A DIAGNOSTIC FOR DYNAMIC APERTURE*

P. L. Mozton, J.-L. Pellegrin, T. Raunenhemer, L. Rivinn, M. Ross, H. D. Ruyt, W. L. Spence
Stenford Lincar Acederabor Center
Stanford Endiveraity, Slariford, Colifornia, Qus05

DE85 013059

INTRODUCTION

In large actelerators and low bets colliding bean atorage rings, the strong sextupoles, which are required to correct the chromatic effeets, produce strong nonilinasp foreen which ect on particles in the beam. In addition in large hadron atorage rings the superconducting magnela have signifeant nonlinear felds. To understand the effects of these sonlinearities on the particle motion there is currentiy a large theoretical effort maing both amalyhic techniques and computer traching. This efiort is focused on the determination of the 'dynamit aperture' (the stable acceptance) of both present and future neceleralora and storage riags. A great deal of progreas has been made in understanaing nonlinear particle motion, but very little experimental verification of the theorelical reaulta in available. In thls paper we describe 'dymatoic traching', a melhod being otudied at the SPEAR storage ring, which can be used to obtain experimental results which are in a convenient form to be compared with the thenretical predietions.

DESGRIPTION OF DYNAMIC TRACKING

In SPEAR it has been obecrved that for circulating currents greater than 2 ma the free betatron ocillation of a single bunch of electrons remalns eoherent. ${ }^{1}$ A echerent aignal proportional to the transverse displucemant of the electron bunch can be obtained by processing the atgnal from the bearn position monitor electrodes. The method of dynamic tracking consists of exciting a free transverse batation oscillation and then observing the transuerse displicement at two different asimuths in the storage ring. By chooeing the two pickup stations to have a $\pi / 2$ betatron phase differance, the beam pocition at the second station in proportional to the beam angle at the first station. Hence, a plot of the beam pesition at the tecond atation against the beam position at the first station (on a turn by torn basis) is equivalent to a phase plot of the partick motion et the first station. The tuso pichap atations used for dynamic tracking at SPEAR ate 16S17 and 15S18 rempectively which are very nearly $\pi / 2$ apart in betatron phae. Since the hipolar signals from beam position monitors are ton ahort to be read directly by at transient digitiver it is necessary to process the signals in such a way that we can obttin a reading proportional to the particles' transverse position on a turn-by-turn basia.

SIGNAL PROCESSING

Two identical delectors conatituta the interface between the pick-up electrodea and the cranaient digitizer. There detectors are similar to the circuits developed for the Transuerse Feedback System of PEP and have benn analyred eloewhere in more detail. ${ }^{3}$.The basie approch for this detection consiats of uing a single polse train an obtained from the sum of two adjucent electrodes, here 2 inward buttone, ano to process the pulses' crests only.

[^0]The two buttons are in a $\mathbf{4 5}$ deg configuration; aumming their aignals in aimply for the purpose oi deleeting the horizontal beam molion only. The power adder used to aceomplish this doen not mocify in any way the mensitivity of the pich-up aybtem which is

$$
\Delta x=\frac{\Delta V}{V} \frac{R}{\sqrt{2}}(\Delta x<R)
$$

where $R=100 \mathrm{~mm}$ is the rediue of : vecuum chamber and $\Delta V / V$ is the percentatse of mmplitudr :dnfation observed on the pulee frain. For a one miilimeler \mathfrak{l}.ch oscillation wa el a 1.4% modulation.

The block diagrach of Fig. 1 depicta it ? wide band preceasing of the beam pulaes modulation. By wi :band we mean that no filtering of any kind has been done, up io at least the tenth harmonic of the remolutioa frequency; chita inaures that the detector introduces no phast shlfta for the nignifieant eidebands of these hasmonics.

The frapert of the ateomatic gain conti loop (AGC) is to develop a puise train having aconstant a: zage (therefore independent of both beam cursent variations : ad the residual DC orbit distartions), and to sample the peak \& he pulae after shifting ita baseline by 4 constant voltage (the JC reference voltage). The trigger for this stmpling tit conve. sntly derived from the beam pulne traln itsell, since, except for the modulation riding on its crest, it hats a contant amplitude. The final output of each detector resombles a ptairense going up and down at the fractional betatron frequency, wach alep baving a time duration of 790 nsec, the onechine pariod.

MEASUREMENTS

A aingle bunch of electrons is excited horizoralily by pulsing one of the injection lifekero. The corkerent betatron of cillation enaplitude is a Bitear function of the kicker voltage, while the damping rata is lineerly relaced to both the current in the bunch and the chromaticity of the ring. In practice the coherent amplitude of the beam orcillation is displayed on as oscilloscope and the k orizontal chromaticity edjusted to obthin dampiag time from leas than 1000 tarna to damping times greater than 10,000 turra. Presently the maximum number of turnt thit etur be campled in 2018. Atter the kieker is fired, a train of clock pulses at the SPEAR ravolution frequency is used to ataple the staircane output aignals from the two beam pickup stations, once per rovolution. These ampled signals are digitized and atored on the floppy diak of a Nicolet digital ocope; the resulta are latar trenaferred vo a computer for analyais. It is important that the negatlve alope of the clock palse occur during the fiat portion of both of the staircuse signals from the two pesition mositors. Figore 2 showe a display of the sctual ataircase output from the procestor and the clock pulse train. Figure 3 displeys the sumpled signal as a function of revolution pumber and cleary showe the excitation of the colbereat cignal by the wherer and the subetequent decmy.

