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Abstract

The hyperoctahedral group B, is treated as the automorphism group of the n-dimensional
hypercube, denoted Q,, which is nowadays undesstood to be a graph on 2" vertices. It is well-
known that B, can be represented by the group of signed permutations. In o'her werds, any
signed permutation induces a permutation on the vertices of @, which preserves adjacencies.
Moreover, signed permutations also induce a permutation group on the edges of Q,, denoted
H,. We study the cycle structires of both B, and H,. The technique proposed here is to
determine the induced cycle structure of a signed permutation by the number of fixed vertices
or fixed edges of a signed permutation in the cyclic group generated by a signed permutation
of given type. Here we directly define the type of a signed permutation by a double partition
based on its signed cycle decompaosition. In this way, we obtain explicit formulas {or the
number of induced cycles on vertices as well as on edges of (), of a signed permutation in
terms of its type. By further exploring the connection between cycle indices and the structure
of fixed points, we obtain the cycle indices of both A, and H,. Our formula for the cycle
index of B, is much more naturcl and considerably simpler than that of Harrison and High.
Meanwhile, the cycle structure of H, seems to have been untouched before, although it 13
well motivated by nonisomorphic edge colorings of @, as well as by the recent interest in
symmetries of computer networks.

1 Introduction

The hyperoctahedral group considered in this paper will be understood as the symmetry group
of the n-dimensional hypercube, or simply the n-cube. Anin (1] we shall choose to treat the
n-cube as a graph, usually denvted Q,,. To be more specific, the vertex set of Q,, connists
of all the sequences of O's and 1's of length n and two such sequences are adjacent whenever
they diffor at exartly one position. Neverthelesn, this standpoint is by no means substantially



different from that of treatin ; the hypercube as a regular solid in the n-dimensional Euclidean
space. The recent surge of interest in symmetry properties of computer networks has led to
the investigation of automorphism groups as well as the induced edge automorphism groups
of the currently studied network models, including the hype:cube. Throughcut, we shall use
B, to denote the group of syminetries of the n-cube (graph automorphisms of Q, in the
present context), and H, to denote the induced permutation group of B, on the edges of Q..
Sometimes, the term line-group of a graph & is used for the permutation group on the edges
of G induced by the automorphism group of &. In this sense, H, is the line-group of Q,.

In view of Pdlya theory on enumeration under group action, an important feature of an
automorphism group is its cycle structure. In particular, the study of the cycle structure of
B, has an interesting history. From the signed permutation representation of B,, namely, the
fact that B, can be represented by the wreath product of S, and S;, Pélya [13} noticed that
the number of types of Boolean functions in n variables equals the number of nonisomorphic
vertex colorings of the n-cube using two colors. This led co the question of comnputing the
cycla structure of B,. Although B, is isomorphic to the wreath product S,[S5;], which is a
permutation group on 2n elements whose cycle index can be obtained by those of §, and
87 in terms the operation called plethysm or Polya's composition, B, itself is a much more
sophisticated permutation group on 2" elements which does not seeni to possess relatively
simple cycie structure. In fact, Pélya {13] computed the cycle indices of B, up to n =
4. This problem got more atiention with the advent of the switching circuit theory. The
complete solution was first obtained by Slepian [16] based on Young's results on irreducible
representations of B,. Later on, Harrison and High 9] succeeded in obtaining the cycle index
of B, which also leads to a solution to the problem of counting types of Boolean functione.
However, the formula of Harrison and High is rather involved. Qur method turns out to
be more natural and considerably simpler than that of Harrison and High’s, moreover, our
approach is more effective regarding its applicability to more general situations such as the
cycle structure of the line-group H, of @,, a permutation group on n2"~! edges. It seems
that the cycle structure of /, has been untouched in previous research, although it is well
motivated by the enumeration of nonisomorphic edge coloring of Q. as well as by the recent
interest in edge symmetries of computer networks.

