
b.

LA-UR -81-2674

TITLE: An Efficient Method that precisely Characterizes Laser-
Target Defects More Complex than Nonconcentricity

AUTHOR(S): R. L. Whitman

SUBMllTED TO: mr presentation at the Americarl Vacuum SocietY
211thNational Symposium, Anaheim, California,
November 3-6, 1981.

.. . A “m.. _

.—.—. NIAST[!!

Ttr I In A1gII,s,N s, .P., t,l,, I M,,,,, #,,, v wm,,,,.,t, Ih”t II,,. ,,,a,

fmalm, ,dv., t,f, l,, , ●rl , In m *t,,, ,mm,f,, -., ”.,l ,,.., I,., lh. ..,4

1).~1.* of ~-. i, !, lm, wflnw .I 1,1I ..-iqv

L%? /
LOS ALAMOS SCIENTIFIC LABORATORY
postOffIceBOX 1663 LosAlamos,New Mexico87545

An AfflrrnatlveAchon/EqualOpporhJnltyEIn@cyer

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



AN EFFICIENT METHOD THAT PRECISELY
CHARACTERIZES LASER7’ARGET DEFECTS
MORE COMPLEX THAN NONCONCENTRICITY*

By

R. L. Whitman
University of California

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

An expansion of an efficient, fast Fourier technique1,2

for precisely characterizing complex laser target defects is des-

cribed. The defects characterized are the traditional nonconcen-

tricities end the more complex ellipticities and higher-order

wall nonuniformities in single-layered targets. This characteri-

zation method uses experimentally derived molybdenum step-wedge

date. The molybdenum steps (12.5 Urn)were exposed to a 45-kV

tunqst~n-brcmsstrahlung source and were recorded on holographic

plete emulsion. Using the step-wedge data, targets with 6.25-vm-

wall thickness ond diameters of 150 and 300 urnwere modeled with

nonconcentr icities and ellipticitics. Sensitivities of ~ 1/2 to

1% for nonconcentric defects and ~ 1.4 to 2.8% for elliptic de-

fects were c~lc~llatcd for target diameters bctwccn 300 and 150

~m, respectively. In addition, modeled tarqcts with a combina-

tion of nonconccntric ond elliptic defec~s were easily character-

]zcd in the presence of film noise.

—---- ——
‘Work performed under the auspices of the U.S. Department of
Energy, Contract No. W7405-ENG-36.



I. Iti\ROPUCTION

Laser fusion experiments require highly symmetric and uni-

form spheres often incorporating optically opaque multilayered

targets. In our previous work, x-ray contact micrcradiography,

combined with computer analysis, has proved to be a sensitiv(

technique for detecting and quantifying defects in targets.
1-9

With these techniques we can measure the global uniformity to

submicrometer accuracy and identify local defects and quantify

their spatial extent in the internal structure. These nonuni-

formities are not observable with optical or scanning-electron-

microscope techniques.

Previously, we were able to detect nonconcentricities of

inner and outer walls of targets (Type I defects) of ~ 95 ~ (w2

1% for I-Pm-wall thickness) ~sing an efficient fast Fourier tech-

nique. 1 This sensitivity was better than that of interferometry,

+ ~00 ;12,13 (+~3%), and comparable to phase-sensitive interfer-

012,13 (rtl%).
ometry, ~ 100 A We will describe in Sec. II an ex-

pansion of this Fourier technique. This technique can charac-

terize the traditional inner-wall nonconcentricity, the more c!om-

plex inner-wall ellipticity (lower-order Type II defects), and

higher-order wall nonuniformities in single-layered targets.

Sensitivities of ~ 1/2 to 15 for nonconcentric defects and ~ 1.4

to 2.8% for elliptic defects were calculated for target diameters

bt’tween 300 and 150 urn,rcspect~vcly.

In Sec. II we will olso show the utility and sensitivity of

this refined method on eight simulated molybdenum target images

and eleven glnss target images.
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II. REFINED TYPE I AND TYPE II DEFECT DETECTION

In Ref. 8 three classes of defects in thin-walled laser

targets are described. Briefly, Type I defects are nonconcen-

tricities of the inner and outer walls of a target; Type II

defects are nonsphericities of cne or Doth walls; and Type III

defects are local wall-thickness variations. In this section we

will define the refined Fourier techniques that are very sensi-

tive and efficient in detecting and quantifying only Type I and

Type II defects in contact microradiographic images.