A peoudo-phese plot can be obtained by plotting the coheram sienal at position moritor 15516 againat the cohereat

Fig. 1. Signal processor for the beand position monitor pules.

Fig. 2. (a) The outpu! from the processor and

Fis. 3. Position x_{1} versua time.
migmal at pocition monilor 16517 on a turn by torn bearia (on the aume tarn the electron arrives at monitor $16 S 17$ before monitor 18S17). The fiect that the betatron functions are hoth
maximum and equal at the two position monitora means that the pseudo-phase plots of linear motion are circles when the phase diference is exectly $1 / 2$. There are two waye to vary the betatron oscillation amplitude ured in the pseudo-phase plots. The first is to vary the atength of the exelsing kicket. The second is to vary the position of the cime window where the motion is atudied and allow the damping to reduce the oscillation amplitude to the desired value. Both methods have betn used and give consiatent results.

Fig. 4. Preqdo-phase apmee for 50 sucewaive turna nt 3 different emplitudes, $\nu_{z}=5.284, e_{y}=5.185$.
The horizontal preudo-phase motion at throe difierent oscillation amplitudes for tunea of $\nu_{z}=5.284$ and $\psi_{y}=5.185$ is
 is limited by the fact that the signal processing is not adequate at larger amplitudes. The motion appeary to be mearly linear for all three ampiltudes shown in Fig 4. The elight departure of the motion from a perfect circle is due to the fiect that the phase shift between the two position monitors was meanured to be 0.44 x instead of 0.5 x . In order to eee a departure of the motion from linearity, studies were dont at tonae of $\nu_{2}=$ 5.312 and $v_{y}=5.187$ (the ehird order resonance $\nu_{x}=18 / 3$
is an intrinaic resomance driven by the sextupole configuration which has an even periodicity in SPEAR). The poeodo-phove motion at throe difierent ocecllation amplitudes for the tone of $\nu_{z}=5.312$ and $\nu_{y}=3.187$ in shown in Fis. 5. Note the appearance of the triangular shape phase motion at the lage amplitude while the phase motion in fuinty linear at the sumall amplitudes. This is indientive of phace motion near a chird onder resonance. In Fin. 6 all of the plose apace pointa for the large moplitude axcillation ane plotied to ohow the tringgolar shape more clearls.

The discrete Pourier trunsforms of the large amplitude otcillations displayed in Figs. 4 and 8 are ahown in Figs. 7 and 8 reapectively. Note the appearance of the additional frequencles, $2 v_{k x} 3 v_{s}$ and $4 \nu_{z}$ (alited to lexa than 0.5) for the motion at the tune $\nu_{z}=5.284$, and the appearance of the additional frequencies $2 \nu_{k}, \ldots, 5 \nu_{z}$ at the tune of $\nu_{j}=5.312$. The frequency near 0.04 , is both figures, is due to a amall amount of coherent synchrotron motion of the bean.

Fig. 5. Pseqdo-phase space for $\mathbf{5 0}$ auccessive turns at 3 different amplitudes, $v_{1}=5.312, v_{1}=5.187$.

Fig. 6. Psendo-phase apace incloding 1790 turns for the large amplitude oecillation in Fig. $5, \nu_{z}=5.312$, $\nu_{y}=5.187$.

Preliminary computer tracking studies using two different tracking codes have beon done for hattice configurations close so the one diseusced above. They show phase motion linear out

Fig. 7. Fourier tranaform of the large moplitude oscillution in Fig. 4.

Fig. 8. Fourier transform of the large amplitude escillation in Fig. 5.
to amplitudes of abous 4 em , much largez than those shown in Figs. ita 8 . A more detailed comparison between compuker tracking and experiment is planned for the near future.

ELECTRONICS 1INEARITY AND DYNAMIC RANGE

Our experiment has been conatrained, eo lar, by the tazbility of the electronics to process large beam oscillations (larger than 5 man). We have evidetn . that dislottions occur in the processing of lerge beam kichs. We have attempted to simulate bezra pulses having an initial modulation of large amplitude. decreasing exponentially, for the purpose of teating the linear* ity of the detectors. This test failed due to the lack of a linear modulatos (a modulator that does not ereate new frequencies) which could generate a cellibration aignal with the mentioned wave ohape. In bpite of the greal convenience oflered by the AGC loop, it does not seem well suited to handling large oscillations. Thus we are contemplating a modification of thls circoit to guarantee ite linear operation over a larger dyaamic range.

REFTRENCES

1. The SPEAR Groap, Proc. of IX but. Conf. on High Energy Acc., Gtanford, 1974; p. 338.
2. J.-L. Pellegrin, "A Normalised Detector of Beam Trastverse Oacillation, ${ }^{\text {P }}$ Nuel. Instrum. Methods, Vol. 16f, pp. 415-418, 1979.

[^0]: - Work supposted by the Department of Energy, contract DE-ACOS-7BSF00515.

