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A SYSTEMS ANALYSIS APPROACH TO PROBABILISTIC
' MODELING OF FAULT TREES

by

Robart J. Bartholomew, Ph.D.
Los Aiamos National Laboratory
Los Alamos, New Mexico, U.S.A.

: Clifford R. Qualls, Ph.D.
! Department o1 Mathematics and Statistics
: University of New Mexico

i Albuquerque, New Mexico, U.S.A.

Abstrlct .
A method of probabilistic modeling of fault tree logic combined with stochastic processi

;t‘leory (Markov modeling) has been developed. Systems are then quantitatively analyzed

i probabitistically in terms of their failure mechanisms including common cause/common mode
;'effects and time dependent failure and/or repair rate effects that include synergistic and
;propagational mechanisms. The modeling procedure results in a state vector set of first

| order, Tinear, inhomogenecus, differential equations describing the time dependent proba-
:bilities of failure described by the fault tree. The solutions of this Failure Mode State
Variable (FMMSY) model are cumulative probability distribution functions of the system. A
.method of appropriate synthesis of subsystems to form larger cystess is developed, and
applied to practical nuclear power safety systems. |

1. Introduction !
Nuclear reactor power technology development has widely used the fault tree as a tool

‘for assessing safety, reliwbility, and risk. A fault tree depicts the occurrence of basic
:events (initiators or causes) that cause undesirable intermediate, and finally, top events
.representing system or component failures, where these events are modeled stochastically.
'The initiators (roots) of the fault tree pass through an intercomnected (branched) system of
‘loolem OR and AND gates to which mpectively apply the fourth and fifth axfoms of
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bilities of failure described hy the fault tree. The solutions of this Failure Pode Stlte

Yariable (FMSV) model are cumulative probability distribution functions of the system. A
.method of appropriate synthesis of subsystems to form larger systems is developed, and
applied to practical nuclear power safety systems.

'1. Introduction

Nuclear reactor power technology development has widely used the fault tree as a too!l
‘for assessing safety, reliability, and risk. A fault tree depicts the occurrence of basic
:events (initiators or causes) that cause undesirable intermediate, and finally, top events
l_representing svsten or component failures, where these events are modeled stochastically.
iThe initiators (roots) of the fault tree pass through an interconnected (branched) system of
:Boolean OR and AND gates to which respectively apply the fourth and fifth axioms of
probl)ility as stated by Arley and Buch [1]. Discrete state, continuous time stochastic
processs often govern the occurrence or nonoccurrence of these basic events. Such systems

i-. typically modeled by a Markov model valid in [0,=), where the discrete states represent
,all of the combinations of occurrences of these basic events. The states can be ordered so

fthat state Sy represents the nonoccurrence of any of n basic events, and Sp(m = 20 - 1)
Erepresents the occurrence of each of the n basic evenis. The Markov modei, for example,
-f,(Shoo-m [2]) 1s a set of first order differential equations that depicts the prodabilities
I.°f being in any one of the m states. Since the fault tree renresents only the occurrence of
failure, it is desired to find a one-to-one state transformation that ylelds a state variable
ffnode) that depicts the tota! probability of failure in the system.
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4. Method of Aralysis

Using the disjoint property of Markov states Sij; i = 0,1,...,m, a set of Adjoint

states '§\1; i=0,1,...,m was formulated comprising successive unions of the Sj in which
all combinations of occurrences of basic events were depicted. The /S\o state was chosen to
represent Sy, the occurrence of all n basic events (m = 2N - 1). The ’é},. state was

chosen to represent @ or the union of all of the Sj. The intermediate ’S\i; i=1,2,...m-1
represent all of the combinatiors of occurrences of any orme, any two, e€ic. basic events.

There is a transformation matrix E for the probability state vector transformation equation
: (E(t) = E P(t)). The transformation E ‘s one-to-one and an mth-order Markov model of the
form:

C B®) AR, £ >0 5 PO) (1)
"is transformed to the Adjoint state model '
S A =R, t>0 ;O (2)’
l by the similarity transformation

R=gaf" . (3)

Three generic fault trees each having two failure modes (inputs to the top qate) comprising ’,

. two, three, or four statistically independent (S-independent) initiators together with
common cause and/or common mode S-independent initiators were developed. These are shown in

'Fig. 1. In addition to the common cause/common mode events that result in S-dependent

" failure modes we included time dependent, synergistic failure-repair rate S-dependencies

