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1 Introduction. 

“Resonance seeding” refers to the hypothesis that the 
stochastic layer delineating the dynamic aperture of a 
Hamiltonian system grows out of separatrices generated 
by very low order resonances.[Z, 31 This is a physics hy- 
pothesis and should not be interpreted as arising from any 
particular technique for writing perturbative expansions, 
such as the ones developed by Deprit, Dragt, or Forest. 
Although analytic representations of the resonances are 
indeed obtained via perturbation theory, existence of the 
separatrices and the validity (or otherwise) of resonance 
seeding are separate from it. We shall describe some of 
the evidence supporting this idea in two and four dimen- 
sions. 

2 Two-dimensional maps 

With suitable definitions of transverse position and “mu- 
menturn,” the Poincark map representing insertion of a 
thin sextupole into a storage ring can be written, 

( I, ) * ( :;zv f:“,: ) ( p_zxz2 ) ’ (1) 

where X = -eflB”l/2ps, e being the charge on a proton 
(the assumed probe), p3 its longitudinal momentum, B”l 
the integrated second derivative of the sextupole field, and 
/3 the envelope function evaluated at the position of the 
sextupole. We can set X E 1 without loss of generality by 
rescahng, z -t z/X and p + p/X. (In nonlinear circles, this 
is called the H&mn map. See Henon,M. Quart. App. Math. 
27,291(1969).) 

Comparison of this map with perturbation theory calcu- 
lations was reported in [z]. We have studied this mapping 
in the tune range 0 < Y < 4; Figures la and 2a illustrate a 
few orbits at the tunes Y = 0.1, v = 0.29 respectively. The 
general features in these drawings are not surprising: (i) 
near the origin there are smooth (on the scale of the obser- 
vations) KAM tori; (ii) as one gets farther in phase space 
a structure of islands and sub-islands develops; (iii) which 
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Figure 1: (a) Orbits of the sextupole mappingfor v = 0.15. 
(b) Second order perturbation theoretic calculation of the 
stability boundary. The tic marks on the axes are sepa- 
rated by 0.5. 

finally breaks into a chaotic sea, the “stability boundary” 
marking the system’s dynamic aperture. 

Figures lb and 2b illustrate calculations done by apply- 
ing second order (0(X2)) perturbation theory to the map 
Eq.(l). The dynamics in Figure 1 are dominated by a 
first order integer resonance, which is put explicitly into a 
resonant normal form Hamiltonian. With the appropriate 
distortion, also given by the perturbation expansion, the 
sepomtriz of the resonance then can be associated with the 
stability boundary of the ezact mapping. By making this 
identification, we can estimate the location of the latter 
reasonably accurately. 

Figure 2 is a remarkable ease. Its most dramatic feature 
is the very large 2/7 resonance which produces a system of 
seven islands. Seventh “order” resonances (i.e., resonances 
with winding number seven) should not appear until fifth 
order in the perturbation expansion, while the island chain 
is certainly more than a fifth order effect. In fact it is due 
to an interference between the l/3 resonance, which ap- 
pears at first order in the perturbation expansion, and the 
l/4 resonance, which appears at second order. This is con- 
firmed in Figure 2b which shows the perturbation theoretic 
prediction when those two resonances are explicitly taken 
into account. 

Carrying out similar comparisons at other values of the 



Figure 2: Same as Figure 1, but with Y = 0.29. 

tune we have found that separatrices associated with first 
and second order resonant normal form Hamiltonians can 
usually predict the stability boundary surprisingly accu- 
rately. Further studies were carried out on Hamiltoni- 
ans including o&pole kicks with similar results.[l] The 
large amplitude chaotic layers marking dynamic aperture 
could frequently be associated with separatricea from low 
order resonances. The conclusion drawn was that reso- 
name seeding in tw*dimensional systems worked better 
than we had a right to expect. 

3 Four-dimensional maps 

In order to control the beam-beam tune shift (and spread) 
and allow Fermilab to increase luminosity in the Teva- 
tron, electrostatic separators will be wed to place the fidu- 
cial (design) p and jj orbits on the branches of a double 
helix. Head-on collisions will occur only at two interac- 
tion regions, BO and DO, where the helii will be pinched. 
Theoretical and experimental studies were conducted to 
study orbit stability under the double-helix scenario. The 
problem represents an interesting physical situation: even 
when individual kicks are small the combined beam-beam 
tune shift can be extremely large. Thus, the effects are 
distributed, much like those of small nonlinear fields dis 
tributed around the ring. In this type of situation, we can 
expect the dominant sources of instability to be driven 
by resonances. The principal observations we report here 
involve (a) bifurcations of chaotic separatrices leading to 
(b) the existence of very low entropy chaotic orbits. The 
control parameter for these bifurcations was the separa- 
tor strength, or the size of the double helix. What follows 
is necessarily a cursory discussion of observations; a more 
detailed paper is being written.[4] 