P. Computational Procedure

Detecting and quantifying Type I and Type II defects re-

quires measuring the global symmetry of the target images. An

expansion of an efficieat fast Fourier technique 1’2 for precisely

characterizing complex lacer target defects is described. This

expanded characterization technique requires the interplay of

several pieces of Information. This Information includes experi-

mental x-ray radiographic step-wedge data, computer-modeled

single-layered laser targets using the step-wedge data~ and

measurements such 95 the estimated power spectrum and standard

deviation. The estimated power spect~um ond standard deviation

are calculated from the sampled optical densities of an annular

region in the modeled and real contact x-:ay radiographic images.

The following five steps show how this characterization and

detection technique are orchestrated.

1. Expose a precisely fabricated step wedge to a known

brcmsstrahlunq or monochromatic x-ray source. Record the optical

film density vs material thickness on an x-ray energy c~mpatible
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emulsion such as holographic plate or high-resolution plate.

Convert the optical film density for each step to computer-

compatible digital information using a microdensitometer. From

the digitized optical densities, a film noise model an, described

by a power law,6,14 can be constructed.

* aDY‘n f (1)

where a * 0.036, Y = 0.3, end D is film density.

2. Using Step 1, computer model the contact radiographic image

densities of a single-layered target of interest. The following

parameters have to be known: x-ray geomstry, object diameter and

wall thickness, amount of ellipticity and nonconcentricity, aper-

ture size of the digital-image scanner, and a model of the film

noise.

. 3. Determine the characterization parameters from the

computer-modeled and real single-layered targets using the

following steps:

a. Calculate a precise center and approximate radius.
8

b. Obtain N (where N = 2n) statistically independent and

euually spaced azimuthal samples of the average optical dens;ties

between 50 and 90% of the target’s radius (assuming a ‘bin-welled

trrgct) using bilinear interpolation.

c. Calculate the standard deviation, aT, of the N statisti-

cally independent samples. This is a measure of the amo~lntof

nonconcentricity, ellipicity, and higher-order nonuniformities.

d. Calculate the average single-point noisel 8 ? of the
N

film after bilinear interpolation and independent annuli

avcrzging.
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6N
sR* ‘N/fi * K I

where N - number of averaged independent annular samples,

(2)

M- numbez of averaged independent annuli,

R- constant of 2/3 for bilinear interpolation,

‘N - film-noise model.

e. Normalize the N statistically independent samples of

Step 3b by dividing by the computed standard deviation, o~,of

Step 3c.

f. Compute the estimated power spectrum of the N normalized

samples of Step 3e. The total power of the estimated power

spectrum between the first and Nyquist spatial frequencies is

N/2.

9“ Compute the portion of the standard deviation, CJT,that

-is contributed by nonconcentricity, ellipticity, and higher-order

nonuniformities. This is experimentally derived by dividing the

estimate< power, ~il at each spatial frequency by the total

power, N/2, taking the square of this ratio and multiplying by

the standard deviation, IYT.

~

0.=0 v ‘i
1 ‘m , where i = 1, ... N/2 . (3)

The result!,ng oi is a measure of nonconcentricity for i = 1,

and a measure of ellipticity for i = 2 (see Appendix A). The

higher-order measures of nonuniformity, Oi, for i > i can be cal-

culated but not c~lrrently calibrated to a measure (i.e.~ urn).

The ~hase anales for i M 1 and 2 denote the polar orientation of

the major axis of the nonconcentricit.y and ellipticity defect~.
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4. To calibrate the uis of a real laser target, a known

amount of nonconcentricity, NC (units of ~m) and ellipiclty, EP,

would be computer-modeled based on Steps 1 and 2. The correspon-

ding al and 02 for the amount of nonconcentricity, NC, and ellip-

ticity, EP, would be calculated using Step 3. Giver! ? digitized

contact microradiograph of a real target, exposed under the same

radiographic conditions as mcdeled images, the amounts 61 and 62

using Step 3 can be calculated. al and ~2 are then calibrated

using Egs. (4) and (5).

A

Nonconcentricity = ~ ~ NC (4)
‘1

E?.lipticity ‘2= T*EP (5)
2

!3. Type I and Type II Defect Detection Sensitivities

To determine the sensitivity in detecting Type I and Type II
A

defects, the estimated power spectrum values, pis of Step 3f of

Sec. II,A (i.e., ~1 and ~2 for ~onconccntricity and ellipticity,

respectively), must be greater than a constant, K. The constant

K is defjned by the estimated power spectrum being Chi-squere

distributed with two degrees of freedom for a 99$ confidence.

