at, we ~ee diferent evolutional path~. For several initial conditions the system is able to

develop eztremeiy viable cooperative programs (organism8 f) which totally dominates the

core. This demonstrates the emergence of complez functional properties in a computational

environment.

2

1. INTRODUCTION

Up till now most quantitative work on evolution, and origin of life has been done by a

priori out!ining a specific evolutionary route. .Assurning that the chosen path is relevant,

modeling ad calculation has been performed in order to analyze the different evolution-

a~ consequences (Eigen (1971), Eige~ and Schuster (1979), Katiman (1986), Farmer et.

al. (1986), R=mussen (1989), Rasmussen et. al. (1989)). By such an approach one

unfortunately neglects an iniinity of alternative possibilities.

However, in origin of life studies the selection of a single possible path seems necessary

both due to the number and due to the complexity of ah the possible chemical reaction

here on Earth. One caa’t take all poasibihties into account. The same is true for the study

of the evolution of organism. One is forced to focus on a few factors. Rxther, looking at

the history of science, much progress has been achieved using the approach: An observed

phenomenon is explained by selecting a possible mechanism, which wit bout vlolat ing the

laws of Nature is able to model the phenomenon. Expenmcnts then help us eliminate

imelcvant models. Unfortunately experimental work in t he area of evolut ion is very cum-

bersome, both because we are standing with the products of evolution and therefore can

only guess under which conditio”n.a they were developed, and also because evolutionary

experiments by &finition demand large populations oberved over many generations.

.4not her quantitative approach without any pre&fhd evolutionary route is possible

using a much simpler, but %rtificialw chemistry. By defining a universal oet of low level

rules, an open evolutionary procem can be started in the computer. Depending on the

internal structure and parameters in such a set up, the system then chooses its own evolu-

tionary direction and sometimes develops very interesting stmctures. In some cases such

a system will first find a stable subset in its poesible interaction phase space and from

there start to “develop” structures from suitable building blocks. On Earth the interesting

subset seems to be carbon-chain chemistry.

The different approaches are further discusoed in Fig. 1.
3

Figure 1

Inspired by the computer game “core wars” (Dewdney, 1984), we have build a core

simulator system in which we are only operating few basic instructions. The object of the

core wars game is to cause the opposing player to terminate abnormally, The object for

our system. is to be able to create new computational properties. IrI this first version of

our simulator, we have followed the specifications for a core simulator given in Int. Core

Wars SoC., 1986 quite closely, although there are a number of significant differences, w!lich

allows us to ●volve programs in the core.

The basic instructions in our core together with their interaction rtdes defhe our artifi-

cial chemist ry. With these low level rules we wut to be able to evolve functional properties

in our system, similar to the way in which Dawkina (1989) evolves his “biomorph” shapes,

but without any external human selection mechanism. We named our simulator VENUS

hoping that it would be able to create interesting properties.

Related work in progress in this area includes Collins, Jefferson, and Tayler (1989),

Lsngton (1986), McCMkill (1988), md Pack xd (1989). For a discussion of open-ended

evolution, see for iustance Farmer and Packard (1986) smd Rasmussen (1985). For a general

introduction tc the field of “artificial life” see Langton (1989).

4

2. THE CCRE SIMULATOR VENUS

The core in our simulator is one-dimensional and has periodic boundary conditions. Each

address in the core is occupied by one of the basic instructions. An inst mction is executed

if it “s address has a pointer, and if it “sneighborhood haa sufficient computational resources.

The pointer location is opdated alter the instruction, at which it is located, is executed,

Unless the executed instruct ion tells the pointer to move to a specified Iocatiori, the pointer

moves to the next address in the memory, as the core is updated. The core is further

described in figure 2, and some simple examples of programs are described in i5gure 3. The

basic instruction set, calld red-code, is the same aa is used in the ‘Lcorewars” game, In

table 1, the tez instnxtions and their addressing modes are discussed.

Figure 2

Figure 3

In many respects the core operstes M an ordinary multitmking Von Neumann assem-

bler level machine.

Each addrew k the core h asmciatd withs -tain amouut of computational resources,

r(r, t), which is measured in fractions of one execution, one ezec. An ezec is ●quivalent to

what is used in the execution for ● eingle instruction. Thus, an instruction with a pointer

can only be executed if it’s neighborhood hu computational resources equivalent to at

least one ezec. The resource neighborhood is cleflned by a radius I&,. The number of

addresses each instruction can obtain resources from is therefore 2R,,, + 1. The simulator

executes imt ruct ions and hereby removes resources in a =quence detemined by che ordt=r
5

in which the pointers occur in the execution queue. Resources are renewed by an amount

Ar at each core update. However the resources are never allowed to exceed a maximum

resource level, r~~=. The resource level at any address at any time is therefore determined

by

r(z, t + 1) = min[r~= , r~{s, t) + Ar] (1)

where rm~= is n global parameter always smaller than one ezec. Ar, also < 1, is a

global parameter and is the amount by which the resources associated with each address

is increased with at each update of the core. r~(z, i) is recursively defined as an iteration

over the entiere pointer execution queue of length L. In general

where ro(z, t) is de&md as r(z, t), N(zj) ddnes the resource neighborhood for the

j-th pointer located at position ~j, aud the sum counts the aviabk resources in the neigh-

borhood. ~(~j) is defined aS

a(zj) = ~f-:~~., ~j-i(k, t) - I (3)GLEL,‘j-l(k, ~)

Large Ar (and r..=) cMxma “jungle” conditions oppaite to small Ar (and r.-) which

defines the “desert”. A small r~~ can of course be compensated by a large R,,, but is not

computational effective for our simulations.

Resides the limited computational resources associated with each core address, the

system dso has ● limited number of active pointers. The current system has 220 places in

the execution queue (L = 220), which means that each core update only executes at most

220 instruction.