: between these modes. We also developed a propagational failure rate S-dependency for a

fthree-identical-canponent model. The fourth, eighth, and sixteenth order Markov and Adjoint

state models are formulated. Using generalized state variat'e simulation models drawn from

. modern control system theory, a new model called the Failure Mode State Variable (FMSV)

inhomogeneous model was formulated and found to have a general mat“ematical form. For

example, the state variable analog simulation generai form and four different two component

- models are shown in Fig. 2. A subsystem fault tree synthesis methodology was develcped

' where iifetime cumulative distribution functions (2cdf's) of the subsystem top event
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: two, three, or four statistically independent (S-independent) initictors together with ;
~common cause and/or coimon mode S-independent initiators were developed. These are shown 1n2
"Fig. 1. In additior to the common cause/common mode events that result in S-dependent f
- failure modes we included time dependent, synerqistic failure-repair rate S-deperdencies i
:betueen these modes. We also deveioped a propagational failure rate S-dependency for a
i three-identical-component model. The fourth, eigqhth, and sixteenth order Markov and Adjoint .
. state models are formulated. Using generalized state vaciable simulation models drawn from |
- modern control system theory, a new model called the Failure Mode State Variable (FMSV) ;
éinhomogeneous model was formulated and found to have a general mathematical form. For R
iexample, the state variable analog simuiatior general form and four different two component
‘models are shown in Fig. 2. A subsystem fault tree synthesis methodology was developed ;
where lifetime cumulative distribution functions (tcdf's) of the subsystem top event
" occurrence probabilities are curve fit with single term decaying exponential functions
1(1 - e=AT0Pt, t > 0), and become inputs to the larger system fault trees, properly
accounting for common cause/common mode dependencies.

3. Applications and Results
Engineered safety systems in nuclear reactor technology are analyzed by the FMSV

method. A simplified reactor shutdown (SCRAM) system (Bartholomew [3]) was computer simu-
lated, and the tcdf's were calculated (Fig. 3). A more detailed system fault tree (Fig. 4a)
discussed by Caldarola and Wickenhauser [4], and comprisina 30 initiators (some of which are
common cause/common mode) was computer simulated using the generic fault tree models for ‘
subsystem portions (Figs. 4b, 4c). Approximate failure mode and top event gtzdf's were }
calculated assuming no repair mechanisms. The approximate failure mode and top event
. failure rates are listed in Table I.

\
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SYSTEm
FIRST LEVEL

Failure Wode E;)
Failure Mooe Ejp
0P Event TOPL
railure Mode E3)
Failure Mode £,
TOP Event TOP2
Failure Mode E3)
Failure Mode E3p
TOP Event TOP3

TABLF §

ANALYSIS AMD SYNTHESIS OF THIRTY BASIC EVENT FAULT TREE

CONTRIBUTING CVENTS

(C1p or C19} and (C2qg or C2;}
Cg and (C22 or Cjg and Cy7)

€1 or £32

{C3p or €311 and (Cy3 or C13)
Cq and (Cy4 cr C7 anc Cg)

E2; or Ez

{C26 or C7) and {Czg or C2g)
Cg and (C37 or €4 and C35)

E3; or E3p

GENERIC
FAULT TREES
No. of Kind of Kind of
Components  Event S-Dependencies
2 TOPAND None
3 TOPAND t(cyo)
- TOPUR ---
2 TOPANL None
3 TOPAND CM(Cy4)
- TOPOR ~—
2 TOPAND None
3 TOPAND t(Ca7)
- TOPOR .-

SECOMD LEVEL ({finitiators and approximated lst level TOP events assumed 5-independent)

Failure Mode 13
Failure Mode 132
Intermediate I}
Failure Mode I2;
Failure Mode 13
Istersediate I,
Fatlure Mode I3;
Failare Node 32
Intersediate I3
Failure Mode I4]
Failure Mode I
Intermediate I4

C3p or C24 and C25
TOP1 and TOP2

Ijgor i)
TOPl or

(Ci5 or Cy6 and C37])

I2; o 122
TOP2 or

(Cg or C7 and Cg)
133 or 132
TOP3 or

(C23 or L4 and C25)

I41 or 142

2

TOPOR = [{£T))
TOPAKD

TOPOR -
TOPOR MLis)
TOPOR ——
ToPOR )
TOPOR -
TOPOR CMiCy3)
TOPOR ———

APPROX. EFFECTIV(
OCCURRENCE RATES

[10-6 n-13

57.47
3.16
60.63
57.47
.16
60.63
57.47
4.70
62.17

11.18
27.04
38.22
60.63

90.53
6U.63

90.53
62.17

73.34

JOP LEVEL (inftiators, mrgxinud 2nd leve) 1's, and propagated 1's through AND gates assumed S-independent)