Thus, if any ~i is greater than K, a 99% confidence interval can

be placed on that type of defect being present. Then its magni-

tude and orientation can be calculated by Eqs. (4) and (5) for

nonconcentric and elliptic defects. Fcr the higher-order Type II

defects only the knowledge that the defect is statistically sig-

nificant will be known. We can then determine the sensitivity of
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this technique and a noise error window about the calculated

magnitude. The noise error arises frcm the film-grain-digitizing

system, Eq. (2), and from the uncertainty in determining the

target image’s geometric center (Step 3ar Sec 11.A). The 99%

confidence window of the noise error for nonconcentricity is

defined to be three times ~N of Eq. (2) added in quadrature with

the uncertainty in determining the target image’s geometric

center. The 99% confidence window of the noise error for ellip-

ticity is defined to three times an times a constant of approxi-

mately fi.

To establish the sensitivity based on the noise error of Type

I and Type II defect detection, we simulated microradiographic

images of nonconcentric, elliptic, and perfect molybdenum tar-

acts. These images of molybdenum targets have 6.25-Bin-wall

thickness and diameters of 150 and 300 Mm. To computer simulate

these targets experimentally derived molybdenum step-wedge data

were needed. The step-wedge data were six molybdenum steps

increasing in 12.5-~m increments, exposed to a 45-kV-tungsten-

bremsstrahlung source and recorded on holographic plate emulsion.

From this an optical density-to-material thickness transformation

was establisk~ed per Step 1 of Sec. 11.A. This was used with a

previously described method8 to computer-simulate the microradio-

grephic images.

During the analysis of a perfect simulated image we inten-

tionally displaced the image’s center from its true geometric

center. We have verified tilatthe microsphere’s center can be
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determined to better than 5% of the samplinu interval. Thus, the

error introduced in nonconcentricity by uncertainty in deter-

mining the target image’s center is the velue of Eq. (4) for a 5%

shift in the center of a perfect target. An error in centering

does not introduce an error in ellipticity. The Iloiseerror due

to the film-grain-digitizing system affects sensitivity to both

nonconcentric and elliptic defects. To obtain the effect we com-

puted the amount of nonconcentricity using Eq. (4) for 20 random

noise patterns added to a target having nonconcentricities of

2.5% and 10%. The same was done for a target containing similar

sized elliptic defects. It was found that the noise error at the

99% confidence limit for nonconcentricity, Eq. (6), was three

times ~N of Eq. (2). Also, the noise error for ellipticity was

three times 6N times approximately fi, Eq. (7) (see Appendix A).

The fi constant will change depending on Eqs. (A-2), (A-3), and

(A-4).

Nonconcentricity noise error window = ~ 3 ;N. (6)

Ellipticity noise error window = f 3 ● K* ~N “ (7)

In the cases examined the noise error dominates over the cen-

tering error. Thus, the sensitivity to nonconcentric and ellip-

tic defects is defined by Eqs. (6) and (7). The sensitivities to

simulated molybdenum targets of diameters between 300 and 150 ~m,

respectively, are ~ 1/2 - 1% for nonconcentric defects, and ~ 1.4

- 2,8% for elliptic defects.

c. Experimental Results

We have simulated and analyzed a set of eight molybdenum tar-

gets for Type I and Type II defects. The targets of Table I all
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have wall thicknesses of 6.25 IJmand diameters of 150 urnfor MoO

thru M05 and 300 ~m for M06 and M07. Table I compares the sizes

of the simulated Type I and Type II defects with those measured

by the refined algorithm. Both Type I and Type II defects are a

measure in percent of nonconcentriuity and ellipticity. The non-

concentricity is measured by the shift in centers on the inner

and outer walls divided by the wall thickness and multiplied by

100. The elliptic defects are a measure in percent of the dif-

ference of the radii of the minor and major axes divided by the

wall thickness and multiplied by 100.

In a second set of 11 glass targets, we analyzed for Type I

and Type II elliptic defects. These targets have diameters iang-

ing from 150 to 330 ~m. They were radiographed using the contact

microradiographic techniques of Ref. 8. Table II compares the

sizes of Type I and Type II defects using the refined FFT algo-

rithm and the old FFT algorithm of Ref. 1. For comparison we

have also included the results of optical interferometric meas-

urements made on these t?rgets. The new and old methods agree

quite favorably. Only LB6’s nonconcentricity measurement is not

within the range of the two eider methods. This can be explained

by the statistically significant higher-order nonuniformity found

in the third spatial frequency of the estimated power spectrum.

