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propose an all-order result for the effective action.
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1 Introduction

. Gravity in two dimensions has the exceptional property that it allows for higher
spin extensions: the W gravity theories, [1, 2, 3] (reviews of this field can be found

in [4] and ,,specially in [5]).
' The basic structure behind these theories are W algebras [6], which are higher

spin extensions of the Virasoro algebra. These algebras are not Lie algebras in the
usual sense: the commutator of two generators cannot be expressed as a linear

combination of generators but contains also composites of the generators,

[T,,Td= Io,°To+ V,,ToTd+ Wob 'ToTT,+ .... (1.1)

The gauging of quadratically nonlinear algebras was investigated in [3, 7]. A

priori, one would be tempted to treat the composites in the r.h.s, of eq. (1.1) as

new generators. This would lead to an infinite dimensional algebra as commuting

composites with other generators yields new composites, etc. In [3, 7] we showed

this complication can be avoided, and that there is a natural way to incorporate

the composites in a gauge field theory. Many aspects of the ordinary Lie algebra
case caro' over to the non-linear case.

In this review we will concentrate on the case of W3 gravity, in which the algebra

eq. (1.1) has only linear and quadratic terms. A first step in the construction of

I,V3gravity was made by Hull [1], who constructed a classical theory of free scalar
fields coupled to W3 gravity in the chiral gauge. Subsequently, we extended these

results to a light-cone formulation [2], and in [3] we obtained a covariant theory of

classical IVa gravity coupled to n scalar fields. A similar program for classical w_¢

gravity was carried out in IS].

All of these developments were purely classical. In W gravities, the classi-

cal theory (meaning the gauge sector) is in some sense trivial as there are as

many gauge field components as local symmetries. In fact, it often occurs in two-

dimensional conformaUy invariant theories that a classical theory has as many

local gauge invariances as there are gauge field components. Classically, the gauge
sector is then pure gauge (up to moduli). However, at the quantum level, some

of the symmetries may become anomalous and thereby some gauge degrees of
freedom may become propagating.

A typical example for this is provided by a theory of free massless scalar fields

coupled to gravity. The gauge multiplet consists of four components: the zweibein.

The theo_" has a:[so four gauge invariances: diffeomorphisms, local Lorentz and

" Weyl im'ariance. Quantizing the theory, one sees that one of these symmetries
becomes anomalous. At this point two strategies are available: either one cancels



theanomaly througha suitablechoiceofbackground(whichwould be 26 scalar

fieldsinthisexample)so thattheover-allcoemcientoftheintegratedanomaly

' vanishes(theso-calledcriticalapproach),orone triestosolvethequantum theory

inthe presenceofpropagatinggaugefielddegreesoffreedom(thenon-critical

. approach).In the lattercase,integratingout thematterfieldswillresultin a

quantum actionforthe gauge fields:the inducedaction.The actionobtained

from thereby performinga path-integraloverthe (propagating)gauge fieldsis

calledtheeffectiveaction.

Ws gravityisanotherexampleofa theorywitha non-trivialquantum induced

action.The structureoftheanomaliesin the chirallight-conegauge has been

studiedin [9]-[15](some resultsin the covariantformulationwere obtainedin

[16]).Contrarytowhat happensforthegaugedWZW model orpuregravity,one
findsthattheinducedactionisnotproportionaltothecentralchargec.Rather,

itcan be givenby a I/cexpansion[10]:

Thisphenomenon isdue tothenon-linearitiesinthe W3 algebra.

The leadingterm ineq.(1.2),Fi°)[h,b],iscloselyrelatedtoa gaugedSI(3,R)

Wess-Zurnino-Witenmodel [14].The remainingterms ineq.(1.2)do not seem

tohave a cleargroup theoreticalinterpretation.Surprisingly,thesesubleading

termsseem to drop out intheeffectivetheory[15]:ithas been found thatthe

firstsubleadingtermsineq.(1.2)arepreciselycancelledby certaintermsarising

from thequantizationoftheleadingterm.These remarkableperturbativeresults

ledustotheconjecturethatthecompleteeffectiveaction(whichisthegenerating

functionalofIPI graphs)is,up tomultiplicativerenormalizations,givenby the

leadinginducedactionr(°)[h,b].All-orderresultsfortherenormalizationconstants

havebeen proposed[15,17].

As mentionedabove,anotherapproachtoW gravity,whichavoidsstudyingthe

gaugesectoraltogether,usescriticaltheories,i.e.,theorieswhicharesuchthat,by

a specificchoiceofthe background,allanomaliesaremade tocancel.By analogy

withordinarygravity,one mightexpectthatthiswould straightforwardlyleadto

'W strings'.However,theconstructionof W stringshas turnedout tobe much
harderthan theconstructionofordinarybosonicstrings.The reasonforthisis

not hardtosee.The bosonicstringrequiresa c --26 contributiontothecentral

chargefromthemattersectorforcancellationoftheanomaly.The basicVirasoro

• multipletconsistsofone scalarfield.Taking26 copiesofthistheoryand coupling

them togravityindeed)del& a viablestringtheory.In the caseof W3 strings,

thecancellationofallanomaliesrequiresa mattersectorwhich providesan ¢zact



realization of the I4/3 algebra with central charge c = 100 [18, 19]. The basic 14/3

multiplet consists of two scalar fields (c = 2). A priori one would expect that

taking 50 copies of this theory would save the day. However, the resulting theory
is not anymore W3 invariant. Its symmetry algebra contains besides the spin 2 and

3 operators also operators of higher spin. One way to obtain I4/3 matter sectors
with c = 100 is through the introduction of background charges in the scalar field

theories [1]. This was further analyzed in [13, 20, 21, 22]. However, the presence of

background charges leads to shifts in the mass formulas for physical string states,
so that the existence of massless states in the string-spectrum is in danger (indeed,

see[22]).Itremainsa problemtofinda non-trivial14/3backgroundwithc = i00
which containsmasslessspin-2and possiblyhigherspinstates.

