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ABSTRACT

In the earthquake response analyele of structures
In which the damping characteristics between the ele-
ments varies significantly the standard mode auper-
positlon method cannot be used. Several approxima-
tions have been proposed that allow the application of
Che modal superposition method for cases in which the
damping matrix la not orthogonal with reapcct to the
tnodal shapes. The moat commonly used approximation la
buaoil on u composite damping value which is employed
in the notliil uquutlonu. This value la a weighted
average of the damping valuea of the individual compo-
nents of the structural model. In thla paper an in-
vestigation of the errors introduced by the composite
damping in the response of simple structures la pre-
sented. The results given in the paper can be used
for benchmarking the approximations In more complex
systems for which composite damping solutions are
employed.

NOMENCLATURE

C£ : damping coefficient
C M : elements of modal daoplng matrix
[Cj : system damping matrix

transfer functions
modal transfer functions
vector of transfer functions
stlffncaa coefficient

(K) : stiffness matrix
miisa

IMJ . : maun matrix
mass ratio

ui : system absolute displacements
x. : free-field input

aystern displacements relative to baee
participation factors
uncoupled damping ratio

il : oomposlta damping ratio
complex function defined In lq. 7.3

(•) : modal shape matrix
[a] : matrix dufinud in Eq. 12
utj_ : uncoupled frequencies

«o> : modal frequencies
m : frequency variable

INTRODUCTION

The dynamic analyala of linear structures la the
time domain la conventionally done using the solution
of Che corresponding undamped eigenvalue problem
(I.e., mode shapes/ frequencies). Results are then
obtained by some combination of -the modal responses
using modal damping. There are many practical ccsea,
however, In which the system damping matrix cannot be
dlegonallxed with the same undamped mode shapes that
diagonalise both the mass and stiffaess matrices. The
soil-structure Interaction problem la a typical caae
of this kind. More generally, such damping matrix be-
havior la encountered in structural models having In-
dividual components with large differences in damp-
ing. In such easae It la required to combine low with
high damping. Two basic problem* are encountered
First, one single value must be aaelgned to each mode
which reflects effects from significantly different
energy dissipation. Second, since such a damping ma-
trix cannot uncouple the equations of motion, off-
diagonal terma are usually Ignored.

Various approaches have appeared la the litera-
ture for the treatment of thla problem. Comparison
between them la rather controveralal. The moat common
one la based on some weighted average damping/l)
usually referred to aa composite damping, K more
sophisticated approach to thla problem la bt.eed on
matching transfer functional2). It la hardly ueed
In practice because of Ita numerical involvement,
couree the problem can be attached directly uelng
plex eigenvalues/vectors^' and thas avoiding th«
approximations Introduced by the composite damping.
Such a solutloa, however, dees met neve the advantage
of the classical medal superpoaltten. In practice, It
la desirable to uae composite damping In coaJvmctUft
with the —Isaaad medee, even though thla approach
does mot give, In general, accurate results.

Thia paper sceeemts a cemprehemelve aeeralaal of
the degree of the approximation due to compeslts
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imping. Thaoratlcal and nuaarlcal avaluatlona ara
(Ivan. Tranafar ruactlona foe alapla dynaalc ayataaa
ara l ivtn and caaparad to thoaa ganaratad uaiag
eaapoalta daaplng. It la ahown that arrora bacoaa
l«rjtr aa tha dlffaranca In daaplng baevaan coaponanta
lncraaaaa.

SYSTEM DEFINITION

TO alapllfy tha praaaatatlon of tha aubaaquant
traataant cha &y»fm eonaldarad conaiata o£ two
aaaa-spring unita In aariaa. Tha paraaatara ara "i,
C£, kj; 1-1,2 whara a,c and k danota aaaa, daaplng
end aciffnaaa eoafflclanta raapactlvaly. Viaeoua
dnaplng la conaldarad. Tha aaaa «2 ia connactau to
a aovlng ayacea which la axcltad by x.. Tha ayataa '
la ahown In Fig. 1. A two-atory building undar an
aarthquaka axcltation can be rapcaaantad by auch
aathaaatieal aodal.

Tha abaoluea dlaplseaaanta of a j , aj ara:

ui "

U2 •

(l)

whare y^, y2 ara tha dlaplacaaanta of m\, mi
with Ttcpact to tha roving ayatea. Tha uncouplad
paraaeccra ara:

2

V

for 1 - 1,2.

