LEGIBILITY NQTICE

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

AV}
~
14

\

A=Y "U7TEULY NN

Los Alamos MNational Laboratory 13 operated by Ine University of Calitornia for ihe United States Depariment of Energy under coniract W-7405-ENG-26

LA-UR--89-2618
DE89 016605

TiTLE: CORE EVOLUTION: EMERGENCE OF COOPERATIVE STRUCTURES IN A
COMPUTATIONAL CHEMISTRY

AUTHORS) Steen Rasmussen, Rasmus Feldberg, Morten Hinsholm, and Carsten Knudsen

SuBMITTED TO. Proceedings of the Los Alamos (CNLS) sponsored Annual 9th
Conference, "Emergent Computation ...," held in Los Alamos,
New Mexico, May 22-26, 1989

DISCLAIMER

Thix report was prepared as an sccount of wark sponsored by an agency of the United States
Governmenl. Neither the United States Government nor any sgency thereof, nor any of their
emplovees, makes uny warranty, express or iinph i, of assumen any legal linbility or responsi-
hility for the sccuracy, completeness, or usclulness of any information, upparatus, product, or
provess disclosed, or represents that its use would not infringe privately owned rights Refer-
ence herein 1o 4ny specific commercial product, process, or service by teade name, trademark,
maunufacturer, or otherwise does not necessunily constitute or imply its endorsement, recom-
mcndation, or favoring by the United Staten Government or any agency thercol The views
and opinons of authors expreased herein do nut necemsarily stale or reflect thuse of the
United Staten Government or any agency thereol

By acLaptance of thia arlicle the publiisher recognifes that the U'S Governmeni relaine a nonescluaive royally-frey license 10 publieh of reproduce
Ine pibhishad form ol thy conlaibution or o allow others to do 10 'or US Covernment purposes

Tre | 1y Alamon Nalinnar | aborstory 'equests thal the publhisher ictentily thig article as work performad unde the auspices ol the 1) 8 Dapa.tmeni of Enargy

L@S A @ﬁfﬂ@ Los Alamos National Lakoratory
L Los Alamos,New Mexico 87545

AT) 829 A DISTRIBUTION €1 TH15 DOCHMENT IS UNLIMITED \)\(&

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

CORE-EVOLUTION:
EMERGENCE OF COOPERATIVE STRUCTURES
IN A COMPUTATIONAL CHEMISTRY

Steen Rasmussen'?”, Rasmus Feldberg', Morten Hindsholm', and Carsten Knudsen'

'Physics Laboratory III
The Technical University of Denmark
DK-2800 Lyngby
DENMARK

1Center for Nonlinear Studies and Theoretical Division, MS-B258
Los Alamos National Laboratory
Los Alamos, NM 87545
USA

*Communication to Steen Rasmussen
Los Alanios National Laboratory

e-mail: steenQcacdinal.lanl.gov.arpa

Key words:
adaptability, artificial life, biological evolution, cellular automata, complexity measure,
computational ecology, computer virus, emergent computation, oj.en-ended evolution, ori-

gin of life, self-organization, Von Neumann assembler.

ABSTRACT

We have developed an artificial ecology in the computer core, where one is able to evolve
assembler-automaton code without any predefined evolutionary path. The system, in the
preseit verston has one dimension, is updated in parallel, the instructions are only able to
communicate locally, and the system is continuously subjected to noise. The system also
has a notion of computational resources. Depending on the specified parameters and the
level of complezity, or distance from a randomized core, this electronic garden is started
at, we see different evolutionary paths. For several initial conditions the system is able to
develop eztremely viable cooperative programs (organisms f) which totally dominates the
core. This demonstrates the emergence of complez functional properties in a computational

environment.

1. INTRODUCTION

Up till now most quantitative work on evolution, and origin of life has been done by a
priori outlining a specific evolutionary route. Assuming that the chosen path is relevant,
modeling and calcuiation has been performed in order to analyze the different evolution-
ary consequences (Eigen (1971), Eiger and Schuster (1979), Kauffman (1986), Farmer et.
al. (1986), Rasmussen (1989). Rasmussen et. a.. (1989)). By such an approach one
unfortunately neglects an infinity of alternative possibilities.

However, in origin of life studies the selection of a single possible path seems necessary
both due to the number and due to the complexity of ali the possible chemical reaction
here on Earth. One can’t take all possibilities into account. The same is true for the study
of the evolution of organisms. One is forced to focus on a few factors. Further, looking at
the history of science, much progress has been achieved using the approach: An observed
phenomenon is explained by selecting a possible mechanism, which without violating the
laws of Nature is able to model the phenomenon. Experiments then help us eliminate
irrelevant models. Unfortunately experimental work in the area of evolution is very cum-
bersome, both because we are standing with the products of evolution and therefore can
ounly guess under which conditions they were developed, and also because evolutionary
experiments by definition demand large populations observed over many generations.

Another quantitative approach without any predefined evolutionary route is possible
using a much simpler, but “artificial” chemistry. By defining a universal set of low level
rules, an open evolutionary process can be started in the computer. Depending on the
internal structure and parameters in such a set up, the system then chooses its own evolu-
tionary direction and sometimes develops very interesting structures. In some cases such
a system will first find a stable subset in its possible interaction phase space and from
there start to “develop” structures from suitable building blocks. On Earth the interesting
subset seems to be carbon-chain chemistry.

The different approaches are further discussed in Fig. 1.
3

Figure 1

Inspired by the computer game “core wars” (Dewdney, 1984), we have build a core
simulator system in which we are only operating few basic instructions. The object of the
core wars game ic to cause the opposing player to terminate abnormally. The object for
our syster is to be able to create new computatiozal properties. In this first version of
our simulator, we have followed the specifications for a core simulator given in Int. Core
Wars Soc., 1986 quite closely, although there are a number of significant differences, which
allows us to evolve programs in the core.

The basic instructions in our core together with their interaction rules define our artifi-
cial chiemistry. With these low level rules we waat to be able to evolve functional properties
in our system, similar to the way in which Dawkins (1989) evolves his “biomorph” shapes,
but without any external human selection mechanism. We named our simulator VENUS
hoping that it would be able to create interesting properties.