The VENUS core dso has another important locality parameter, the operation radius

R~Pr. This radius defines how far away each instmction is allowed to access and alter d~t a
6

relat i}-e to its own address. The operation radius &P, and the resource radius R.,, allow

us to achieve locality in our core.

The core is updated in parallel. When the system is running it has many point ma active

at the same time. All the instructions wociated with these pointers are updated before

changes in the core w made. In this way each instruction ‘sees” the same core, when we

are simulating on a sequential machine. In case of conflict between two instructions the

instruction with the higl:eat number in the execution queue will have ite changes effect ●d.

However, the details on how cordlicts are resolved does not afkct the system’s ability to

evolve.

Table 1

As described so far our eyatern still misses a fundamental property: the creative aspect

of evolut ion or the notion of no tie. We have introduced ~andom fluct uations in two different

ways. Whenever a MOV-instruction is executed there is a certain probability P.U~, that

the affected word, the word the MOV-instruction copyn (the source operand of the MOV-

instruction), mutates. Each word has in this situation an qual probability to change

into any of the ten instructions. The operan& fix the new instruction are also chosen

at random. A traveling pointer dies whenever it meets a DAT-instruction. Although a

pointer is duplicated whenever it meets a SPL-instruction, there is a finite probability that

every pointer in the core dies, because every instruction initially is equally distributed, In

order to aasure that the system is dwaye active, we disturb the core by introducing new

pointers at random with a low pointer appearance frquency F’p’.~, ed time the CON is

updated (One core update is of course equivalent to one generation in the simulator). This

is an additional way of driving the system besides the influx of computational resources,

Ar.
7

Given these properties, the low ievel rules for our system sue defied somewhere be-

tween a classic cellular automaton (CA) and a classic Von Neumann assembler language,

\Ve shall refer to it as an assembler-automaton. It is a compact and powerful! fo~m for

writing a CA with a very high number of possible states. This form has the effect that

any mutation in an instruction causes the instmction to change into one of the ten legal

i~trllctiom. Changes are thereby restricted.

Looking at the functional properties of a particular instmction and

communicate with, almost any mutation in an instruction will cause a

the instructions it

significant change

in the functional properties of the involved communicating instructions. Any change will

normally cause the instruction and its neighborhood to “jump” to another Iocation in

the space of functional properties (not in the instruction space). The system misses a

fundamental notion of continuity of functional properties with respect to perturbations.

In the next section we shall se how this assembler-automaton combination works as a

simple artificial chemistry.

The present version of our system is implemented on an IBM PS 80. On this system

we are able to take the ‘artificial garden” (the core) out and analyze it after we have

grown it for some time. In this way we are able to save intereating gardens, and eventually

grow them at some later point. When we start a simulation we are also able to “seed” an

“engineered” program sequence at a random location in the core. We have three different

ways to investigate the dynamics of the evolution interactively: (1) The whole core can

be shown at the same time, with each instruction having a different color, and with the

active pointera shown M highlighted underscore, (2) A selected part of the core can be

followed in mom detail, with successive generations of the selected core area carI be seen

simult aneoaly (like for u one dimensional cellular atom.aton), (3) The sequence of currunt

executing instructions can be written to the screen. On tcp of these features, we have a

number of tools useful for inspecting the core. A typicai simulation follows the executicn

of * 22,()~(),()oo instmctions over 100,000 core updates, and takes about twelve hours,

8

3. EVOLUTION IN VENUS

The initial work with this new world was both exciting and very frustrating. It was obvi-

ous that something was happening as the simulation procmded. The core was changing.

Because the basic physics of VENUS is so different from our “real” physics, we d,id’nt

have a clue about, what would develop in the system. We did’nt know what we should be

looking for in the core. We therefore had to dump many, many cores (each hardcopy of

a core occupies several paper meters) and simply see if the human eye was able to catch

anything of interest. In this period, we learned to distinguish between a core developed

under desert conditions and a core grown aa a jungle. We also became pretty good at

‘dating” a core, i.e. ta gueae for how many generation it had been active.

Fkom thue %eld studies” a pattern of differentinteresting stmctures slowly emerged.

We named some of the stmctureo and were later able to recognize them when they appeared

in other coreo. In the &sert with no initial structure we normally meet a number of

“simple 100pan after some tiaouaand core updatea. In the jungle we alao found loops, some

of them more complicated than the mea we found in the deeert. The jungle seems to

be characterized by the &velopment of “SPL- &“: pointer-dense stmctures kept alive

by one or more SPL-inatructiona. These were never found in the desert, due to their

high &nsity of pointers. laoking very carefully, we alm became aware of the existense of

“fcwils” in coma which had been simulated for some time. These fossils could for instance

be tra of the eimple Af-propagating instruction (see figure 3, (a)), and varius loops,

where for instance a DJN-instructia earlier timing the loop, waa eventualy counted down

to zero, and thereby allowed the pointer to pare. We could locate these loops when some

instruction inai& the loop had a significant efect on the mwroundings. Another thing we

learned waa that any “human engineered” crganisrn - both program we Jeaigned and the

programs designed to participate in the core-waru - were too brittle to sumive in the noisy

VENUS universe. They die after a number of generatiorq depending on the noise level,

However, later we learned that the eyetem wao able to develop its own stable organisms.
0

In many respects we were in a situation similar to Eigens group in Got tingen, perform-

ing in w-fro evolutionary experiments with RNA. To decribe the nature of their work both

on the development and on the operation of their evolution machine G tinter Bauer said

that, “... it took us one and a half years to build our evolutic.n machine, it took us three

hours to run the first experiment on the machine, and it hsa now taken us more than three

months to analyze the huge amount of data this experiment hmYproduce?.. .n ,

It took us a very long time before we were ready to test evolution of dh~erent environ-

ments in &more systematic w sy.

from the systematic simulation we have performed with VENUS up til now, we can

draw some conclusions we believe will hold:

(i) A difkrent parameter *tin general causes a difkrent evolutionary path, although some

cent inuit y is seen for many parameter combinations. In these parameter ranges a slight

change of the parameters does not seem to efkt the path.

