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OPTIMAL SMOOTHING OF SITE-ENERGY DISTRIBUTICNS
FROM ADSORFTION ISOTHERMS

Lee F. Brown and Bryan J. Travis
Earth and Space 3ciences Division
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

ABSTRACT

The equation for the adsorption isotherm on a heterogeneous sur-
face is a Fredholm integral equation. In solving it for the site-
energy distribution (SED), some sort of smoothing must be ca:'ried out.
The optimal amount of smoothing will give the most informatior that is
possible without introducing nonexistent structure into the SED.
Recently, Butler, Reeds, and Dawson (1) proposed a criterion (the BRD
criterion) for choosing the optimal smoothing parameter when using
regularization to solve Fredholm equations. The BRD criterion is
tested for its suitability in obtaining optimal SED's. This criterion
is found to be too conservative. While using it never introduces non-
existent structure into the SED, significant information is often lost.
At present, no simple criterion for choosing the optimal smoothing
parameter exists, and a modeling approach is recommended.

INTRODUCTION

Single-enargy adsorption fsotherms, o(p,q), such as the Langmuir
and Hil1-de Boer relationships, normally cannot model experimental
isotherms adequately. This has been recognized from the earliest
studies of adsorption, and so the heterogeneous nature of an adsorbent
or catalytic surface long has bee:n nerceived as an {mportant property.
The usual eyuation for the nonuniform-surface adsorption isotherm,
relating the amount zdsorbed to the pressures and energies of adsorp-
tion, has embodied within it both a single-energy dsorption isotherm
(1ocal isotherm) and an energy distribution function nl(q):

Umax
egr(p) = [ o(p,q)n(q)dq (1)
Imin

The function n(q)dq 1s defined as the fraction of adsorption sites
with energies between q and q + dq; n(q) 1s called the site-energy
distribution (SED) and has been the principal choice as a device to
quantify the heterogeneity of an adsorbent's surface. Beginning with
the work of Roginsky ?2) almost forty years ago, studies in a continu-
ing stream have examined means of extracting n(q) from adsorption
isothierms and analyzed the fmplicatiors of the resulting distributions.
Reviews of these efforts (3-5) show the extent of these investigations.

Equation (1) is a first-kind Fredholm integral equation. Because

of properties {nherent in tnis equation, some form of smoothing must be
carried out before an acceptable solutfon is obtained (e.g.,f).
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Sometimes the experimental isotherm data are smoothed, as when the data
are apnroximated by an analytic function (e.g., 5,7). Other times the
solution is smoothed, as in the requiarization method for solving
first-kind Fredholm equations (cf. 8). Sometimes both data and solu-
tion are smoothed (e.g., 3,9). -

The smoothing 80-
is necessary to
prevent nonexistent
structure from being
introduced into the
solution of Eq. (1).
An example 1s
presented in Fig. 1.
Here a unimodal,
qaussfian SED was

postulated and used
with a lLanemuir lo- 104
cal isotherm ¢to e

generate an PP -
{sotherm, Random 40 80 @0 T 60 0 100 nuO 120
errors vith a stan- SITE ENERGY, kJ/MOL

dard deviation of 1% Figure 1. Creation of Nonexistent Structure by

7:;:,,:':?;&:" :::: Inadequate Smoothing. 1% RMS Error in Iso-

reqularization was| therm Data.
used to extract the| — Postulated Distribution.

n{q). 1/(kJ/MOL) x 10

SED. A low amount —.—._ a = ;. Calculated Distribution with
of solution smooth- Minimum Least-Squares-of-Differences
17q created the between Original Isotherm and Iso-

structured SED, therms from A11 Calc. Distributions.
while the best| .c....... aort ™ 1000ars. Calculated Distribu-
aqreement between tion Closest to Postulated Distrib.

the postulated and
calculated SED required a much gqreater amount cf smoothing. This was
true even though the least squares criterion, f.e., the minimum of the
sums of the squared differences between the aqenerated {sotherm data and
the {sotherms calculated using the extracted SED's, said that the
structured SED was the best possible. Thus such a least squares
criterion can he a very poor quide to the optimal smoothing., Some
otiler direction {s needed to tell what amount of smoothing will aive
the maximem amcunt of information concerning the structure of the SED
without introducing nonexistina components.

