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ABSTRACT

We have investigated the high frequency stability of the ELMO Bumpy-
Torus (EBT) device when the wave vector has = finite component along
the magnetic field lines.

1. Introduction

Present EBT devices are characterized by the presence cf hot

electron rings whose poloidal precession frequency is of the same order

as the ion cyclotron frequency. Since the rings are usually located

near the outer radius, one expects a certain amount of coupling between

the hot electron magnetic curvature drift waves and the basically

electrostatic high frequency surface waves. * '-> The compressional

Alfven cavity modes may be involved in this coupling process since

their frequencies can be comparable with those of the above two waves.

Detailed studies of the EBT high frequency stability problem have

been carried out both analytically and numerically in the flute limit

(KM = 0 and u > Qc^, where K.. is the component of the wave vector

parallel to the magnetic field lines and fi . is the ion cyclotron

frequency). It was shown that two types of modes can exist: (1) the

hot electron interchange mode, which determines the maximum allowable

ratio of the hot electron density to the ion density, and (2) the high

frequency compressional Alfven mode, which sets an upper limit on the

warm plasma beta. In this work we generalize the previous results by

allowing for a finite K,, , which leads to magnetic field line bending.



Our analysis is related to the study of electromagnetic nodes in a

plasma-filled cylindrical waveguide where it is known that four basic

types of modes can exist: (1) the fast magnetosonic cavity modes, which

are global modes satisfying the proper boundary conditions at both the

plasma-vacuum and vacuum-metal wall interfaces; (2) the surface modes,

which are usually localized in the neighborhood of the plasma-vacuum

interface; (3) the discrete global Alfve"n waves; and (4) the MHD

continuum "modes," related to the condition tu2 = K.^2 being satisfied
4) "

at any point across the radial density profile. The latter are not

true eigenfunctions in the MHD limit (E(| = 0) and usually serve to

indicate the presence of a higher order coupling process.

2. Model and Analysis

Our basic model will remain that of an infinite cylindrical cavity

with a uniform axial magnetic field BQ that points in the z-direction.

The hot electron rings are represented by an infinitely long,

circularly symmetric annulus. The present analysis is limited to the

high poloidal mode number limit, which allows using a slab model with

the x-axis pointing in the direction of the inhomogeneity. A detailed

numerical analysis of the more general cylindrical case will be left

for a future publication. We assume that the background plasma is

cold and that the hot electrons are aonoenergetic perpendicular to the

magnetic field lines and cold in the parallel direction. The parallel

component of the perturbed electric, field is neglected because of the

high electron parallel conductivity, but all other electric and

magnetic components are expected to be present. Perturbed quantities

are assumed to vary as i(x)exp[-iwt + iky -t- i:<,.z]. Our basic system of

equations is the equation of motion for the cold particles, the Vlasov

aquation for the hot electrons, the quasi-neutrality condition, and the

radial and axial components of Ampere'3 law, together with the

constraint E.. = 0. After a straightforward but lengthy treatment, we

arrive at the following dispersion relation:



v/q V2 - 1
E -i

k \\j/q + b, 3x

and

a/2 e

Vq +
iS -

k \
(2)

*

The indices i and h denote the ion and hot electron populations,

respectively: c<x) = Nh(x)/Ni(x); v= u/ n , ^ the^^Rlfven speed

V A = BQ
2/( U j N ^ ) ^ 2 ; Mi is the ion mass; £ = L n / R c ; <5 = 1 / k L

n
;

L_ = N./! SN./S"!; t> = -b = 5 / 2 E - 1, where b is the hot electron

poloidal drift frequency normalized to its value in the vacuum field;

a, = 2uN.T . ,/B 2; and q = kT , u/sB R 2 .. Expecting that the unstable
TI o i l,h o l,h o c ci

modes are localized in the outer part of the rin?, we assumed that all

components have similar density profiles (see Fig. 1).

The local limit of Eqs. (') and (2) may be easily obtained by-

ignoring the radial derivatives. Tt.is results in a dispersion relation

that possesses three distinct branches; the hot electron drift wave,

the high frquency surface wavs, and the 3liear Alfve'n wave. The first

two evolve into two magnetosonic waves propagating in opposite

directions along the field lines as K ,. is increased. During this

process the negative energy branch related to hot electron drift

couples to the positive energy surface and shear waves to produce two

instabilities.

Turning back to the radial problem, it aay be seen from Eqs. (1)

and (2) that the coefficient of the highest derivative in the resulting

second-order differential equation vanishes when the dispersion

relation of the shear wave [K ̂ A
2 = uiz/( I - u2) ; is satisfied. Tne

local shear Alfven waves do not thus have corresponding radially



localized eigenfunctions. It is known that a more complete picture can

be obtained when one replaces the E = 0 condition by an appropriate

second-order differential equation. One may also use the eikonal

assumption to solve an inhomogeneous axial problem, as was done in the
7)

case of tandem mirror3. A detailed study of this interesting radial

problem is beyond the scope of the present work.

The coupling of the hot electron and surface waves can be

adequately studied using Eqs. (1) and (2). Localized eigenfunctions
9)may be easily obtained using an appropriate radial shooting code. A

ViKB analysis can also be performed, resulting in the dispersion

relation:

J
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where ail quantities are evaluated at the location where the vacuum

magnetic field radial gradient undergoes the largest dianagnetic

increase, k ? = '< 2 + '<} - '< 2 + (2n + \)/L2 and n = 0, 1,2, ... . We

may note that the first term on the left-hand side describes the

negative energy wave related to the hot electron drift, while the

3econd term (in brackets) describes the finite X ,| corrections to the

positive energy surface wave. The right-hand 3ide i3 related to the

rnsgnetosonic mode and the hot electron contributions. 3y solving the

above simple quadratic equation for vwe may easily recognize "hat ^ode

coupling results in a narrow, unstable range in K j. outside which

staoility 13 again ensured. 7ne resui's of the shooting cede agree

quite well witn tnose based on tne above '«K3 expression.

Ln conclusion, we 'nave described the coupling between the ring

irift wave and the background plasma modes jue to finite parallel mode

numbers. The dispersion relations obtained aay be useful in the

interpretation of the high frequency fluctuation measurements.
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Fig, I. Normalized radial profiles for the ion density, hot
electron density, and hot electron poloidal magnetic drift velocity
when enough hot beta is present to create a diamagnetic well.