Inthenextsectionswe willstudythreetypesofinducedgauge theories.We

willstartby reviewingthe gaugedWess-Zumino-Wittenmodel, thenproceedto

r studyinducedgravity,and finallyanalyzeinducedand effective14/3gravity.

2 Gauged Wess-Zumino- Vitten models

Inthissectionwe reviewsome basicand well-knownresultson gaugedWZW

models[23,24,25,26].The gaugedWZW model istheprototypeinducedgauge

theory.Many ofitscharacteristicfeaturescarryovertoinducedgravityand W

gravity.Infact,we willshow thatinducedgravityand W gravityactionscan be
obtainedfrom theinducedactionofa gaugedWZW model [14].Thislastfactis

a manifestationofa deeprelationbetweencertainLegendretransformsofgauged

WZ\V modelson non-compactgroupsand gravitytheoriesintwo dimensions[27].

We startwitha setoffreechiralfermions¢ = _T_, a = I,...,d withaction§

s[¢1= -1--}--/27rx

The actionisinvariantunder

6¢ = [_, ¢1 (2.2)

provided

O_ =0. (2.3)

_We normalizesuch thatif[Ta,Tb]= .fa_CTcthen _f,td_fbdc = -hga_, where h isthe dual

Coxeternumber. In a representationR we havetr(TaTb)- -zgat,where z isthe indexofthe

representation(z - h forthe adjointrepresentation).For S/(n,R) one has h - n and x = ½
forthe vector(defining)representation.Finally,we alwayswork ina two-dimensionalEuclidean

space.We willusecomplex coordinatesand denotethem by z and ;_(orz and _) insteadofz+
and x-.



The Noether currents associated to this symmetry are given by

1 b c

" J = ¢¢, J. - _Abc¢ ¢ (2.4)

' and their current algebra is an af_e Lie algebra, defined bythe following OPE's

k )__
ff.Cx)JbCy) = -_g.bC:t - y + (x -- y)-l/.bcJaCy) +'" (2.51

In the free fermion example the level is k = 0 classically (i.e., only single contrac-

tions) and k = h quantum mechanically (i.e., also double contractions are made).
Introducing a chiral gauge field A allows one to relax the conditions eq. (2.3).

Indeed, if we couple the gauge fields in a minimal way:

2rx 2_rz '

then the action is invariant under arbitrary variations of the form eq. (2.2) provided

the gauge fields transform as

6A = 3r/+ Irl,A]. (2.7)

We now consider the so-called induced action for the gauge fields A, to be de-

noted by F[.4], which is the generating functional for current correlation functions:

e-r[ AI= (exp If t, {J(z)A(z)}). (2.8)RX

In terms of Feynman diagrams it reads

F[A]= + + o I i

(2.9)



Introducing the notation 6oA - _ and 61A = [7, A], one easily shows that for
n>3

n externallines n-1 external lines

",
,

(2,_0)

There is thus an anomaly which arises from the lowest order (two-point) diagram.
Explicitly computing the variation yields

6F[A] = _ k..__/ d2xt r {,78A}. (2.11)2_rx

Defining

uo(=)= 2_6r[A] (2.12)k _A,(=)'

we deduce from eqs. (2.11) and (2.7) the following Ward identity

_u-[A,u]=BA. (2.13)

This Ward identity is to be viewed as a functional differential equation for F[A].
It has the following formal solution

In [24, 25] an elegant alternative formulation was developed for I'[A]. One

observes that eq. (2.13) states that the curvature for the Y_mg-Mills fields {,4, u}
vanishes. This condition is solved by pararnetrizing A as ,4 - _99 -1 and u as

u =_ Ogg-1. In this parametrization, eq. (2.7) becomes 5g = rlg and eq. (2.11)
becomes the equation of motion for I'[A(g)],

6r=-2_---_ e_=t_{o(_ge-')6gg-'}, (2._)



wkich is recognized as the equation of motion for the Wess-Zumino-Witten action

4rx
(2.16)

' with _x = dx3dx+dx - and ta+- = -1. Note that the level of the WZW model is

given by-k.

It is also easy to find the covaziant induced action. Indeed,

F[A,2] ffi r[A] + r_] - _ f dUxtr{A(x)_(x)} (2.17)27rx

is invariant under eq. (2.7) and
.

6_ = Or/+ fr/,A---]. (2.18)

Before proceeding we introduce two reference functionals: S[A] and :_[t]. The
first one is such that S[A = _gg-l] is the WZW action with k = 1. The second

one is such that :_[t = i_gg-1] is also a k = 1 WZW action, this time with the sign

of the Wess-Zumino term reversed. We have the following relation

S[A(t)] + _[t] = 1 f-2r"'_ d2z tr{A(t) t} (2.19)

where A(t) is determined by t, = 2r6--_,S[A ]. Similarly,

SIAl + .Tfr(A)] = _1._ f a2z tr{A t(m)} (2 20)2/rZ

with t(A)determined through A* = 27r6-_[t ].
From the free fermion theory we obtain an induced action given by

_ 1 In det DIAl = -hS[Al (2.21)2

Taking an arbitrary matter sector (with current algebra of level k as in eq. (2.5))
leads to an induced action given by

r[A]= -kS[Al. (2.22)

To quantize also the gauge fields, we now consider the follm_ing functional
integral

-F[.4] + 2rr"_kf d'x tr(tA) f
e-_V[_] = fj[dm]e - (2.23)



[_] is the generating functional of connected diagrams with propagating A fields.
A simple Legendre transform of this functional yields the generating functional for

ll_I diagrams. 4

We will approach the computation of the path-integral eq. (2.23) in three dif-

ways: using the saddle point technique, using the fact that the underlying
eory is a WZW model and finally by using the KPZ method.