While significant smoothing {s needed, too much smoothina ob-
viously can destroy information in the oriainal data. Our purpose is
to eximine quantitatively this aspect of obtaining SED's from
{sotherme, and to pronose some quidelines for telling how much smooth-
ing 1s optimal for a leve! of error in the {sotherm data.

Another factor which has the potential of affecting the solution
n{q) 1s the choice of local isotherm 6(p,a) 1n Eq. (1). We do not
exsmine this factor here. There has been work in this area (e.q., 9),
and these efforts indicate that using different, though still
reasonable, local {sotherms results in qualitatively 3zimilar SED's.
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Since the particular local {isotherm 6(p,q) does nut appear to be a
crucial factor in the SED which results from solving Eq. (1), the
Lanamuir isotherm appears throughout this work; it is the simplest
sinqgle-enerqy isotherm which also 1s physically reasonable.

PRELIMINARY CONSIDERATIONS

The technique of rcqularization, developed by Phillips (6) Twomey
(10), and Tikhonav (8,11-12), 1s used throughout the present work .
Papenhuijzen and Koopal (13) r recent\y have shown that regularization is
a superior methci for extrac*iuq SED's from adsorption isotrerms., We
employ the formulation of Tikhonov, as it has been found to lead to a
straightforward metnod for solving Eq. (1) numerically. In addition,
work by Butler et al. (1) has built upon the Tikhonov formulation to
incorporate a nonnegativity conitraint upon r(q). These latter {nves-
tigators also proposed a criterion for an optimal value of the
regularization smooining parameter, a. We use the additions proposed
by Butler and his couworkers, and the algqorithm employed for this werk
is presented in Appendix A. As was mentioned above, either the data
or the sojution, or both, must bz smoothed in the process of solving
Eq. (1), The present work examines directly only the effects of
smoothing the solution; it is felt, however, that some nf the results
may be applicable to situations where instead the dats are smoothed.

In spite of the long-reccanized need for smoothing of data or
solution when obtainina SED's by solving Eq. (1), until very recently
no quantitative auideline had been proposed for judeing when the op-
timal amount of smoothing has heen carried out. As mentioned above,
Butler et al. (1) proposed such a criterion for use with
reqularization. Their optimal « was supposed to smooth the calcu-
lated distribution so as to give the most probable distribution for the
exfstina level of error in the data. They pointed out that their
quideline was probably a conservative one, in that 1t might give some
dearee of oversm athing. Our algorithm for implementing the BRD
(Butier, Reeds, and Nawson) criterion is included in Apvendix A.

In a recent work (14), we calculated isotherms from postulated
nla)'s, then used reqularization to determine the SED using Eq. (1)
and the qenerated isothern data. Good agreements between postulated
and calculated unimodel and bimodal SED's were obtained, and our
results suqgaested that the best aqreement between postulacted and calcu-
Tated SED's could be found a* an a-value one-tenth that cenerated hy
the BRD criterion. In this paper we investiqate the optimal smocthing
matter more extensively. £imount of error, characteristics of the peaks
in the SED, and number and locatior of daca points appear to he aspects
which may affect the optimal smoathing.

APPROACH TO FROBLEM

To study the effects of different factors upon tte optimal dearee
of smoothing, a numerical approach was taken. Different situations,
each containinag characteristics typical of experimental possibilities,
were examined. In each situation an SED containing particuiar
properties was postulated, a series of pressures chosen, and Fq. (1)
used to qanerate a vector of accurate isotherm data. Seven significant
fiqures were retained in each of the {sotherm pointu. Random, normally
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distributed errors, with a spectfied standard deviation, were then im-
posed upon the individual points of the qenerated isotherm. Using the
1odified isotherm containing the error, reqularization was employed to
xtract a series of calculated SED's, each SED corresponding to a dif-
ferent value of the smoothing parameter a. The best value of «
by the BRD criterion, agpps %3S identified.

Trial and error found the optimal value of a. Visual comparison
was used to identify the best a, as it was difficult to create
analytical criteria which would be satisfactory. Usually, the optimal
value of « occurred at the point just before nonexistent structure
began to appear in the solution. Once the optimal value of a was
found, it was compared with %rD ‘o see 1f any consistency occurred.
The comparison between “opt and %prp was also used to see if
information was lost using %BnD which ntherwise could be extracted

without creating nonexisting structure.
RESULTS

The results ere in Figs. 2-5, and the parameters used, distribu-
tions employed, and ranaes covered are presented in Appendix B.