(ii) Jungles dewlop more interesting structures than deserts. We have not ben able to

develop any really -viable structures in the desert envircmtient.

(iii) For some parameter sets, the system always seems to develop the same features inde-

pendently of the detailed structure of the initial randomized core. This is for instance the

case for deserts with very low irdiow of resources. Also a jungle with no initial structure

and a high operational radius seems to follow the same evolutionary path every time.

(iv) For other parameter sets,the evolutionary path is extremely sensi’.ive to details of the

init id random core and tk nok. For instance this is the case when a jungle is evolved

with some initial etructure and a huge operational radius. ln such a situation, we have a

high sensitivity to initial conditions, and the system h~ many ~xisting attractors.

ln the foll~ng, we shall discuss some of the evolutionary processes in details.

By default we start the simulation with one of two different active initial seeds in

the core. One is an evolution fkorn a total randomized environment and the other is an

evolution w.: h a simple kind of replication present from the very beginning. We can start
10

the simulation by placing an active JMP($O) mmewhere in the randomized core. This

instmction &em not effect any of the other addresses in the core (recall table 1). Alter-

natively we can start the simulation by introducing a more sophhticated self-replicating

program. The &tails of thin program are not important. (The full self-replicating program

is shown in the appendix) it consistti of 8 inatmctions and has a cycle of 18 core updates.

it has, however, an instruction copying loop similar to the 10CPshown in example (b),

figure 3. The presence of this loop is important for what we are able co develop within

reasonable spatie temporal limits with the totally randomized core we use. The major

effect of this program is t herefor to replicate a copying loop, which after some rnut at ions

are abk to multiply diilerent instructions. The self-replicating program has a number of

copying kp as ckt ‘Hamrningn neighbm in the spacw of funtional properties. It is

im~rtant to note that this program only ia used to create a certain kind of inhomogenuit,

in the randomized cora. We belive that the mme eikt could be achieved by using a biased

core instead of this replic~tion program.

Some of the aensitivi& to initial conditims we meet in simulations where we use the

self-replicating inetructitm program ae initial seed, is caused by the fluctuating number of

fictional loops the p~ is ●ble to produce befm some mutation causes it to colapse,

and which instruction the copying loops turns out to be sbk to multiply.

A typical result for the evdutioa d ● * with cdl operation radius and no init isl

structure is that it will devdop into s relatively stable core with (a) many iixed points

for the pointm, (b) some cimple loope, (c) and kw more complicated 100PO. The precise

parameters are shown in Tsble 2. The fked points are JMP($ X), JMZ(# X, O), JMX($

0, Y), and DJN(# X, Y) whm X can be anything and Y is different from zero, These

instructions are all charactdzd by pointing to themselves. The JMZ(# X, O) is rare

becauee it is unlikely that the oecond argument will be exactly zero, They cm only

interact with other instructions, by changing thek B4elde. A typical simple loop structure

consists of come kind of a J!vfP-instruction, which sends the pointer back in the core, whine
11

it travels forwards in the core until it again m~ts the JMP-instruction. After some time a

loop may disappear, due to some instructions inside altering an addrem mmewhere. \Iore

complicated loops with overlapping loops, nested loops, and loops in series are also found.

The evclution in the desert initiated with some instruction copying loops, and param-

eters u shown in Table 2, does not seem to be very different from the above situation.

Slightly more complicated loops are seen here, which probably is caused by the remains of

the mutated self-replicating programs. The evolution haa only changed the global chemi-

cal composition a little bit. The global distribution of the dii%rent instructions is almost

identical with the initial instruction distribution,

Table 2.

The jungle simulated wit h a small operation-dius ~, is able to develop more com.

plicated structuruw The sigaiflcmt new feature appering in the jungle is clusters of dense

programs, driven by poin?era from SPL-instructions. Earlier we called these stmct ures

“SPL-faU.s”. For a large ~ (larger than 500) and no initial stmcture in the core, a

typical evolutionary path in the jungle is to develop a number of loops ~tith some JJfP-

inntruction in tht ●nd to return the pointers. These loops will dominate the core for some

thousand com updates. However, more md more pointerm WWbe traped at ~imple fixed

pointw In one cimuktion (~ = 2,000, Ar = 0.25, and else ● jungle defined like in table

2) ~ fo~d 7 JMP(#), 3 JMN(#), and 202 DJN(#); 212out ~ 2M w~ible Pointers

after 435,000 ~ations (~ 96 millioa instructions). Th.b state of the core is very stable.

The system merns to develop mom intimating stmctm for ~der Rw, when no

initial atmcture ie pment. However, the dory is

An evolutionary history of a jungle initiated

in the core i! sem in Fig. 4.
12

dil%rent if some initial~tmcture is urned.

with one of the self-replicating pro~am

Fig. 4,

Setting ROV = 100 and starting with one self-replicating program in the core, we are

able to develop larger areas in the core where the instmctions interact in an interesting

way. After come ten tnousmd core updates we often find stationary “organisms”, which

primarily consists of SPL-instmctions. These programa are typically 20 to 100 instmctions

long. They are quite robust, because of the many pointers cent inoudy being produced in

the area. A @aphicd representation of such a core is shown in figure 5.

It tu.rna out that we need to have an Ror at least of the order hundred, to allow the

system to explore evolutionary paths leading to really interesting atmctures. The small

SPL- organisms mentioned above give a glimpee of what will come.

In another simulation it took the mrne jungle aboiit 100,000 generations, (- 18,000,000

instrl:ctione) to develop two huge orgm.isms mainly con.uirding of a mixture of SPL- and

MOV-instmctiono. The core had in this case more than 800 copies of both the SPL- and

the MOV-imtruction. Thi~ means that thaw two instructions occupied more than one

third of the universe. These organisms were able to move in the core, as they copied

SPL- and MOV-instruction outside themaelvo. On the path which created theu SPL-

MOV orguisms, the change of chemical composition ie very obvioud, The system here

went through something we may characterize M ● phase trtition in the distribution of

different instructions. Ftom a fairly randomized corn the ~ystem now mainly consists of

the SPL- and the MOV-irutnlctiona indicating a fon.n of wlf-organization.