(2)

Tha following aaaa ratio It introduead

laaad on the abova, tha aquatloaa of action of tha
ayataa In taraa of y\, J2 can ba aat uaing tha
paraaatara

aaaa : W -

damping : [C] -

aelffnaaa: [K] -

TUHSFU FUNCTIONS

(4a)

c,+c2|

-k.

,(u) rapraaant tha tranafarLat HyjCa), Hy,(
function batwaan tni axcltation Xg and tha
dlaplacaaanta yi, ft o f th* ayataa. Thaaa
functiona aay ba obtalnad by aatting

•xg(t) - a
1

yt - Hy(-> a
lut (S)

Subatltutlon of Eq. 5 lato tha aquatlona of motion of
tha ayaeaa givaa

m.

K,

K.

77777777777T7777777777T
.Hg. I - Two dagraa-of-fraadoa aodal

-I

(6)

whara « la tha fraquaney varlabla.

Aftar parforalng tha nacaaaary aanlpulatlona In
Iq. 6 it la obtainad

n(«)Hy(u) - «2-i« I *«,'

n(u)Hy(tii) - M
2-lu 2{1«1(q*l) -ttj

'whara

(7a)

(7b)

(7 c)



1 -

•nd considering ch« orthogonality of the modes with
respect eo ch« stiffness Mtrlx

(Mb)

From Gqt. 7 It may be iecn that the transfer
function Hyj(«), Ilyjfu) depend on the
uncoupled parameters given by Eq. 2 *t well aa the
mass ratio q. Thla aolutlon for tranafer functions
will be referred subsequently to aa exact aoluclon, to
reflect the fact that the actual daaplng aatrix [C]
(Eq. 4b) was used.

COMPOSITE DAMPING SOLUTION

A set to two classical modes can be obtained foe
the system In the lnat aectlon by using the matrices
[MJ and [K] and neglecting the daaplng aatrix [C].
Let u,,,, î j, represent the nodal frequencies
for the first and second aode respectively. Their
values are obtained fron the known frequency aquation

(6)

The corresponding aode shapes are

[•] -
•ll +12

*21 *22

nnd nre aasuaed to be normalized to the aass aatrix,
i.e.,

t»]T[M][»] . [I]

Let Zi, ?2 represent the composite aodal daaplng
for the first and second aodet respectively, then

(9)

(10)

(11)
E k, of,

J-l * J1

where 1-1,2 and matrix [a] la

•ll"*21 '*12"*2S
(12)

The coaposite damping given by lo.. " t« Mnoelmtad
with thu aiiiKonnl toraM en,, C22 of tho awdal

mutrlx, L.a.,

l-t<l2"2e2A2

Using Cq. 11

it can be seen that Eqs. 13 and 14 are Identical. A
alallar result can be obtained for E2.

laaed on the above, modal solutions can be ob-
tained using Ci, (2* Off-diagonal terms C12,
C2i of the aodal daaning aatrix [*]T(C][»] are
therefore neglected-to have uncoupled equations. Thla
approximation la inevitable since classical modes are
aasuaed. Using the modal equations, the trenafer
functions between input excitation Xg and dlsplace-
nen? components yi, >2 of the system ate

{H(*t)J

where

(IS)

DAMPIHC VAJHATIOHS

The coaposite daaplng values (1.(2 were
computed sa functions of the syatea paraactcra.
Systems with uncoupled frequency ratloa In the range
of 0.1 - 10 were considered. The damping of the
individual components of the aystem was chosen to
represent situations which reflect large damping
variations. Figure 2 fho-js the composite damping of
both modes at a function of the aystea frequency end
aaaa ratio for {j • 2Z and C2 • 30X. The aass
ratioa are ranging froa 0.01 to 1.

MODE I
MODE 2 MASS_RAIIO_

~ > 10.0

w.o
FREQUENCY RATIO /,

fig. 2 - Csameslte maaalag ae faction ot system
paraaeters. Ceafsneat damping: d'2X,

30X.



From Fig. I le may b t m g that for frequency re-
mealier than ome, the coapoeite damping of the

firae made ia aaallar than that of th« emeond mode.
Furthermore, tha commeaita damping aaaociatad with tha
firat aoda approechee to tha value et IX at low
frequency ratio*, For tha i w frequency range, tha
aacond aoda damping approaches tha 30* value, for
frequency ratioa | t H M t than on« the firat mode la
more duped than Cha aacond. Soma axeaptlon appear*
to ba tha eaao with larga « u ratio, i.a., equal to
10. Similar observations can ba made from Fig. 3 in
which lar|ar dlffarancaa in tha damping of the system
components ia uaad, i.a., Ci - 2Z, €2 - 50%. In
thia caaa, at tba low fraquancy range tha firat soda
approaehat to IX whereas the sscond aoda approaches
che 50* value.
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Fig. 3 - Composite damping aa function of ayatea
parameters. Component damping: r,mtiz.