Fiqure 2 shows
the results with a 8.0 -
2-peaked SED and a 1
1% RMS error. Here
the « of the BRD
criterion gives a
solution with the
two peaks, but the
solution does not
indicate the nzights
at a1l well, It is
possible, however,
to match the peaks
quite well by usinag y \
a more sensitive 00+ N . - S
smoothing parameter. 10 60 100 140 180

This indicates some SITE ENERGY, kJ/MOL
loss of information

i “BRD 1s used. Figure 2. Comparison between Distributions from
Optimal o and aggrp. Two-Peaked SED, 1% RMS

It mey be noted rror in 51-Point Isotherm.
that the optimal E 5 n "

value of o« 1n the - Postulated Distribution.

18.0 4

10.0

n{q). 1/(kJ/MOL) x 100

2-oeaked. 1% ervror| =ooommmieeee Calculated Distribution Ufing QPR »
situation 1s equal|{ ——— Calcu]ated Optimal Distribution,
to 0.05a5p), while Ogpe = O-03agyy.

in the 1-peaked, 1%
error situation (Fiq. 1) 1t is equal to O. Z“BRD This {ndicates that

there may be 1{ttle consistency hetween the optimal « and the BRD «,
althouah the optimal o does apnear to be always less than “pRp *
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In Fig. 3, er-
ror in the data is
tripled over that in
Fiq. 2; other fac-
tors remain the
same. With the
higher level of er-
ror, use of XBRD

destroys the nature
of the distribution.
Only the approximate
range of the dis-
tribution 1is
maintained. The op-
timal calculated
distribution does
give a qood repre-
sentation of the
original SED, al-
though the height is
attenuated sig-
nificantly with the
increased error. In
this case,

Yot = O.OOBaBRD,

confirming the in-
consistencies
between %opt and

®gRD*

Figure 4
presents 2 4-peaked
distribution. This
distribution was so
sensitive to error
in the data that an
error level of 0.01%
RMS deviation was
necessary to obtain
siqgnificant results;
higher levels of er-
ror resulited n
distributions that
did not reflect the
distribution with
any realism
whatsoever. Even at
this level of error,
though, important
information 1s lost
if ) is used as

the smoothing
parameter. When

86.01
g mo;
1
§ 18.0 -
3
\S 100 4
€ 8
00 Y 34
20 a0 100 140 80
SITE ENERG_Y. kJ/MOL
Fiqure 3. Comparison between Distributions from
Optimal o and oprp. Two-Peaked SED, 3% RMS
Error in 51-Poirt Isotherm.

Postulated Distribution.

Calculated Distribution Using ogpp-

~— ——.— Calculated Optimal Distribution,
S, = O.OOGQBRD.

NOW N
]
= 80-
]
"3 -
g .0
=
8
‘\’ 404
;; ™\
[ \\ i
00 - A UREE A, SERSE SR SE
0 a0 00 100
SITE ENERGY, kJ/MOL
Figure 4. Comparison between Distributions from
Optimal o and aprp. Four-Peaked SED, 0.01%

RMS Crror in 51-Point Isotherm.
Postulated Distribution.

----------- Calculated Distribution Using appp.
— == (Calculated Optimal Distribution,
%opt = 0.006app:, -
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this 1s done, nnly three peaks appear in the resulting distribution,
while the optimal SED gives the four peaks. The results reflect tie
true situation only aquali‘atively; the true nature of the peaks remains
obscured even by this low level of error. Again, the optimal value of
the smoothing parameter is far removed from that resulting from the BRD
criterion.

A comparison of
Figs. 4 and 5 shows
the importance of
the numbher of points
in the isotherm.
Fiqure 5 results
from using one-tnird
the numher of r-ints
that were used in
Fig. 4. T.e points
were spread over the
same range. yet one
of the peaks has
been lost. Here ;
;hee:ee ;Sc lit?ne (::1:; Y3 do W we  uo @0 Ho o
distributions from SITE ENERGY, kJ/MOL
%BRD and «

8.0+

4.0+

7(q). 1/(kJ/MOL) x 10

opt’ Figure 5. Comparison between Distributions from
e Optimal o and oprp. Four-Peaked SED, 3.01%
33,3&53{3:;”“ RMS Error in 18-Point Isutherm.