Our first objective is to obtain the cycle polynomials of both B, and /H,. As we know in
many circumstances, such as counting types of Boolean functions and vertex coloring of the
n-cube, we do not really need all the information contained in the cycle index of B.,. Instead,
for a permutation group (5, sometimes it suffices to have the following polynomial:

iy 1
’\((l;.t):m ZH"T*.
S

where 1y in the aumber of permutations in & with &k eycles. Clearly, K ((7; 2) can be obtained
from the cycle index Z((7;x,,72,...) of (7 by substituting every 2z, with r. We shall call
K((; z) the rycle polynomial of (. As expected, cycle polynomials would be much easier



to . apute than cycle indices. Keeping in mind that the signed permutation representation
of B, is considerably easier than B, itself, one naturally expects that the cycle structure of
B, should follow in some way from that of signed permutations. First, we observe a simple
connection between the cycle structure of a permutation and the Burnside Lemma so that
counting cycles reduces to counting fixed points. Secondly, by using a recent result of (1),
we unexpectedly found that the number of fixed vertices of a symmetry of Q, can be easily
determined by its signed cycle decomposition. The notion of balanced signed cycles defined in
(1] turned out to be crucial in our approach. We remark that our meihod is not only effective
for B, and Hn, but also [or other permutations groups induced from wreath product of two
permutation groups. It turns out to be satisfying that the notion of double partitions used in
the representation theory of B, naturally arises in the present context, and we can explicitly
give the induced cycle structure of any signed permutation in terms of its type (in the form
of a double partition).

By further exploring the connection between induced cycle structure and fixed points, we
find that for any induced permutation group its cycle structure is determined by the structure
of fixed points (the Cycle Structure Lemma). In this way, we achieve our goal of computing
the cycle indices of both B, and H,, the second objective of this paper.

2 A Cycle Counting Lemma

Let G be a group and § be a finite set. Let II be a permuration group on S, namely a
subgroup of the symmetric group on S. Given isomorphism p from G to M:

pig — %, g€G, mell,

we usually say that 7 is a group actingon § in the sense that a element of G acts on S through
its image of under the isomorphism p. With the isomorphism p being understood. we shall
simply call I an induced group from G. Specifically, as far as we are concerned in this paper,
3 will be the wreath product §,(5;], or the group of signed permutations on n elements. The
hyperoctahedral group is an induced group of §a(532), which is a permutation group on the
vertices of Qn. Given a signed permutation x the acting role (i.c., the isomorphism p as above)
of x on Q. is explained as permuting the sequence of 0’s and 1's and then taking complements
in certain positions, the detailed definition will be given in the next section. Another induced
group is the edge automorphisin group of §.,.15,). By definition, an automorphism on a graph
induces a permutation on the cdges of the . .ph. Thus, $a{52] also induces a permutation
group on the edges of Qn. Our objective 1a to consider the cycle structures of the above
mentioned induced permutation groups on the vertices and edges of Q.

Given an clement g in a group (7, suppose it induces a permutation on S. By the induced
cycle structure of ¢ we mean the cycle structure of the induced permutation of ¢ on 5. We are
going to use the Burnside Lemma to compute the number of cycles of an induced permutation



of g. To this end, let’s recall some basic terminology related to the Burnside Lemma. Given
two elements s, and s; in §, we say 3, is equivalent to s,, denoted s; ~ s2, if there exists an
elemant ¢ € G such that

‘R"3| = 8.

Then it is easy to verify that ~ is an equivalence relation on S. For any ¢ € G, we denote
by v¥(g) the aumber of elements s € S such that x;s = 3, namely the number of elements
fixed by g. Then ihe Burnside Lemma states that the number of equivalence classes under
~ equals
1 )
= Y w(g).
|G] 9€G
Using the Burnside Lemma, we may compute the number of cycles of an icduced permu-

tation in terms of the number of fixed points of the induced permutation.

Lemma 2.1 (Cycle Counting Lemma) Let G be a group acting on S, and g € G. Then
the number of cycles of the snduced permutation x, of g equals

]
— Y ¥o),
A9 ,€0)

vhere o(g) is the order of g in (G and y'(a) is the number of eleruents 3 € 9 fized by 0, namely
Tod =d.

