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COMPUTATION OF ANALYTICAL BOUNDS FOR CROSS SECTION SELF-SHIELDING FACTORS

The shielding factor method (SFM) is a frequently used economical procedure
for computing the effective multigroup cross sections needed in feactor analysis.
While initially developed and employed in codes used by the fast reactor community,l™%
the method has been receiving increased attention in recent years from the electric
utility industry, for applications to power reactors.%~® A fundamental problem
regarding the method's applicability is to determine the limits of the range of
values within which a cross section shielding factor is restricted, and whether
these limits are physically meaningful. In a previous paper’ strict upper and
lower bounds for the transport f-factor and for the sum of reaction f-factors

were derived and discussed. The purpose of the present work is to present

extensions of the methodology of Ref. (7).

Strict upper and lower bounds for individual reaction f-factors have now
been derived, allowing for cross section discontinuities {e.g. between the
resolved and unresolved regions). The resulting expressions were coded in
BRINE, a stand alone module easily incorporable into existing SFM cross section
processors. BRINE will be used to check the shielding factors in the multi-

purpose ENDF/B-V based VITAMIN-E library,® now under production at ORNL.*

The computation of analytical bounds for the self-shielding factors
involves separate treatments of the resolved and unresolved regions, since the
corresponding cross-section representations differ. Moreover, particular care
is required in handling those groups where cross section discontinuities,
allowed by the ENDF specifications,® occur. For illustrative purposes,
the methodology for deriving a strict upper bound for a flux-weighted reaction
f-factor in the resolved resonance region will now be presented. Complete

results covering all possible cases are summarized in Table 1.
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The reactionself-shielding factor f;’r(oB,T) is defined!™3 35

I.[c(E) .
" (g,,1) = oL ()] S (B LD //1 —B__ 1
1,[C(E)ot (€,0)] og+op(E,1) | [ € og + ob(e,M

C(E) represents the slowly varying broad energy behavior of the flux. The
symbol IG denotes integration over energy,. in group G. The various definite
integrals involved are clearly finite. The Diaz~Goldmann-Metcalf inequalityl®

applied to a pair of positive real valued functions g and h defined on G, gives:
1002 * Ifh2] < {Ifg - h1}" « [4 + 482 + 1]
g g -~ G g z E EZ (2)

where B2 = (Mth/mgmh), and Mg, mgs M, and m_ denote Sup g, Inf g, Sup h and Inf h
over group G, respectively; M_ and m_ can be taken to be the maximum and minimum

values, respectively, attained by the function g in the energy interval (group)

G. M and m, can be taken similarly for the function h. Consider now two

h h
additional functions E'and h, defined on G such that:

g(E)h(E) = g(E)h(E) for E€G . (3)

Then the Cauchy-Schwarz inequalityl? gives:

{gle-h1}2 = {1 [G-F1}2 < 1.[52] - 1,[R?] (4)
Choosing now !
¢{e)o’ (E,T) A \ '
h2(E) = —X "~ R2 o) BB 4 g2(E)-= c(E) (5)
o + L (E,T) Lo + ol (E,T) 4
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forces g2(E) to be equal to C(E)c;(E,T), and yields the following strict upper
X,r .
bound for s (OB,T)-
r
IG[C(E)GX(E,T)]

7 (o ,T) < e [br2(BZ+ 1] . (6)
& T el (E,0] B

The strict lower bound for fg’r(oB,T) is derived similarly, leading to

1.[c(E)o (E,T)]
(o ,T) > 2 X c [+ 382 + )77 (7)
¢ T S fe@d (0] &

Discontinuities in cross sections at a finite number of points E: in a given
group G may occur, as specified by the ENDF procedures.g In this case
Lebesgue-Stieltjes integrable extensions of the functions g, h, g, and h can
readily be constructed. The methodology outlined in Egqs. (2-7) is then directly
applicable to the '"'extended' g and h functions. However extra care needs be
excercised when evaluating Mg’ mg, Mh, and m since cross section discontinuities

may introduce additional ''jump'' constants. This is shown in Table |.

Important conclusions from this study include:

(1) A general methodology for computing strict upper and lower bounds
for self-shielding factors has been developed.

(2) The complete range of self—shieldfng factors computed by cross
section processing codes was addressed, and ENDF/B specified

cross section discontinuities were taken into account.
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(3) Initial results obtained with data from a preliminary ENDF/B-V
file confirm the necessity of replacing any arbitrarily imposed
bounds on the shielding factors (e.g. fx < 1 forced within some
older generation codes?) by analytically derived bounds.

(4) The stand alone module BRINE will provide SFM users with a practical

tool to check the f-factors.



Table 1.

Summory of Apalytical Bounds Satisfied by Cross Section Self Shielding Factors

Shielding Factor

" Resolved Region or Smooth

Unresolved Region

Group Containing A Cross Section Discontinulty

Type Cross Sections Cross Sections e.g. the Resolved/Unresolved Boundary
x,rq2 KT XUp2 XU U, = Nxz x
BN (Al Ry v, = INgPY1° LAY (v ] ‘\&.
1 TN, T . 1 X, U 1 x
LB m —— A% LB, = s LB = b
[NE"']Z G [Nz.u] G G ¥
[4
r 1.{c(E) G (E,0,T -
jor . L@ (e PR cLete "i pe 7] . 1LC(Er (D] + 1 [E(E) T, (E.oy,T)]
¢ 1lce)o)(e,0] 1,0c(e) T (€)] Ay - -
lr[C(E)ox(E,D)] + lu[c(E)ax(E)]
Reaction . -
- r 2 = 2 = (
Flux-Welghted g2 = clE) g2 = c(E)a (E,T) g2 = c(g) g2 = C(g) o (E,0q5,T) P
2. N Sup[HT WY niure
T T = kvl bl up oM, » L. . L .
oo (B (€1 L. s o, COF(EoT) - ) Y By o 3 9'"g" g ete
= 2 oz — 2= = L ~
* ag + o:(E,T) ag * a:(E,T) g + 0, ofE0g:T) o + 0, o(E.0pT) ;; . E¢[.E;‘,‘ r]i
t ~% 3 t ¥ r
X, r r X1 9 ¢ = Sup [VE(E)]
['gx.r 2 Lol | 1% * 2 [';'x.u]z _oM | 2m gty M Ees”
[ 4m Xk t. G ¢m ot Eto s
Gy + L 'm o, + . b
m o * Iy [ LASEE ST
x,b r . —_
I:H’ x SuP{Ux(Eb 0,T), °x(Eb"°'°a'T)
etc, -+ .
. t
U = A ]
Total G
Current-Weighted Derlived in Ref. 7 Derived in Ref. 7 . t7
e = L1 4,
[+
!
r -
fo I [c(Roi (e, T)] + 1 [C(E)T, ,(E.qp,T)]
‘ G E.Lc(e)op(E,0)] + I [C(E)TY ((B)]

]2
B'(‘.' derived as above.

C(E)Et.I(E.uB.T)

Note that:  hZ = — —
fog + 0, o(E.ogiT) 1oy + 5, ,(E,05,T]

Notes: f.

2,

3. U.B. = upper bound; L.B. = jower bound.

~
For computational efficiency BRINE allows optlonal use of B2 (see table) Instead of B2, [”2_ 3+ (8% + -;—2—)],

v
Hotations are self-explanatory: Z:‘ - Sgp[a;(E,T)] for €A MG, etc. (a2, h2) = functions used in deriving thie upper bound.
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