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OPTIMAL SMOOTHING OF SITE-ENERGY DISTRIBUTIC?JS
FROM ADSORPTION ISOTHERMS

Lee F. Brown and Bryan J. Travis
Earth and Space Sciences Division

Los Alamos National Laboratory, Los A?amos, NM 87545, U.S.A.

ABSTRACT

The equation for the adsorption isotherm on a heterogeneous sur-
face is a Fredholm integral equation. In solving it for the site-
energy distribution (SED), some sort of smoothing must be ca;ried out.
Tbe ot)timalamount of smoothing will give the most information that is
possible without introducing nonexistent structure into the SED.
Recently, Butler, Reeds, and Dawson (1) proposed a criterion (the BRD
criterion) for choosing the optimal s%oothing parameter when using
reg~larization to solve Fredholm equations. The BRD criterion is
tested for its suitability in obtaining optimal SED’S. This criterion
is found to be too conservative. While using it never introduces non-
existent structure into the SED, significant information is often lost.
At present, no simple criterion for choosing the optimal smoothing
parameter exists, and a modeling approach is recommended.

INTRODUCTION

Single-en?rgy adsorption isotherms, e(p,q), such as the Langmuir
and Hill-de Boer relationships, normally cannot model experimental
isotherms adequately. This has been recognized from the earliest
studies of adsorption, and so the heterogeneous nature of tinadso~bent
or catalytic surface long has bee:,perceiv~d as an important property.
The usual equation for the nonuniform-surface adsorption isotherm,
relating the amount edsorbed to the pressures and energ!es of adsorp-
tion, has embodied within it both a single-energy dsorption isotherm
(local isotherm) and an energy distribution fumtion n(q):

qmax
Ogr(p) = j e(p,q)~(q)dq (1)

‘rein

The function ~(q)dq is defined as the fraction of adsorption sites
with energies between q and q + dq; n(q) is called the site-erler9Y
distribution (SED) and has been the principal choice as a device to
quantify the hetero eneity of an adsorbent’s surface. Beginning with

!the work of Roginsky ~) almost forty years ago, studies in a continu-
ing stream have examined means of extracting Tl(q) from adsorption
isotl(ermsand analyzed the implicatior~sof the resulting distributions.
Reviews of thee efforts (3-5) show the extent of these investigations.--

Equation (1) is a first-kind Fredholm integral equation. Because
uf properties fnherent in tnis equation, some form of smoothing must be
carried out before an acceptable solution is obtained (e.g. ,6)t
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Sometimes the ex~erlmental Isotherm data are smoothed, as when the data
are apnroxlmated by an analytl~ function (e.g., S,Z). Other times the
solution Is smoothed, as In the regularlzatlon method for solving
first-kind Fredholm equations (cf.Q). Sometlnn?sboth data and solu-
tlon are smoothed (e.g., 3,9).--

The smoothing
Is necessary to
prevent nonexistent
structure from being
introduced into the
solution of Eq. (!).
An example Is
presented In Fig. 1.
Here a unlmodal,
gausslan SED was
postulated and used
with a I,anrmlr lo-
cal Izotherm to
qenerate an
Isotherm. Random
errors with a stan-
dard deviation of 1%
were lm~osed on the.

&o

a

an

aa

In

SITE ENERGY, kJ/MOL

Fiaure 1. Creation of Nonexistent Structure by

Isotherm data, and inadequate Smoothing. 1% RMS Error In Iso- -
reaularlzatlon was therm Data.
used to ●xtract the

L

—— Postulated Distribution.
SED. A low amount —.—- CY■ aLs. ~alculated Dlstributlonwith
of Solutlon smooth- Mlnlmum Least-Squares-of-Differences
I;q created the between Orlglnal Isotherm and Iso-
structured SED, therms fromAll Calc. Dlstrlbutions.
while the best ‘-----------%r t ■ 1oooaLs. Calculated Dlstrlbu-
aqreement between tlon Closest to Postulated Distrlb.
the postulated and -—
calculated SED requfred a much greater amount cf smoothing. This was
true even though the least squares crlterlon, t.e., the mlnlmumof the
sums of the squared differences between the Qenerated Isotherm data and
the Isotherms calculated using the extracted SED’S, said that the
structured SED was the best possible. Thus such a least squares
crlter?on can be a very poor aulde to the o~tlmal smothlnq. Some
oriilerdlrectlon 1s needed to tell what amount of smoothlnq w1ll alve
the moxlmrm amcunt of Information concerning the structure of the SED
without Introduclnq nonex~stinq components.

