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STATISTICAL THEORY OF ELECTRONIC ENERGY RELAXATION 
0. B. Anderson**, J. D. Foch, M. J. Shaw, R. C. Stern & B. 0. Wu 

ABSTRACT 
A 'statistical method1 is developed for treating 

electronic and electronic-translational energy transfer in 
systems of atoms having multiple electronic states. This 
method is based on the assumption that the states produced in a 
collision are distributed according to the equilibrium 
distribution for the energy available to the collision 
partners. The approach is readily incorporated into Monte 
Carlo gas dynamic calculations. Results of such calculations 
are reported for several cases of relaxation of electronic 
energy in a static gas and in a cylindrical source flow. 

1. Introduction. 
Our interest in the collisional exchange of electronic energy is 

directed primarily to the problems encountered in the expansion of gases 
for various isotope separation processes, but there are many systems in 
which electronic energy exchange plays an important role. The 
statistical theory developed here is applicable to expanding gases as 
well as to a number of systems of practical interest. 

The statistical approach has been applied previously [1] to cases of 
vibrational and rotational energy exchange; but, to our knowledge, this 
is the first application to electronic energy exchange. It has also been 
applied in treating chemical reactions [4] and found to predict 
experimental observations in at least a few cases. For collisions of 
light atoms at low energies one should not, in general, expect the 
statistical approach to be useful in predicting behavior. However, for 
heavy atoms at higher energies, the strong interactions are likely to 
produce 'statistical' results and the approach may be expected to be 
useful. 

The method sat is f ies a l l requirements of momentum and energy 
conservation, microscopic r eve rs i b i l i t y , and equi l ibr ium. The Boltzmann 
d is t r ibu t ion of electronic states and the Maxwellian d is t r ibu t ion of 
veloci t ies are predicted correct ly for thermal equi l ibr ium. Since the 
energies and degeneracies of each state are included e x p l i c i t l y , the 
thermal properties—energy, enthalpy, heat capacity—are correct. 

In the sections fol lowing, we out l ine the theoret ical basis for the 
method, describe i ts use in Monte Carlo simulations (Bird type) of gas 
dy.iamics, and report results for relaxation of electronic energy in a 
s tat ic gas system and in cy l indr ica l source flows. 
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2. Statistical Theory. 

The method is based on the assumption chat the states, translational 
arid electronic, produced in a collision of two atoms are distributed 
according to the equilibrium distribution for the energy available to the 
collision partners. The distribution of states produced is random among 
the allowed possibilities with each possible combination of electronic 
states given a weight proportional to the relative translational energy 
of the separating atoms. Degenerate states are considered to be 
individual states. 

Consider first the simplest of cases: a two-state system for atom 
X, with electronic states X ] and X„ of energies E, and E. and 
degeneracies g, and g~. For a collision of X, with an inert atom M 
the result is either X, + M or X. + M: 

(1) X ] + M - X, + M, 

(2) X, + M - X 2 + H. 

With a total available energy E given by the sum of E. jnd the relative 
translational energy E •,, the probability of outcome (X. + M) is 
proportional to g, and E , for the departing atoms, 

(3, 4) P(X1 + M) ~ g, E r e 1 - g, (E - E,) 

Simi lar ly , i f (E - E2> > 0, 

(5) P(X2 + M) - g 2 (E - E 2 ) . 

Since the sum of the probabilities is unity, the probabilities are 

(6) PCX. + M) = gl ( E ~ E l ) , 
g, (E - E,) + g 2(E - E 2) 

(7) P(X 2 + M) = g 2 ( E ~ E 2 } . 
g, (E - E,) + g 2(E - E ?) 
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Next is the general case involving atoms with states 1, 2, 3, . . ., 
electronic energies E,, E-, E, . . ., and degeneracies g-p g 2. 
g, . . .. For a collision of X. and X.,, 

(8) X, + X^ - X k + X r 

the probability of a given pair of product states is given by 

(9) P(X„ + X,) - gk gl ( E " E k ~ E l ) 

J g k g 1 ( E - E k - E 1 ) + 

where the subscript (+) indicates the summation over posit ive values only. 
The rates of production of species may be calculated for a system at 

equi l ibr ium. I t is convenient, but not necessary, to f i x the co l l i s ion 
cross-section at a constant value S. For the two-state system at thermal 
equi l ibr ium, the d is t r ibu t ion function for re la t ive ve loc i t ies of 
co l l i s ion partners is given by 

(10) f ( v r p l ) - 1 /u_' 2 - J ! ! r e i 2 

2 (kl") * " " " re l reT * i 1*=) e 2kT v. 

and the distribution function for energy associated with relative 
velocity is 

For collisions of X, with M at energy E = E, + E , in the interval 
dE = dE r -J the collision rate is given by 

- E - E l 
(12) r c = A n ^ S e k T (E - E ^ dE 
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where A is a group of constants. The rate of formation of X- is given 
by 

- L _ ! l g 2 ( E - E 2 ) (E-E,) d E 

(13) r ] 2 - A n ^ S e K l g ] (E - E,) + g2<E - E 2) 
where A is a constant. 
Similarly, the rate of the reverse reaction in the same interval dE is 

" ^ gl < E - E , > ( E - E 2 ) dE 
(14) r 2 1 = An 2n mS e K l g, (E - E,) + g 2(E - E 2) 

At equilibrium, the forward and reverse reactions are equal and the 
combination of the two equations yields 

(15) h. . h e " ^ ^ 
n, ^ kT 

as required by the Boltzmann equation. 
Consideration of the direction of change after a perturbation from 

an equilibrium distribution indicates the system will approach 
equilibrium with increasing time. Extension of these arguments to the 
general case of multiple states is straightforward. 