The saddle point method starts by expanding P[A, t] around the classical con-

fi uration of A, denoted by A_, which is formally given by

A_j = (a- [t, .])-1 _t (2.24)

I: cluding first order quantum corrections we have

e-W[t] _- e-Wc'[t]{det(62F[A't]l_6A"6AbA=A,,) }-a/_ . (2.25)

I is clear that the first term Wcl[t] is given in terms oi"the reference functional

wd[t]= k3'[tj. (_.26)
!
[

Using the Ward identity eq. (2.13), one shows that

{_F[A,t]I _ det D[t] e2h-_[t]_2_S[Acl(t) ]der = = . (2.27)
\ ] ]6A"6AbA=A,! detD[Aca(t)]

Using eqs. (2.19) and (2.25-2.27) we find

[( )Jw[¢]= (_+2_+...);_ 1- i +"" _ ' (2.%)

For compact groups the level has to be an integer, in that case the first order

correction for the level gives the tug result. The effective action, which is the

generating functional for 1PI diagrams,

r,_,,[A] = min_,) W[_]+ _-_7 d2x_r(_A) , (2.29)

is now simply given by

w

i, • A]r_p_[A]= -(k + 2h)S [(1- ._+ . .) . (2.30)

8



Comparing with the induced action eq. (2.22), we see that only multiplicative
renormalizations have occurred.

0

Another method relies on the fact that we know that F[A] is a WZW model and
that we know how to quantize a WZW model. Performing the change of v_ables

' from A to 9 yields a Jacobian, which precisely shifts the level from -k to -k - 2]_.

From [28] we know that at the quantum level the effective current A = _99-1 gets
renormMizedto.4= k-_-_-k_t_gg-i.ThissuggestssnexactresultforFIpI[A]:

r,._{A]= -(k +2/,IS _ (2.al)

in agreement with eq. (2.30).

Finally, the last method is the KPZ method [29]. There one starts with the

fully covaziaat action, eq. (2.17). One first fixes the gauge by putting A = A,,,,,

where _ is some background configuration. Introducing ghosts and anti-ghosts,
the gauge fixed action becomes

1

(bac+ (2.3r[A,_, b,c]= r[A,X]+ _ / d_zfr 2J,ho.,$). 2)

In order that the theory does not depend on the gauge choice one has that

6_ = O. (2.33)

In particular, the two point function of the currents has to vanish. So the level of

the total current which consists of the sum of J_,,tt,, Joho,t and A has to x_.nish.
The first has level k, the second has a level 2h which implies that A has level

-k- 27_.This reasoning thus confirms the overall factor in the result eq. (2.31).

3 Induced gravity

Consider a free scalar field ¢, coupled to gravity in the chiral gauge (i.e., the
only non-trivial component of the metric is h__). Its action is given by

0

1 (0¢0¢ +hi= /e': 2ht),
where

r - -_0¢0¢. (3.2)



Classically,thisactionstillhas .alocalinvariance

6¢ = _0¢
4

6h = Oe+ eOh- Oeh. (3.3)

We expect this invariance to be broken at quantum level. The induced action F[h]
is defined by

11"

where the energy-momentum tensor satisfies the OPE

T(z)T(y) = _c(z - y)-' + 2(z - y)-_T(y) + (z ....y)-IOT(y) + (3.5)

In the case of the scalar field one has c -- 1. We will now consider the induced

action eq. (3.4) for a general conformal matter system of central charge c. In
exactly the same way as in the previous section, one shows that there is an

anomaly, which arises solely from the two-point diagrana. It has the form

c ld2 x eO3h" (3.6)6r[h]=-_2-'i

Definingthe effective current
,,

u(_)=_2__r[h]
-"c" -6h(z) (3.7)

we obtain the Ward identity

(0- 20h - hO)u = 03h (3.S)

which is to be viewed as a functional differential equation for F[h]. Though the

answer for r[h]is well-known [30], we will here derive it again to show a technique
which will useful for us later in the case of I41'3[14].

Consider a gauged SI(2, R) WZW model with level k in the chiral gauge. We
choose the basis for the Lie algebra as

0j [0 j [00]To= 0-1 ' T+= 0 0 ' 1 0 ' (3.9) .

10



We now reduce this model by imposing constraints on the currents 'u

u-- 1 0 " (3.10)

Using (3.1(}) and (2.13} we can eliminate A + and A O as independent variables,
giving

{OA- -({a2A - - u+A -)
A = , (3.11)

A- -{OA-

and the Ward identities reduce to a single non-trivial equation

[]

103A-. (3.12)(8- 2OA- - A-O)u + = -_

Comparing this with eq. (3,8), we see that they are the same if we identify

h-A-

u = -2u +. (3.13)

This observation implies that one can obtain F[h] from F[A] by a Legendre trans-
formation. Indeed, u+ is defined by

u+ = r SF[Ai at AO= A°(A " ) A+ = A+(A-) . (3.14)k _A-

On the other hand, the object u(x) in pure gravity is obtained by varying an
effective action F[h]. Reversing the order in which we differentiate w.r.t. A- and

impose constraints, we find from the chain rule

u+ = _ 6.__ F[A_,A+(A_),AO(A_) 1_ r,kSA-

From (3.13) and (3.7) we have

u+ 1 6_6r[h]= --u = . (3.16)' 2 c _h

Combining eqs. (3.15) and (3.16) yields

r[h]= 6k
=

11



We can thus conclude that the induced action for gravity in the light-cone gauge

is given by a Legendre transform of a constrained WZW model of level c/6. The

relation k -- c/6 is the leading or classical term in the so-called KPZ-formula,

which relates the central charge c of the gravity sector to the SI(2,R.) level k

[29, 32].
In [27] we develop a framework in which the constraints eq. '(3.10) arise nat-

urally as gauge choices combined with going to a second order formalism (i.e.,

eliminating auxiliary fields).
A local expression for F[h] is obtained by using a Gaussian parametrization for

m(2,R)

(1 ¢)(_-, 0)(1 0)(3._s)9= 01 0 A f I "

Solving the constraints in (3.10) yields

102/¢ =
2 OI

A2 1
= 0"7 (3.19)

and

u= (Of)-= (Oafi)f -_O'fO=f)

3f
h = 0"7' (a.20)

where we used eq. (3.13) and the fact that A = Ogg-_ and u = Ogg-1.