Uhlle slq~lflcant smoothinq 1s needed, too much smothinn ob-
v~ously can destroy information In the orlqlnal data. Our purpose is
to ex~mlne quantitatively this aspect of obtalnlng SED’S from
Isotherm, and to propose some quldellnes for telllnghowwch smooth-
Inq is optimal for a lev?l nf ●rror In the Isotherm data.

Another factor which has the potential of affectlnq the solutlon
q(q) Is the choice of local Isotherm O(p,q) In Eq. (l). Me do not
exomlne this factor here. There has been work In this area (e.g., ~),
and these efforts Indicate that uslnq dffferent, though still
reasonable, local Isotherms results In qualitatively Slmllar SED’S.
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Since the particular local fsothenn e(p,q) does nut appear to be a
crucial factor in the SED which results t’romsolvlng Eq. (1), the
Lanqmuir isotherm appears throughout this ~ork; it is the simplest
single-enerqy isotherm which also is physically reascmable.

PRELIMINARY CONSIDERATIONS—
The technique of rcqularization, developed by Phillips (~), Twomey

(10), and Tikhonqv (Q,~-12), is used throughout the present work.
P~enhui.izen and Knopal (13] recently have shown that regularization is
a superior methci for extractillqSED’S from adsorption isotherms. We
employ the formulation of Tikhonov, as it has been found to lead to a
straightforward method for solving Eq. (1) numerically. In addition,
work by Butler et al. (~) has built upon the Tikhonov formulation to
incorporate a nonneqativity constraint upon ~(q). These latter inves-
tigators also proposed a criterion for an optimal value of the
regulavization smoothinq parameter, a. We use the additions proposed
by Butler and his coworkers, and the algorithm employed for this wcrk
is presented in Appendix A. As was mentioned above, either the data
or the so;ution, or both, must be smoothed in the process of solvlnq
Eq. (1), The present work examines directly only the effects of
smoothing the solution; it is felt, however, that some of the results
may be aDp?icable to situations where instead the data are smoothed.

in spite of the long-reccqnized need for smoothinq of data or
solution when obtaininq SEO’S by solving Eq. (1), until very recently
no quantitative quideline had been proposed for .iudqlngwhen the op-
tfmal amount of smoothinq has been carried out. As mentioned above,
Butler et al. (~) pronosed such a criterion for use with
reqularization. Their optimal n was supDosetito smooth the calcu-
laterltilstributionso as to qive the most Drobable distrihutlon for the
existino level of error in the data. They pointed out that their
~uifielinewas probably a conservative on~, in that it might give some
dectree of oversrn ~thinq. Our alqorlthm for Implementing the BRD
(Butler, Reeds, and Dawson) criterion is included in Appendix A,

In a recent work (~), we calculated isotherms from postulated
q(q)’s, then used recwlartzation to determine the SED usinq Eq. (1)
and the qenerated isotherw data. Good agreements between postulated
and calculated unimodal and birnodol SEDis were obtained, and our
results suqqested that the best &qreement between postulated and calcu-
lated SED’S could be found at an ~-value one-tenth that Generated hy
the BRD crlter(on. In this poperwe investiqat?the optimal smo~thlnq
matter inureextensively, Lmount of error, characteristics of the peaks
In the SED, and number and locat~on of data points apvear to he aspects
which may affect the optimal smoathinq.