Proof. We simply write x for x,. It is easy to see that two elements s), 53 € § are in
the same cycle in the decomposition of r if and only if there exists a permutation o = x* for
some i such that o(s;) = 83. Therefore, the number of cycles of r is the same as the number
of equivalence classes of D under the permutation group (x) = {e, x, 73, ...}. Clearly, (x)
is finite. By the Burnside Lemma, we have

|
o(x) VGZ(') v

where o(r) is the order of * and ¥)(y) is the number of elements d € /) fixed by ¢, namely
wd = d. Since (g) is isomorphic to (x), we have o(g) = o{r). This completes the proof. 0

3 The Cycle Polynomial of B,

We first recall some definitions from [1]. For any positive integer n, we shall use [n] to denote
the sot {1,2,...,n}. We may represent an element w € By by a signed prrinutation of [n], i.e..
a permutation of [n] with a + or — sign attached to each element 1, 2, - -+, n. For smplicity
of notation we omit the + sign in examples. Thus ( ; fl- .:))t Z_l) ( T -(-i') or(24 -.';) ( ?l) (1 (_i)
represents an element of Ha with uaderlying permutation (2 4 5) (3) (1 6) (written in cycle

1



notation). We call each a representation of an element of B, a signed cycle decompusition.
A signed permutation w acts on a vertex u; ug - -+ u, of ¢, by the rule

w(uy Uy = - Un) = Up() Up(z) = Up(n) »

where r is the underlving permutation of w and

Ur()) =

Up(j) if j has the sign + .
iU (3.1)

R T if j has the sign -
Thus the action of r on u = uy uz - -+ uy, can be understood as the action of permuting u into

Up(1) Ug(2) " Ux(n)» aNd then taking complements at positions where x has minus signs. If

we define the sign vector (s),s2,...,9,) of a signed permutation w as
§, =

0, if j has the sign + .
. =
l, if 7 has the sign —.

Then (3.1) can be rewritten as
ﬁ,(” RUppts, (mod 2). (3.2)

To make the above definition a little clearer, we may let vy vy -+ v, = w(uj uz - +- uyn), then
(3.2) becomes
Vp(y) = Uy + 8¢(;) (mod 2). (3.3)

For two symmetries 7 and o of Qn, we define their product by
(ro)(uyuz - up) = o(r(uyuy - “n))v

where u) uz --- u, is any vertex of @,. Note that the above convention is consistent with
the usual definition of product of ordinary permutations, i.e., for two permutations * and o
on (n}, o is defined by (xe)(i) = o(x(1)) for any i. if no confusion erises, we shall identify
a signed permutation x with its underlying permutation when applied to an element in [n]
instead a vertex of Q.

Proposition 3.1 Let 7y and o) be tuw signed permutations on [n] w.th underlying permuta-
tiona * and 0 and aign vectors (8,33, -+ ,8,) and (1,8, ..., 1y ). Then the signed permutation
7,0y has underlying permutation xe and sign veclor

(h + 8-t 2+ 8g-12)0 -0 tn + s,-u(,‘,) (mod 2).

Prool. Let uyu; - - uy, be any vertex of Qn and let vyvy - v, = x(u; uz - u,), By
(3.2), we have
Vo) E U, + 94,y (mod 2). (3.4)



Let w, w3 - w, = a1(v)v2 -+ v,). Heace for any j,
Wo(;) E Vj + L) (mod 2). (3.5)
Substituting j with x(7) in (3.5), we get

Wo(x(r)) = W(mo)(r)

Vei) + l,(,(.‘)) (mod 2)

Un(i) ¥+ l(ro)(i) (mod 2).
From (3.4) it follows that
Wiro)(i) = Ui + x(i) + Uiro)is) (mod 2). (3.6)
Let r, = s,-1(;). Then we have,
T(ra)(1) = Sa=1((ra)(i) = Hmoa=1)(i) = 2r(i) -
Therefore (3.6} can be written as
W(ro)(i) = Ui + T(ee)(i) T {(ro)(i) (mod 2). (7

Since wywy-«-w, = (M0 ) U2 - U, ), this implies ihat x;) nas underlying permutation
xo and sign vector (r; +¢;, ..., Tn + 34). This compietes the proof. [

The following corollary will be used later.