Substituting the Gaussian decomposition into the action in (3.17) one obtains

F[h] - c f dax eo_.v[_6AOo¢Ozf OwA]72r

= 24-'-_cf d'x O']3fO_(ln Of) , (3.21)

which is indeed the action for induced gravity in the light-cone gauge.
The transformation rules which give rise to the anomaly can be read off from the

Ward identity. However they can also be immediately obtained from the present

construction. From 6u = _7/+ [_/,u] and the constraints, one gets

_O_/-_(a 2- "__0 I/ - u+_/-)

,7= ]. (3.2'2.)7/- --_0_-

12



Eq. (2.7) implies then

6h = _e + eOh- Oeh (3.23)

(as in eq. (3.3)), where e = r/-. The stress tensor transforms according to

" 6u = 03e + _Ou + 20eu. (3.24)

Comparing this analysis to the work in [32], we see that the difference lies in

the constraint imposed on u. While in the present work we impose the constraints

u- = constant and u° --- 0, in [32], one imposed u- = constant and ¢ = 0.

It is interesting to note that while our constraints identify f with the coordinate

transformation y(z, _), the choice of [32] (see also [33]) resulted in the identification

of f with the inverse transformation F defined through

= (3.25)

Inthework of[32],theinducedactionforgravityintermsoftheF variablearose

completelyfromthekinetictermoftheWess-Zumino-Wittenaction,whilehereit
arisesfrom theWess-Zuminoterm.

The laststeptobe performedistheanalysisoftheeffectivetheory.Thiswas

donein[30,29,31]fora fixed(trivial)topology.Again thereare_-axiousways to

obtaintheeffectiveaction.The firstone isthe saddle-pointmethod. One finds

thatat thesaddlepointtheWard identityeq.(3.8)impliesthatwhen 03h - 0,

the threemodes of h satisfyan SI(2,R)affmecurrentalgebra.This ishardly

surprisingifone look_backateq.(3.11).At thesaddlepointthe centralcharge

c isrelatedto thelevelh ofthe currentalgebraas k - c[6.Again a factwhich

followedfrom thepreviousanalysis.Through the computationofthe Gaussian

correctiontothesaddlepoint,onefindsthat,throughorderi/c,theIPI(effective)

actionisrelatedtotheinducedactionby multiplicativerenormalizations.On the

basis of the KPZ analysis [29], the following all-order result haz been proposed [31]

(3.26)

where FL[h]isrelatedtotheinducedactioneq.(3.21)through

C

• r[h] = _._rt,[h]. (3.27)

The renormalized level k, is givenby
w

13



4 Induced and effective W3 gravity

The action

1 f (41) "sic]= _ o¢'_¢', i = 1...,.,,

isinvariantunder

6¢_ = _0¢_

6¢' = AdqkO¢/O¢ k (4.2)

provided

_e=OA=O. (4.3)

Note that we introduced d symbols a_jk, which are totally symmetric. The com-

mutator algebra of these transformations closes if

dk(_Jdt)''k= 6(iJ6t)_. (4.4)

It is given by

[6(_:),6(e_)] ¢' = 6(_s = e_0_, - _ae_)¢ _

[_(_),6(A_)]¢' = 6(A3 = 2A_a_,- _0_)¢'

[6(_,),6(_)]¢' = 6(_ =-2(_,0_=- _,2o_,)o¢,0¢_)¢ ' . (4.5)

The _ and A symmetries are the rigid W3 symmetries of the scalar field theory.

The currents associated with these synu'netries are given by

10¢'c9¢_T = -_

W = -_d_J'0¢'OCJO¢ k . (4.6)

The classical current algebra (Poisson brackets, which means that only single con-

tractions are made) is given by

T(x)T(y) = 2(z - y)-2T(y) + (z - y)-_cgT(y) +...

T(x)W(y) = 3(z - y)-2W(y) + (z - y)-_OW(y) +...

1

W(z)W(y) = (z - y)-2(TT)(p) + -_(z - y)-] cg(TT)(y) +... (4.7)

14



The presence of composite operators in the current algebra is a direct reflection of
the fact that the algebra of the transformations in eq. (4.5) has field dependent

, structure coefficients.

At the quantum level, the current algebra is more involved. It can be shown

that the currents T and W in eq, (4.6) precisely generate the quantum Ws algebra:

¢

TC_)T(_)= _(_- y)-' +2(_- _)-_rcy)+(_- y)-_oTCy)+...

TC_)W(_)= 3(_- _)-_W(_)+(_- _)-_aW(_)+...

C )-6

+(_- y)-' [2,A(,)+ _00'r(y)]

+(_-y)-' [,OA(,)+ _r(y)] +.... (4.s)

where

A(z) = (TT)(x) - _o 02T(x) (4.9)

and
16

Z = 22+ 5_' (4.10)

provided n = 2 (c = 2) and the d symbols are traceless. If n _ 2, the WIV OPE

will contain an additional dimension 4 operator. Taking the OPE of this field with

the W current yields again new currents, etc. It is possible [34] to modify the

carrents T and W with terms containing higher derivatives of the ¢i, so that the

I'V3current algebra eq. (4.8) is satisfied with adjustable value of the central charge
C.

In this paper, 'we will concentrate on pure Wa matter systems, which by def-

inition lead to currents T(z) and W(x) that satisfy the quantum W_ algebra eq.

(4.8) for some value of the central charge c. Further details of the microscopic

structure of those matter systems will not be relevant for the coupling to l,V3grav-

ity. Though we will not make any restrictions on the value of the central charge,

for concreteness one might wish to keep the c = 2 example given above in mind.

Note that in [10] several results were obtained for the scalar field model with an0

arbitrary number n of scalar fields and no background charge couplings.

In the same spirit as the two preceding sections, we want to make the symme-

tries eq. (4.2) local. To do this we introduce the W3 gauge fields h__ and b....