Fig. 5.

This demonstrates an evolutionary path where the system ind~d finds a stable area

in the rule space, The mature sPL-MOV combination is extremely stable, and any of th~
13

perturbations caused by the copying part of MOV and by the introduction of new pointers

in this system will be damped. The MOV- instruction usually copies either a YIOV-

instruction or a SPL-instmction, guaranteeing the reproduction. The SPL-instruction

hands out pointers either to another SPL-instruction or to a MOV-instruction, guarantee-

ing hereby that the orgmism is kept ahve.

Expanding ROP,to the size of the core and using one self-replicating program as initia-

tor, allows the system to evolve away fkom the initial distribution of in:~tructions in a even

more radical way. A simulation with identical initial conditions gave a core almost solely

consisting of a mixture of SPL” and MOV-instructions. In this situation we saw a belt

of active pointers sweeping through the core, always altering the details of the core, but

keeping the macrmcopic rnixt ure of the two imtmctiom. Actually this may have been the

mat ure atate for the two large SPL-MOV orgamime described above. However, we never

gave them a chance to develop further.

The pathway Ieding to the SPL-MOV orgdem is ody one among many possible

directions the evolution can take. Another interesting evolutionary product WM found

alter 111),000 generations (- 24,000,000 inetmctionm), where 2859 CMP-mstructions (out

of 3584 possible) were p~nt. In this core, a funny dhcont inuous mot ion of small moving

and “jurnpicg” programs was seen ewrywhere (eee the core statistics in figure 6(a)). Yet

another ●volutionary path (182,000 generation * 40,000,000 inetn.ictiono) led the system

to develop a core with 12’f6 SPL-instruction and only 42 MOV-instructione. In this core

luge are~ were booeted with pointer- for some time, whemafter the activity died out

locally, only to re-enmrga ●t Uother loc~tion. These orgtism~ indeed had an irregular

metabolism! Core etatieticc in figure 6(b).

A jungle which is eilont to watch after 100,000 core updates, but still hu a potential

to develop interesting behaviour, is hwn in figure 6(c). With the high number of h[C?V-

instructionn we must expect mchcm~eat ~ome poitd.

lt turns out that another common phewmenon found in cores with a large operation

radius ROP,, is t h.e development of m exciting Md very ~omp~~ At@dt ran~i~nt~ w}~i~l~rw’l~-
14

tually dies out and stabilizes titer some large number of instructions, The relaxed system

has relatively few active pointers, either stationary or moving in a rather trivial pattern.

This is probably a phenomenon similar to what is found on the lattice with Conways CA-

rule “Life” (Gardner, 1970). In Life the complicated behavior aiways seems to be transient.

In one of the rus where we experienced this behaviour in our system, the transient core

at one point even had a relatively high number of 1-ctive MOV- and SPL-instructions. The

core activity ●venturdly collapsed to a silent state where only 78 of the 220 possible pointers

were active. The core had at that time, alter 145,000 generations (~ 32,000,000 instmc-

tions), only 15 SPL-instructions left in the whole core, which waa totaly floted with 1323

ADD-instructions (core statietico in ilgure 6(d)). A IYimilar transient behaviour resulted

in 2654 JMZ-instructions after 30,000,0W instructions. In this core only 60 pointers were

active. In these silent corm alrn~t all of the remaining pointam are traped at fixed points,

i.e. at some kind of JMP-instmction. Recall the discussion of fixed pints for pointers.

The mechanism for this amplification of single “.’mtructions is of course the presence

of a copying imp. Depending on which instruction the copying is directed at, we see

a build up of this particular instruction. The situations where we sa a collapse are

nommdly associated with a virtual extinction of the MOV-instruction. This instruction

is responsible both for a major part of the fluctuations (instmction-mutt tions) and the

ability to re-arr~ge programs, Therefore the system ia only perturbed by the spontaneous

pointen, when the MOV- instructions are virtually extinct,

Fig. 6.

4. EVALUATION OF THE DEVELOPED FUNCTIONAL PROPERTIES

To compave the different structures developed in the VENUS-ctxes, we have to measure

their functional properties in some way. It would be nice to be able to order them on an

adaptability scale, or maybe more appropriately, on a scale of d~stance from non-interesting

functional properties. We can adopt the basic intuitive properties a complexity measure

must have, and from there try to constmct a crude meaaure. Peter Gramberger (19S6,

1988), arguea that a complexity measure must favor: (1) a large number of interacting

entities, and (2) diversity among the interacting entities. We can add (3) a r.otion of

stability to perturbations among the interacting entities. For a first approximation we

can simply, for a given interacting part of the core, take the product of the number of

interacting instructions: the number of diflerent inatructiona minus one, and a brittleness

index, to obtain some evaluation number. The bnt t lenesa index could be the number of

non-fatal perturbation over the number of pomible perturbations caused by our noise, By

non-fat al perturbations we mean changea that coneerve the overall functional properties

among the interacting entities. In this way the brittleness index is defined between zero

and one, We define our complexity measure, r, M

r = ~all(~dij/ -1)$,

where QQII is the number of interacting instructions, ~~ilt is the number of

structions among the interacting inatmctiu.w and /3 is the brittleness index.

w

(4)

di~erent in-

P is defined

P mm-btalg m—
P~& 9 (3)

where PmO.-fti it the number of non-fatal perturbatioria and P-bl. is the total number

of poesible perturbations within the interacting entities.

Without going into detaiid, let us evaluate ~me different structures:

(i) The self-propagating instruction hlOV($ O, $ 1) or even a large number of these imtruc-

tionn foilowing one another, M in ●xample (a) in figure 3, will have a meaaure i{lenticnl to
16

zero, due to the fact that it only consists of a single kind of instruction. This holds for any

single instruction being able to sumive in the core (JMP(# X), JMZ(# ,X, O), etc., where

X can be any number.