Corollary 3.2 Let x, be a signed permutation with underlyiny permutation x and sign vector
(81,82,...,80). Let @ = =1, Then x} has underlying permutation x* and sign vector

(8| +3.(|)+"'+8'A—|“), Ceay Jn+!.(n)+"'+8ﬂ—l(n)) (mod 2). (3-8)

Proof. We use induction on k. The assertion is trivial for k = 1. Suppose it is true
for k. Let oy = x¥. Then o, has underlying permutation r* and sign vector (3.5). Let

(t1 t2,...,ty) be the sign vector of o; = lf, and o = x* be the underlying permutation of

. By Propusition 3.1, #F+! has underlying permutation x*+!
)

and sign vector
(b + go-101)s ta + 80-302)s <) tn 4 S0-1(m)) -
Clearly, we have
it 8~1(0) = (-‘-‘ + )t ﬂon-l(.-)) t8p-a(i) = Mt 8t o)
The proof is thus complete by induction. @

A double partition (A, u) of av integer n, denoted (A, ) F n, is & an ordered pair (A, u)
of partitions such that jA] + Ju| = n where |A| denotes the sums of parta of A. A double

]



partition (), u) can also be denoted by (A,u) - (p,q), if |\| = p and |u| = g. The number of
parts of A will be denoted by £(A). Given two partitions A and u, we shall define A U u to be
the partition obtained by joining the parts of A and p together. For example, 221 U321 =
32221. The notion of a dnuble partition is closely relation to the that of balanced cycles
introduced in [1]. A signed cycles is said to be balanced if it contains an even number of
minus signs; otherwise, it is called unbalanced. Moreover, a signed permutation is said to
be balanced or if every cycle is balanced in its cycle decomposition, and it is said to be
totally unbalanced if every cycle is unbalanced in its cycle decomposition. Given a signed
permutation «, the cycle structure of x is defined by a double partition (A, ) such that A
is the cycle structure of balanced cycles in the signed decomposition of 7, and u is the cycle
structure of unbalanced cycles in the signed decomposition of . For example the type of the
signed permutation (3 -7—4)(1 56 3)(8 10) ( 3) is (24, 13). From the representation of B,
it is known that irreducible representations of B, can be indexed by double partitions. For
a partition A = 1*12% ... n*» of n, i.e., the number i occurs A; times in A for any i, we shall
use [';] to denote the number of permutations on [n}] of type A. It is well-known that

n|_ n!
AT 1M AN20 0

Given a double partition (A, u) F (p.q) of n, 1t is not difficult to show that the number of
signed permutations of type (A, u) equals

n P 9| on=-¢(2)-t(u)
(P) ["] [#] 2 ' (39)

Suppose SUT is a disjoint union of [n] such that |§| = p and |T| = q. Consider all balanced
permutations r on S of type A. Givea an underlying cycle of length m, there are 2™~! ways
to form a balanced cycle by attaching signs to each element in the underlying cycie. Thus,
giver an underlying permutation on . of type A, we can form 2P~4*) balanced permutations
the same type. A similar argument shows that given any underlying permutation on T of
type , we may form 29~¢4) totally unbalanced permutations of the same type. Combining
these two arguments, we obtain (3.9).

The following Lemma gives the parity of the numbe: of minus signs in each cycle of the
signed permutation x*, where the underlying permutation of x is a cycle.

Lemma 3.3 (Cycle Splitting Lemma) Let r be a sijned permutalion with underlying
permulation is a cycle of length n. Suppose * has A minus signs. Then x* can be de-
composed into (k,n) signed cycles with each of length n/(k,n). Morcover, the number of
minus signs in each signed cycle of x* is congruent to k/(k,n) A modulo 2.

