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I Abstract

(A-M uf probabilistic mdeliq of fault tree loglc c~lnd with stcdmstlc processl

“.

~theory (Rarkov mmlellng) has been developed. S~tas are then ~antltatlv?ly malyzed

;~~i’istlcally lflt- of their f~llure =hanf= Imltilq c~ causelc~ mde
, —.

effects ml time dependent failure and/or repair rate effects that Include s~erglstlc ml

promagational m?chadsas. The modeling procedure results In a state vector s@ of first

order. linear, lnhm3geneo us, differential equations -crlbing the t~me ~ proba-

bilities of failure descrlbal by the fault tree. The soluttons of this

Wrl-le [lWV) tiel are emulative mbabillty dlstrlbutlon fmctlons

-hal of appropriate s~thesis of subsystms to fom larqer systm Is

-lied to practical nuclear pmer safety systuns.

‘ 1. Introduction

Failure Mde State

of the Systm. A

dweloped, and

Mlear =actor pmer technology develomt has wfdely used the fault t= as a tml
‘f= assessing safety, reli&bility, ad rfsk. A fault tree depicts the acurrem of basic

~events (initiators or caws) thti cause wsir~le ~~e-ltie. m ffnally, * mmnts

of



‘ **, linear, tfi~neous, elmerenrlal quaL IWI=~ -abm .Wmm.y ---- -.— —r. —– .

I billti~ of failure descrfbed by the fault tree. m solwlms of th~s Fal~ure W Stme

Varl~le [FMSV) mdel m emulative probability dlstrlbutlon functions of the systm. A

~-hod of ~rcqmi ate s~thesis of subs~tms to form 1 arqm syst- is developed, and

I

i

ml led to prixt fcal wclear pwr safety systms.

1. Intrahctfon

bclear reactor pmmr technology development has widely used the fault tree as a tcml

fm assessing safety, relfabflfty, and rfsk. A fault tree defdcts the occurrence of basic

ments (initiators m causes) that cause undesirable intermediate,md finally, top @ents

repr-enting s.ystm or cmponent f ai lures, where these ●vents am mdeled stochastIcal ?y.

The initiators

Bmlem (R d

Iprobablllty &s

(roots) of the fault tree pass through m Interconnected(branched) systam of

Ml gates to which respectively apply the foutih m! fifth axims of

stated by Arley ad Buch [1]. Discrete state, cent f nwus time stoehast ic

\ process= often govern the occurrence or nonoccurrence of these basic ●vents. Such system
I&a typlcmIIY m~ld by a ~kov del valid fn [0..), xre the discrete states repreSent
i
~●ll of tlw c-inations of occurrenc~ of these basic ●vents. The states cm be ordered so

‘ that state ~ represents the mmoccurrence of my of n basic events, ml ~(m = ~ - 1)

: represents the acurrence of each of the n basic events. The Pbrkov mdel, for ample,

~(Shomm [2]) Is a set of first order differential equations that depicts the probabilities

‘of &ing In ‘any me of the m states. Since the fault trer representsonly the acurrence 01

~failure, it fs desired to find a one-to-one state transfomatim that yields a state variabl~

‘mMel that depicts the tot a! probabiIity of fallure In the sfitan.

. .
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[. The fh lint? of carh page should begin on the same lcvci aS [he Iellcr A timed in blue inside the
fiamc.

Il. The n~pl musl under no cinmmssanccs exlcnd oulsidc Ihe blue frame.
Ill. Nc= ribbons should Pre(crabl} be used 10 ob~in a Iighl bul deep-black imprmsmn.
1~. The ~nalion should b indicalcd outside Ihc fmme.
\-. }-our code number should lx wiIIen in Ihc Iop righI-hand comm and the wrnc ofhe wniorauthoronh

kfi-handSMk



t

I

i

I

I

i-,. .a ~-””” ‘:-
.,

El~umoc=
Frame for ofkd ‘pnnl (formal 16 x 24 cm )

-~

El. *

I* Hetn06 of Analysls

1A
\
i

Using the disjoint property of Plarkov states Si; i = 0,1,...,m, a set of Mjoint

states ‘$; i = 0,1 ,...,m was formulated comprising successive unions of the Si in *ich

all combinations of occurrences of basic events were depicted. The?. state was chosen to

‘he occurrence of all n basic events (m = 2n - 1).represent & . The&l state was

chosen to represent ~ or the union of all of the Si. The irtermediate~; i = 1,2,. ..1-1

represent all of the combinations of occurrences of any one, any two, etc. basic events. :

