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We analyze the flow of gases out of and into a high-level-waste container in the unsaturated tuff of Yucca 
Mountain. Containers are expected to fail eventually by localized cracks and penetrations. Even though the 
penetrations may be small, argon gas initially in the hot container can leak out. As the waste package cools, 
the pressure inside the container can become less than atmospheric, and air can leak in. 1 4 C released from 
the hot fuel-cladding surface can leak out of penetrations, and air inleakage can mobilize additional 1 4 C and 
other volatile radioactive species as it oxidizes the fuel cladding and the spent fuel. In an earlier paper1 we 
studied the gas flow through container penetrations occurring at the time of emplacement. Here we analyze 
the flow of gas for various penetration sizes occurring at 300 years. 

According to the Yucca Mountain Site Characterization Plan (SCP),2 a waste container will have failed if 
the product of gas pressure and volumetric leakage rate exceeds 10~4 atm-cm 3/s. 3 This value divided by 
RT, where R is the gas constant and T the absolute temperature, gives the allowable molar leak rate, above 
which the container would be considered failed. 

Assuming first penetrations at 300 years with no prior leakage, viscous flow through penetrations equivalent 
to a single hole of radius 5 or 10 ftm, or larger, and using the time variation of the average waste-package 
temperature given in the SCP, 2 we calculate the time-dependent inventory of gas within the waste container 
as a function of time after emplacement, shown in Figure 1. Curves are for a fill pressure of one atmosphere 
and fill temperatures of 298 K or 558 K, the maximum internal gas temperature predicted to occur after 
emplacement. The magnitude of the taak rate is shown as a function of these parameters in Figure 2, together 
with the SCP-limit leak rate. The container gas volume is 1 m 3, and wall thickness is 1 cm. 

Figure 1 shows that for a 5-ftm hole and a fill temperature of 298 K, argon slowly leaks out until well over 
1000 years, after which repository cooling causes the internal pressure to fall below atmospheric, and air 
leaks in. For a 10-fim hole or larger, the internal pressure rapidly falls to atmospheric, as early as 1 year for 
a 30-pm hole. The rate of subsequent air inleakage is determined by the cooling rate and is not affected by 
larger holes. Figure 2 shows that the leak-rate limit is not exceeded by a 5-pm hole, and it is exceeded only 
briefly by larger holes at this fill temperature. 

For a 558 K fill temperature, penetration results only in inleakage of air. If intended to apply to inleakage 
as well, the leak-rate limit is exceeded only briefly for 10-/jm and larger holes. 

These data provide the means of estimating release rates of gaseous radionuclides. Assuming that early 
heating of the waste package volatilizes 1 percent of the M C inventory from the cladding surfaces, a 5-pim 
hole and 298 K fill temperature result in an initial argon leak rate of 0.03 mole/yr, and a U C fractional leak 
rate of 7x 10~ s/yr. For a 10-/im hole, the release rate would be 16-fold larger. 

If the time and temperature of container penetration during repository cooling are known, initial filling at 
that temperature and one atmosphere will result in no outleakage. For an equivalent hole of 10 ftm or larger, 
the rate of subsequent inleakage will then be controlled by cooling rate and will be independent of hole size. 
For such penetrations the inleakage rate will not exceed the SCP limit. For a given temperature history, * 
initial fill conditions and an initial penetration can be selected to eliminate outleakage and to control inflow 
through subsequent penetrations of any size, provided subsequent penetrations occur after the temperature 
maximum. 
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Figure 1: Quantity of Gas in a Container as a Function of Time 
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Figure 2: Magnitude of Flow Rate Through a Container Penetration as a Function of Time 
For Various Apertures and Fill Conditions 