Related work in progress in this area includes Collins, Jefferson, and Tayler (1989),
Langton 71986), McCaskill (1988), and Pack:.rd (1989). For a discussion of open-ended
evolution, see for instance Farmer and Packard (1986) and Rasmussen (1985). For a general

introduction tc the field of “artificial life” see Langton (1989).

2. THE CCRE SIMULATOR VENUS

The core in our simulator is one-dimensional and has periodic boundary conditions. Each
address in the core is occupied by one of the basic instructions. An instruction is executed
if it’s address has a pointer, and if it ‘s neighborhood has sufficient computational resources.
The pointer location is opdated after the instruction, at which it is located, is executed.
Unless the executed instruction tells the pointer to move to a specified locatior, the pointer
moves to the next address in the memory, as the core is updated. The core is further
described in figure 2, and some simple examples of programs are described in figure 3. The
basic instruction set, called red-code, is the same as is used in the “core-wars” game. In

table 1, the ter instructions and their addressing modes are discussed.

Figure 2

-

rigure 3

In many respects the core operates as an ordinary multitasking Von Neumann assem-
bler level machine.

Each address in the core is associated with a certain amount of computational resources,
r(z,t), which is measured in fractions of one execution, one ezec. An ezec is equivalent to
what is used in the execution for a single instruction. Thus, an instruction with a pointer
can only be executed if it’s neighborhood has computational resources equivalent to at
least one ezec. The resource neighborhood is defined by a radius R,,,. The number of
addresses each instruction can obtain resources from is therefore 2R,., + 1. The simulator

executes instructions and hereby removes resources in a sequence determined by the order
5

in which the pointers occur in the execution queue. Resources are renewed by an amount
Ar at each core update. However the resources are never allowed to exceed a maximum
resource level, rma:. The resource level at any address at any time is therefore determined
by

r(z,t+1) =minfrp.., ri(z,t) + Ar) (1)

where rmq; is A global parameter always smaller than one ezec. Ar, also € 1, is a
global parameter and is the amount by which the resources associated with each address
is increased with at each update of the core. r.(z,t) is racursively defined as an iteration

over the entiere pointer execution queue of length L. In general

2 02 {a@) ria(@), if 2€ N(z,), andif Tt n rimi(k 1) 2 1
0= {20 T k021

where ro(z,t) is defined as r(z,t). N(z;) defines the resource neighborhood for the
j-th pointer located at position z;, and the sum counts the aviable resources in the neigh-

borhood. a(z;) is defined as

T, Tim1(kyt) = 1

D) (3)

h-lj =Rres j"

Large Ar (and rp,;) defines “jungle” conditions opposite to small Ar (and r,,.) which

a(z;) =

defines the “desert”. A small r,,., can of course be compensated by a large R.,, but is not
computational effective for our simulations.

Besides the limited computational resources associated with each core address, the
system also has a limited number of active pointers. The current system has 220 places in
the execution queue (L = 220), which means that each core update only executes at most
220 instructions.

The VENUS core also has another important locality parameter, the operation radius

R,p,. This radius defines how far away each instruction is allowed to access and alter data
6

relative to its own address. The operation radius R,p, and the resource radius R,., allow
us to achieve locality in our core.

The core is updated in parallel. When the system is running it has many point ers active
at the same time. All the instructions associated with these pointers are updated before
changes in the core arv made. In this way each instruction “sees” the same core, when we
are simulating on a sequential machine. In case of conflict between two instructions the
instruction with the higi:est number in the execution queue will have its changes effected.
However, the details on how conflicts are resolved does not affect the system’s ability to

evolve.

Table 1

As described so far our systern still misses a fundamental property: the creative aspect
of evolution or the notion of noise. We have introduced 1andom fluctuations in two different
ways. Whenever a MOV-instruction is executed there is a certain probability P, that
the affected word, the word the MOV-instruction copys (the source operand of the MOV-
instruction), mutates. Each word has in this situation an equal probability to change
into any of the ten instructions. The operands for the new instruction are also chosen
at random. A traveling pointer dies whenever it meets a DAT-instruction. Although a
pointer is duplicated whenever it meets a SPL-instruction, there is a finite probability that
every pointer in the cnre dies, because every instruction initially is equally distributed. In
order to assure that the system is always active, we disturb the core by introducing new
pointers at random with a low pointer appearance frequency Ppoint, €ach time the core is
updated (One core update is of course equivalent to one generation in the simulator). This
is an additional way of driving the system besides the influx of computational resources,

Ar.

Given these properties, the low ievel rules for our system are defined somewhere be-
tween a classic cellular automaton (CA) and a classic Von Neumann assembler language.
We shail refer to it as an asseimnbler-automaton. It is a compact and powerfull form for
writing a CA with a very high number of possible states. This form i1as the effect that
any mutation in an instruction causes the instruction to change into one of the ten legal
instractions. Changes are thereby restricted.

Looking at the functional properties of a particular instruction and the instructions it
communicate with, almost any mutation in an instruction will cause a significant change
in the functional properties of the involved communicating instructions. Any change will
normally cause the instruction and its neighborhood to “jump” to another location in
the space of functional properties (not in the irstruction space). The system misses a
fundamental notion of continuity of functional properties with respect to perturbations.

In the next section we shall se how this assembler-automaton combination works as a
simple artificial chemistry.

