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ABSTRACT

Teday's fastest computers achiow (! highsst level of parformance when proceraing wecciors.
Conaequenlly, conaidsrably effori has beani apant in the past decade devwsloping slgorithmy that con be
apresssd a2 oparstions on weciora [n this paper o define (we (gpes of weclsr architecture. We
diacwas the varialion of performance (hat can occur on @ wcter processer as a fumclion of algerithm
and implementation, the consequences of thy wariation, and the performance of seme bastc spuralore
on (Ae lwe clasuca of vecior orchitecturs. Wa alio diacuas (kg perfermance of higher level vperaters.
including soms that should be wied with cantion. Using both basic end high lewsl operaters, we discwss
vacior implementation of lechuigues for sslmng syatems of clliptic &ifference aquations. Included are
fast Porsaen selvars and point, hng, and conjugels grudient techniques.

1. INTRODUCTION

To provide the arithmetic pover required by large-scale sumerical simulations, the faatest
computers today (for example, the Cray-1 and the Cyber 208) incorporate vector procesaing. lo
such computers, s vector is aa B-tuple of nambers syyematically stored is memory. Becuuse Lhese
computers sttaio their highest havel of performascs whep precassing vectors, we will discuss
vectoritation of algorithme for solving systems of alliptic diSerene equstions.

In Section Il of this paper we define two types of vecLor architecture. We thea discuss thy
varistion in performance that canm ocinr oB & vector precesso’ v & futction of algorithm ard
implementation, the coasequcaces of Lhls variation, and the performanes of some baskc operatom on
the two classes of vecler architecture. We sl discum the >erformasce of snme higher level
eperators that should be weed with cantlon. In Sectica 11l we review the implemeatation of
techniques for solving sysiems of differvnce equstions wming the speraters diused In Section |l
Included are Fast Poisesn selvers and peiat, live, block, sad conjagant gradient scheme. Gection
IV summarises Lthe resuly,

. VECTOR PROCESSORS

Are Vector Algorithmy Obselviet

Recent developmeats have camed muny penple Lo ok Il Jestphooa Junction (JJ) wcanslogy
will eliminste the poed for veclor procussors’ Unfortusstely, the raswer s megative. Figwe |
displays the enecution bandwidih in ecaler mede of vupercompuien for the past o years. (We
define o super-omputer o bu the fastest compruier avallable at any point in time.) This dura shems
the diminishing growth mie ln scaler parformance of supercomputers. it further tuggests that thare



o an bound ca the scalar performance of computers and this data is comsistent with
projectad lar nerformance of computers built with JJ technology. For example, Robinson
projects thi 1) wchmology will produce scalar processors with a cycle Lime of 2-5 panceeconds (1);
Matisoo pro, 3 manossconds (2). Bacouwse JJ techmology will mot be available until the Iate
19808, it does eot provide s quastum jump in performance relative o Fig. 1. Furtber, because
some calculatious require s two order of magwitude increase in performance over the Cray-1 (3), JJ
techoology will 1ot provide scalsr precemsorm with procemisg power suflicient for future meeds.
Provision of that power will probably require incorporation of JJ tecbrology into v ctor processors,
sad perbaps muliple vector processors. Thus we asticipais s continuing meed for, snd interest i,
slgorithms that can exploit vector and muktiprocessing capability.
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Fig. 1. Esccution bandwndih of suparcomputars.

Performance as a Functlon of Vectorlsa:lon

A vector processor is & two-state machine. [n the scalar state, it is relatively slow, but geaeral

purpoee. In the vector state it is relatively fast oo vector operstions. For » given application, let
speedup be defiped ws

egcculion fime in acelar mode
’ eseculion lime afler seelorisalion '

Asmume that vector mode is p times faster than scalar mode. Let

am froclion of insiruciions thet son by wastorised,

If we vormalise the ocaln execurion time 1o unity, then

S - —b——
’ L3
(1-a)+ p

Figure 3 shews overall performance »a a function of « for three choices of p. Clearly 'a little
vecwrisation dees net pe far.'” High performance frem o vecter processor pecassitates & high
percentage of vertorisation.