For the 2-scalar field theo_', where we define B = b/(2i), minimM coupling yields
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the action

S : 2"-#1d2=(0¢_¢__ ha¢_a¢__ "3 , . ,

which is gauge invariant if the gauge fields transform as

6h : _e + eOh- Oeh + (AOB - BOA)O¢_O¢ _

6B : OA+ 2AOh - OAh + eOB- 20_B . (4_12)

Let us now discuss the quantization of this theory. The induced action is
defined as

1

where T and W satisfy the OPE's in eq. (4.8). In the scalar field realization with

c = 2, where we have b = 2iB and the currents are as in eq. (4.6), the induced
action has a diagrammatic expansion given by

+ ... (4.14)

16



where the lines are

h b

(4.15)

Note that diagrams with arbitrarily many loops appear. The e anomaly arises
in the same way as in the preceeding section: it comes from the 1-loop 2-point

function. Indeed, trader the variatiom

6h = _e + eOh - Oeh

6b = tab- 20eh, (4.16)

one has

6,r_d[h, b] = c /-12--'_ d2z eO3h. (4.17)

The structure of the A-anomalies turns out to be much more delicate. Requiring

that all _-independent terms proportional to a single u or v in the A variation of

r[h, b] cancel, yields the first order A transformations

1 (2 A_b - 3 cgAO2b+ 3 a2AOb - 2 03Ab)6a = 3"_

6b = vSA+ 2AOh - OAh, (4.18)

and with these rules one has that

360r lr

Here

A,,(z) (A(z)exp 1 f d_y[h(y)T(y)+ b(y)W(y)])/e -r[^,_]= -_

- "
-2 _(_- _),_(_)- 6(z- y)o_(_) - _o_(_), (4.2o)

17



where

_(=)=12__r_d[h,bl6h(=) " (4,21)

The first term in the r.h.s, of eq. (4.19) is precisely the anomaly one would expect

from a spin-3 symmetry. However, there is a second term which is the result of the
non-linearities in the W3 algebra. As is dear from eq. (4.20), the regularization

gives rise to subtle effects, which are subleading in 1/c.
In the limit c --, 4-c_ one can neglect the regularization effects. Indeed one has

I 2 and eq. (4.19) becomes 6r=d[h,bl- ° I d_zAb_bthen that c-_A,8 - F_u , -g_;_ -

45-._7f d2z A(2Ob+bO)uu. In this limit we could reduce the A anomaly to the minimal
one by adding an extra term to the h transformation rule in eq. (4.18)'

-- 4(A0b- bOA)u. (4.22)
_h

However, it turns out to be more natural to make a different choice for 6extrah'

6e,t,=h = 8(Aab- bOA)u. (4.23)

For this choice we have that u and v transform according to the operator product

expansion in the limit c ---, 4-oo (using that _u(x) _ _ dy(eT + AW)(y)u(z) and

similar for 6v)

,Su = 03e + eOu + 20eu + i--sAOv+ OAv

6v = eor . 30ev + 0sA + (2A03 + 90A0 =+ 150=AO + 100aA)u

' .8(20A . AO)uu, (4.24)

where

v(z) = 3601r6r=d[h, bl
c _bb(x) " (4.25)

The algebra on the gauge fields and the effective currents is closed

[,_(_,),,_(_)1= _(_= _=o_,- _,o_=)

[6(,,),,_(,h)]= ,_(_= 2,_:o,,- ,,o,_)

[_(A,),6(A=)] = 5(e3 = _-6(20al, a= - 30=a,o')A=+ 301,0=I= - 2A,03A=)

+8 (A=OA,"- A,cg,_2)u). (4.26)

t
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As we will see later oa, lt is precisely the choice eq. (4.23) for _o_:r,h which will

emerge from a constrained Sl(3, R) theory. With this choice, the A anomaly is not
the minimal one:

. c /d, xAOSb . c jd a6 r d[h, bl= - 3eo'-"_ _ x A(20b . bO)uu. (4.27)

A useful check on this result is the analysis of the Wess-Zumino conditions for

consistent anomalies, which are indeed satisfied (compare with our analysis in

Using the chain rule for 6F_,d and eqs. (4.16), (4.17), (4.18), (4.23) and (4.27)
we find the final form of the Ward identities in the limit c _ =i=c_"

v_v = [3 v 0 + (0v)] h + D2 b, (4.28)

where DI and D_ are the 3rd and 5rh order Gell'and-Dickey operators given by

D1 = 0s+2uO+u ',

D_ = Os+lOuOS+lSu'O2+gu"O+2u'"+16u28+16uu ', (4.29)

and the primes denote v_.

This is the situation for c _ :f:_. Solving eqs. (4.28) for Fib, bl yields the

induced action in this limit, which we will denote by F_[h, bl. Later in this section

we will explicitely compute this action, using a constrained Sl(3, lt) WZW model.
Before coming to this, let us first comment on the finite c corrections to the \.Vard

identities. The induced action of W3 gravity can be expanded in even powers of the

field b. The full result for the b-independent terms in Find[h, bl (1-loop diagrams)
is given by

r[°][hbl= c f 1 1i_d , 24"-'r d2z 82h °h" (4.3o1

The exact result for the terms quadratic in b (2-loop diagrams) reads

Flairs, bl= c findL'°' 720"--"_ OYVY, (4.31)

. where _ = _- hD and the scalar field Y is given by

1 O+ Oh Ob+ 2b --------Oh (4 32)
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The leading '3-loop diagrams' (i.e., the terms with four b fields and no external h

fields) is given by

q

-_r'[4][h = O,b] = 60-'--_.w_c 1 [i] . 5.2Bc17"'_[III, (4.33)

where [I] and [III are given by

[I] = /d2z (2b_b- 3ObO_-ob+3O2b_b- 2O3b_b) _ (2bO_-_b+ 3ObO_._b) ,

where

Since the quantity _c is of order 1 for large c, one sees here explicitely the onset of

a 1/c expansion for the induced action as in eq. (1.2). As such, the Ward identities

will be modified for finite c. Indeed, from eq. (4.33) we see that structure [I] gives

the three-loop contribution to eq. ('_,.28) while structure [III is subleading in the
1/c expansions and modifies the large c Ward identities for the induced action'.