Proof. Without loss of gencrality, we may wssume that » has underlying prrmutation
C =(12---n) Let 8§ = (&, 8;,...,6,) be th= sign vector of r; it is known that C* can

7



be decomposed into (k,n) cycles with each of length n/(k,n). Thus, the underlying cycle
decomposition of x* also has (k,n) cycles with each having length n/(k,n). Let d = (k,n),
in general, a cycle of C* containing the element i has the following form:

i — i+ k

i+(n/d-1)k — i,
here the numbers in the above diagram are taken modulo n. Let (8,,0,,...,6,) be the
sign vector of x*. Since C(j) = j + 1 (mod n), we have C*(j) = j + k (mod n). Since
C~(i) = i — 1 (mod 2), applying Corollary 3.2, it follows that
J'E6|'+6|'_|+"'+6|'_k+| (mod 2).

The number of minus signs contained in the above cycle equals 8; + 04 + - -+ + (njd1)i4i-
Then we have

n/d-1 n/d-1 k-1
Z Oikei = D D bjkgizt (mod 2)
J=0 Jj=0 I=0

(0i 4+ dicy + -+ + bickyr)

+(6|+k + 6l+k—l + i + é!+l) + ..

+(6.-+(,.,,,-_,),, + bipinfd=1)k=1 + = bip(nsd-2)k41) -
Rearranging the summands in the above identity, we obtain

(Bickat +0ickpz+-+6) H(Gig1+0ip2+ - +8i0i)+ -+ (big(nfd=2h a1+ + bisp(n/d=1)k) -

Note that (n/d)k = 0 (mod n). Thus i + (n/d - 1)k and i — k + 1 can be regarded as
consecutive numbers (mod n) so that all the above summands can be arranged on a circle
of length (n/d)k. Since all the indices of § in the above summation are taken mcdulo n, the
above sum can be further simplified to

Gi+63+ -+

Gi+62+4-+6ntan

(k/d) (61 4 62+ -+ + b2)
(k/d) A .

Thus the number of signs in each cycle of x* is congruent to (k/d) A modulo 2. 1§

By the above Lemma, it can be seen that if x is a balanced cycle, then x* is balanced for
any k. and that if x is totally nnbalanced, then x* is balanced whenever k/(k,n) is even or
otherwise x* is totally unbalanced. Furthermore, the Cycle Splitting Lemma can be used to
determine the cycle structure of ¥ based on the cycle structure of r.



Lemma 3.4 Lel v be an unbalanced cycle of length n. Let k be a positive inleger. Now write
n and k in the form n = 2's and k = 27! where s and { are odd. Then 7* is balanced if and
onlyif j > 1.

Proof. Since n = 2's, k = 27t, and s and ¢ are odd, we have
k2t ¥
(k,n) ~ (2s, 21) ~ omin(i.2) (s, ()"

Then it is easy to see that k/(k,n) is even if and only if j > i. By the Cycle Splitting Lemma,
it follows that 7* is balanced if and only if k/(k,n) is even. This completes the proof.

We now recal! a result from [1] concerning the number of fixed vertices of a symmetry
of Qn. This result altogether with Lemmas 3.3 and 3.4 will be sufficient to give the cycle
polynomial of B,.

Proposition 3.5 (1)) Let © be a symmetry of Q, represented by a signed permutation. If
x ir balanced, then it has 2* fized vertices where k is the number of balanced cycles of x;
otherwise x has no fired vertcz.

To describe the main result of this section, we need the following notation. Let A be a
partition of n and  be a permutation on [r] of type A. We shall use C,(z) to denote the cycle
polynomial of the cyclic group (r), and we shall call it the cyclic polynomial of A. Clearly,
such a definition does not depend on the choice of the permutation 7. For a permutation
r of type A, it is easy to see that the order of the r equals [A], where [A] stands for the
least common muitiple of the components of ). Let A = 1%12%2... 02~ for any k, the cycle
structure of 7%, denoted A*, is given by

i) A,
A =TT [isci) ™. (3.10)
As a result, the number of cycles in 7% equals
(A% = Y (i,k) N (3.11)
Thus the cyclic polynomial of A is given by
R I
Calz) = o5 3 zlim kA (3.12)
['\] h=0

We are now are ready to present the main result of this section.