(ii) Also the simple self-replicating progrun will obtain score very close to zero, due to

it’s failure to maintain the basic functional properties if subjected to noise. If any of its

instructions are changed, or if another pointer is introduced in the program area, the struc-

ture is no longer able to replicate. This will be true for almost my human “engineered”’

organism, with nice, weli defined properties.

(iii) The developed MOV-SPL organism is, on the other hand, able to obtain a high score.

because none of the factora in the meeumre become zero. As argued earlier, this struc-

ture is very robost to the noise in our system, it can involve a high number of interacting

instructions, and it consists of rrore than one kind of instmctiont

Although this simple complexity measure (or measure of structures of interest), surely

does not apply direct Iy to every environment, it haa the properties such a measure at least

must have.

John McCmddl (1989) h= suggested another way of ewduating the functional prop-

●rties of structures developed in such a system. Related to our system one could place

the SPL-MOV orgmism in a new environment cent rolled by w. An evaluation of how

the stmct ure performs in a sequence of such predeih.md environments could then tell us

something about its adaptability or evolutionary sophistication.

17

5. DISCUSSION

As the evolutionary process procexis, the local environment changes. The very chemical

activity changes the universe, exactly like the chemical act ivities do in our “real world”.

However, the cooperat ‘ve stxuctu.res we are able to evolve in this system are, in several

aspects, different from the living things we know in the “real world”. An interesting

difference is the way they reproduce and develop. For instance the SPL-MOV organism

does not make a t me copy of itself. It expands w it moves through the core, and it

interacts with whatever it meets on its way. It does not have a w1l defined gene-type /

phen-type distinction, like modern life forms have. We may interpretate the specific SPL-

instruction(s) and the specific MOV-instruction(s) to be a kind of a gene, because they

do not change as the organism grows, whereao the actual mixture of these instructions,

i.e. the sequence in which they appear in the organism, may be interpretated as the

phenotype. If we want to relate this organism to a “corresponding” orgtism build from

our “red world” chemistry, it would be a cooperative, probably autocatalytic, chemica!

network which reproduce it’s elements through the cooperative chemical reactions. Such

a system would dso interact with everything it mats in it’s environment and it does not

either have a clear geno/phen*type distinction,

It is interesting to note that the core in the significant parameter regime - the jungie

with large ROP - evolves through four successive macroscopic states, which are character-

ized by very di~ereut funct ‘end properties. The first at ate is the randomized core with the

initial seed of the d-replicating program. Thin oeed CBUWJthe core to be populated with

copying loops, Eventually this procem is slowed down, because more and more copies of

the program lomM their ability to replicate in a proper rrmnner. Some of them turns into

instruction copying 100pa airnilar to the one shown in example (b), Fig 3. As a result of

that process more and more of the core is overwritten by the single imtructiom these loops

copy. Eventually this process also saturatea aa more and more of the loops dimppcar, Tlw

new instruction mixture resulting from these processes may then start actively to dc~’tIl~qJ
18

and hereby eventually take over the core, as we have seen in several examples. lye can-

not claim that this is truely open-ended evolution. First of all the evolution process gets

trapped after three successions. It apparently reaches some kind of an attractor. Secondly

we have tc some extent “designed” the first succession, However, one has to conclude that

the system is autonomously able to evolve through more than two macroscopic states,

characterized by very different functional proprties.

The evolutionary succession process is surnmenzed in Fig. 7.

Fig. 7.

By introducing this simplified artificial chemistry it does not at all s=rm as if the

system has lost the fascinating property of being able to self-orgtize interesting struc-

tures. VENUS is able to develop very interesting cooperative programs. Let us now try

to sharpen some of our tentative conclusions from the evolutionary experiments given in

section 3, and relate them to what we know about biological evolution. % may even from

these simple experiments be able to give some hints towards what was important in the

origin of “real” life.

(i) Local fluctuations in the chemical composition -me to be of major importance to the

evolution of interesting structures. Not any ehernical environment is able to develop life,

although the fundamental chemical laws are the same everywhere,

(ii) A certain flow of ener~ and resources are impofiant.

(iii) Life probably did not emergu in the deeerts. The deserts were presumably populated

by organisms originated ebewhere.

(iv) Optimal ●nvironmental conditions are not enough to ensure the evolution of coopera-

tive structures. Chance plays a central role in the outcome of a particular prucess,

(v) Cooperative structures s~ms to be necessary for the evolution of anything of vinhle
19

nature. In real world this may correspond to autocatalytic structures.

(vi) It seems easier to evolve a “metabolic networks” than a cleari “genetic” system.

(vii) Even with a VeT brittle computation~ chefist~ it is possible to evolve b.ig]y stable

and viable organisms,

(viii) It may take a chemistry a long time to create an environment in which the rght

subset of chemical rules are active. To fid the “right” area in rul.~ space may be the

cru.sial problem for any evolutionary process.

Obviously our simulations also relate to the concept: computer VIIUS. Co.mp?.~ter virus

as they are known today, are human engineered “smart” programs, which either via the

network or via human transported disks are able to invade or infect other computers and

hereby via a replication process occupy all the atilable memory and all the available

computational resources. Up till now, we have not seen any computer virus capable of

adapt at ion to totally new computer environments by mutations or ,some other kind of

real learning. AH the propertied such a virus h are given to it by it’s creator The

environment the computer virus program ‘lives” in, the computer memory, is strictly

cent rolled to be noiwi.as, irI order to facilitate a preciee execution of any assembler program

the programmer wants executed. Ln this respect a ‘red” computer core is different from

our VENUS core, However, the competition for computational resources between any

illegal computer virus progmun in the core and any of the legal user’s program is very

similar to the the competition we see between different programs in our core.

