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I. Introduction

Aromatic polyimides .have found wide-ranging application
in theelectronics industry because of their superior thermal
and mechanical properties, and low dielectric constant1.

These polymers are also photoconductive, both undoped and
doped, although their utility in photoconductor technologies
has been limited by the low quantum yield of photogenerated
conduction electrons. Experimental2,3,4 and theoreticalS,67
examinations of PMDA-ODA (pyromellitic dianhydride-

oxydianiline) polyimide (Figure 1) have led to the conclusion
that intramolecular charge transfer (ICT) from the ODA to
the PMDA moiety plays an important role in determining
the photqphysical properties of the polymer filn'ts, including
the intrinsic photoconduction and laser etching processes, as
well as the ultraviolet absorption and emission spectra.
Moreover, because the ]CT is sensitive to the conformation of

the polymer backbone, it can be utilized as a probe of the
polymer conformation8. Our purpose in this paper is to
examine the relationship between the structure and photo-
physical properties of a series of isoelectronic aromatic
polyimides, shown in Figure 1.

II. Method

The conformations of the polyimide oligomers shown in

Figure 1 were determined via geometry optimization using
the AM1 semiempirical quantum chemical rnethodg,lo. The
density of valence state (DOVS) and ultraviolet absorption
spectra (UVA) were computed using the spectroscopically
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parametrized CNDO/S3 model11. Parameters were taken
from previous studies5-7.

X = - O (PMDA-ODA)

- NH (PMDA-ADA)

- CH 2 (PMDA-MDA)

Figure 1. Oligomer used to model the aromatic poiyimides
PMDA-ODA, PMDA-ADA, and PMDA-MDA.

III. Results and Discussion

A. Polymer Conformation

With respect to ICT, the four angles defined in Figure 1
are the most important geometric parameters. Table I lists the
values of these angles as determined by AM1 energy
minimization computations. It is interesting to note the
angle between the PMDA moiety and its adjacent phenyl
rings is unaffected by the substitutions in the diamine
moiety. Consequently, any changes in ICT in these materials
will arise from the changing conformation about the
substitution site. It is clear from the data in Table I, as well as

the fact that the methyl carbon is completely saturated, that
PMDA-MDA will have no pi-electron delocalization across
the methyl linkage. PMDA-ODA, with a torsional orientation

of qb=64° will have a slight amount, while PMDA-ADA

(qb=50°) will have more.
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Table I. Values of the torsional angles defined in Figure 1 as
determined via AM1 geometry optimizations for PMDA-
MDA, PMDA-ODA, and PMDA-ADA.

Polymer ¢ _: _ cz

PM DA-M DA 90° +60 ° 30 ° 114 °

PMDA-ODA 64° 0° 30 ° 117 °

PMDA-ADA 50° 37° 30° 123 °

B. Electronic Structure

The density of valence states computed using the ..
CNDO/S3 model is shown in Figure 2. The most striking
feature is the shift to lower binding energies of the highest
energy peak as one moves from PMDA,MDA to PMDA-ODA
to PMDA-ADA. This peak represents the nearly degenerate
highest-occupied molecular orbital (HOMO) and the subjacent
HOMO, and the shift correlates with the diminishing torsional

angle, _, about the subsitution site and the increase in electron
delocalization about the diamine linkage. An examination of
the orbital electron densities of the HOMO and subjacent
HOMO confirm that the destabilization of these orbitals is due

to an increased delocalization across the diamine linkage,
which for these orbitals is an antibonding, or destabilizing,
interaction. The effect of this shift irt orbital energies on the
optical absorption spectra is discussed in the next section.

C. Optical Absorption Spectra

The low-energy peak in the UVA spectra of PMDA-ODA

correspoI_ds to an ICT _-_:* transition from the HOMO to the
superjacent lowest-unoccupied molecular orbital (LUMO)5.
Because the superjacent LUMO has almost no orbital electron
density at the substitution site, its energy is nearly unaffected in
all three systems. Consequently, the destabilization of the
HOMO should cause a corresponding blue shift of the ICT
peak. The computed optical absorption spectra for the three
systems is shown in Figure 3 where the predicted blue shift is
clearly seen.
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Figure 2. Computed DOVS for PMDA-MDA, PMDA-ODA, and
PMDA-ADA
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Figure 3. Computed optical absorption spectra for PMDA-
MDA, PMDA-ODA, and PMDA-ADA

IV. Synopsis

The quantum mechanical AM1 and CNDO/S3 models were
used to examine the effect of isoelectronic substitutions on the
conformation, electronic structure, and optical absorption

spectra for a series of aromatic polyimides. An analysis of the
geometric changes at the substitution site and its effect on the
electronic structure allowed for the prediction of changes in the
ICT band of the optical absorption spectra.
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