The present version of our system is implemented on an IBM PS 80. On this system
we are able to take the “artificial garden” (the core) out and analyze it after we have
grown it for some time. In this way we are able to save interesting gardens, and eventually
grow them at some later point. When we start a simulation we are also able to “seed” an
“engineered” program sequence at a random location in the core. We have three different
ways to investigate the dynamics of the evolution interactively: (1) The whole core can
be shown at the same time, with each instruction having a different color, and with the
active pointers shown as highlighted underscores, (2) A selected part of the core can be
followed in niore detail, with successive generations of the selected core area cen be seen
simultanecsly (like for » one dimensional cellular atomaton), (3) The sequence of currunt
executing instructions can be written to the screen. On tcp of these features, we have a
number of tools useful for inspecting the core. A typicai simulation follows the executicn

of ~ 22,000,000 instructions over 100,000 core updates, and takes about twelve hours.
8

3. EVOLUTION IN VENUS

The initial work with this new world was both exciting and very frustrating. It was obvi-
ous that something was happening as the simulation proceeded. The core was changing.
Because the basic physics of VENUS is so different from our “real” physics, we did'nt
have a clue about, what would develop in the system. We did'nt know what we should be
looking for in the core. We therefore had to dump many, many cores (each hardcopy of
a core occupies several paper meters) and simply see if the human eye was able to catch
anything of interest. In this period, we learned to distinguish between a core developed
under desert conditions and a core grown as a jungle. We also became pretty good at
“dating” a core, i.e. to guess for how many generations it had been active.

From these “field studies” a pattern of different interesting stcsuctures slowly emerged.
We named some of the structures and were later able to recognize them when they appeared
in other cores. In the desert with no initial structure we normally meet a number of
“simple loops” after some thousand core updates. In the jungle we also found loops, some
of them more complicated than the ones we found in the desert. The jungle seems to
be characterized by the development of “SPL- alls": pointer-dense structures kept alive
by one or more SPL-instructions. These were never found in the desert, due to their
high density of pointers. Looking very carefully, we also became aware of the existense of
“fossils” in cores which had been simulated for some time. These fossils could for instance
be traces of the simple self-propagating instruction (see figure 3, (a)), and varius loops,
where for instance a DIN-instruction earlier closing the loop, was eventualy counted down
to zero, and thereby allowed the pointer to pass. We could locate these loops when some
instruction inside the loop had a significant effect on the surroundings. Another thing we
learned was that any “human engineered” crganism - both programs we Jesigned and the
programs designed to participate in the core-wars - were too brittle to survive in the noisy
VENUS universe. They die after a number of generations, depending on the noise level.

However, later we learned that the system was able to develop its own stable organizms.
9

In many respects we were in a situation similar to Eigens group in Géttingen. perform-
ing in vitro evolutionary experiments with RNA. To decribe the nature of their work both
on the development and on the operation of their evolution machine Giinter Bauer said
that, “...it took us one and a half years to build our evoluticn machine, it took us three
hours to run the first experiment on the machine, and it has now taken us more than three
months to analyze the huge amount of data this experiment has produced...” .

It took us a very long time before we were ready to test cvolution of diiierent environ-

ments in a more systematic w ay.

From the systematic simulations we have perforinend with VENUS up til now, we can
draw some conclusions we believe will hold:
(i) A different parameter set in general causes a different evolutionary path, although some
continuity is seen for many parameter combinations. In these parameter ranges a slight
change of the parameters does not seem to effect the path.
(ii) Jungles develop more interesting structures than deserts. We have not been able to
develop any really viable structures in the desert envirov.ient.
(iii) For some parameter sets, the system always seems to develop the same features inde-
pendently of the detailed structure of the initial randomized core. This is for instance the
case for deserts with very low inflow of resources. Also a jungle with no initial structure
and a high operational radius seems to follow the same evolutionary path every time.
(iv) For other parameter sets, the evolutionary path is extremely sensi.ive to details of the
initial random core and the noise. For instance this is the case when a jungle is evolved
with some init.al structure and a large operational radius. In such a situation, we have a
high sensitivity to initial conditions, and the system has many coexisting attractors.

In the following, we shall discuss some of the evolutionary processes in details.

By default we start the simulations with one of two different active initial seeds in
the core. One is an evolution from a total randomized environment and the other is an

evolution w:sh a simple kind of replication present from the very beginning. We can start
10

the simulation by placing an active JMP(80) somewhere in the randomized core. This
instruction does not effect any of the other addresses in the core (recall table 1). Alter-
natively we can start the simulation by introducing a more sophi.ticated self-replicating
program. The details of this program are not important. (The full self-replicating program
is shown in the appendix) it consists of 8 instructions and has a cycle of 18 core updates.
It has, however, an instruction copying loop similar to the locp shown in example (b),
figure 3. The presence of this loop is important for what we are able to develop wit.in
reazonable spatio-temporal limits with the totally randomized core we use. The major
effect of this program is therefor to replicate a copying loop, which after some mutations
are able to multiply different instructions. The self-replicating program has a number of
copying loops us closest “Hamming” neighbors in the space of funtional properties. It is
important to note that this program only is used to create a certain kind of inhomogenuit,
in the randcmized cor2. We belive that the same effect could be achieved by using a biased
core instead of this replicstion program.

Some of the sensitivity to initial conditions we meet in simulations where we use the
self-replicating instruction program as initial seed, is caused by the fluctuating number of
functional loops the program is able to produce before some mutation causes it to colapse,
and which instructions the copying loops turns out to be able to multiply.

A typical result for the evolution of a desert with small operation radius and no initial
structure is that it will develop into a relatively stable core with (s) many fixed points
for the pointers, (b) some simple loops, (c) and few mmore complicated loops. The precise
parameters are shown in Table 2. The fixed points are IMP(# X), IMZ(# X, 0), JMN($
0, Y), and DIN(# X, Y) where X can be anything and Y is different from zero. These
instructions are all charactarized by pointing to themselves. The JMZ(# X, 0) is rare
because it is unlikely that the second argument will be exactly zero. They can only
interact with other instructions, by changing their B-fields. A typical simple loop structure

consists of some kind of a JMP-instruction, which sends the pointer back in the core, where
11

it travels forwards in the core until it again meets the JMP-instruction. After some time a
loop may dissappear, due to some instructions inside altering an address somewhere. More
complicated loops with overlapping loops, nested loops, and loops in series are also found.

The evclution in the desert initiated with some instruction copying loops, and param-
eters as shown in Table 2, does noi seem to be very different from the above situation.
Slightly more complicated loops are seen here, which probably is caused by the remains of
the mutated self-replicating programs. The evolution has only changed the global chemi-
cal composition a little bit. The global distribution of the different instructions is almost

identical with the initial instructioa distribution.