III. CONCLUSIONS

This refined method demonstrates added capability of detect-

ing and quantifying both Type I and Type II elliptical defects.

It also gives the capability of dsfining a noise error window and

defect sensitivity based on the film-digitizing system noise and
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centering error noise. Our limits of detecting nonconcentricity

of the inner and outer walls is ~ 1/2 to 1% for molybd~num tar-

gets with 6.25-Vm-wall thickness and diameters of 300 and 150 Mm,

respectively. Also, our sensitivity to detecting ellipticity of

the major and minor axes of the inner wall is ~ 1.4 to 2.8% for

similar molybdenum targets. Furthermore, the global defect anal-

ysis time has not been lengthened with the inclusion of Type II

defect detection.
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Appendix A

Using a development similar to Ref. 2, it will be shown that

the first and second Fourier coefficients are good indicators of

nonconcentricity and ell<.pticity, respectively. Assume the film

density at a point is linearly related to the tGtal length of ma-

terial traversed by the x-ray source over a limited film-density

range. Because of this linear relation, we will equate density

and path length.2

Given the geometry as shown in Fig. 1, points Ci and Co are

the centers of the inner ellipse wall and outer circular wall.

The inner elliptical wall has major and minor axes of a and b,

and the outer circular wall has a radius of ro. The ellipticity

and nonconcentricity have been exaggerated. Consider a cjrcular

path of radius R, which must lie totally within the inner wall of

the minor eliipse axis. This implies 50 to 90% limits on the an-

nular average of Step ?b of Sec. II. The densities, dR(e), along

this path can be derived by taking a slice through the sphere of

Fig. laty = Rcose, denoted by the dashed lii?e. This defines an

annulus and the path length of dR(0). By simp!e substitutions

and using a binomial expansion, dR(e) can be approximated by Eq.

(A-l).

dR(e) = 2

(Ko-K~’2)+ +(+ l)cOs 2’ -%’Os’ 0

where K.
‘[ro2-R211’2’n’ ”1’a2 -%-$-4 ‘A-’)
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It is easy to see from Eq. (A-1) why the first and second Fourier

coefficients are a aood measure for the nonconcentr icity and

ellipticity when both or either are present in a target.

Another interesting fact is the relative power in the first

and second Fourier coefficients for a typical laser target, where

2a2 RCi

‘2 = ~bT ‘
first coefficient, (P.-z)

()~2 a2

‘3 = z ~ 1/2 p -1 ‘ ‘econd coefficient’
1

(A-3)

Power Ratio = K2*/K32 . (A-4)

Example:

a= 143.75 ~~, b = 143.175 urn,Ci = 0.625 urn,and R = 105.0

um.

Then from Eq. (A-4) the ratio is approximately 7.5. This ratio

is typically in the range of 7 to 9 for the same size nonconcen-

tricity to cllipticity defects. This implies that the sensitiv-

ity to elliptic defects is approximtitely l/fi to 1/3 that of non-

conccntric defects of tt,~:~amc size.
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Table 1. Simulated Type I and II Defects Measured

Simulated Actual

SamDle Nonconcentr icity Ellipticity Nonconcentr icity Ellipticity—-

NOO

Mol

M02

M03

M04

Mo5

M06

M07

O.(I
1.6

10.0
0.0
2.5

2.5

1.6

10.LI

0.0
0.0
0.0
5.0

10.0
5.0

0.0

0.0

0.0
1.6

10.0
0.0
2.4

2.4

1.6

lC. O

0.0
0.0

0.0

5.0

10.0

5.0

0.O

0.0

Table 2. Type I and II Pefccts Measured Three Ways

Percent Nonconcentricity Percent Ellipticity.—
Sample and Old Optical New New

Exposure Cat.e FFT lntcrfcromr!try FF’!’ FFT.- ..——
LP1-7-15-77 4 3 3 0
LE2-7-i 5-77 5 8 4 0
LB3-.7-15-77 17 11 13 0
LP4-7-15-77 12 10 10 0
LU5-7-15-77 5 3 5 0
L136-7-15--17 7 9 Sq 0
LP8-7-’ 5-77 1 5 la Za

L,e9-7-15-77 !1 10 10 0
I,p]~-7-]5-77 :, 5 5 0
IF1l-1(1-13-77 2 <3 2 0

‘11:sa statistically significant hiqher-order nonuniformity at the
third spatial froqu~ncy of th~ estimated power spectrum.
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Figure

Fig. 1. sin~le-leyered target with nonconcentric walls and
elllptic inner wall.
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