There is a transformation matrix~ for the probabilit.vstate vector transformation equation ~

fit) =E P(t)). ~etransformation ~’s one-to-one ad anmth-order Harkov model of the ~-—
f Orm:

@ = Itw, t >0 ; go) (1):

is transfor&i to the Adjoint state model
I

Qt) =A?lt), t >0 ; go)
(

(2)’-.
1

by the similarity transformation

Three qener!c fault

two, three, or four

conmon cause and/or

(3)

trees each having two failure modes (inputs to tfietop W@) comprising

statistically independent (S-independentj initiators toqether with ~

conmon mode S-independent initiators were developed. These are show in

Fig. 1.
I

In addition to the conwnon cause/c_n ~de events that result in S-dependent !

failure modes we included time dependent, synergistic failure-repair rate S-dependencies

between these nmdes. I@ also developed a propaqational failwe rate S-dependency for a 1

three-identical-canponent model.
I

The fourth, eighth, and sixteenth order Uarkov and Mjoint ~
i

state models are formulated. Using generalized state variatjl? simulation models drawn from :

modern control syst=. theory, a new model called the Failure Mode State Variable (FMSV) I
inhomogeneous model was fownulat.ed and found to have a general mathematical form. For

j
!

exanple, the state variable analog simulation oenerai fo~ and four different t~ c~Ponent \

models are shown in Fig. Z. A subsystem fault tree synthesis wthodology was develeped i

where iifetime cumulative distribution functions (~,cdf’s) of the subsystem top event
--..—---- —-k.-k< 14*4-- -- *..-..A =:* -:~~ -*--1- ● -— ~--.-4-- m.---—~a.l a..--&a—- 1
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~ two, three, or four statistically independent (s-independent) initiators together with ,

ccsnmoncause and/or cotmnonmode S-independent initiators were developed. These are shown in’:

‘Fig. 1. In addition to the comnon cause/comon node events that result in S-dependent
I

failure modes we included time dependent, synergistic failure-repair rate S-dependencies \

between these modes. He also developed a propagational failure rate S-dependency for a
I

three-identical-componentmodel. The fourth, eiqhth, and sixteenth order Markov and Adjoint’

state models are formulated. Using generalized state va~>iablesimulation models drawn from
I
I

, modern control system theory, a new model called the failure Mode State Variable (FMSV) i

inhomogeneous model was formulated and found to have a general mathematical form. For ~

exanple, the state variable analog simuiatioc qeneral fomt and four different two component ‘

models are shown in Fig. 2. A subsystem fault tree synthesis methodology was developed ~

where lifetime cumulative distribution functions (scdf’s) of the

occurrence probabilities are curve fit with single term decaying

(1 - e-~TOPt, t > O), and become inputs to the larger system

accounting for ccnmnoncause/conunonmode dependencies.

3. Applications and Results

Engineered safety syst~ws in nuc?ear reactor technology are

subsysten top event

exponential functions :

fault trees, properly

analyzed by the FMSV

method. A ~implified reactor shutdown (SCRAM) system (Bartholomew [3]) was computer simu-

lated, zmd the Ecdf’s were calculated (Fig. 3). A more detailed system fault tree (Fiq. 4a)

discussed by Caldarola and Uickenhauser ~4], and comprisin~ 30 initiators (some of which are

cotmtoncause/conunonmode) was computer simulated usinq the qeneric fault tree models for

subsystem portions (Figs. 4B, 4c). Appr~ximate failure mode and top event scdf’s were

calculated assuming no repair mechanisms. The approximate failure mode and top event

failure rates are listed in Table I.
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FIRST LEVEL

TA81.Fi

AMALYSIS~ SYETHES15OF TfiIRTYUIC EvEm FAULT TREE

coNTP.18uT1ffi mims

6EnERIC
FAULT TREES

11’o.of Kind of Kind of

~ = ‘*p$*ncie’

i? TOPANO Mone

3 ToP&no CJNC22)
7oPfm ---

2 TOPAM/ hone

3 TOPAMD CMC14)
TOPOR --

2 TOPANO Rone
Faf~_ M& Em Cg ●nd (C27 or C24 and C25) 3 TOP- CM(C27)

TOPOR ---

Ist level TOP wemts ●ssumed S-independent)

2 TOPOR f3i(c30)
2 TOWfO

TOPOR --

3 TOPOK cm(c~5)
TOPOR .-..

3 0f[c6)
TOPOR -.-

3 CM-{C2J)
T~pI)R --

APPROX. EFFECTIW
OCCURRENCE RATES

[10_6 h-l]