APPROACH TO PROBLEM— .——
To study the effects of different factors upon tl? optimal deqree

of smoothlnq, a num?rlcal approach was taken. Different situations,
each contalnlnq characteristicstypical of exppr{mental possibilities,
were examlnefl. In each sltuatlon an SED containing particular
properties wai postulated, a series of pressures chosen, and Fq. (1)
used to qwerate a vector of accurate isotherm data. Seven significant
fiqures were retained in each of the isotherm point~. Random, normally
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distributed errors, with a specified standard deviation, were then im-
posed upon the individual points ~f the qenerated isotherm. Uslnq the
loc!ifiedisotherm containing the error, reqularizationwas employed to
xtract a series of calculated SED’S, each 5ED corresponding to a dif-

ferent value of the smoothinq paraveter a. The best value of a
by the BRD criterion, ~RD, was identified.

Trial and error found the optimal value of a. Visual comparison
was used to identify the best a, as it was difficult to create
analytical criteria which would be satisfactory. Usually, the optimal
value of a occurred at the point just before nonexistent structure
began to a~pear in the solution. Once the optimal value of a was
found, it was compared with ~RO ‘o see if any consistency occurred.

The comparison between
aopt and aBRD was also used to see if

informationwas lost usinq aBRD which otherwise could be extracted

without creating nonexisting structure.

RESULTS

The results ere in Fiqs. 2-5, and the parameters used, distribu-
tions emt)loyed,and ranqes covered are ~resentetiin Appendix B.

Fiqure 2 shows
the results with a
?-peaked SED and a
1% RMS error. Here
the a of the BRD
criterion gives a
solutioil with the
two peaks, but the
solution does not
indicate the ?Ielqhts
at all well. It is
possible, however,
to match the peaks
quite well by usinq
a more sensitive
smoothinq parameter.
This indicates some
loss of information

‘f aBRD ‘s ‘s6d-

It may be noted
that the optlmtil
value of a In the
2-peaked, 1% error
situation is eaual—,-
to t).05aBRD, while

in the l-neaked, 1%

—.

me -

w) -

I
an aa no 14.0 no

SITE ENERGY, kJ/MOL

Figure 2. Comparison between Distributions from
Optimal 0. and a~Rl). Two-Peaked SED, 1% RMS
Error in 51-Point Isotherm.

— Postulated Distribution.
----------”-Calculated Distribution Ucing ~Bf{l),
—-— Calculated Optimal Distribution,

= CL05(XBND.aopt

error situation-(Fiq, 1) it is equal to 0.2aRRD. This indicates that

there rIuiybe little consistency between
althouqh the optimal a does appear to

the optimal a and the RRD u,
be always less than UBRD.

Brown and Travis



In Fig. 3, er-
ror in the data is
tripled over that in
Fiq. 2; other fac-
tors remain the’
same. With the
hiaher level of er-
ror, use of aBRD

destroys the nature
of the distribution.
Only the approximate
range of the dis-
tribution is
maintained. The op-
timal calculated
distribution does
CIivea good repre-
sentation of the
original SED, al-
thouqh the heiqht is
attenuated siq-
nif!cantly with the
increased error. In
this case.

= 0-.006aERD,‘opt
confirming the in-
consistencies
between aopt and

aBRD“

Figure 4
presects e 4-peaked
distribution. This
distribution was so
sensitive to error
in the data that an
error level of 0.01?
RMS deviation was
necessary to obtaiv
siqnlficant results;
hiqher levels of er-
ror resulted Ir
dlstrlbutlons that
djtinot reflect th~
distribution wltb
any realism
whatsoever. Even al
th!s level of error,
thouqh, fmcortant
Information is 10s1
if aBR~ is used h!

the smoothlnt
parameter. Whel

0.0
n ao no 14.0 no

SITE ENERGY, kJ/MOL

Fiqure 3. Comparison between Distributions from
Optimal a and ~13RD. Two-Peaked SED, 3% RMS
Er~or in 51-Poir;tIsotherm.