SYSTEM MAXIMUM AMrLWICATIOHS

The i»axim»» nodulua of tha ttanafar function with
raapaet to rjie frequency variable u raflacta the M X I -
au> amplification of the ayata«. The approxlaation
Introduced by the compoaite danplng on theie aBpllfi-
catloni can be aeaeaeed by coaparinc the two lolutloni
•Ivan previouely. Particularly, thia approximation
enn ba eonputad fro- tha difference between the exect
aolucton »lven by Bq. 7 and the coapoaite daaping aol-
ution given by Eq. 15. Thlt difteronee ia expreaiod
in percent of the deviation fro* the exact eolution.
Kcaulta lira ahown in Figa. * and 5 for tha two

« 1 X . C2-301. Froa Pig. 4 it can be aean that
for lystaa frequency ratioe in the vicinity of one the
coapoalce eaaping give* uncomervative rcaulta for
••all U I I ratioa. Alao froa Pig. 4 it aay be con-
cluded that the coapoalta daapiag prediction, arc gen-
erally caaeervatlve for second OOP of the ayatea. By
coapariag Piga. 4 and 5 it can be aeen that a* tha
daaping coatraat between the coaeonenta of the ayatea
baeoaaa larger the unconaervaclaa for DOP-l increaaea
whereaa the conaervatlaa of DOF-2 pradlctlona in-
creaaa. Purthenota, for higher aaea ratioa the ap-
proxlaatlooa aaaoclated with coapoalte daaping aolu-

- tlona are generally eaall.

MUlTI-PHHitfCHCY IMTOTS

For aultl-fraquency input* the ayatea aapllflca-
tlona are aenaltlve to the frequency dlatribudon of
the eyatea tranafer function*. Thua the coapoalt*
daaping approximation* cannot ba aaaeased on the bail*
of maxlaua amplification only. The difference between
the tranafar function* representing the exact and coa-
poalte daaping solution* should ba viewed In tera* of
its variation with raapei:t to the frequency variable
u. Tranafar functions fur both these aolutlona are
shown together in Figs. 6 to 9. The ayataa paraa*tera
are: maaa ratio 0.01 component damping Ci«2Z,
52"5OI. System frequency ratioa are 1,2,3 and 4.
The difference between the dotted and the solid line
repreaenta the approximation due to composite daaping
for the various components of a given multi-frequency
input. From the** figure* it can be concluded that
compoalte damping solution* undereatlaate the response
of the fir»t degree-of-freedom of the syatea for the
frequency components of the Input which fall within
the frequency range of the maximum difference between
the two solution*. The approximation for the second
dcgree-of-fre*dom, however, la uiually lcaa and on tha
conservative side.

It should be pointed out that Figs. 6 to 9 have
been aelceted from the rcaulta of a parametric evalua-
tion in which a wide variation of ayatem parameters
are considered. For low eyetea frequency ratios the
difference between the exeet and composite damping so-
lutloni la small. Similarly, aaall deviations are as-
sociated with high eyatea frequency ratioa. Further-
more, for email damping contraat between the compo-
nents of the eyatem the two solutions are close. Sim-
ilarly, email daviatlona ere aaaociated with systems
characterized by higher mass ratioa.

COHCLDSIOMS

Baaed on the results presented in thia paper it
may be concluded that composite damping solutions can
under- or over-eatlmata the reaponae depending on the
syatem parameters. For low and high system frequency
ratioa the approximation la usually small for all mass
racloa and damping varlatlona conaldared. The approx-
imation become* considerable for ayatem frequency ra-
tio* eloaa to one when the maaa ratio la email and the
differences in component damping is high. Under theaa
condition*, one of the degrao-af-freudo* of the system
la overestimated whereea the other ia undareatlmated.
Differancea a* high as eighty percent are presented
for the case of a almple system. For more complex
ayataaa the reaulta presented here may be used to
identify possible case* of concern when composite
damping solutlona are employed.
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degreea-of-freadoa (DOF's) of the l y i t n . DOF-2
correspond! co the M M attached directly to the
aoving system.
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