We note that for collisions at a fixed total energy, the rate of 
production of a specific state X, is proportional to the energy 

112 E , = E - E. rather than the momentum (2JJE ,) associated 
with the departing atoms. This is as it should be. The density of the 
state X. is given by its rate of production divided by the relative 
velocity and is thus proportional to the momentum. 

The cross-section S may be made dependent on the states colliding 
and their relative velocity if such detailed information is available. 
When specific exchanges may be eliminated on the basis if experimental 
evidence or selection rules, their cross-sections may be specified as 
zero. The principle of microscopic reversibility places certain 
restrictions on the choices of cross-sections. 
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3. Monte Carlo Calculations. 

The method is easily incorporated into Monte Carlo calculations of 
rarefied gas dynamics such as those based on Bird's direct simulation 
method. The electronic states are simply treated as different species 
and the calculation of the effects of a collision is alt red to allow for 
energy exchange. The extensions to earlier calculations are 
straightforward and only a few details are required here. 

We specify a cross-section S for translational energy exchange 
together with an electronic energy exchange or relaxation probability 
P in the range (0,1). Collision partners are selected in the usual 
way and electronic relaxation is chosen with probability P . If 
electronic relaxation is not chosen, the departing atoms are the same as 
the colliding atoms, and their relative velocity is unchanged except for 
its direction. If electronic relaxation is chosen, the selection of 
departing atoms is made according to Eqn. (9), and the relative velocity 
for the pair is altered as required for energy conservation. 
4. Sta.ic Gas. 

We have examined a number of cases of electronic energy relaxation 
in a static gas of fixed volume. The examples here are those of 
hard-sphere atoms (isotropic scattering in the center of mass) having 
five electronic states of energies 0, 5, 10, 15, and 20 kO/mole. The 
temperatures reported below are energy-based and correspond to the 
temperatures for equilibrium systems having the same energies as the 
calculated system regardless of the distribution of velocities (for 
translational) or states (for electronic). The collision number N c 

used is twice the number of collisions divided by the number of 
molecules. One collision in a system of two molecules increases the 
collision number by 1.0. 

In Case A (Fig. 1) the gas has an Initial translational temperature 
T t„ of 1000 K, and an electronic temperature T , of 100 K with an 
equilibrium distribution of electronic states. The relaxation 
probability P r is unity. As may be seen in Fig. 1, the half-life for 
relaxation is about one collision per molecule and the relaxation is 
essentially complete by the time N = 8. 
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Fig. 1. Case A. Variation of electronic 
and translational temperature with collision 
number. 

In Case B (Figs. 2 and 3) the initial temperatures of case A are 
reversed: 100 K, T 1000 K, P r = 1.0. Again the • t r - iu« -v. ' e l - », • r 

half-life for relaxation is about one collision per molecule and 
relaxation is nearly complete by N - 8. The variation 1n the 
distribution of states is shown in Fig. 3 and the approach to equilibrium 
may be seen. 

Fig. 2. Case B. Variation 
of temperatures. 
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Fig. 3. Case B. Variation of 
electronic state populations. 

In Case C (Fig. 4) all the atoms begin in the highest electronic 
level i = 5 at a translational temperature of 100 K. The relaxation 
probability is unity. Again relaxation is nearly complete by N - 8. 
A translational temperature overshoot of the type observed by Koura (3) 
is seen as the translational temperature of species i - 1 is near 1400 K 
in the early stages and decreases thereafter toward the final temperature 
of 1223 K. The greater release of electronic energy to translation for 
the lowest electronic state 1s the cause of the overshoot. 
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Fig. 4. Case C. Translational temperature 
overshoot with P r - 1.0. 

The conditions for Case D (Fig. 5) are the same as for Case C except 
that the relaxation probability P r is set to 0.1. The behavior is 
similar to that for Case C when the collision number is scaled by a 
factor of ten. The translational temperature overshoot is missing since 
there are many more collisions to give translational equilibration 
between the five electronic states. However, for N less than 0.2 
there is insufficient data for a reliable determination of translational 
temperature. 
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Fig. 5. Case D. Translational temperature 
variation with P r «= 0.1. 
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In Case E (Fig. 6) the degeneracies of the levels 1 to 5 are 

specified as 1, 2, 1,4, and 7, respectively. At the start, all the 
atoms are In level 5 and the translatlonal temperature is 100 K. The 
approach to equilibrium may be seen in F1g. 6 in which the fractions of 
atoms in each state are plotted. The final temperature is 1017 K. 
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Fig. 6. Case E. Approach to equilibrium 
for degeneracies 1,2,1,4,7. 

5. Cylindrical Source Flow Expansion. 
The calculations for cylindrical expansion were carried out for the 

same five-state, hard sphere atoms as in Cases A-D. Two cases are given 
here: Case F, with P = 0.0 corresponding to a simple hard-sphere gas; 
and Case G, with P - 1.0 to give rapid electronic energy transfer. 
The Knudsen number, the ratio of stagnation mean free path to entering 
radius r. , is 0.1 and the Mach number is 1.1 for the entering flow at 
1000 K. Results are shown in Figs. 7 and 8 with temperatures T,, 
(parallel to flow), T. (perpendicular to flow), T (parallel to 
axis of source cylinder), and T , (electronic). 
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Fig. 7. Case F. Cylindrical flow with 
P r = 0.0. 
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1000 

Fig. 8. Case G. Cylindrical flow with 
Pr - 1.0. 

For p = 1.0, the relaxation allows Li, T , and T , to 
stay nearly the same as each other with Ti falling below as observed 
in prior calculations [2]. The additional energy available from higher 
electronic states results in higher temperatures than for P r - 0.0 as 
expected. An examination of the electronic state populations shows a 
mild departure from a Boltzmann distribution as r/r. increases 

in 
toward 20. 
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