Table 2.

The jungle simulated with a small operation-zadius R.,, is able to develop more com-
plicated structures. The sigaificant new feature appering in the jungle is clusters of dense
programs, driven by pointers from SPL-instructions. Earlier we called these structures
“SPL-falls”. For a large R, (larger than 500) and no initial structure in the core, a
typical evolutionary path in the jungle is to develop a number of loops v/ith some JMP-
instruction in the end to return the pointers. These loops will dominate the core for some
thousand core updates. However, more and more pointers will be traped at simple fixed
points. In one simulition (Repe = 2,000, Ar a 0.25, and else a jungle defined like in table
2) we found 7 JMP(#), 3 JMN(#), and 202 DIN(#); 212 out of 220 possible pointers
after 455,000 generations (~ 96 million instructions). This siate of the core is very stable.

The system seems to develop more interesting structures for smaler R,,., when no
initial structure is present. However, the story is different if some initial structure is used.

An evolucionary history of a jungle initiated with one of the self-replicating program

in the core it seen in Fig. 4.
12

Fig. 4.

Setting R,,» = 100 and starting with one self-replicating program in the core, we are
able to develop larger areas in the core where the instructions interact in an interesting
way. After some ten thousand core updates we often find stationary “organisms”, which
primarily consists of SPL-instructions. These programs are typically 20 to 100 instructions
long. They are quite robust, because of the many pointers continously being produced in
the area. A graphical representation of such a core is shown in figure 5.

It turns out that we need to have an R,,, at least of the order hundred, to allow the
system to explore evolutionary paths leading to really interesting structures. The small
SPL- organisms mentioned above give a glimpse of what will come.

In another simulation it took the same jungle about 100,000 generations, (~ 18,000,000
instrictions) to develop two huge organisms mainly consisting of a mixture of SPL- and
MOV-instructions. The core had in this case more than 800 copies of both the SPL- and
the MOV-instruction. This mneans that these two instructions occupied more than one
third of the universe. These organisms were able to move in the core, as they copied
SPL- and MOV-instructions outside themselvs. On the path which created these SPL-
MOV crganisms, the change of chemical composition is very obvious. The system here
went through sometning we may characterize as a phase transition in the distribution of
different instructions. From a fairly randomized core the system now mainly consists of

the SPL- and the MOV -instructions indicating a form of self-organization.

Fig. 5.

This demonstrates an evolutionary path where the system indeed finds a stable area

in the rulc space. The mature SPL-MOV combination is extremely stable, and any of the
13

pertubations caused by the copying part of MOV and by the introduction of new pointers
in this system will be damped. The MOV- instruction usually copies either a MOV-
instruction or a SPL-instruction, guarenteeing the reproduction. The SPL-instruction
hands out pointers either to another SPL-instruction or to a MOV-instruction, guarentee-
ing hereby that the organism is kept alive.

Expanding R,,. to the size of the core and using one self-replicating program as initia-
tor, allows the system to evolve away from the initial distribution of inutructiors in a even
more radical way. A simulation with identical initial conditions gave a core almost solely
consisting of a mixture of SPL- and MOV-instructions. In this situation we saw a belt
of active pointers sweeping through the core, always altering the details of the core, but
keeping the macrcacopic mixture of the two instructions. Actually this may have been the
mature state for the two large SPL-MOV organsims described above. However, we never
gave them a chance to develop further.

The pathway leading to the SPL-MOV organism is only one among many possible
directions the evolution can take. Another interesting evolutionery product was found
after 110,000 generations (~ 24,000,000 instructions), where 2859 CMP-instructions (out
of 3584 possible) were present. In this core, a funny discontinuous motion of small moving
and “jumping" programs was seen everywhere (see the core statistics in figure 6(a)). Yet
another evolutionary path (182,000 generations ~ 40,000,000 instructions) led the system
to develop a core with 1276 SPL-instructions and only 42 MOV -instructions. In this core
laige areas were boosted with pointers for some time, whereafter the activity died out
locally, only to re-enietgo at another location. These organisms indeed had an irregular
metabolism! Core statistics in figure 6(b).

A jungle which is silunt to watch after 100,000 core updates, but still has a potential
to develop interesting behaviour, is shown in figure 6(c). With the high number of MCV-
instructions we must expect & change at some poirt,

It turns out that another common phenomenon found in cores with a large operation

radius R, is the development of an exciting and very complicated transient, which even-
14

tually dies out and stabilizes after some large number of instructions. The relaxed system
has relatively few active pointers, either stationary or moving in a rather trivial pattera.
This is probably a phenomenon similar to what is found on the lattice with Conways CA-
rule “Life” (Gardner, 1979). In Life the complicated behavior aiways seems to be transient.
In one of the runs where we experienced this behaviour in our system, the transient core
at one point even had a relatively high number of rctive MOV- and SPL-instructions. The
core activity eventually collapsed to a silen. state where only 78 of the 220 possible pointers
were active. The core had at that time, aft=r 145,000 generations (~ 32,000,000 instruc-
tions), only 15 SPL-instructions left in the whole core, which was totaly floted with 1323
ADD-instructions (core statistics in figure 6(d)). A similar transient behaviour resulted
in 2654 JMZ-instructions after 30,000,00V instructions. In this core only 60 pointers were
active. In these silent cores almost all of the remaining pointars are traped at fixed points,
i.e. at some kind of JMP-instruction. Recall the discussion of fixed points for pointers.
The mechanism for this amplification of single "structions is of course the presence
of a copying loop. Depending on which instruction the copying is directed at, we see
a build up of this particular instruction. The situations where we see a collapse are
norraally associated with a virtual extinction of the MOV-instruction. This instruction
is responsible both for a major part of the fluctuations (instruction-mut. tions) and the
ability to re-arrenge programs. Therefore the system is only perturbed by the spontaneous

pointers, when the MOV- instructions are virtually extinct.

Fig. 6.

