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ABSTRACT

In the esurthquake rasponse analysis of structures
in vhich the damping characteristics between the ale-
ments varies significantly the standard mode super~
position method cannot be used. Sevaral approxims-
tions have been proposed that allow the application of
the modal supcrposition method for cases in which the
damping matrix is not orthogonal with reapact to the
modal shapes. The wost commonly used approximation is
based on n composite damping value which is employed
Ian the modal cquations., This value is a weighted
avernge of the damping valuce of the individual compo=
nents of the atructural wmodel. In this paper an in~
vestigation of the errors introduced by the composite
damping in the response of simple structures is pre-
sented. The results given in tha psper can be used
for benchmarking the approximations in more complex
systems for which composite damping solutione are
employed.

NOMENCLATURE

demping coefficient

€1
elements of modal danping matrix

eq :

[cf : aystem damping matrix

Hy (w) ¢ tranefer functions

Hi(w) : mwodal trensfer functions

{i{w)} ¢+ wvector of transfer functione

| 3] 3 stiffness coefficient

(K1 s atiffnose matrix

wy i maen

{M] : mans matrix

q : mues ratic

ug : asystem abeolute displecesents

Xg s free~field input

121 : system displacemente relativa to bass
2 /1 : participation factors

€1 : uncouplad damping ratio

Eq : ocomposite demping ratio

M(w) : complex function defined in Eq. 7.3
|9 : modasl shape matrix

[4] : mateix defined In Eq. 12

wy + uncoupled frequencies

W, § s0dal frequencies
@ ~ : frequency variable

INTRODUCTION

The dynsaic snslysis of linear structurss ia the
tise domsin is conventionally dona using the solution
of the corresponding undsaped eignevelue prodlem
(1.0., mode shapes/ fraquencies). Results ace then
obtained by some combinstion of the modal responses
using modal damping. Thare ere many practicsl ccses,
towaver, in which the system damping matrix cannot be
disgonalized with the sase undampsd mode shapes that
diaganslize both the maes and stiffmess matrices. The
soil=structute intersction probies ia a typical caee
of this kind. More generelly, such demping mstrix be~
havior le sncountsred in structural models having in-
dividual componente with lerge differences in dsap~
ing. In such ceess it is rsquired to combine low with
high dseping. Two basic prcblems are encountered
First, one single velue must be aseigned to sach mode
which reflecte effects from sigaificantly different
snergy diseipation. Second, eince such ¢ demping ma-
trix csnnot uncoupls the equations of motion, off-
diugonsl teras are uaually ignorad.

Verious approachee have appeared ia the litera-
ture for the trestsent of this problam. Comparisen
between them is rather controversiasl. The most coamon
one i{s based on some weightad sverage demping(l)
ususlly referted ta se compoesite demping. A mors
sophisticeted approach to this problem fe Wwed on
matching transfer functionel{2), It is hardly weed
in practice becsuss of ite numericsl {avolvement. Of
couras tha problsm can be_attached directly veing coa-
plex sigemvalues/vectora(l) and thus avoldiag the
approximations introduced by the composite damping.
Such a solution, howevar, dees wmel hava the advantege
of the classsical modal suparpositiem. Im practice, it
ie deeirable to uss composita damping in conjumctlen
vith the wadamped wedss, sven theugh this eppreach
doee mot give, in gemeral, accurate results.

This paper jrasente u casprehbensive sppreisal ef
the degrae of the approximation due to cempesite



demping, Theoratical snd mmerical evaluations are
given. Transfer functions for simple dynsmic systems
sre given and compared to those generated using
conposite daaping. It is shown that errors become
larger as the difference in demping betwesn componente
incresdes.

SYSTEM DEFINITION

To eimplify the presentation of the subssquent
treatwent the eystea coneidered consists of two
maas-spring unite in ssriss. The parasetesrs are my,
¢y, ky; 1=1,2 where m,c and k denote msss, demping
and etiffness coefficients respectively. Viecous
damping is coneidersd. The mass @y is connected to
8 woving system which is excited by x,. The syatem ’
1s shown in Fig. 1. A two~story building under en
esrthquake excitetion can be reprsesnted by such
mathematical model.