—— Postulated Distribution.
sai dB%ﬁJ:Z ﬁgwgl; """"""" Calculated Distribution Using oagyp-
criterion was a con- ~— ——— Calculated Optimal Distribution,

servative one. When Y%pt = 0‘]“BRD‘
extracting SED's
from adsorption
isotherms, 1t is too conservative. Nonexistent structure never appears
when using agRp but significant information loss occurs freqiently.

No other simple criterion now exists for choosing the optimal
value of the smoothing parameter. Nevertheless, it is important that a
quid~ to optimum smoothing be available. Otherwise, nonexistent struc-
ture may be reported if too lcw an a {5 used. One way of
approachina thie difficulty is to carry out numerical calculations in
conjunction with the experimental studies. SED's can be postulated
with characteristics similar to that calculated, and isotherms gener-
ated with the level of error imposed on the data equal to that
estimated for the experiments being carried out. The optimal o« may
then be found by trial and error, as was done for the synthetic situa-
tions analyzed here. This may aive 2 reasonable estimate of « t for
a particular situation, albeit with significant effort. op
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NOTATION

c Nonnegative comporents of g 1in the additive smoothing term of
Eq. {A3), dimensionless.

Function of o defined by Eq. (A9).

Function of experimental variable, various units.

Experimental observations, various units.

Distribution function, various units.

Ncnlinear differential operator.

An integral, various units.

The identity matrix

Kernel of integral equation, various units.

Matrix defined by Eq. (A6).

Number of experimental data points.

Pressure, Pa.

Energy of desorption, J/mol (negative of the enthalpy change upon
adsorption).

Gas constant, 1/(mol)}(K).

Absolute temperature, K.

Matrix defined by Eq. (A7).

Variable over which distribution function g occurs, various
units.

W Weighting factor, inversely proportional to the variance in the

data taken at point 1.

X Experimental variable, various units.

« Adjustable smocthing parameter, dimensionless.

n Site-energy distribution function, 1/J.

0(p,q) Fraction of sites of energy q covered at pressure p,

dimensionless (the local fisotherm).
egr Gross fractional surface coverage, dimensionless.
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APPENDIX A

ALGORITHM FOR EXTRACTING NONNEGATIVE DISTRIBUTION FUNCTIONS
FROM FIRST-KIND FREDHOLM EQUATIONS

The general form of EG. (1) in the text is

b
f(x) = [ K(x,t)g(t)dt . (A1)
a

K is representative cf the experimental system and procedure. When
observations f(x) have been obtained from a system characterized by
Eq. (Al), 2 solution for g(t) would minimize locally the integral

d b 2
1= [[f,ix) - [Ki(x,t)g(t)dt]" dx , (A2)
c a

in which fe(x) ~epresents the experimental observations. 1In

regularization, a smoothing term is added to the RHS of Eq. (A2), and
the functional to be minimized is altered so that

d b ) b
I= JIf(x) = [Kix,t)g(t)dt]® dx + « [ [H(g)Idt  , (A3)
c a a

where H(g) 1is a nonlinear differential operator on g with nonnega-
tive coefficients, anrd « 1is a parameter. In the simplest
formuiation, H(g) = g2, which 4s what we have used throughout this
work. Applying variational calculus gives the necessary condition for
a minimum with H(g) = g2 (e.g., 14):

b d d
ag(t) + [ { [ K(x,2)K(x,t)dx}g(z)dz = [ K(x,t)fe(x)dx . (A4)
a ¢ c

Equation (A4) can be put into finite-difference form:
(K% ex g at + g = KM px £, (A5)

in which §tr 13 the transpose of K, and and are diagonal
matrices whose elements are the weightin¢ factors for the intervals
(c,d] and [a,b]. Butler et al. (1) suggested a means by which g(t)
can be restricted to nonnegative values, ~nd we have followed their
proposal. Equation (A4), using a given «, is solved for g. The
points at which g 1s negative are recorded, and the evaluation of the

quantity (§tr§F K Q& + a]) 1s not performed at these points. A new
g s obtained, and the process 1s repeated. The iteration is con-
inued until no change in is seen. The entire process is then
repeated for all subsequent values of «.
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To provide resolution of narrow peaks and near-discontinuities, a
variable integration mesh is included in the computer code. For each
value of a, the inteqration mesh is altered to allow finer zoning in
regions where the emerging distribution has large gradients.