13

4. EVALUATION OF THE DEVELOPED FUNCTIONAL PROPERTIES

To compave the different structures developed in the VENUS-cores, we have to measure
their functional properties in some way. It would be nice to be able to order them on an
adaptabil’ty scale, or maybe more appropriately, on a scale of distance from non-interesting
functional properties. We can adopt the basic intuitive properties a complexity measure
must have, and from there try to construct a crude measure. Peter Grassberger (1986,
1988), argues that a complexity measure must favor: (1) a large number of interacting
entities, and (2) diversity among the interacting entities. We can add (3) a notion of
stability to pertwbations among the interacting entities. For a first approximation we
can simply, for a given interacting part of the core, take the product of the number of
interacting instructions, the number of different instructions minus one, and a brittleness
index, to obtain some evaluation number. The brittleness index could be the number of
non-fatal perturbations over the number of possible perturbations caused by our noise. By
non-fatal perturbations we mean changes that conserve the overall functional properties
among the interacting entities. In this way the brittleness index is defined between zero

and one. We define our complexity neasure, I, as

['=Qau(Saigy=1) B, (4)
where 3, is the number of interacting instructions, Oz, is the number of different in-

structions among the interacting instructiv.s and 3 is the brittleness index. U is defined

3 =Pr:o--mu ‘5)
possible ' '
where P,,u-tatal it the number of non-fatal perturbations and P poeible 19 the total number
of possible perturbations within the interacting entities.
Without going into detaiis, let us evaluate some different structures:
(i) The self-propagating instruction MOV($ 0, $ 1) or even a large number of these iastruc-

tions foilowing one another, as in example (a) in figure 3, will have a measure identical to
16

zero, due to the fact that it only consists of a single kind of instruction. This holds for any
single instruction being able to survive in the core (JMP(# X), IMZ(# X, 0), etc., where
X can be any number.

(ii) Also the simple self-replicating program will obtain score very close to zero, due to
it's failure to maintain the basic functional properties if subjected to noise. If any of its
instructions are changed, or if another pointer is introduced in the program area, the struc-
ture is no longer able to replicate. This will be true for almost any human “engineered”
organism, with nice, weli defined properties.

(iii) The developed MOV-SPL organism is, on the other hand, able to obtain a high score,
because none of the factors in the measure become zero. As argued earlier, this struc-
ture is very robost to the noise in our system, it can involve a high number of interacting
instructions, and it consists of rore than one kind of instruction.

Although this simple complexity measure (or measure of structures of interest), surely
does not apply directly to every environment, it has the properties such a measure at least
must have.

John McCaskill (1989) has suggrsted another way of evaluating the functional prop-
erties of structures developed in such a system. Related to our system one could place
the SPL-MOV organism in a new environment controlled by us. An evaluation of how
the structure performs in a sequence of such predefined environments could then tell us

something about its adaptability or evolutionary sophistication.

17

5. DISCUSSION

As the evolutionary process proceeds, the local environment changes. The very chemical
activity changes the universe, exactly like the chemical activities do in our “real world".
However, the cooperative structures we are able to evolve in this system are, in several
aspects, different from the living things we know in the “real world”. An interesting
difference is the way they reproduce and develop. For instance the SPL-MOV organism
does not make a true copy of itself. It expands as it moves through the core, and it
interacts with whatever it meets on its way. It does not have a well defined geno-tvpe /
pheno-type distingtion, like modern life forms have. We may interpretate the specific SPL-
instruction(s) and the specific MOV-instruction(s) to be a kind of a gene, because they
do not change as the organism grows, whereas the actual mixture of these instructions,
i.e. the sequence in which they appear in the organism, mav be interpretated as the
phenotype. If we want to relate this organism to a “corresponding” organism build from
our “real world” chemistry, it would be a cooperative, probably autocatalytic, chemica!
network which reproduces it’s elements through the cooperative chemical reactions. Such
a system would also interact with everything it meets in it's environment and it does not
either have a clear geno/pheno-type distingtion.

It is interesting to note that the core in the significant parameter regime - the jungle
with large R,,, - evolves through four successive macroscopic states, which are character-
ized by very differeat funct’onal properties. The first state is the randomized core with the
initial seed of the self-replicating program. This seed causes the core to be populated with
copying loops. Eventually this process is slowed down, because more and more copies of
the program loses their ability to replicate in a proper menner. Some of them turns into
instruction copying loops similar to the one shown in example (b), Fig 3. As a result of
that process more and more of the core is overwritten by the single instructions these loops
copy. Eventually this process also saturates as more and more of the loops disappcar. The

new iustruction mixture resulting from these processes may then start actively to develop
18

and hereby eventually take over the core, as we have seen in several examples. \We can-
not claim that this is truely open-ended evolution. First of all the evolution process gets
trapped after three successions. It apperently reaches some kind of an attractor. Secondly
we have tc some extent “designed” the first succession. However, one has to conslude that
the system is autonomously able to evolve through more than two macroscopic states,
characterized by very different functional proprties.

The evolutionary succession process is summerized in Fig. 7.

Fig. 7.

By introducing this simplified artificial chemistry it does not at all seem: as if the
system has lost the fascinating property of being able to self-organize interesting struc-
tures. VENUS is able to develop very interesting cooperative programs. Let us now try
to sharpen some of our tentative conclusions from the evolutionary experiments given in
section 3, and relate them to what we know about biolugical evolution. We may even from
these simple experiments be able to give some hints towards what was important in the
origin of “real” life.

(i) Local fluctuations in the chemicel compcsition seems to be of major importance to the
evolution of interesting structures. Not any chemical environment is able te develop life,
although the fundamental chemical laws are the same everywhere.

(ii) A certain flow of energy and resources are important.

(iii) Life probably did not emerge in the deserts. The deserts were presumeably populated
by organisms originated elsewhere.

(iv) Optimal environmental conditions are not enough to ensure the evolution of coopera-
tive structures. Chance plays a central role in the outcome of a particular prucess.

(v) Cooperative structures seems to be necessary for the evolution of anything of viable
19

nature. In real world this may corrospond to autocatalytic structures.