Theorem 3.8 [t (A u) be a double partition and let i be the mazimum number such that
2 s a factor of some part of p. Set r = 2'*' iy u #£ @ otherwise set r = 1. Suppose x is a
aigned permutation of type (A, jt). Then the number of cycles of # when acting on Q,, cquals

l l [’\"“'l l( \rlu rh)
;C-‘xru..'(l)=m Z 20 R

k=1
9



Proof. By Lemma 2.1, the number of reduced cycles of * on @, is determined by the
number of fixed vertices of the signed permutations of 7*. It follows from Proposition 3.5
that x* does not have any fixed vertex if #* is not balanced. To make 7* balanced, by Lemma
3.4, k has to contain the factor r; otherwise there exists an unbalanced cycle 8 of  such that
r does not divide the length of 8, it follows that 8 totally unbalanced. In other words, r*
has no fixed vertex unless 7¥ € (7). Clearly, n” is a balanced permutation of type A" U u'.
Suppose = is of order m. Since the identity permutation is balanced, it follows that m must
contain the factor r. Since 7" is balanced, the order of (x") is just the order of an ordinary
permutation of type A"U ", which is [A", u"]. Therefore, the order of 7 equals m = r A", u"].
By Lemma 2.1, it follows that the number of induced cycles of x on the vertices of Q, equals

1 the number of cycles of #7¢ _ 1

Corollary 3.7 The cycle polynomial of B, is given by

1 n P] 91 on-t(2)-t Caruar(2)/r
_2"_11! Z () Zq) ,\J [F]2 (2) (M)Ixu..(z)/,

pP+g=n p {Au)-(p

where r is given as in Theorem 3.6.

By Pélya’s theorem, the number of nonisomorphir vertex cclorings of £y using m coiurs
equals the cycle polynomials of B, evaluated at = — m. Iz particuler, for m = 2 it yiclds the
number of types of Boolean functions in n variables.

4 The Cycle Polynomial of H,

In this section, we shall restrict ourselves to induced permutat’- ‘- of signed permutations
on the edges of @,. In a similar vein of the preceding section, ot~ -pects that the number
of cycles in the induced permutation is dependent only on the type of the original signed
permutation. Thkus, the aim of this section is to compute the number of induced cycles (i.e.,
the number of cycles of the induced permutations) of a signed permutation of type (A,pu).
To this end, we first consider tiie number of fixed edges of a signed permutation of given
type, again, a signed permutation is considered to act on edges of Qn through its induced
permutation. Now we need the following result from (1]: let x be a signed permutation acting
on the edges on Qy, then 7 has a fixed vdge if and only if x is balanced and contains a 1-cycle
or r contains a unbalanced l-cycle and all the other cycles are balanced, i.e., 7 is of type
(A, 1), where A F n— 1. Using this result, we may derive the number of fixed edges of a signed
permutation of given type.

Proposition 4.1 Let r be a signed permulation acling on the cdges of Qn. If 7 is balanced
and of type ), then it has A, 2/))=! fized edges. If x is of type (A, 1), then it has 21N fized
edges.

10



Proof. We first consider the case when = is balanced. If A, = 0, i.e., 7 has no l-cyd_e, then
it has no fixed either. So we may assume that A\; > 1. Asin [1], an edge of Q. is represented
by a sequence of n~ 1 0’s or 1's with one occurrence of the symbol ». For «xample. 0010110
denotes the edge joining the vertices 00101010 and 00101110. Treating 7 as a symmetry on
the vertices of Q,, it then fixes an edge, a1 --- @iy * @41 -+ - an, if and only if v contains the
l-cycle (i) (by the separation argument in [1]). In such a case, a) - --ai_} @i4 - - - a, becomes a
fixed vertex for - he signed permutation x’' obtained from 7 by removing the cycle (7). Thus by
Propusition 3.5, there are U’y = o(®)=1 choices for the subsequence a1 :--@;_) @j41'--Gy.
Moreover, for any l-cycle (i) of ¥ we may place « ip the ith position of the above edge
representation. Thus, there are A, choices for the position of #, so that the total number of
fi.. « edges of 7 equals A, 2¢(7)-1,