_.—

— Postulated Distribution.
............ Calculated Distribution USlng CX~RD.
---- Calculated Optimal Distrlbutlon,

a = 0.006aBm.
opt

L\<\
140

SITE ENERGY, kJ/MOL

Figure 4, Comparison between Distributions from
Optimal a and UBRD. Four-Peaked SED, 0.01%
RIISError in 51-Point Isotherm.

— Postulated Illstrlbution.
-------”--’Calculated Distribution Ustng a~K~*
—-—- Calculated OptfnlalD~stribution,

= 0.006~BRD.
aopt
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this is done, only three peaks appear in the resultinq distribution,
while the optimal SED gives the four peaks. The results reflect tie
true situation only qualitatively; the true nature of the peaks remains s
obscured even by this low level of error. Again, the optimal value of

the smooth?nq parameter is far removed from that resultinq from the BRD
criterion.

A comparison @f
Fiqs. 4 and 5 shows
the importance of
the number of points
in the isotherm.
Figure 5 results
from usinq one-tnird
the number of r~ints
that were used in
FicI.4. T;lepoints
were spread over the
same range. yet one
of the peaks has
been lost. Here
there is little dif-
ference in the
distributions from

aBRD and aopt”

I)ISCL’5SIONAND
CONCLUSION~

Butler et al.
said that their
criterion was a con-
servative one. When
extracting SED’S
from adsorption

1o.o-

ao-

0.0-

to -

SITE ENERGY, kJ/MOL

Figure 5. Comparison between Distributions from
Optimal a and ~BRL). Four-Peaked SED, 0,01%
RMS Error in 18-Point Isotherm.

— Postulated Distribution.
............ Calculated Distribution LJsiflg CXBRD.

—-—- Calculated Optimal Distribution,
u = o.laBRD.opt

isotherms, it is too conservative. Nonexistent structure never appears
when usinq a~RD, but significant information loss occurs freql!ently.

No other sim~le criterion now exists for choosinq the optimal
value of the smoothinq parameter. Nevertheless, tt is important that a
quid’ to optimum smoothinq be available. Otherwise, nonexistent struc-
ture may he reported if too Icw an a is used, One way of
approachin~ this difficulty is to carry out numerical calculations in
conjunction with the ex~erimerltal studies. SED’S can be postulated
with characteristics similar to that calculated, and isotherms gener-
ated with the level of error imposed on the data equal to that
estimated for ‘theexperiments being carried out. The optimal a maY
then be found by trial and error, as was done for the synthetic situa-
tions anelyzed hsre, This ma,yqive & reasonable estimate of aopt for

* a particular situation, olbeit with significant effort.
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NOTATION

c Nonnegative components of g in the additive smoothing term of
Eq. [A3), dimensionless.

D Function of a defined by Eq. (A9).
f Function of experimental variable, various units.
fe Experimental observations, various units.

Distribution function, various units.
; Ncnlinear differential operator.
I An integral
I

s various units.
The identity matrix

K Kernel of integral equation, various unit,s.
M Matrix defined by Eq. (A6).
N Number of experimental data points.
P Pressure, Pa.
q Energy of c!esorption,J/niol(negative of the enthalpy change upon

adsorption).
Gas constant, J/(mol)(K).

! Pbsolute temperature, K.
T Matrix defined by Eq. (A7).
t Variable over which distribution function g occurs, various

units.
k.1 Weighting factor, inversely proportional to the variance in the

data taken at point i.
x Experimental variable, various units.
a Adjustable smocthing parameter, dimensionless.
n Site-energy distribution function, l/J.
O(p,q) Fractton of sites of energy q covered at pressure p,

di~ensionless (the local isotherm].
Gross fractional surface coverage, dimensionless.‘gr

LITERATURE CITED

1. Butler, J. P., J. A. Reeds, and S. V, Dawson, SIAM J. Num.
Anal., 18, 381 (1981).

2. —Roginsky, S. Z., Compt. rend. acad. sci. URSS, 45, 61 (1944)

3. Zolandz, R. R,, and A. L. Myers, Prog. Fllt. Sep., 1, 1 (1979).

4. Jaroniec, M., A. Patrykiejew, and M. Borowko, Prog. Surf.
Membr. Scl., 14, 1 (1981).

5*

6.