57.47

3.i6
60.63
57.41
3.16

60.63
57.47
4.70

62.17

11.18
27.04
38.22
60.63

90.53
60.63

90.53

62.17

73.34

-w LEVa (fnftfators. spproxfmsted 2fId level i”s, and propagated i*s through ANO gates 4sX S-independent)

iatemiate J1
httem’dfate J2

h~iate J3

intermediate K1

Imtetifate K2

h~iate K3

2of3Ll
2of3L2
2of3L3
Failm W El

II ●nd !3 or C3 2
II ●nd 12 or C4 z
iland 14 or C5 2

Cl or 13 2

C2 or 12 2

ii or 14 z

J1 ml Jz
JZ ●nd J3

J1 and J3
J1 ●d J2 or J2 ●ad J3 or J~ ●nd J3 3

. . d r- ad x% 3

TOPAW
TOFAM
TOPAW

TOPLM
TOPOR

TOPOR
mm

TOPMI
TOFAi21

TWAKI

CC(C31
CC(C41
Cc(cs)

mow

iione

Nwm

how
-

2of3
hglect4M

24.33
24.33
21.29

92.03
92.03

111.56
48.66
45.43
45.63
9.ob

W.w
.-w .::.>



TABLE 1

ARALYSIS AM SYffTHESIS W THIRTY BASIC EVEXTFAuLT TREE

SYSTEPY COUTR18uTIMi EVENTS

(C18or Clg)●d (CZOor CZ1)
~ 811d {C= Of c36 ●ti c17)

Ell or E~
(Cll)w Cll) ●nd (C12 or C13)
Cg alla (C14 w C7 ●ti Cal

E21 or E22
(c26 ~ c27) ●M (cza ~ c29}
Cg ●d (C27 or C24 Wd C25)

E31 or E32

6EMER1C
FAULT TREES

no. of Kind of Kind of

~ - S-oepe”den’i”

2

3

2
3

z

3

TOPAW

TOPAMO
TOPOR

TOPANG
TOPAMO
TOPOR
mPAJfo

TOPnttO
TOPOR

None

CWQ2)
---

CM(C14)
---

none

CM(C27)
---

~ LEVEL (Initiator$ ●6 ●pproximated 1st level TOP ●vents ●swoed S-independent)

F~il~ Mode ill C3g Or C24 ●IM C25 2 TOPOR c#i(c30)
Fail- W i= TOPl ●nd TOP2 2 TO?AnD
Ia~iate 11 111or 112 TOPOR ---

Failm M& 121 Twl or
Failwe Mde 1~ :c15 Or c16 ●“d c17) 3 TOPOR CM(cls)
IB~iate 12 121 ar i= TOPOR ---

F~fi~ W 131 TW2 or
Failm fMe I= (C6 Or c7 tti c8) 3 TOPOR 0i(c6]
xa~ime 13 131 or I= TOPOR ---

Faflm Mode 141 TOP3 w
Failwe m I* (C23 or C24 ●nd C25) 3 TOPOR CH-(C23)
I~fms X4 141 or X42 TOPOR ---

APPROX. EFFECTIVE
OCCURRENCE RATES

[IO-6 h-l]

5?.47

3.16
60.63

51.47
3.16

60.63
57.47
4.70
62.17

11.18
27.04
30.22
60.63

90.53
60.63

90.53
62.17

73.34

~~, (inftiators. approxfflted 2nd level I ‘s. ●nd propagated I‘s JIrough AM @es ●ssumed S-independent)

11 ●nd 13 or C3 2

II ●nd 12 or C4 2

11 ●nd la or C5 2

Cl or 13 2

C2 or 12, 2
11 or 14 2

J1 ●nd J2

J2 ●nd J3

J1 ●nd J3

J~ and J2 or J2 and J3 or J1 and J3 3

K1 ●nd K2 and K3 3
E1 or E2

Cm=hnlbde

TOPANO
TOPANO
TOPANO
TOPOR
TOPOR
TOPCR
TOPANO
TOPANO
TOPANO
TOPOE

TOPANO

CC(:3)
CC(C4)
CC(C5)
None
None

none
none
hone

None
2of3

Meglected
---

CC = C-n Cause

24.33
24.33

21.29
92.O?
92.03
111.56
48.66
45.61
45.61

9.06

19.ci8
28.16