Let us now consider the case when 7 is of type (A, 1), that is, 7 contains only one unbal-

anced 1-cycle, say, ( :), and all other cycles of x are balanced. Then the separation argument
of [1] shows that the symbol + must appear at the ith position in the above representation of
fixed edges of x. Thus, a fixed edge of r is of the form a, ---a;—) #a,;41 - - - €», and the number
of choices for the subsequence a; -+ -a;_; @i - - - ap equels 2/*), which makes the number of
fixed edges of . 1

Analogous to the strategy of computing the cycle polynomial oi B,, here we need to count
the number of induced cycles on edges of @, of a signed permutation of given type. Because
of the appearance of two cases in the above Proposition 4.1, we shall proceed according to
these two cases. For a partition a, we shall use 8;(a) to denote the number occurrences of j
in a. Let A = 1%12% ...n* From (3.10) it follows that

(M) =3 i (4.1)
ik

We now give the main result of this section which leads to the cycle polynomial of the
induced edge automorphism group H, of the n-cube.

Theorem 4.2 Suppose 7 is a signed permutation of type (A, 1), then the number of induced
cycles of ® equals

r[A)
T (Z 209 4 3 T ) (42)
[3?] k=1 2k<2[A?)
If * is a signed permulation of type (A, u) where p # 1, then the number of induced cycles of
x 18 givin by
1 o ky of(v*)-1
—_— PAALEL (4.3

where r is dcfined as in Theorem 3.6 andy = N U u".

Proof. We first prove (4.2). Suppose = is of type (A,1). Recall that for x, the sumber r
equals 2; the order of x is thus 2[A%]. If k is odd, then 7* is of type (A¥,1). By Proposition
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4.1, the number of edges fixed by r* equals 2*"). If k is even, then #* is balanced with type
A¥ U 1. Then Proposition 4.1 shows that the number of fixed edges of r* equals

;31(/\" U 1)2I(Ahu1)-l - (/31('\") + l) 2:()‘) - 2[(,\') + A'jl(/\k)'l"“.),
Hence by Lemma 2.1, the number of induced cycles of * adds up to (4.2).

Next we prove (4.3). Suppose 7 is of type (A, u) where u # 1. We claim that r* does
not have any fixed edges unless x* is balanced. We may assume that u # @ otherwise the
claim holds trivially. Suppuse 7* is not balanced. this implies that there exists an vnbalanced
cycle @ of x such that #* contains an unbalanced cycle. By the Cycle Splitting Lemma, every
cycle of ¢ must be unbalanced. Let i be the length of the cycle 8, then 8% con’aias (i, k)
cycles with each having length i/(i,k). If i > 1, then either (i.k) > 1 or i/(i,k) > 1, that
is, 8% contains either an unbalanced cycle of lengih at least 2 or at least two unbalanced
l-cycles. By Proposition 4.1, 7% cannot have any fixed edge. We now consider the case when
0* is balanced for every unbalanced cycle 8 ol 7 with length at least two. If such a cycle
8 exists, then k must be even. Thus x must be balanced because for any signed l-cycle o,
o® is balanced whenever k is even. Finally, we are l=ft to the case when x does nct have
any unbalanced cycles of length at least twn. Since u # 1, v has at least two unbalanced
l.cycles. If = has at least twn unhalanced l-cycles. then for any odd num!ler k =k hae the
same number of unbalanced l-cvcles as 7, which implies taat v* has no fix~? 2dz2 2nd for
any even number k., 7% becomes balanced. Thus, we arrive at the conciusica that % qoes
aot have any fixed edge unless r* is halanced. As we skowed in th> proof of Theorem 3.6, »*
is balanced if and only if #* € (x"). By Proposition 4.1, *™* has 3;(7*)2/"")=} fixed edges
Since x is known of order r[v] and v has order [7], by Lemma 2.1 we obtain (4.3). B

Similar to Corollary 3.7, the preceding Theorem actually gives the cycle polynomial of
H. by summing over all double partitions of n. Let AK(H,;z) be the cycle polynom:al of
H, . then by Pnlya’s theorem. R'( Ha; m) gives the number of nonisomerphic rolorings on the
edges nf Qn using m colors.