7.

8.

9.

10.

11.

120

13.

Jaroniec, M., Adv. Colloid Interface Sci., 18. 149 (1983).

Phillips, 3. L.,!. Assoc. Comput. Mach., 9, 84 (1962).

Sips, R., J. Chem. Phys., 16, 490 (=.

Tikhonov, A. N., and ‘1.Y. Arsenin, Solutions of Ill-Posed
Problems, W. H. Winston, New York, 1!$7X.. —
Brauer, P., W. A. House, and M. Jar,:liec,Thin Solid Films, 97,
209 (1982).

Twomey, S., J. Assoc. Comp. Mac$., 10, 97 (1963).

Tihnnov, A, N.,‘Soviet Math. llok,,4, 1035 (1963a).——
Tihonov, A. N., Soviet Math. Dok,, 4, 1624 (i963b).

Papenhuijzer,J., and L. K. Koopal, in Adsorption from Solution

7 Brown and Travis



(R. H. Ottewill, C. H. Rochester, and A. L. Smith, eds.),
pp. 211-225. Academic Press, London, 1983.

14. Britten, J. A., B. J. Travis, and L. F. Brown, gaper presented
at 1982 Annual AIChE Meeting, Los Angeles, CA, November 14-19.
AIChE Symp. Ser. (to be published, 1984).

APPENDIX A

ALGORITHM FOR EXTRACTING NONNEGATIVE DISTRIBUTION FUNCTIONS
FROM FIRST-KIND FREDHOLM EOUA’TIONS

—

The general form of Eq. (1) in the text is

f(x) = ~bK(x,t)g(t)dt . (Al)
a

K is representativecf the experimental system and procedure. When
observations f(x) have been obtained from a system characterized by
Eq. (Al), a solution for g(t) would minimize locally the integral

I = Jd[fe(x) - /bK(x,t)g(t)dt]2 dx , (A2)
c a

in which fe(x) ‘epresents the experimental observations. In

regularization, a smoothing term is added to the l?tiSof Eq. (A2), and
the functional to be minimized is altered so that

I = Jd[fe(x) - JbK(x,t)g(t)dt]2dx + a /b[H(g)]dt , (As)
c a a

where H(g) is a nonlinear differential operator on g with nonnega-
tive coefficients, arid ~ $s a parameter. In the simplest
formulation, H(g) = g2, which !s what we have used throughout this
work. Applying variational calculus gives the necessary condition for
a minimum with H(g) = gz (e.g., 14):—

bd
ag(t.) + / { j K(x,z)K(x,t)dx}g(z)dz= ~dK(x,t)fe(x)dx ● (A4)

ac c

Equation (A4) can be put into finite-difference form:

(A5)

in which fjtr is the transpose of ~, and
~ac%fs $!r %: fr!~~ll~imatrices whose elements are the wlightin~

[c,d] and [a,b]. Butler et al. (1) suggested a means by which g(t)
can be restricted to nonnegative-values, ~~ldwe have followed their
proposal. Equation (A4), using a given a, is solved for g. The
poir,tsat which g is negative are recorded, and the evaluation of the

is not performed at these points. A new
~ua~~i!bt~!~~~, ‘a% ~~i~rocess is repeated. The iteration is con-
inued until no change In

?
is seen. The entire process is then

repeated for all subsequent va ues of a.
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To provide resolution of narrow peaks and near-discontinuities,a
variable Integration mesh is included in the computer code. For each
value of U, the Integration mesh is altered to allow finer zoning in
reqions where the emerginq distribution has large qradients.