Intermediate Jy
intermediate J;
Iatermediate J3
Intermediate K}
Intermediate X2
Intersediate K3
20f 3 1;

20of 31,

20of 3Ly

Failure Mode €}

1; an¢ I3 0r (3

Iy and 12 or C4

Iy and Ig or Cg
Cior I3
Caor I
Ijor Ig
Jj and Jz
Jz and J3
Jj and J3

Jy and Jz or Jz and J3 or J; and J3

¥ amd Mo amd Ko

It NN NN

w

TOPAND ccicsl
TOF AND CC(Cq)
TOPAND cc(cs)
TOPOR None
TOPOR None
TOPOR None
TOPAND None
TOPAND hone
TOPAND Yone
TOPOK 20f 3
TOPAND Neglected

24.33
24,33
21.29
92.03
92.03
111.56
46.66
45.61
45.61
9.06

i9.68
B " P



SYSTEM
FIRST LEVEL

Faflure Moge E))
Fallurs Mode £},
TOP Event TOP1
Failere Mode E3)
Failure Hode £2)
TOP Event TOPZ
Failwre Mode €3)
Failure Mode E3;
TOP Event TOP3

SECOMD LEVEL

Fatlure Mode 1)
Failure Mode i;;
Intermediate I;
Failure Mode 13;
Failure Mode I,
Intermediate I,
Faflure Mode I3;
Failure Mode 13,
Intermediate I3
Failure Mode 14)
Failwre Mode Iy
Interaediate Iy

JoP LEVEL

Interwediate J;
Intermediate J;
Intermediate J3
Intermediate K3
Intermediate X3
Intermediate K3
20f3;

20f 31,

20of 33
Failure Mode E;
Failure Mode £
Top

TABLE 1

ANALYSIS AMD SYNTHESIS OF THIRTY BASIC EVENT FAULT TREE

GENERIC
CONTRIBUTING EVENTS FAULT TREES
Mo. of  Kind of Kind of
Ccmponents Event S-DeEndencfes
(C18 or C19) and (C2g or C21) 2 TOPAND None
Cg and (L7 or C35 and C17) 3 TOPAND iN(cy2)
£y or E)2 - TOPOR ---
{Cio or C11) and (C32 or C33) 2 TOPAND None
Cg ana (Cjq4 or C7 and Cg) 3 TOPAND CM(Cy4)
£ or E22 - TOPOR -~
{C2¢ or C27) ana (Czg or Czg) 2 TOPAND None
Cg and (Cz7 or Cp4 and Cpg) 3 TOPAdD CM(Czy)
- TOPOR -

E3; or E32

€30 or C24 and (5
TOP1 and TOPZ
Ijy or I3
TOP1 or
{C)5 or C15 and C37)
I21 or 022
TOP2 or
{Cs or C; and Cg)
I3y or I3
TOP3 or
{C23 or C24 and C25)
a1 or l42

I} and 13 or C3
I; and [ or (4
11 and 14 or (5
Cyorlj
C2or I
[or iy
J1 and J3
J2 and J3
J] and J3
Jj and Jp or Jz and J3 or J) and J3
Ky and K3 and K3
Ej or E

CM = Common Mode

~n

LI I N N X X )

I W w

TOPOR
TOPAND
TOPOR

TOPOR
TOPOR

TOPOR
TOPOR

TOPOR
TOPOR

TOPAND
TOPAND
TOPAND
TOPOR
TOPOR
TOPCR
TOPAND
TOPAND
TOPAND
TOPOR
TOPAND
TOPOR

(tmitiators and approximated 1lst level TOP events assumed S-independent)

CM(C3g)

cM{Cys)

CM(Cg)

CH-( Cz3)

€yl
cCicy)
CC{Cs)
None
None
None
None
hone
None

2 of 3
Neglected

CC = Common Cause

APPROX. EFFECTIVE
OCCURRENCE RATES

[10-6 n-1j

57.47
3.16
60.63
57.47
3.16
60.63
57.47
4.70
62.17

11.18
27.04
30,22
60.63

90.53
60.63

90.53
62.17

73.34

{inftiators, approximated 2nd level I's, and propagated 1's chrough AND cates assumed S-independent)

24.33
24.33
21.29
92.07
92.03
111.56
48.€6
45,61
45.61
9.06
19.68
28.16