The ebeolucte displscements of m), my are:

u =yt X,
(1)

where y), y2 are the displacemsnte of mj, u
with reepect to the moving system. The uncoupled

paraneters are:

uz-yz-l-x

(2)

2 kini

for 1 »~ 1,2,

CZ KZ )(8
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rig. 1 = Two degree-of-fresdom modsl

¢

The following mass ratio ie introduced

n
1
q -—_

lu.d on the above, the equations of motion of the
system in terms of y;, y2 can be sst using the

parasetera
» 0
Ml =1, . (49)

¢ =€
[c) = . (4b)
-c1 'c1 + cz

damping :

k '3

1 1

stiffness: (K] = (4c)
-kl kl + kz

TRAMSFER FUNCTIONS

By, (W), II{ (w) represent the trensfer
function bc ween 2 excitation xg and the

displacemants y1, y2 of the system. These
functione may be obtained by setting

'x" t) = .1ut

- “yf" .1»: )
7 = B tus

Sublutuuou of Eq. 5 into the squations of motion of
the systsm gives

] = . -1
-uznlﬂucl-ﬂtl -iucl-kl =,
' 2 ®
, -i,acl-kl - -1+1u(cl+cz)+(kl+kz) L]

where w is the frequency variable.

After performing the necesaary nanlpulations in
Eq. 6 it 1e obtained

2 2 2
H(H)H’](.H) - ‘1!' [Rlul(qﬂ)-bzzzuz] - [ul(qﬂ)iuz] (7a)

nert, ) = WPt 26w, (9+1) =i (a+1) (16)
‘where
) = u"
“3 [R,H;(‘”m‘"z“z]
ot [uf<q+x>+4c,czulu,+u§] (7o)

He [ZE 1' 1u§+2£ 2“:“2]



From Eqs. 7 it may be sean that the transfer
function H"(u), H 2(m) depend on the '
uncoupled parameters given by Eq. 2 as well ss the
mans ratio q. This solution for transfer functions
will be referred subsequently to as exact solution, to
reflect the fact that the actusl dsmping matrix [C)
(Eq. 4b) was used.

COMPOSITE DAMPING SOLUTION

A net to two claswicel mades cen be obtained for
the aystem in the last section by using the matrices
[M] and [X]) and neglecting the damping matrix [C].
Let wy,, represent the modal frequencies
for the first and eecond mode respectively. Their
values sre obtained from the knowm frequency aquation

4, (2 2] 2 22"
w o+ [ulfqﬂ)*uz] w -hnlu: =0 )

The corresponding mode shepes ere

¢ ¢
- 11 12
-l ©)
21 f22
and are assumed to be normalized to the mase matrix,
1.¢4,
T
[#]°[M)[¢] « [1] (10
Let 1, €3 represent the composite modal damping
for the first and second modes respectively, then
2
1 .2
- flkJEJw 841
£ = oy 7 (1)
i 2
Tk, 4 4
ga1 33

vhere i=1,2 end matrix [4] e

7% f127%2
a) = (2)

*21 422

The composite damping given by Eq. 11 1e eesociated
with the diagonal termm eyq, €22 Of tho modal
damplng watrix, f.u.,

- = T - 1 2 2
cu-Z’:lﬂol-(Ql} [C](Ql}iﬁl' :: .1“151A11h2'2€2421 (13
1
Using Eq. 11
2 e a2
w618y Hmau,E08,,

3
1 kyhpytealy)

51 -, (14a)

P . .

and considering the orthogonality of the modes with
Tespect to the stiffness matrix

2 2 2
“op " Hidyp * koby (14b)
it can be seen that Egs. 13 and 14 are identical, A

similar result can be obtained for E3.

Based on the sbove, madal solutions can be ob~
tained using §y, £2. Off~diagonal terss cj2,
€31 of the modal damping matrix [¢]T[C][¢] are
therefore nesglected. to have uncoupled equations. This
approximation is fuevitable since classical modes are
sssumed. Using the wodal equstions, the transfer
functions between input excitation xg and dieplece~
wen: components y), y2 of the eystem arse

{H(w)} = [¢] {H())

where
W, W b
-
1 -02+1s25130 -hii (15)
1 1
T2

, Hy(w) = e T
- +iw2i 8w
2 0, 0y

DAMPING VARIATIONS

The compoaite damping veluse £1,£2 wers
computed ss functione of the systsm parsmsters.
Systems with uncoupled frequency ratios in the range
of 0.1 = 10 were considerad. The damping of the
individusl components of the eystem was chasen to
represent situatione which reflect large dsaping
variations. Figure 2 ehows the compoeits damping of
both modea as a function of the eystem frequency end