The above expressios for S, smune that the same mumber of instructions we execwted in
both scalar und vectorised implementations. Seidom is this the case, so in practice 5, i even lass
favorable thaa indicsted sbove.
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Fig. 8. Specdup 00 0 funclion of vectoriration and
wector performonce relative (o scelar performencs.

Impact of Vector Procemsors oa Algorithma

Performunce on a vector proceseor can vary widely ss » function of algorithm sad
implemeatation. For example, whes solving dense Knesr systems of equations, Cray:| performance
varies as follows:

Mode of Implementationa Parformanes Level
Sealar Fortran -8 nepafiop®
Vactur Fortran $-30 megafiops
Vetor Asrebly Longuage 2-130 megaflops

o megaflap = ene million flaaiing point operations per ascond.

As we will san, the consequencas of this variation are substantinl becanse sa nay computer
Execution Time == N¢T

where N is the number of operations and T is the svaruge Lime per sperstion.

Os malar computers there bs Httle variation ia T. Thus, throughsut the age of electronic
enmputation, we have focnsed on misimising N, i.e, optimal compluxity. There is o large variation
io T eb vector procamors, so in devislag vecior algerithms we must minimise the preduct NeT.
Coassqasatly, we may find it desirable (o woe algerithms thai are nensptimel ia complenity,
provided we con de the sdditional werk st o sulicleatly bigh rete (4,8). For rxample, & numerical
simulstion at Los Alcmes requires the complimentary errer (0 be avaluaied milliens of Umes. This
function con be nicely spprezimated by the lnverse of o siuth degree polysemial ralsed o the
feurth power. Direct avaluation of this approximstiion on n scalar computer encompusons nigeificant
amounts of srithmetic operations. Oa ecaler computery, it Is tabulated and the functioa bs



evalrated throagh interpolation on thet table. This resuits in & smell number of arithmctic
operations bul requires table lookup. On » vector processor, toble lookup i relatively slow, and the
faster alternative s to evaluate the polynomial spproximation. So, although N is large, N*T is
1 TR

The class of algorithms that minimises NeT i probebly larger than the cluse that minimites
N. Thus, we have a Jarger “forest” in which to seck algorithms. However, care must be exercised.
A comsistest algurithm is deflned 10 be one thet s optimal ia arithmetic complexity. A litue
thought shows that for sufficiently large probiems a coasisiest slgorithm will always outperform an
lacomsistent algorithm, irrespoctive of the mode of implementation and computer archiwcture.
Ao, given Lwo comsistent algorithms on & Tector processor, we cannot settle their performance by
studying the coafficients of the low-order term in their complexity. The qucstion s which ¢ ve
prodeces the smaller sxecation time s » function of vector leagith. Decawse of the variation in
vector processor performance as 8 function of vector length and mode of implementstion, we often
encounter polyalgorithmic software oa vector processors.

Vector Arahitectures

We define two clames of vector arclitecture: memory-to-memory (MM) and register-to-register
(RR).

MM Architacture. Typically, for aa MM urchitecture to achieve its highest level of
performunce, i must process algorithme that satisly the following boundary conditions:

e Operaad end resull vectors must be stored contiguowsly in memory; thoat is, successive
cloments of the 7ector must be stored In adjacent memory locations.

e Vectors mwst be long.

Examples of MM architectare are the CDC 7600 when procemsing vectons from large-core memory,
asd the CDC Cyber 200 series.

MR Architecture. RR architecture typicslly involves some sort of cache between memory
and the procemsing 21its, with arithmetis operstionn belag performed oo coatemts of the cache.
These procassors achisve their highest level of performance whea processing algorithms that satlsly
the follywing conditlons:

o Data movement betwees memory and the cache bs minimised.
o Parallel execution of the functional units is maximised.

Examples of thls architecture are the 130B array procesor of Flostiag Point Systeme and the
Cray-l of Cray Research, Ine.