(vi) It seems easier to evolve a “metabolic networks” than a clean “genetic” system.

(vii) Even with a very brittle computational chemistry it is possible to evolve higly stable
and viable organisms.

(viii) It may take a chemistry a long time to create an environment in which the right
subset of chemical rules are active. To find the “right” area in rul: space may be the
crusial problem for any evolutionary process.

Obviously our simulations also relate to the concept: computer virus. Compriter virus
as they are known today, are human engineered “smart” programs, which either via the
retwork or via human transported disks are able to invade or infect other computers and
hereby via a replication process occupy all the available memory and all the available
computational resources. Up till now, we have not seen any computer virus capable of
adaptation to totally new computer environments by mutations or some other kind of
real learning. All the properties such a virus has are given to it by it's creator. The
environment the computer virus program “lives” in, the computer memory, is strictly
contrclled to be noiseizss, ir order to facilitate a precise execution of any assembler program
the programmer wants executed. In this respect a “real” computer core is different from
our VENUS core. However, the competition for computational resources between any
illegal computer virus program in the core and any of the legal user's program is very
similar to the the competition we see between different programs in our core.

From any computer owners point of view it would be very desirable to be able to
kill any non-authorized pointer executing in his computer. However, it is very difficuit «
priors to distinguish between legal and illegal processes. Put in an other way: it is very
difficult to build an immupesystem for a computer, because such a system should be able to
discriminate itself from what is comming in from outside, and then after the discrimation
be able kill the intruders. How this actually is goin; on in modern biological systems is

not yet known in detail (Perelson, 1988). Besides the i1deas of an irternally encrypting
20

of all the legal processes in a computer, and in this way be able to discriminate illegal
processes by the leak of the right encrypting, it may actually be possible to distinguish
between wanted and non-wanted processes in the computer memory by looking at the
qualitatively Jifferent trajectories a virus program and a “normal” program has in the
core. By graphically representing the cc:e on the screen like we do in VENUS, it should be
possible via field studies to learn the patterns of “good” and “bad" programs. However,
we don’t belive that there are any short cuts in this game.

From now on, as in biology, it will presumeably allways be an erms race between the
computers immunesystem and parasites wanting to get access to the computional resources
“inside”.

Returning to our original ideas of creating a new simple chemistry and showing that
this chemistry is sufficient to create cooperative computation, it seems so far as if the
evolutionary process in VENUS saturated at some point. One of the major probleins with
this version of our simulator is, as far as we see it, the brittleness of the more sophisticated
structures. The assembler-automaton simulator inherited some of the unfortunate proper-
ties of its ancesters: Both the assembler language end the simple cellular automaton suffers
from computational trittleness. Due to this brittleness and the very small instruction set,
compared to the “real” chemistry, the system is locked whea it has fcund a stable ar=a
in the rule space. Ia this situation the system has too few basic instructions which, if
introduced, will maintain the stability of the system. Therefore more diverse structures
cannot develop. However, the brittleness of more sophisticated structures is not a prob-
lem peculiar to our assembler-automaton system. If we imbed any modern biochemical
pathway in a random chemical environmer.t it will surely collaps. In the creation of life, it
presumneably took evolution a major part of its effort tc “find” or create a stable chemical
sub-space within which sophisticated chemical reaction networks could emerge.

The system also suffers from the fact that it only has one dimension. Two different
organisms are not able to “pass” each other in this world. When they meet, they im-

mediately interact, changing both of them. Everything that meets has sex! In such a
21

universe it is difficult to distinguish between an organism and its environment or between
two difevent organisms. However, these problems are a consequense of one of the very
attractive simplistic properties of this universe. The very sequence of instructions - i.e.
the ivteraction rules - also constitute the single geometrical dimension of this system.
From the very beginning of this project, it was ciear that we wanted to call our simu-
lator VENUS, in response to the “‘core wars ” system, which was called MARS (Modular
Array Redcode Simulator). This was due to the fact that we wanted to play a very differ-
ent game from the “core wars” game, where the main purpose is to kill one another. Our
system should be able to create new properties. However, to find a proper name VENUS
could be an abbreviation of, turmned out to be one of the major difficulties associated with
thc project. We ended on Virtual Evolution in a Non-deterministic Universe Simulator.
Tu2 next generation of simulator, which we are working on now, has more than one di-
mension and its basic chemistry need not be of the assembler-automaton type. In this
system one can define one’s own favorite artificial chemistry. It is obvious that we have
to name this system EARTH, as an early point suggested by Doyne Farmer. Fortunaieiy,
the suggestment also included an interpretation of the abbreviation EARTH: Evolutionary
Advantageous Region of Thermodynamical Heterogenity. The near future will tell us if it

is able to live up to its name!

22

6. CONCLUSION

We shall not try to judge whether the cooperative structures we have evolved in VENTUS
are alive or not. However, it seems clear that such a simple universz is a good vehicle
for studving fundamental properties of einergent computation. evolution and artificial life.
Despite the brittleness of the individual instructions, our system is indeed able to evolve
stable cooperative programs. The dynamics of this simple system has many properties
similar to real evolution. Through four successive macroscupic core epochs, the system is
able to develop very life-like behavicrs, elthough they are different from modern biological
life forms. The interplay between chance and necessity changes significantly for different
parameters in our chemistry. In some parameter regimes the evolutionary path seems
quite deterministic, whereas other regimes support multiple coexisting attractors with
what we may cheracterize as fractal borders between basins of attraction. These, together
with other properties of the evolu‘ionary processes in VENUS are used to discuss the
properties of biological evolution. We have also developed a very crude complexity measure
with which we are able to evaluate the different functional properties evolved in VENUS.
Finally the approach we have used to understand the emergent computational properties
in our core simulator is discussed in relation to computer virus. This approch may also be

appropriate in the construction of an immunesy “tem for a :omputer.