_u = D,h+l [3v_l+2(Ov)]b,

$, =

4,( 1Q_b.bO s)+._ 20b O "OQ_' . cD(b3h>--1,bh,.o .). (4.36)

We will now explicitely compute Fi, d[h, b] in the limit c _ d:_, denoted by

F_c[h, b]. We lo]low essentially the same method as in the previous section, but
this time we start from an S/(3, R) model. Our analysis closely follows that in

[14]; note that some partial results were also obtained in [35, 36, 37].
\,Ve choose the following basis for SI(3,R):

Tl-ell-e_, T2-e2_-e_

T-1 = e_l, T-2 - e3_, T-a -- e31, (4.37)

where e_j are 3 x 3 matrices. (%.)kt- 6_k6jl. We impose the following constraints

( 0 u+_ u+3 )
u = 1 0 0 . (4,38)

0 1 0
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Six of the eight components of the Ward identities _Su- [A, u] = OA can be used

to express the fields A1,AU, A*_,A +2 and A +s in terms of A-a,A -3 and their con-

' ' jugates u +_,u +s

. A -2 = -OA -s+A -l

A 1 = -3(02A -s- 30A -1 _ u+_A -s)

A' = -2(0'A-3 - 30A-t- u +' A -3)3

1

,, A+_ = _(03A -s- 30_A -1 _ O(u+'A-3)) + u+XA -a + u+3A -3

A+_ = 2(03A-Z_ _02A -1 - O(u+'A-3)) + u+SA -33

A +3 = 2(04A-S _ _03A -' - O_(u+aA-S)) + O(u+3A-3)+ u+3A -_3

(4.39)

The remaining two identities are non-trivial and read

_203,_ -x _.-- (_ -- 20,A -1 -- ,4-_O)u+I_ (2A-30 + 30A-3)fi +3

5A -3 = 1(2A-303 + 90A-30 _ + 1502A-aO + lOOaA-a)u +_12

_30(u+lu+a)A-S _ 2u+lu+lOA -3

4-(0- .4-a0- 30,4-x)fi +3, (4.40)

where

._t-a = A-' _OA -3 , ft+3 = _+3 1- (4.41)

Comparing eq. (4.40) with the W_ Ward identities for c ---, :i:oo in eq. (4.28), one
finds that they are identical if one identifies

1

tt =a _tt +1
- , v = -157_ +3

h = _-a, b = 7-1A -3 (4,42)

• and puts 72 = -2/5.

The action F_[h,b] for induced Wa gravity can now be obtained from the

Sl(3, R) action in exactly the same way as we obtained the action F[h] for induced
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pure gravity from S/(2, R). We find

k f (u+2A_1r=[h,b] = -Fwzw[A-',A -3]+ -# d2z + 2u+3A-3), (4,43) ,

where we should put

c (4.44)k- 2_"

The latter identification agrees with the leading term of a W3 KPZ formula [32, 9].
We see that the induced action for W3 gravity takes the form of the Legendre
transform of a constrained WZW model.

In order to obtain an explicit form for the action we introduce a Gaussian

parametrization for S/(3, R):

(1 00)(100)g= 0 1 ¢_ 0 A_' 0 A 1 0 . (4.45)
0 0 1 0 0 AIA2 ]'3 fl 1

From u = Ogg-1, we can solve the constraints eq. (4.38),

aA
/_ = b/-T

¢I = -_(c3f,)-'O2fl - _ (O(Of3_)-'O2a-f_1"(V).Of3

o3AoA- oAo3A
¢_ :

3 O:fac3f, - OfaO:f,

63 = 0¢=+¢2:

OA )-2 1A,3 = (0(-5]_) (af,)-

OA )-i_:_ : a(yT)(al, . (4.46)

From A = _gg-1 and eq. (4.42) we obtain

_ ( sa-l_f_) "_O3f 3a f ' - Of 30_f ' b- 2Obh = O(oo_IAf_)3 02f30fl-Of3c32fa

_, (Of3Of, - Of_Of3)

b -- _/ (a2f3af, _ o2flof3). (4.47)
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The effective currents u and v axe

+_\iT) a_,iT,) +_,iT,+_7) _,_, ) (4,4s)
A different parametrizatlon, which stays closer to the Polyakov paxametriza-

tion, is given by

r, A = Y

fa = If 2 + g. (4.49)

In lineaxized form, this paxametrization was already found in [10], In these vaxi-
ables one has that

h = (l+_2g)-l($_-_+_f_,9)

OoI/oslo/*
b = (4.50)(al)_(1+ _y)'

= (of)-_a. (4._)

Pure graviw now simply corresponds to putting g = 0.

We can now substitute the Gaussian decomposition into the _ction in (4.43).
There is now no cancellation between the kinetic term of"the WZW model and the

uA correction term and one finds the following surprisingly simple expression for
the induced action

F=[h(f_, fa), b(f_, fa)] -

- 48-"_"f d_z O + O +

OfaOf, - _f, Ofa IDAHO - OA_8 (8A:

- _ \
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T,j + )]} (4.52)- k "
By using the expressions in etl. (4.46), this can be further redt_ced to an expression
in terms of 3"1and f3 only. An expression of F in terms of h and b seems hard to

obtain, as it is not clear to us how the relations (4.47) or (4.50) can be inverted t

explicitly.