9ut.ler et al. also offered a criterion for chocsing an optimal
V~lUf. Of a, based on the estimated error in the calculated q(t)
over t between a and b. This in turn depends on the error in the
data. To express their criterion, some tf’rmsare defired:

g= \tr@1$~ (A6)

~ S (~ + a~)q (A7)

: = a vector which satisfies (~ +a~)C = f in which (A8)
~ is evaluated only for points in ‘t ~fiere g(t) > 0.

A function of a is then defined:

(A9)

The crite,ion of Butler, Reeds, and Dawson states that the optimal
value of (t (aBRD) is attained when D(n) is a minimum.

When the levels of error in the various data points are not equal,
elements in t$e K matrix and f vector must be weiqhted. Let the
weights wf be-inversely pro~%rtional to~the variances in the data

points fi. The weights ~re scaled so that i~lwf = N. The slements

in the \ matrix are then weighted so that kij becomes wikij and

those in the ~e vector are weiqhted so that fei becomes wifei.

APPENDIX B

FACTORS AND PARAMETERS USED IN GENERATiON OF FIGURES

Figure 1:

e(p,o) = (4.464 .10-6 )(pi(eq’RT)/[1 + (4.464.10-6)(p)(eq/RT)]

(p in torr, q in joules)

= (3.931 .10-4)[e -(4.856 .10-7 )(q-8619 )21
?-l(q) (q in joules)

Ranqe of p: C < p < 3 +.orr. N=~l

Range of q: O < q < 3.50104 joules. T = 77.5

Accuracy of is.therm data: Random, normally distributed errors with a
standard deviation of 1% were imposed on the isoth(:rmdata.

N b
Smoothinq parameters: a = aL~ {Minimizes - J-K(xi,t)g(t)]2 }i [fe(xi a

i=l
a’ ().2a~R~ (a = 1000aLS)

Fiqure 2:

e(p,q): Same as forFiq. 1.

~(q) s (1,965.10-4)[e-(4.8S6*10-7 )(q-6600)2+ e-(4.856d0-7)(q-13Z!Oo)2 1
(q in joules)

Brown and Travis



Ranqe ofp: O < p < 0.01 torr: 15 points N = 51
o.ol<p<2 .. 25

2<P<3 .. 11

Ranqe of q: O < q < 40104 joules. T: Same as for Fiq. 1.

Accuracy of isotherm data: Same as for Fiq. 1.

Smoothinclparameters: aopt = 0.05aBRD

~iqure 3:

e(p,q): Same as for Figs. 1 and 2. n(q): Same as for Fiq. 2.

Range of p: Same as for Fig. 3. N = 51

Ranqe of q: O < q < 60104 .ioules. T: Same as for Fiqs. 1 and 2.

Accuracy of isotherm data: Random, normally distributed errors with a
standarf deviation of 3% were imposed on the isotherm data.

Smoothing parameters: = 0.006aBRDaopt
Figure 4:

e(p,q): Same as for Figs. 1-3.

Tl(cl) = (~o~6~o~~-4)[e-(1.942*1~-6)(q-861~)2+e-(1.9~2*10-6)(q-11492)21

+ (9.826*10-4)[e -(4.854 d0-5) (q-10056)2+ e-(4.854 .10-5 )(q-12929)2
1

(q in joules)

Ranqe of p: O < p < 0.01 torr: 15 points N = 51
O.ol<p<l : 3(J

l<p<3 .. 6

Ranqe of q: O < q < 8*1O’ ,ioules. T: Same as for Fiqs. 1-3.

Accuracy of isotherm data: Random, normally distributed errors with a
standard deviation of 0.01% were imposed on the isotherm data.

Smoot$ing parameters:
‘opt = 0.006aBRD

Fiqure 5:

e(p,cl): Same as for Fiqs. 1-4. q(q): Same as for Ficj.4.

Ranqe of p: O < p c 0.01 torr: 5 points N = 18
Oool<p<l : 10

l<p<3 :3

Ranqe of q: Same as forFiq. 4. T: Same as for Fiqs. 1-4.

Accuracy of isotherm data. Same as for Fiq. 4.
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aopt


