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Abstract

A study has been made of the ability of the Soudan 2 nucleon decay detector to distin-

guish between showering and non.-showering particles, utilizing several different'pattern
recognition techniques. This work has direct application in the determi_ation of the

_%/_'e ratio for atmospheric neutrino induced events. The results of the appUcation of
these tecludques to Monte Carlo data and to calibration data from the ISIS test beam
are presented.

Introduction Cosmic ray air showers produce both u, and _,, neutrinos with typical
energies of 1 GeV from pion, muon, and kaon decay. Standard cosmic ray Monte Carlos

make predictions for the fluxes of v,'s and of u_'s produced by the air showers. Some of
' these atmospheric neutrinos will interact in large underground detectors. Two or these

detectors have reported anomalies in the ratio of u,/u_ ct_arged current events observed,
seeing a deficit of u, induced events. _,_ If this observation is confirmed, it may have
implications for the e:dstence of neutrino mass and neutrino oscillations.

The significance of any report,¢d anomaly in the v,,/u, ratio depends on understaud-

ing possible systematic effects in muon/electron identification. The ability to calibrate
the detector response to tracks and showers is an important tool in this identification.

Ultimately, the accuracy of the measured u_,/u_ ratio will depend on the accuracy of
corrections applied fox;track/shower separation.

The Soudan 2 Detector and Calibration The Soudan 2 nucleon decay detec-
tor is a 900 ton modular fine-grained tracking calorimeter which has been described
previously. _ One of the 4.3 ton modules has been set up at the ISIS test beam at the

Rutherford Appleton Laboratory. There it has been exposed to muons, electrons, protons
and pions with momenta of 140 MeV/c and above. 4 The general features of the muon

tracks and of _:l_eelectron showers are in agreement with similar events produced by the

Soudan 2 Monte Carlo simulation, Figure l shows the XY views of the reconstructed MAST[Rhits produced by a typical ISIS test beam muon-track and by an electron shower at
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momenta of 236 Mev/c. At this momentum, a rnuon track has on average, 10 hits, while

an electron shower has 16 hits, with large statistical variations.

Track/Shower Separation Teehnlques The methods outlined here depend upon

generating a large set of Monte Carlo tracks and showers (muons and electrons). We chose
to start with Monte Carlo events in order to later use the test beam data as a direct.

unadjusted measure of sep;_ration performance. These Monte Carlo events are used to

tune several different pattern recognition 'engines' to recognize the differences between
tracks and showers. Before they can be used, the events must be partially reconstructed.

The anode and cathode pulses must be matched to create 3-dimensional hits, and the

hits must be grouped together. Each hit group is assumed to consist of either a track

or a shower. The job of the pattern recognition is to assign a classification of 'track' or

'shower' to each hit group. Automated reconstruction algorithms, tuned to match the

way a human operator would reconstruct the events, were used to reconstruct the Monte

Carlo training set events.

For hit groups with Nmt_ _< 3, there is not enough information pre, sent to make

a decision. At momenta above approximately 500 MeV/c (Nm,, _ 4(} for tracks), the

track/shower separation capabilities of the Soudan 2 detector approach 100%. Therefore,

the following techniques have been optimized for track/shower separation in hit groups

with 3 < Nhlt, < 40. Furt,ermore, to take into account the energy dependence of the

track/shower separation etTiciency, each hit group is first categorized according to Nhlt,
into one of 4 bins; 3 < Nt, it, _ 10, 10 < Nt,i_, _ 20, 20 < Nm_, < 30, or Nhi_0 > 30

before the track/shower determination is made. A difl'erent pattern recognition engine

was tuned to specialize in each of these four Nhit,, regimes.

Two polynomials are fit to each hit group; one fit in the XY projection and another

in a projection involving Z. A set of seven 'attributes' are then calculated using these

fit,s. The attributes are quantities that embody some aspect in the geometric pattern of
hits which can be used to differentiate tracks from showers. Most of the attributes are

q xantities based on how much the individual hits in the hit group deviate from the fits.