23

ACKNOWLEDGMENTS

We would like to thank the Core Wars people present at the first Artificial Life Conference,
September 1987, at the Center for Norlinear Studies, Los Alamos Nationa! Laboratory,
from whom we got the original idea of using a simulated computer core as our universe.
Wae are greatful to Doyne Farmer and Chris Langton with whom we have discussed some
of the later parts of the development of VENUS and the interpretation of some of our
results, and who alsc have critizised earlier versions of this paper. Peter Grassberger
is acknowledged for a number of discussions on how to measure complexity, and John
McCaskill is acknowledged for his discussion on the evaluation of functional properties in
artificial chemistries. Finally Y.C. Lee is acknowledged for discussions on stable subsets

in Turing Machines and computer virus.

24

REFERENCES

1 R. Collins, D. Jeffersoa, and C. Taylor, are at present developing code (on the Con-
nection Machine) for evolving finite state machines and neural networks on a grid,
1989.

2 R. Dawkins, ‘The Evolution of Evolvability”, in Artificial Life, SFI Studies in the
Sciences of Complexity, Vol. III, ed. C. Langton, Addison-Wesley, 201-220, 1989.

3 A. Dewdney, “In the game called Core War hostile progrtams engage in the battle of
bits”, Sci. Amc., May 1984.

4 A. Dewdney, “A program called MICE nibbles its way to victory at the first Core War
tournament”, Sci. Amc., January 1987.

5 M. Eigen, “Self-Oryanization of Matter and Evolution of Biological Macromolecules,”
Naturwissenschaften 38, 463, 1971.

6 M.Eigen and P.Schuster, “The Hypercycle - A Principle of Natural Self-Organization”,
Springer-Verlag, Heidelberg, 1979.

7 J. D. Farmer and N. H. Packard, “"Evolution, Gamcs, and Learning: Models for Adap-
tation in Machines and Nature”, Physica 22 D, vii-xii, 1986.

8 J. D. Farmer, S. A. Kauffman, and N. H. Packard, “Autocatalytic Replication of
Polymers,” Physica 22 D, 50, 1986.

9 M. Gardner, “The Fantastic Combinations of John Conways New Solitaire Game
"Life””, Scientific American 223, 120-123, 1970.

10 P. Grassberger, “Toward a Quantitative Theory of Self-Generated Complexity”, Int.
J. Theoret. Phys. 28, 907, 1986.

11 P. Grassberger, “Complexity and Forcasting in Dynamical Systems”, preprint, 1088.

12 Int. Core Wars Soc., 1986, Note on the Core Wars simulator, 8619 Wi -sall, Wichita,
Kansas 67210-1934, USA.

13 C. Langton, “Studying Artificial Life with Cellular Automata”, Physica 22 D, 120-149,

1986.
25

14

15
16

17

18

19

20

21

C. Langton, “Artificial Life”, in Artiflcial Life, SFI Studies in the Sciences of Com-
plexity, Vol. VI, ed. C. Langton, Addison-Wesley, 1-47, 1989,

S. Kauffman, “Autocatalytic Sets of Proteins,” J. Theor. Bio. 119, 1-24 (1986).

J. McCaskill, “A Minimal Integreted Recognition-Processing Model for Macromolecu-
lar Evolution”, preprint 1988.

N. Packard, “Intrinsic Adaptation in a Simple Model for Evolution” in Artificial Life,
SFI Studies in the Sciences of Complexity, Vol. VI, ed. C. Langton, Addison-Wesley,
141-155, 1989, and some later developments of the code on “Evolving Bugs in an
Artificial Ecology”.

A. Perelson, “Theoretical Immunology, I and II”, SFI Studies in the Sciences of Com-
plexity, Vol. II and III, ed. A. Perelson, Addison-Wesley, 1988.

S. Rasmussen, “Aspects of Instabilities and Self-Organizing Processes,” (in Danish),
Ph.D. thesis, Physica Laboratory 111, The Technical Univ-rsity of Denmark, 1985.

S. Rasmussen, “Towards a Quantitative Theory of the Origin of Life", in Artificial Life,
SFI Studies in the Sciencea of Complexity, Vol. VI, ed. C. Langton, Addison-Wesley,
79-104, 1989.

S. Rasmussen, B. Bollobds, and E. Mosekilde, “Elements of a Quantitative Theory of

Prebiotic Evolution”, submitted to J. Theor. Bio.

20

FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

The predefined model can only tell somthing about one out of a possibly infinite number
of alternative evolutionary pathways. In a more open-ended approach the model is able
to find its own evolutionary path based on a set of low level “chemical rules” and the
initial conditions. Note that such a model has many evolutionary paths and more than
one attracting area. In general, one can define an artificial and very simple possibility
space W;. This is what we have done, hoping that such a model can tell us something

about the emergence and evolution of complex functional properties.

The central part of VENUS is the core. The core has 3584 addresses and eacl. address
contains one word. The core is cyclic modulus the core size. Each word consists of
an instruction and up to two operands, A and B. At the magnified core area also the
resource radius R,,, and the operation radius R,,, is shown. The queue of execution

pointers is symbolized by L. Note that one of the execution pointers is pointing at the

address where the JMN(@ 5, $ 10)-instruction is located.

Examples showing (a) a simple self-propagating instruction, and (b) a simple loop
structure. All the addressing is relative to the executing instruction. Note that a
loop structure like this is very powerful in multiplying any instruction. Similar loops
are responsible for the phase transitions we sometimes meet in the distribution of

instructions in the core.

The history of a specific core, a jungle with R,,, = 20, told by its distribution of
instructions at two different times, (a) at generation 0 and (b) «t generation 72,700.
The histogram shows the frequency of cach instruction as it is found alone, as it is
found in pairs, tripples, etc., up to 14-tuprles. Higher order tupples may occur but
are not shown. The total number of instructions in the core is 3384. The scale of the

hox is 325 instructions. The macroscopic composition of such a system only changes
27

Fig. 5.

Fig. 6.

very little over many generations. However, several large programs kept alive by SPL-
instructions together with a number of complicated loops are found in this garden.

This shows that significant changes has occured at the micro level.