Fron: 6u : (97/. [r/, u], we can express r/1,r/2,r/-_2 r/+l and r/+a in terms of

r/-1,r/-a,u+l and u +3. The result can, of course, immediately be read off from •

the fact that 0u -[A, u] : OA and 6u - [r/, u] = Dr/have a smrilar structure. For
the transformation rules of the effective currents u and v we find

6tr : i_e + eOtt + 20_tt + l Aov + _OOAV,

6v = eor + 3Oer + 0hA + (2A_ + 9c3AD2 + 15O2AO+ 100aA)u

+8(20A + AO)uu, (4.53)

where

e = r/-1 __Or/-3

A = ,.),-lr/-a (4.54)

which agrees with eqs. (_.24). Combining this with 6A = _r] -4-[r/, A] and eqs.
(4.42) we obtain

8

+i-_(Aab- bOA),,

6b = cab- 2aeb + OA+ 2AOh - OAh, (4.55)

in agreement with (4.18) and (4.23). Combining the solution of the constraints

with the fact that (6gg -1) = 77yields

..TAOIIDln27[(O2faOfl - a2f, c?f3)]6£ = coy:+.y_02£- _OAOf:-

After the change of variables eq. (4.49), we find

t
6f = tOf-TAi)2f- 70AOf-37A
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@ = _Og+ 7,_(0./')2+ 7_O=g- _TO,_Og

' " owg) (4.57)k al + i + _=g •

' We will now study the quantization of the W3 gauge fields which leads to the

effective action. At first sight, the presence of subleading terms in the induced

action seems to cause problems. However, we found evidence, which we will show

in a moment, that the subleading terms in the induced action donor appear in the

effective action, since they are cancelled by further terms that arise from quantum

loops of the gauge fields h and b. We will argue that the effective 1PI action will

be equal, up to multiplicative renormalizations, to the leading term in the 1/c

expansion of the induced action.

Before we proceed, we first introduce a (c-independent) reference functional

FL[h, bl, which is such that the leading terms induced action can be written as

r_,d[h,b]= _r__ [h,b]+ ..., (4.5S)

where the dots indica.te terms of order 1, l/c, etc. The first few terms in FL[h, bl
are

1 o_ 1 O5

= hgh+ bgb+.... (4.59)
We have that FL[h, bl satisfies the Ward identities eq. (4.28) with

u = r._-_l L, v = 30_r PL. (4.60)

A related functional WL[U, v] is obtained from rL[h,blby a Legendre transforma-
tion

where h(u, v) and b(u, v), which we denote by hL(u, v) and bL(u, v) for later refer-

ence, are deterndned through the relations in (4.60) and we have that

hL(u,v) = -Tr_---_WL bL(u,v) = --30r

5
J

, _vWL (4.62)

. The induced action can now be written in terms of these reference functionals

c PL[h, blr_°d[h,b]= ]3
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32 1[n]+ O(b'h>-'¢, .)+25.7!7 ' '"

+o(_1, (4.63) .
where the consecutive lines are the terms of order c_1 and O(1/c), respectively.

The generating functional W[t, w] of connected Green's functions is defined by

-r,.d[h,b]+71/ d==(_,t+bw)e-W[tl w]
I"

= j[dh][db]e . (4.64)

The Legendre transform of Wit, w] yields the 1PI or effective action. In t,.'rms of

diagrams, the complete perturbative evaluation of Wit, w] involves two indepen-

dent loop expansions, one with matter loops due to the path integral over ¢ and

the second with gauge field loops due to the integral over h and b. The net result

can be analyzed as follows in terms of a 1/c expansion for large c (which is the
weak coupling regime).

In the same spirit as in section 2, we approximate the path integral (4.64) by

the saddle-point contribution. This leads to the leading term in Wit, w], which is
simply the Legendre transform of the induced action. Thistree result should then

' be corrected by further terms coming from diagrams with h and b loops. We now

observe that the kinetic terms for h and b in the induced action are proportional to

c, such that 1/c plays the role of Planck's constant in the path integral (4.64), while

the interaction terms in the induced action are of order c or subleading by extra

. powers of 1lc (see (4.30), (4.31), (4.33) and (4.63)). From this it follows that the

the loop-corrections to the saddle-point result are suppressed by a strictly positive

power of 1/c as compared to the leading terms in the saddle-point result.

The 1lc expansion of the induced action r_.d[h,b]in (4.63) leads to a 1lc

expansion of the saddle-point contribution to W[_, w] when the latter is viewed as
a function of tic and w/c, i.e.,

/ tat XSOc/ w _ wwit,w] = _6__,_d_=(_)_(_) ,, d_=(_)_(_) + ...

32 l[Ii][b..., 05 (_0.. )]25.7!r _ w +... (4.65)

Through the orders c and c°, this saddle-point contribution can be written as

ri°d[h, bi- 1_/ d_= (h_ + bw), (4.66)

D
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, = 7 w) seewith h(t w) hz,(_t, ss°w)7 and b(t,w) = bL(_t, 3s° , (4.62). Using the
relation (4.61), one finds that the leading term _FL[h,b] in Fred[h, b] leads to _he

We shall now concentrate on the leading c° terms in the full expression for

, WIt, w]. These come from two sources: (i) the explicit terms in the second line
of the induced action (4.63), evaluated at the saddle point, and (ii) the 1-loop
corrections in the second path-integral (4.64). The latter can be computed by

standard determinant techniques, as was demonstrated by Polyakov (unpublished,

see [31]) for the caze of pure gravity. The relevant determinant is the determinant
of the matrix of second derivatives of the induced action Fred[h, bi with respect to

h and b, evaluated at the saddle-point. In here we may again replace h and b by

their leading parts hr(_t, _.7-w) and bL(_t, .-_--w) (we will assume that this has
been done in what follows). One finds the following contribution to Wit, w]

1 , s'_ 3:

Wit, w;1 - loop] = : In det . (4.67)Su $..2v
6b 6b

Since we are only interested in the terms independent of c, we can in this 1-

loop calculation replace the full induced action by the leading term _Fn[h,b].
This means that we can use the Ward identities (4.28) to calculate the functional

derivatives of u and v w.r.t, h and b. It turns out that the determinant factorizes

and one obtains

l,V[t, w; 1 - loop] =

-: L Ws : 3 vO + (Oy) D2

(4.68)

where _.i = 0 - hO- j(Oh) and the operator L is given by

L = -(10_b + 1502b0+ 90bO 2 + 2bi_ + 32u0b + 16bOu + 16buO). (4.69)

Our task is now to evaluate these two fundamental determinants. The basic

covariant differential operators _j and Di, which can be defined for all integers j,

• can be expressed in terms of the reference functionals F_V[h] and I,V_V[u] defined

by the relations

h 6wt=,,
a,

rF',

0u = Da h, (4.70)
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according to

In det V i -- (6j2 - 6j + 1) _._..... rL [hi,
6

In det Dj = -j(2j + 1)(2j + 2) Wt_[u]. (4.71)6

One would therefore expect that, at least to leading order, similar formulas can

be established for our determinants of 2 x 2 operators, this time in terms of the

W3 reference functionals rL[h,b] and WL[u, v]. In order to actually compute the

determinants, we shall use a representation in terms of auxiliary b-c systems and
make use, once more, of current algebra.