~om any computer ownem point of view it would be very desirable to be able to

kill any non-authorized pointer executing in his computer. However, it is very diflicult a

priori to distinguish bet~n leqd and illegal processes, Put in an other way: it is ~~e~

difllcult to build an irnmunesystem for a computer, because such a system should be able to

discriminate itself from what is comming in from outsi&, ud then after the discrimation

be able kill the intruders, How this actually is goim~ on in modern biological systems is

not yet known in detail (Perelaon, 1988), Besides the Ideas of an ir,ternally encrypting
‘Jo

of all the legal processes in a computer, and in this way be able to discriminate illegal

processes by the leak of the right encrypting, it may actually be possible to distinguish

between wanted and non-wanted processes in the computer memoxy by looking at the

qualitatively 4ifferent trajectories a virus program and a “normal” program has in the

core. By graphically representing the cc~e on the screen like we do in VENUS, it should be

possible via field St uciies to learn the pat tems of ‘-good” and “bad” programs. However,

we don’t belive that there are any short cuts in this game.

From now on, as in biology, it will presumably allways be an ems race between the

computers irnmunesyetem and parasites wanting to get access to the computional resources

“inside”.

Returning to o’ur otiginal ideaa of creating a new simple chemistry and showing that

this chemistry is sufficient to create cooperative computation, it seems so far as if the

evolutionary process in VENUS saturated at some point. One of the major problems with

this version of our simulator is, aa far aa we see it, the brittleness of the more sophisticated

stmctures. The aaaembler-autornaton simulator inherited some of the unfortunate proper-

ties of its ancesters: Both the assembler language sad the simple cellular automaton suf%rs

from computational trittleneas. Due to this brittleness and the very small instmction set,

compared to the “real” chemi~try, the syetem is locked whea it hea fmmd a stable area

in the rule space, h this situation the system haa too few baaic instructions which, if

introduced, will maintain the stability of the system. Therefore more diverae structures

cannot develop. However, the brittleness of more eophieticated structures is not a prob-

lem peculiar to our m~mbler-automaton system. If we imbed any modern biochemical

pathway in a random c.hefical environmer.t it will ourely collaps, In the creation of life, it

preaumeably took evolution a major part of its effort to %nd” or create a stable chemical

sub-space within which aophiaticated chemical re~tion networks could emerge.

The system also suffers from the fact that it only haa one dimension. Two different

organisms are not able to “paas” each other in this world. When they meet, they im-

mediately interact, changing both of them. Everything that meets has sex! In SUCh a

21

universe it is dif?lcult to distinguish between an organism and its environment or between

two different organisms. However, these problems are a consequence of one of the very

attractive simplistic properties of this universe. The very sequence of instructions - i .e,

the il;teraction rules - also constitute the single geometrical dimension of this system.

from the very beginning of this project, it was ciear that we wanted to call our simu-

lator VENUS, in response to the “core wars “ system, which was called MARS (Modular

Array Redcode Simulator). This wss due to the fact that we wuted to play a very differ-

ent game from the “core wars” game, where the main purpose is to kill one another. Our

system should be able to create new properties. However, to tid a proper name VENUS

could be an abbreviation of, turned out to be one of the major difficulties associated with

the project. We ended on J5rtual Evolution in a Non-deterministic Universe Simulator.

The next generation of simulator, which we are working on now, haa more than one di-

mension and its basic chemistry need not be of the aaeembler-automaton type. In this

system one can defie one’s o- favorite artificial chemistry. It is obvious that we have

to name this system EARTH, as an ●arly point suggested by Doyne Farmer. Fort unateiy,

the s~eatment aleo included an interpretation of the abbreviation EARTH: Evolutionary

Adwtageous Region of 2hermodynamical Heterogeneity. The near fut ure will tell us if it

is able to live up to its nerne!

22

6. CONCLUSION

We shall not try to judge whether the cooperative structures we have evolved in J’EXL-S

are alive or not. However, it seems clear that such a simple univewe is a good vehicle

for st udymg fundamental properties of emergent computation, evolution and artificial life.

Despite the brittleness of the individual instmctions, our system is indeed able to evolve

stable cooperative programs. The dynamics of this simple system has many properties

similar to real evolution. Through four successive macroscopic core epochs, the system is

able to develop very life-like behaviom, although they are different from modern biological

life forms. The interplay between chance and necessity changes significantly for different

parameters in our chemistry. In some parameter regimes the evolutionary path seems

quite deterministic, whereas other regimes support multiple coexisting attractors With

what we may ch~.racterize as fractal borders betw~n baains of attraction. These, together

with other properties of the evolutionary processes in VdNUS are used to discuss the

properties of biological evolution. We have also developed a very crude complexity measure

wit h which we are able to evaluate the different functional properties evolved in VENUS.

Finally the approach we have used to understand the emergent cornput ational propert iea

in our core simulator is discussed in relation to computer virus. This approch may also be

appropriate in the construction of an irnmunes~ ‘tern for a ;omputer.

23

aCKNOWLEDGMENTS

lVe would like to thank the Core WEU-Speople present at the first .4rtificial Life Conference,

September 1987, at the Center for Noxlinear Studies, LOS Alarnos Nat iona! Laboratory,

from whom we got the original idea of using a simulated computer core m our universe.

lVe ae greatful to Doyne Frmner and Chris Langton with whom we have discussed some

of the later parts of the development of ~EWS and the inteqxetation of some of our

results, and who also have critiziwd earlier versions of this paper. Peter Grassberger

is acknowledged for a number of discussions on how to meamue complexity, and John

McC~kill is acknowledged for his discussion on the evaluation of functional properties in

artificial chemistries. Finally l’.C. Lee is acknowledged for discussions on stable subeets

in Turing Machinea and tmmputer virus.