mage ratio for {1 = 2% end £2 = 30X. The mass
ratios are ranging from 0.01 to 1.
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g -From Fig. 2 it may be seen that for fr uenc
ties smaller than ome, the composite d-p!n:qof :I’n“-
first mede 1a smaller than chat of the second made.
Furthersore, the composite damping associated with the
::n: mode spproaches to the value of 2% at low
equency ractios. PFor tha same frequancy range
second wode dsmping approaches the 302 vzluc?' ;o:h.
frequancy ratios greater than one the first mode is
more demped than the second. Some axception appesrs
to be the case with lerge wass ratio, i.s., aquel to
10, Similar observazions can be made from g, 3 in
which lerger differences in the damping of the aystem
componanta is used, 1.e., £ = 2X, £2 = S0Z. In
this cese, at the low fraquency range the first mode
apptoaches to 2% whereas the second wode approaches
the 50Z value. )
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Fig. 3 - Comporite damping ae function of system
paraseters. Component damping: Eq=2%,

Eg=50%.
SYSTEM MAXIMUM AMPLIFICATIONS

The maximum modulus of the transfer function wich
respect to he [requency variable w roflacts the saxi-
mum smplification of che systam. The approximation
introduced by the composite dsmping on these smplifi-
cations can be assessed by comparing the two solutions
given previously. Particularly, thie approximation
can be computed from the differanca between the exact
solucion given by Eq. 7 and the composite damping sol-
ution given by Eq. 15. This differance is exprasscd
in percent of the deviation from the exact sclution.
Resulte ave shown in Figs. 4 and 5 for the two

"o Co g, .
.

Pigure 4 12 shown the case with s sten d
E1~2Z, €2=30Z. From Pig. &4 Lt can be znn :h::P“‘
for system frequency ratios in the vicinity of one the
Composite demping gives unconservative results for
ssall mass ratios. Also from Pig, 4 it may be con-
cluded that the composite damping predictions are gen=
arally comservative for second DOF of the system. By
comparing Figs. 4 and 5 it can be seen that av the
damping coatrast between the cosponents of the system
becomes largar the unconservecisa for DOF-1 increases
wherese the conservetiss of DOP-2 presdictions in-
crease. Purthetrsore, for higher mase retios the ap-
proximations asaocisted with compoeite damping solu-
tions ere generslly emall.

MULTI-FREQUENCY INPUTS

For multi-frequency inputs che system asplifice~
tions ave sensitive to tha frequency distribution of
the eystem tranefer functions. Thus the composite
damping spproxisations cannct ba aecssssed on the basis
of maximum swplification only. The difference between
the transfer functions reprasanting the exact and com~
posite damping solutions should be viewsd in terms of
its veriation with vespect to the frequancy variable
w. Transfer functions fur both thase solutions are
shown togethar in Figs. 6 to 9. The aystem paremsters
are: mass ratio 0.0l component damping £3~2%,
£9=50Z. System frequency ratios are 1,2,] and 4.

The diffsrence bstwesn the dotted asnd the solid line
represents the spproxisation dus to cowpoeite dawping
for the various cospounents of a givan multi-frequency
input. Trom these figures it can be concluded that
coapoeite dsmping solutions underestimate the reuponse
of the first degree-of-freedos of the system for the
fraquency cocponenta of the input which fall within
the frequency range of the saxi{mum difference betwean
the two solutions. The spproximation for the second
degrae-of-freedom, however, ia usuelly less and on the

conservetive sids.

It should be pointed out that Fige. & to 9 hava
been selected from the results of a parametric evalua-
tion in which s wide veriation of eystem parameters
ars considered. For lov eystsa fresquency ratios the
diffsrence between ths axact and composite damping so~
lutions is small., Similarly, small deviations sre as-
sociated with high syates frequency ratioce. Further-
ware, for ssall damping contrast bstveen the compo~
nents of tha eyates the twe solutions ara close. Sio~
1larly, small deviatione ara associsted with syatems
charecterized by higher mass ratios.

CONCLUSIONS

Baaed on tha resulta presented in thie paper it
may be concluded that cospoaite demping solutions can
under~ or over-sstimats the rasponse depending on the
system parsmetars. For lov and high system frequency
ratios the epproximation is usually smsll for sll mase
retios and dsaping vaciations considered. The spprox-
imation becomas conaidersble for syatea frequency re-
tios cloas to one when the mass ratio ia samall and the
diffs in p t dasping is high. Under thess
conditions, one of the degren-ef-fravdos of the syatem
is oversstimated whersas the other 1is underestimated.
Differencas as high as esighty percent are presented
for the casa of s simple system. For mars complex
syatems the results pressuted here may be used to
identify possidbla cases of concern whan compoaite
damping eolutlons are asployed.




degrees-of-freadom (DOF's) of the system.

corresponds to the maeas attached
moving system.