Ii"we define two b-c systems by the following actions,

' 7r L V3 c_ '

7r 3 vO + (Ov ) D_ C2 '

(4.72)

then the determinants in (4.68) axe just the partition functions of these auxil-

iaxy field theories. Using operator techniques, one can explicitely evaluate these

partition functions [15]. The results read

In det L Va

50rL[h,bl+272/w(h, blb+ 64 1[ii1+... (4.73)"d _ 25.7!,, '

( D, '-.,_a+-_(a,_))
In det lo : -12 WL[u, vi + .... (4.74)

3 vO + (Oy) D2

These expressions are exact through the orders h", b2, b2h and b4.

We are now ready to combine the above results into an expression for the

effective action, which is exact through the orders h", b2, b2h and b4 in the leading

1/c correction to the saddle-point result. To our great satisfaction, we find that
the explicit non-local structure III] precisely cancels between the induced action

and the determinant corrections. The remaining terms are

 ooojW[_w]=_WL[ t,----_]-_WL[ _,--- --_rL[h,b] _b+ .' c c . rc 10 "" '

(4.75)
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Once more using the saddle-point equations, we can rewrite this as

, 1----- +...c 1+--+...c ....
(4.76)

We thus find that the computed result for W[t, w] can be summarized by the
simple formula (4.76). We now propose that the exact, all-order result for the

,,

functional W[t, w] can be gotten by simply completing the 1/c expansions indicated

by the dots in (4.76). This leads to the formula

W[¢, w] = 2 kc WL [Z(')¢, Z(_)w], (4.77)

where kt, ZCtl and ZIW) are functions of c that allow the 1/c expansions

k_ = -- 1----+...
24 c

12(50 )
Z (t) - -- 1+---+...

C ¢

--_- "_c . .... (4.78)

Obviously, the way we arrived at this proposal is rather cumbersome and one would

expect that more streamlined derivations should be possible. We are convinced

that the non-trivial cancellations that occured in our computations are a true sign
of the integrability of this quantum field theory.

We remark that the result for k, is consistent with the formula

kc=-4--8 50-c+ -2)(c-98 -3, (4.79)

which is the conjectured outcome of a KPZ type analysis of constraints in a more

covariant formulation of Ws gravity [32, 9]. A proof of this formula will have

to wait for a more Mgorous formulation of the cova_ant theory. Recently, the

following Ml-order results for the Z factors have been conjectured [17]:

Zltl = 1
Z(_) --" (4.80)2(k, + 3)' v/'_(k, + 3)3/2 •

They correctly reproduce the singularity structure that one expects, and are in
" agreement with the expansions eq. (4.78).

The Ml-order result for the effective action, which is defined to be the Legendre
, transform of W[_, w], follows from (4.77):

[1 30 bi= 2k_rL 2k_Z¢_}h' 2k_Zl_) " (4.81)
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5 Concludingremarks

The main new featureofW gravitytheoriesisthatthe underlyingalgebraic

structureisa non-linearlygeneratedLiealgebra.The factthatcompositeoper-

atorsappearin ther.h.s,ofcommutatorsconsiderablycomplicatesquantum 14/"

gravity.Indeed,boththeloopexpansiondue tointegrationoverthematterfields
and thatdue totheintegrationoverthegaugefieldsinducesubleadingnon-local

termsina I/cexpansionofthequantum theory.Inparticular,therearenon-local

termsintheWard identitiesfortheinducedactionforfinitec,which make itim-

possible(atleastforus)toobtaintheinducedactioninclosedform.However,as

we justsaw forthecaseofWs, thesubleadingnon-localitiespreciselycanceleach

otherwhen one computestheeffectiveaction,withasnetresultthattheeffective

actionforft.Ritec is,up tomultiplicativerenormalizations,givenby the induced

actioninthelargec limit.

ltwould beinterestingtoseeii'themagicalcancellationsoccuringinW3 gravity

can be understoodfrom thepointofview ofan underlyingsimplertheory.For

example,one might trytoobtainthistheoryby reducinga 'masterW gravity'

basedon some versionofWoo or W1+oo. Among the candidatesforthisarethe

algebrasWoo(k)[38],whichtruncatetoWN ifk = -N (notethattheseareagain

non-linearalgebras),ltisnotyetclearto,Iswhetherornot suchreductionscould

indeedclarifythestructureofquantum W3 gravity.

One ofthemajor openproblemsinthestudyofW gravitiesremainstheunder-

standingoftheunderlyinggeometry.Inthepreviouswe saw thatthepropagating

degreesoffreedomofquantum IV gravityinthechiralgauge aregeneralizations

ofBeltramidifferentials.A deeperinsightintothemeaningofthesedifferentials

may be obtainedwhen one formulatesW gravityin a 'W superspace'.Some

preliminaryresultson thegeometrywereobtainedin[39,21,14,40,41].

Presently,we areinvestigatingthecovaxiantformulationofinducedW gravity

[27].Thisamounts toa covariantLagra_Igiandescriptionofthework presentedin

[42].Quitenaturally,thisresultsina Yang-MillslikeformulationofW, gravities,

where the gauge group isthe I¥,,anti-deSittergroup: Sl(n). Startingfrom

thisone might hope,throughthe theoryofcosetsand inducedrepresentations,

togaina good understandingofW geometry.This would be analogousto the

constructionofsupers'pacesupergravitytheoriesalongthelinesof[43],combined

withthe constructionofthegeometrythroughhomogenous spaces(a reviewof

thiscan be foundin[44]).
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