24

1

2

3

4

5

6

7

8

9

10

11

12

13

R. Collins, D. Jefferson, and C. Taylor, are at present developing code (on the Con-

nection Machine) for evolving finite state machines and neural networks on a grid,

1989,

R. Dawkins, ‘The Evolution of Evolvabilit y“, in Artificial Life, SFI Studies in the

Sciences of Complexity, Vol. III, ed. C. Langton, Addison-Wesley, 201-220, 1989.

A. Dewdney, “In the game called Core War hostile pro~ams engage in the battle of

bits”, Sci. Amt., May 1984.

A. Dewdney, “A program called MICE nibbles its way to victory at the fist Core War

tournament”, Sci. Amt., January 1987.

M. Eigen, “SelLOrganization of Matter and Evolution of Biological Macromolecules,”

Naturwissenschaften 58, 465, 1971.

M. Eigen and P.Schuster, “The Hypercycle - A Principle of Natural Self-Organization”,

Springer-Verlag, Heidelberg, 1979.

J. D, Fanner and N. H, Packard, “Evolution, Gamca, and Learning: Models for .4dnp

tation in Machinea and Nature”, Physics 22 D, vii-xii, 1986.

J. D. Farmer, S. A. KaufFman, and N. H. Packard, ‘Autocatalytic Replication of

Polymers,” Physics 22 D, 50, 1986.

M, Gardner, “The Fantaatic Combinations of John Conways New Solitaire Game

!?Life?,??, Scientific American 223, 120-123, 1970.

P. Crwderger, “Toward a Quantitative Theory of Self. Generated Complexit y“, Int.

J, Th-ret . Phys. 25, 907, 1986.

P. Grwberger, “Complexity and Eorcaating in Dynamical Systems”, preprint, 1988,

Int. Core Wars Sot,, 19S6, Note on the Core Wars simulator, 8619 }VFwall, \Vichita,

b.nsaa 67210-1934, USA.

C. Langton, “Studying Artificial Life with Cellular Automata”, Physics 22 D, 120-149,

1986.
25

14 C. Langton, “Artificial Life”, in Artificial Life, SFI Studies in the Sciences of Com-

plexity, Vol. VI, ed. C. Langton, Addison-Wesley, 1-47, 1989,

15 S. Kau.Rman, “Autocatalytic Sets of Proteins,” J. TheOr. Bio. 119.1-24 (1986).

16 J. h!cCaskill, “A Minimal Integrated Recognition-Processifig Model for Macromolecu-

lar Evolution”, preprint 1988.

17 N. Packard, “Intrinsic Adaptation in a Simple Model for Evolution” in Artificial Life,

SFI Studies in the Sciences of Complexity, Vol. VI, ed. C. Langton, Addison-Wesley,

141-155, 1989, and some later developments of the code on “Evolving Bugs in an

Artificial Ecology”.

18 A, Perelson, “Theoretical Immunology, I and II”, SFI Studies in the Sciences of Com-

plexity, Vol. II and 111, d. A. Perelson, Addison-Wesley, 1988.

19 S. R.aamuasen, “Aspects of Instabilities and Self-Organizing Processes,” (in Danish),

Ph.D. thesis, Physics Laboratory III, The Technical Univmity of Denmark, 1985.

20 S. Raamussen, “Towards a Quantitative Thecxy of the Origin of Life”, in Artificial Life,

SFI Studies in the Sciences of Complexity, Vol. VI, ed, C. Langton, Addison-Wesley,

79-104, 1989.

21 S. Rasmussen, B. BollobAs, and E. Mosekilde, “Elements of a Quantitative Theory of

Prebiotic Evolution”, submit ted to J. Thmr. Bio.

Fig. 1. The predefine model can only tell somthing about one out of a possibly iniinite number

of alternative evolutionary pathways. In a more open-ended approach the model is able

to find its own evolutionary path based on a set of low level “chemical rules” and the

initial conditions. Note that such a model haa many evolutionary paths and more than

one attracting area. In general, one can define an artificial and very simple possibility

space Wi. This is what we have done, hoping that such a model can tell us something

about the emergence and evolution of complex functional properties.

Fig. 2, The central part of VENUS is the core. The core haa 3584 addresses and each address

contains one word. The core is cyclic moth.dua the core size. Each word consists of

an instruction and up to two operands, A and B. At the magnified core area also the

resource radius RP,, and the operation radiua Rm is shown. The queue of execution

pointera is symbolized by L. Note that one of the execution pointem is pointing at the

address where the JMN(O 5, $ 10)-instruction ia located

Fig. 3. Examples showing (a) a simple self-propagating instruction, and (b) a simple IQOP

structure. All the addressing is relatin to the executing instnsction. Note that a

loop stmcture like this is very powerful in multiplying any instruction. Similar loops

are responsible for the phase transitions we soxnetirnea meet in the distribution of

instructions in the core.

Fig. 4, The h.htory of a tpeciflc core, a jungle with Rem = 20, told by its distribution of

imt ructions at two difFererA times, (a) at generation O and (b) ~t generation 72,700.

The histogram showc the frequency of cach instruction aa it ie found alone, as it is

found in pairs, tripples, etc,, up to 14-turple~. Higher order tupples may occur hut

are not shown. The total number of imtructiom in the core is 3584, The scale of t hc

Lox is 325 instructions, The macroscopic composition of such a eystmn ordy chnngw
27

Fig. 5.

Fig. 6,

very little over many generations. However, several large programs kept alive by SPL-

instructions together with a number of complicated loops are found in this garden.

This shows that significant changes has occured at the micro level,

(a) Screen dump of a core evolved under jungle conditions after 5,000 generat ions. Each

different instruction i: shown with a different color, following the color code given in

the bottom of the picture. The word at address O is shown in the upper left corner,

words are shown with addreases increasing horizontally towards rigth. The last word in

row 1 hu the address 127, the first word in row 2 has the addrees 128 etc. The word in

the lower right comer is asmciated with the address 3583, The colored squares indicate

that a change haa occured at that addme since the laat time the scnm waa cleared

here approximately 100 generations. Some of the square haa a white underscore, which

indicates the prescence of a pointer at that rad&ess, awaiting execution. An important

characteriotica of the core at this evolutionary stage is the many sequencee of identical

inatructiorm Thio indicatea that the ~ystern is somewhere on the transition between

the second and third macroscopic level as discussed in connection with figure7.