Basic Operators

The following bask operators are avallable in either hardware or software for MM aad RR
architactures:

Vector Dyadics

Inner Product

Matrix Multiply
Polysomial Evaluation

A discumion of matiix multiply and polynemial evalustion for RR architecture can be found is
Ref. 6. Matrix multiplication s a high-performaace oparation o vector procamsors «ven for banded
matrices; for example,
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where @ is pairwise multiplication . f vector elements and 3 is the vector x with the mt element
deleted (7). The following high-level operators also perform well on both architertures:

o Single FFT (5,8).

¢ The same operator applied to sets of data; for example, sets of FFTs (5,8) and sets of
trid.agonal systems (6).

o Banded system solvers (6,9).

We bave distinguished sets of FFT» from » single FFT becanse the performance for a set is
significantly bighcr than for a single FFT.

“Judicious Usa” Operators
The following vperators should be used with cauntion ou either architecture:

Recursions

Table lookup
Conditionals
One-to-many meppings
Many-to-ope mappings

Caution is required with these operators bacause their overall performance on a veetor processor will
be poor if they are pot combined with » sufficient amoust of aritbmetic. lacluded in recursions is
the solution of » single tridisgonal system, which generally docs mot perform well on a vector
processor (6,10). Table lookup bas implications for adaptive procedures. Poor performance of
conditionals impliea that we must forego our frequently used pointwise convergence test. See Rel.
11 for a discussion of prog.;amming copsiderations in the uss of & yector processor.

. MPLEMENTING TECHNIQUES FOR ELLIPTIC FROBLEMS

lo this section we discuss the implemencation of classes of techniques for elliptic problems
using the aforementioned cperators. A similar discussion was given by Ortegs and Voight (12).

Polnt Schemes

Point Jacobi schemes wre stiractire on either class of architectee bocause they are
implementable by vector dyadics and tanded-matrix multiply operator lnvelving long vectors (13).
These advantages bave prompied renewed interest in these techniques (14) with an objective of
producing Jacodi techniques with attractive convergence rates.

Foint successive overrelaxation schemes can be implemented on either architecture with wave
fronting oo a natural orderisg or by checkerboand ordering. Wave fropting mvolves processing the
mesh by diagonals. Because vectors must be stored contiguously on MM architectures, this is mot
an sttractive slterastive on them. It is feasivle on RR architectare. Using the chockerboard
ordcring, implementation on either architecture is fossible if the red and black points sre stored as
separa‘e arrays (15,18). It follows that wultigrid achemes are implementble on either class of
architecture, Of course, these Lechpiques isvolve one-to-many and many-to-oue mappings. These
mappioge occur In sets and ean be vectorized.

Line Schames

Line relaxation achemes are implementable by using operators for solviag sets of tridisgosal
systems coml'!ued with an odd/ever ordering of lines. Altermating directico schemes wre
implement.ble using operstors for solving sets of tridingonals. In Liae latier cose some care must be
wsed on MM architecture W produce veclors contiguously stornd in memory. For example,
Gaussisa ciimination on the tridiagonal can be wsed In ome coordinate direction apd odd-even



reduction in the other o produce contiguously stored vectors (17). On RR architecture, line
schemes are easily implemented in Fortran and achieve high rates of vectorisation (18).

Conjugant Grediant Schemes

Conjugsnt gradient techniques can be implemented on vector processors wsing sny of the
piviously discussed schemes ms the approximste factorization. Also, imcomplete Cholesky
vectorization can be implemented on cither class of architecture. On MM architecture odd-even
reduction bas heen wsed (13), and on RR architecture o variant of bluck eli cination is used (19).

Fast Polsson Bolvars

Fast Poisson solvers are implementable oo both MM and RR architectures by unsing operstors
to perform sets of FFTs and to solve sets of tridiagonals. Op MM wrchitecture, some eare is
required to epsure that the veciors manipulated are stored contiguously in storage. Workers in this
field include Buzoee (20) and Kascic (21).

SUMMARY

High performance on a vector processor necemitates a high percentage of vectoritation. High
percentage of vectoritation may require new data structures and new algorithms, even the use of
nonoptimal slgorithms. Perbaps surprisingly, suitable data structures and algorithms are available
such thet familiar scbemes for solving elliptic systems of difference equations can be bighly
veclorized for either memory-to-memory vector processors or register-to-register vector processors.
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