Butler et al. also offered a criterion for chocsing an optimal
value of o, based on the estimated error in the calculated q(t)
over t between a and b. This in turn depends on the error in the
data. To express their criterion, some torms are defired:
K ax K gt (A6)

(M :ai)q (A7)

a vector which satisfies (M + allc = f 1in which (A8)
M is evaluated only for points in "t where g(t) > 0.

A function of a 1s then defined:
Dla) = (£ T T £,) - (25T £,) + (200 M0)!/2 (A9)

The critecion of Butler, Reeds, and Dawson states that the optimal
value of « (“BRD) is attained when D(n) dis a minimum.

When the levels of error in the various data points are not equal,
elerents in the K matrix and f_ vector must be weighted. Let the
weights w% be inversely propSrtiona1 to the variances in the data

N
points fi' The weights dre scaled so that igl w$ = N. The elements
in the K matrix are then weighted so that kij becomes wikij and
those in the f, vector are weighted so that f,, becomes w.f

0 - X
m

ef”’
APPENDIX B
FACTORS AND PARAMETERS USED IN GENERATION OF FIGURES
Figure 1:
8lp,a) = (4.464.10%)(p)(edRTY/[1 + (4.464.1078)(p)(e7/RT)]
(p in torr, q in joules)
o) = (3.931.10%) [¢- (4:856-1077) (-8619)%,

Range of p: C<pc<3 torr. N =51
Range of q: 0<qcx« 3.5-104 joules. T = 77.5

Accuracy of is.therm data: Random, normally distributed errors with a
standard deviation of 1% were imposed on the isoth:rm data.
N b
- 2
o g (Minimizes 151[fe(x1 aj Kix,t)g(t)]2 )

(q in joules)

Smoothing parameters: «

a = O.ZaBRD (a = IOGOGLS)
Figure 2:
e(p,q): Same as for Fiq. 1.
-7 2 -7 2
nlq) = (1.955.10‘4)[9-(4-856-10 )(q-6600)°, -(4.856+10"")(q-13200) ]

(q 1n Joules)
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Range of p: 0 <p <0.01 torr: 15 points N =51
0.01 < p <2 : 25
2 <p«<3 : 11
Range of 13: 0<qc« 4-104 Joules. T: Same as for Fig. 1.

Accuracy of isotherm data: Same as for Fiq. 1.
Smoothing parameters: a £ = 0.05aBRD

op
Figqure 3:
8{p,q): Same as for Figs. 1 and 2. n(q): Same as for Fig. 2.
Range of p: Same as for Fig. 3. N = 51
Ranne of q: 0 <qc« 6-104 joules. T: Same as for Figs. 1 and 2.

Accuracy of isotherm data: Random, normally distributed errors with a
standar’ deviation of 3% were imposed on the isotherm data.

Smoothing parameters: “opt = O.OOGaBRD
Fiqure 4:
o(p,q): Same as for Figs. 1-3.
-6 2 -6 2
nla) = (1.965-10'4)[9-(1¢942.10 }(q-8619) + e-(1.942-10 )(q-11492) ]

-5 2 -5 2
+ (9.826-10'4)[e-(4'854'10 )(9-10086)" o-(4.854.107°)(q-12929) ]

(q in joules)

Range of p: 0 <p <0.01 torr: 15 points N = 51
0.01 <p <1 : 30
l¢p«<3 N
Ranae of q: 0 <qgc« 8-104 joules. T: Same as for Figs. 1-3.

Accuracy of isotherm data: Random, normally distributed errors with a
standard deviation of 0.01% were imposed on the isotherm data.

Smonthing parameters: ¢
Fiqure 5:

Opt = 0.006GBRD

o(p,q): Same as for Figs. 1-4. n(q): Same as for Fig. 4.
Range of p: 0 <p <0.01 torr: b5 points N =18

0.01 ¢<p <1 : 10
1<p<3 : 3
Range of q: Same as for Fig. 4. T: Same as for Figs. 1-4.

Accuracy of isotherm data. Same as for Fig. 4.
Smoothing parameters: nopt = O'IaBRD
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