Tlm natural range of values for each attribute is rescaled to produce a consistent range

of-1 to 1 for all attributes. As an example, Figure 2 shows the distributions of RMS_.u

(an attribute defined as the RMS of the hits with regard to the fit in the XY projection)
for both tracks and showers in Nt,it, regime 2.

The four pattern recognition eugines used were:

• Cuts After examining the distributions for each attribute in each Nhit, regime,

cuts were defined on each attribute and optimized to best discriminate tracks from

showers. When classifying hit groups, the hypothesis of 'track' was assumed, unless

any of the hit group attributes failed a cut. Since the hit group had a chance to

fail any of the seven cuts and be called a shower, the cuts were placed out on the
tails of the track distributions.

m Maximum Likelihood In this method, the attribute distributions are transformed

into probability distributions by :imply normalizing the area to 1. When classifying

a hit group, the likelihood that the observed value of an attribute would be produced

by a hit group that was in reality a track is read off the appropriate probability

distribution. Similarly, the likelihood that the attribute value was produced by a

shower hit group is read from a different distribution. The likelihoods read from the

track or shower distributions for each of the seven attributes are multiplied together

to get the final likelihoods for the track hypothesis and for the shower hypothesis,
"Ph_ hvr_,_thp_i.r with th_ lar_'est likelihood is chosen as the classification.' I ....... ,,,' l .......... v
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,) Nearest Neighbor This method is best visualized by considering each training hit
group to be plotted as a point in a seven dimensional space, with the coordinates

given by the values of the attributes. Ideally, the track and shower hit groups
are separated into distinct regions of tills space. During classification, the point
corresponding to the candidate, hit group is also plotted in this space, and the

closest neighboring point is found. If the closest point was from a hit group that
was associated with a track, the candidate hit group is called a treck, otherwise it
is called a shower.

® Neural Network In this approach, the seven attributes are fed to the inputs of a
' feed-forward neural network that has been trained to produce a si_,gle output of

-1 tbr showerlike hit groups and 1 for tracklike hit groups. If the attributes of a

' candidate hit group evoke an output greater than 0 when presented to the trained
network, the hit group is classified as a track, otherwise it is classified as a shower.

1 Not.e that a different neural network was trained for each Nhlt_, regime. During
, the training of the neural networks, a number of different training parameters and

,j network configurations were tried, and only the trained networks exhibiting the best
_, performance were kept. The theory and operation of neural networks is described

i_ in detail in several sources 5,

I Also, an attempt was made to create a 'meta-engine' that used the outputs of each ofthe above t\mr engines, each weighted by a confidence factor derived from further Monte

Carlo testing, to make a final classification decision.

II.e31_fltsAfter being tuned as described above, the four pattern recognition engines
were tested on ata independent set of Monte Carlo events consisting of equal numbers of
tracks and showers. The relative performance (in terms of the fraction ot"events correctly

identified) of each of the classification engines is shown in Figure 3. The engines were
also tested with nmon tracks and electron showers from the 236 MeV/c ISIS test beam
data. Because the test beam events must be laboriously reconstructed by hand by a

human operator, only a small number have been tested. The performance of the engines
on these test beam events is nearly identical to the performance seen while testing with
Monte Carlo events.

Conclusions The performance of the engines are remarkably similar, with the best

and worst engines differing by only about 10% in any Nhit. regime. The Neural Network

approach seems to hold the most promise, followed closely by the M_imum Likelihood
method. More studies are underway on correlations between the outputs of the l\',ttr
engines, and on methods of combining the outputs to make a final decision. Also, more

testing with ISIS test beam events is being carried out.
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Figure 1, Reconstructed 236 Mev/c muon track (left) and electron

shower (right) from the ISIS test beam. Only the XY projection
is shown,
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Figure 2, The distributions of RAISxu Figure 3. The percentage of correctly

attribute for the tracks (solid line) identified tracks and showers for each

and show_:,'s (dashed .line) for the training of the separation methods,

events in Nhit_ regime 2,
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