"REFERENCES

l. Hanson, ed., Seismic Dss

DOPF-2
directly to the

ign for Nuclear Power

Plants, MIT Preea, Cambridge, Mae

2. Tsei, N. C., “Modal Damp

suchugetts, 1970,

ing for

Soil=Structure Intersction”, Journal of the
Enginvering Mochenics, ASCE, April 1574,

3.

Foas, K. A., "Co-ordinates Which Uncoupls the

Equations of Motion of Damped Linear Dynamic Systess”,

Journal of Applied M

henics, Vol, 25, 1958.

NOTICE

This work wes parformed under the suspicas of the
U.S. Nuclear Regulatory Commizsion, Waghington, DC.
The findings and opinions sxprasasd in this paper ace
those of the authors, and do not necessarily reflect
the views of the Unitad States Nuclear Regulatory
Commlesion or orgenizations of suthora.

20
o0 .
0.01 (4 DOF— 2
52 % ; 530X
g bpozx; bpe
[« 4
z 100 10
s 4
“ 0.1
DOF-—t 0.01
-4or *n2%; Epe30n
&n I N | ! [T . ) 1 (I W | A 31
'“6 ! . 1.0 10.0 1.0 10.0
' FREQUENCY RATIO %,
o FI;:.I‘. :._Co;i:olitn d;piﬁg nppro*iﬁc}:}gﬁl._c:u: 51 - 22, Ez = 30Z.
- © a0
DOF-2
40|
ko2 ; k50N
S
% .
o
o
w
DOF =1
-840
fio2x; bm50%
o _1 P | .Il.O Il Ll o 1 45 .

Fig. 5 - Composite demping approxlmations.

FREQUENCY RATIO %%,

Casat [) = 2%, iy = 50Z.

REPRODUCED FROM
BEST AVAILABLE COPY



[ L
2 Tt v . een
r 3 N
i
3 N I
h 1
! ]
I
3 .y s
il ar ’ o :"i
v !
. l.-mﬁ‘;z_r-nhr-.l - ; ; l.-u,g-::;'w,.
d omemes COMPORITE 'Sﬁ. ; : o crwenic
g L}
g g ;
st -3 =
£ g '-
u <3 ]
1
& 2 L
\
&
= 13
8 ‘\\
2 \ -}
3 - g
b 1. F2] o ‘#REM NE"rn e 7.0 ) “b.ee 1a 2.8 "inl((!l.l. Mf'v. [ 2.0
- tFig. 6, Transfer functions for system frequency ratio 1.0.
8 L]
2 L3
3 . 5 xF-2
) :n;-cm L a
Goan; (et s mpat.t - ln-"xlr';:n"r’-'
s by RS
8 Teoree COMPOMTE ;; seerscere COPONTL
e
" g
Hel =t
=3 7
I &
1
] I
S " ?
"
A
] o~ §
AR
i)
]
H \- . L
v €
L}
\ s
. PO . ] I -t e
N e PR U 'Facwm':'lf I T | Py
' 1ig. 7. Transfur functionw for wystem froquency ratie 2.0,

REPRODUCED FROM
BEST AVAILABLE COPY



.33

o0F =1

my/mpds;

LeTu L3 mpmpats
OACT

—_—
S crwoNTE

apt
<25

Li.IE
137

gva :

0oty
;1]

RAPLITUDE(
-1%

DoF-2
oy/mabe)
Gon; bems; uympas e

e, EIACT
Temesses PRGN

N §
ol
L) 3
Gl 3

% %00 .9 28 34 a f.RlM NES'“ [¥) 8 s

Fig. 8, Tranafer functiona for systen fraquency ratio 3.0,

b 17

® £

B r-) 9 -

™y mp0.0) :l-:-uu

- ‘i"‘h"'.”!;l"l"" - [RTT N T Ry
P e e 7_._.: J——. 7. | ®
x =
i g
@ e

&

L] » §

3 - L

T rncanet
Al
g » X
‘b i3 2.0 140 4.'9'«:0“ NE'V‘ € 7.0 .0 1.9 % 3.6 "r'ncnu: .‘\:i. Yy 8 r
“#ig, 9. Transfer functions for system fraquency ratio 4.0.

REPRODUCED FROM
BEST AVAILABLE COPY