(a) Screen dump of a core evolved under jungle conditions after 5,000 generations. Each
different instruction i: shown with a different color, following the color code given in
the bottom of the picture. The word at address 0 is shown in the upper left corner,
words are shown with addreases increasing horizontally towards rigth. The last word in
row 1 hae the address 127, the first word in row 2 has the address 128 etc. The word in
the lower right corner is associated with the address 3583. The colored squares indicate
that a change has occured at that address since th= last time the screen was cleared
here approximately 100 generations. Some of the squares has a white underscore, which
indicates the prescence of a pointer at that address, awaiting execution. An important
characteristica of the core at this evolutionary stage is the many sequences of identical
instructions. This indicates that the system is somewhere on the transition between
the second and third macroscopic level as discussed in connection with figure?7.

(b) shows a screen dump of a time trace (CA-view) of a little part of the same core
at a later stage in the evolution (130,000 generations). Here we can see the time trace
of the specific changes. Times progresses downward from the top and is cyclic. Note
the group of pointers moving to the right towards increasing addresses. Also note the
large number of identical SPL-instructions as can be seen in the more details in the
lower right corner. Here the instructions associated with the thick white underscore
in the CA view is shown in disassembled form. In the right corner we see part of a
SPL organism, see also text. The core is now in the fourth evolutionary stage (sce also

figure 7.).

Histograms telling how the frequency of the different instructions in the core has

changed after one hundred thousand generations. All cores shown originated from
28

jungles with R, = coresize. They are all on the same scale; box corrosponding to
325 instructions. Compare with the rundomized core in figure 4. In (a) 2839 C)MP-
instructions are developed after 110,000 generations. In this core, a funny discontin-
uous motion of small moving and “jumping”’ programs was seen everywhere. In (b)
the jungle developed 1276 SPL-instructions after 182,000 core updates. In this core
large areas were boosted with pointers for some time, whereafter the activity died
out locally, only to re-emerge at another location. (c) shows a core with 1471 MOV
instructions. With that many MOV-instructions one must expect that the core still is
developing after 100,000 generations. Not all pointers were active in this core (204 out
of 220 possible). In (d) the core is floated with 1323 ADD-instructions after 145,000
generations. The current activity in this core is very low, only 78 of the 220 possi:'e
pointers were present. However, earlier this core had a very active period with all 220

pointers active. This kind of transient behaviour is further discussed in the text.

Fig. 7. A step towards open-ended evolution. Our core is able to evolve through four func-

tionally very different macroscopic states, or epochs.

Table 1. The redcode instructions and their addressing modes.

Table 2. Parameters defining a desert and a jungle.

29

cma & EAVAIIA

Listing of the self-replicating program MICE, originally written by Chip Wendell, (Dewd-

ney, 1987).
DAT #7
MOV #7, 8-1
MOV @-2, <5
DJN §-1,8-3
SPL @3

ADD #417 , 32
JMZ §-5 , §-6
DAT #714

Jo

W Physico-chemical
1 possibility space

evolutionary
traject?ry

seperatrix

attractor

\,
open ended model /

predefined model

a R
/ opr
/
WPRD
R /
—— res ’
- JMN @5, $10
| 4 \
—] / \
m—— A B

(a)

=

| MOVSO.$1 MOV $0,§ 1 MOV$0,S$ | MOV $0,$
MOVS$0, 81 MOVS$O0,S$1 MOV SO0, $:

MOV SO0, S$1 MOV SO0, $1

MOV $0,$ 1
MOV #4,510 MOV #4,8$10 MOV #4,$ 10 MOV #4,810
—»| MOVS-1,@3 MOV $-1,@ 3 MOV S$-1,@ 3 MOVS$-1,@3
ADD# 1, $ 2 ADD#1,$ 2 ADD#1, $ 2 ADD# 1.$ 2

IMP$ -2 IMPS -2 IMP § -2 IMP §-2

DAT #2 DAT #2 DAT #3 DAT #3
MOV #4, $ 10 MOV #4,$ 10 MOV #4,$ 10

time = 1 time = 2 time = 3 time = 4

REPRODUCED FROM BEST
AVAILABLE COPY

////////

NN
' o

REPRODUCED Fpoy prer
AVAILABLE ggpy

. REPRODUCED FRQ! BEST
AVAILABLE COPY

REPRODUCED FROM BEST
AVAILABLE COPY

core populated by cooperative
programs

)

multiplication of new
cooperative programs

core populated with dense areas
of identical instructions

)

multiplication of single
instruct:ons

core populated by instruction
copying loops

}

loop multiplication

randomized core with initial

self-replicating seed

TIME

v

1

II

----—----——-‘--_--—-——-———->

IJVL”/

\u"m

ald

N

‘\\\\\munl" T ““1\\\“\ “‘"“ \\\\\\\\ .

/

=

\

i

REPRODUGED FROM BEST
AVAILABLE GOPY

Parameters defining a desert and a jungle:

desert

R = 5,00;
Ar= 0,10;
r = 0,50;
P = 0,05
P.= 005

jungle

3,00;
0,50;
0,50;
0,05;
0,05;

Red-code words

DAT B
JMP A

IMZ A,B
JMN A, B
DIN A,B
ADD A/B
SUB A B
MOV A/B
CMP A,B

SPL B

non-executable statment
reserves space for data

transfer program pointer
A

transfer program pointer
to A if B equals 0

wransfer program pointer
to A if B differs from 0

decrement B and execute
JMN A, B

addthecontentof Ao B
and put resultin B

subtract the content of A from B
and put result in B

move the content of A to B
compare A and B and skip next
statement if unequal

split execution between B
and next statement

vl 1

Statement Operands:

Each statement operand consist of an
addressing mode and a value. The actual
contents of A and B depends upon the
addressing mode used.

Addressing Modes:

immediate
the actual operand is the value

$ direct

the actual operand is the siatment
pointed to by the value

@ indirect

the actual operard is the statement
pointed to by the value pointed to by
the value

< auto-decrement indirect

the actual operand is the statment
pointad to by the decremented value
pointed to by the value

N -(yvlb N

REPRODUCED FROM BEST
AVAILABLE COPY