5 A Cycle Structure Lemma

I this section, we propose a method to compute the cycle index of a permutation group G in
terms of the number of fixed points of an element in (s. We will first give a general formula
aad then apply it to the hyperoctahedral group H, and ita induced edge automorphism group
Ha. In view of Pélya’s theorem, using the cycle index of a permutation group one obtains
the generating function of nonisomorphic coloring patterns, which is more detailed than just
the rumber of nonisomorphic colorings. For this purpose, sometimes it is necessary to know
the eycle index of 2 permutation group. We shall achieve this goal for both B, and /{.,. The
cycle index of B, hus heen computed by Harrison and High [9] in a rather complicated way,

but our formula is much more natural and clea;er. The cycle strv.vture of H,, seems to have
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been untouched before, although it is well motivated L, :he nonisomorphic edge colorings of
Qn as well as by the recent interesting in edge symmetries of computer networks, and our
formulas for H, are believed to be new.

Let G be a permutation group on a finite set 5. As in Lemma 2.1, fer any x € § we
shall use y(x) to denote the number of elements of S that are fixed by x. Then the {ollowing
Lemma establishes a connection between the cycle structure of * and the number of fixed
points of a permutation in G.

Lemma 5.1 (Cycle Structure Lemma) Let x be a permutation on S, then the number
of k-cycles of * is given by
z plk/i) v(x'), (5.1)

1|k
where u is the classical Mobius function.

Proof. Let fi(r) denote v(x*) and gi(7) denote the number of eiements r of § such z is
fixed by r* but not by any permutatica #" for r < k. We are going to establish the following

relation:

Julmi= 3" gim). (5.2)

V| k
Let z be a fixed point of ¥ and i be the small number such that z is fixed by r'. “We ciaim
that i|k; otherwise we assume k = qi + r where 0 < r < i. Since z is fixed by both =* and

x', it follows that »9'(z) = z and
() =x"(x"(z)) = 7M(z) = z,

which contradicts the definition of i. Thus, we have shown tha¢ ik, which yields (5.2). From
(5.2) and the Mobius inversion, we obtain

a(m)= Y ulk/i) fi(r). (5.3)

1k

What remains to be proved is that g,(=) equals the number of k cycles of x. [t is not difficult
to see that if r is in a k-cycle of r, then it must e fixed by »* but not by any =" for r < k.
Therefore, & must be the smallest number such that x* fixes z. Conversely. if k is the smallest.
number such that r* fixes z, then z must be in a k-cycle of x. The proof is thus complete.

As expected, the purpose of ti:e remainder of this paper is to obtain the induced cycle
structure of a signed permutation of given type. In accordance with the above Lemma, thia
problem reduces to the computation of the number of fixed vertices and fixed edges of the
signed permutation x*, given the type of x. At this point, we have already encountered these
uvumbers in computing the cycle polynomials of B, and H,. In the proofs of neorem 3.6
and Theaorem 4.2 we have actually shown the following two propositions. Recall that for a
double partition (A, ), the number r is determined by 4 as in Theorem 3.6.
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Proposition 5.2 Let x be a siyned permutation of type (A, u), then x* has 213" ") fizeq
vertices if r|k; otherwise " has not fized vertez.

Proposition 5.3 Suppose x is a signed permutation of type (A, 1), then x* has 2/*") fized
edges if k is odd; otherwise x* ,as (ﬂl(f\") + 1)2'(‘\.) fized edges. If x is a signed per-
mutation of type (A, p) where u # 1, then the number of fized edges of x* is given by
By(AR U p?)2' =1 ir o1k otherwise 7* has no fized edges.

Finally, we note that the maximum length of an induced cycle of a signed permutation »
is bounded by the order of x, which has been shown to be r[A" U u’]. Since the number of
signed permutations of a given type is determined in (3.9), like Corollary 3.7, the cycle indices
of B, and H, can be obtained by summing the cycle structures of signed permutations x of
type (A, u) over all double partitions (A, ).
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