(b) ehowo a ecmen dump of a time trace (CA-view) of ● little part of the same core

at a later stage in the evolution (130,CMNgenerations), Here we can see the time trace

of the specific changes. Times progreaem downward from the top and is cyclic, Note

the group of pointero moving to the right towards increasing addresses, Also note the

large number of identical SPL-inatructiona M can b6 ~n in the more details in the

lower right comer. Here the instructions asmciated with the thick white underscore

in the CA view is shown in

SPL organism, = also text,

figure 7.),

Histograms telling how the

disassembled form. In the right corner we see part of a

The core is now in the fourth ●volut iormry st agr (SOPRIM)

frequency of the different instructions in ttw c[m~ Ilits

changed after one hundred thousand generation, All cores shown ori~ilmtwl fr{)lli

jungles wit h I&r = coresize. They are all on the same scale; box corresponding to

325 instmctions. Compare with the randomized core in figure 4, In (a) 2839 C\ IP-

instructions are developed alter 110,000 generations, In this core, a funny discontin-

uous mot ion of small moving and “jumping” program was seen everywhere. In (b)

the jungle developed 1276 SPL-instructions after lS2,0~0 core updates. In this core

large areas were boosted with pointers for some time, whereafter the activity died

out locally, only to re-emerge at another location. (c) shows a core with 1471 \IOV-

instructions. With that many MOV-instructions one must expect that the core still is

developing tdter 100,000 generations. Not all pointers were active in thi~ core (204 out

of 220 possible). In (d) the core is floated with 1323 ADD-instructions after 145,000

generations. The current activity in this core is very low, only 78 of the 220 posi:le

pointers were preeent. However, earlier this core had a very active period with all 220

pointera active. This kind of transient behaviour is further discussed in the text.

Fig. 7, A step towar& open-ended evolution, Our core is able to evolve through four func-

tionally very difierent macroscopic states, or epoch.

Table 1, The redcode instruct iom and their undressing modeei

Table 2. Parameters defining a desert and a jungle.

29

. . . s uLX~iA

Listing of the self-replicating program MICE, originally written by Chip W’endell, (Dewd-

ney, 19$7).

DAT #7

M(IV #; , $-1

Mov Q-2 , <5

DJS $-1, S-3

SPL Q3

ADD $417, $2

JMZ $-5, S-6

DAT $714

w Physico-chemical
I possibility space

evolutionary
scpcratrix

attractor

\

\----

/

\

/

\, ‘

open ended model
prcdefined model

CORE
\

!
/

A

\

\

B

(a)
I~ MOV$O, S1 MOV$O, S1 MOVSO, $l

MOVSO, $:

MC)V$O, S1

H-
MOV$O, S1 MOVSO, $l

MOVSO, $l MOVSO, $l

MOVSO, $l

(b)
MOv # 4, S 10J=% I MOV#4, $101 MOV g4, $10

MOV$-1, @ 3I MOVS-l,@3 I MOVS-1, @ 3

-1 ADD#l, S2 ADD#l, S2 ADDti 1,$2

I JMPs -2

F
JMPs -2

DAT 42

SMP $-2 JMP S-2

DAT # 3 DAT # 3

HMOV # 4, S 10 MOV # 4, S 10 MOV#4, S 10

time= 2 time= 3time= 1 time= 4

REPRODUCEDMOM!BEST
AVAILABLECOPY

REPRODUCEDFROMBEST
AVAILABLECOPY

u

F“
b--
. REPRODUCEDFf!O?J13ES’f

NAILABLECOW’

REPRODUCEDFROMBEST
AVAILABLECOPY

TIME

~

core populated by cooperative

multiplication of new
cooperative programs o3

1 core populated with dense areas
of identical instructions

multiplication of single
instnlcth’ls o2

core populated by instruction
copying loops

loop multiplication

randomized core with initial
self-replicating seed

AIv ,
I

I

I

I

I

I

I

I

I

01

I

I

I
I

I

I

f

I

I

I

11 i
I

I

I

1

I

I

I

I

I

I

I

I

I

REPflODUCEDFROMBEST
AVAILABLECOPY

Parameters defining a desert and a jungle:

desert

R =
res

Ar=

r=
max

P -
mut -

P -
point-

5,00;

0,10;

0,50;

0,05;
0,05●9

jungle

R = 3,00;
res

Ar = 0,50;

r = 0,50;
max

P - 0,05;
mut -

P = 0,05;
point

Red-code words

DAT B

JMP A

JMZ A, B

JMN A, B

D~ A, B

ADD A, B

SUB A, B

MOV A, B

CMP A, B

SPL B

non-executable stwxnenl

resefws space for data

Iransfer progrun pointer

toA

transferprogram pointer

to Aif Ba@O

mansfer program pointer

to A if B differs from O

decTctnent B d eXWUtS

JMN&B

addtheconmntof Ato B

d putresult in B

subuut tha content of A from B

ml put result in B

move the uwent of A to B

CO~StU A ti B and Skip MXt

nwmmt if Unqual

split axwutlom bctwoon B

and mat Stamrtmit

Statement Operands:

Exh statement operand consist of an
addressing mda and a value. The actual
contentsof A and B depends upon the
addressing mode used.

Addressing Modes:

#

$

@

<

immediate
h wtu~-d Is the value

direct
h ctu~Opti htheUWnent
polntd to by h value

indirect
tha wtusl operm?dh the statement
pinmd to by tlw value @nted to by
tlw VSluo

auto-decrement indirect
the mtal opomd Is tho statrtwm
polnmd to by tiw decmmmed value
Pointi to by ths vs.lua

REPRODUCEDFROMBEST
AVAILABLECOPY