The non-trivial task of following chaotic, multi- 
dimensional separatrices through bifurcations was accorn- 
plished using AESOP, an “Exploratory Orbit Analysis” 
graphics shell for studying four-dimensional phase space. 
(See C++ Objects for Beam Physics, this Proceedings.) 
The low entropy orbits referred to above, previously 
called “tangled,” were observed a few years ago using 

Figure 3: A slice through the separatrix for closed helix. 

AESOP.[3, 51 What we were not able to do at that time 
was trace their evolution. Since then, a four-dimensional 
cursor was introduced into AESOP, making it easier to find 
and to follow separatrices. 

At zero separation, we see a slice through the separa- 
trix which exhibits the familiar four-lobe structure associ- 
ated with a 2~~ - 2~~ resonance, one excited strongly by 
the beam-beam interaction. (See Figure 3.) The coordi- 
nates for this three dimensional projection are the horizon- 
tal and vertical “angle” variables and an “action” variable. 
In AESOP’s standard mode, the action variable displayed 
is simply proportional to the horizontal emittance, not a 
true action variable with nonlinearities present. This is ba- 
&ally the “angle-angle-action” plot which has been used 
before by the author, by Ruth et 01 [S], and by others. 
Figure 3 shows an orthographic projection of phase space 
along the 61 = 62 diagonal, with a number of orbits plotted. 
Regular, stable resonant orbits lie in manifolds which are 
near the regions & : 61- 62 z 0 or & : 61 - 62 Y z, while 
the unstable resonant orbits are near Cr, : 61 - 62 ? s/2 or 
Ir, : 61 - 61 Y 3s/2. Some care must be taken in interpre- 
tation. The apparently two stable regions just left and 
right of center are actually the same region, and the ones 
at the extreme ends coincide with the on in the center. We 
are viewing a projection of angle data which gets wrapped 
with 2~ periodicity. The “four” lobes of this picture actu- 
ally represent only two stable regions. 

Seen from this projection, the orbits in regions 5’1 and SZ 
appear similar. In fact, they are very different. Tori sur- 
rounding SI are banded, as can be seen in the slightly ro- 
tated view of Figure 4. This indicates the existence of more 
complicated, “secondary” resonances winding around the 
“principal” tori, which envelop the “principal” resonant 
orbit. In addition, if one observes closely, these bands are 
themselves striated, pointing to a yet more complicated 
resonance structure. In contrast, the resonant orbit in re 
gion Sz is actually a family of period eight orbits strung 
together. The small tori appearing in the side view of Fig- 
ure 4 surround one set of orbits from this family. 

When the electrostatic separators are powered and the 
helix begins to open, the first global bifurcation takes 
place, as illustrated in Figure 5. The separatrix no longer 



Figure 4: Side view of representative orbits from stable 
regions S1 and &. 

Figure 5: Appearance of the separatrix for small helix. 

connects the two unstable resonant orbits. Rather, it has 
split into two branches, each of which is attached to one of 
them: the central “rotated figure eight” and its “cocoon.n1 
As the separation increases, a second bifurcation occurs in 
the vicinity of the unstable resonant orbit. (See Figure 6) 
Rather then forming the “cocoonn of Figure 5 the branch 
closes quickly, forming a new figure eight. Unlike the previ- 
ous bifurcation, this is not one which takes a heteroclinic 
branch and changes it into a homoclinic one. It is h* 
moclinic both before and after the bifurcation; what has 
changed is how it closes back on itself at large amplitudea. 

Even though the separatrix is chaotic, its shape and be- 
havior under bifurcation is clearly determined by an un- 
derlying, low order, integrably resonant system, support- 
ing the reality of resonance seeding in four dimensions. (I 
suspect, but am not certain, that this is the first attempt 
to follow in detail the bifurcations offour-dimensional sep- 
a&rices.) 

The “tangled orbits” mentioned above (see the refer- 
ences for figures; there is no more space available here) 
appeared as the helix continued to open. They are almost 
periodic, with period five: watching one develop on the 
screen reveals that it returns on itself almost exactly af- 

Figure 6: Appearance of the separatrix for larger helix. 

ter five iterates. Correspondingly, the lengthening of the 
“thread” is slow; hundreds of iterates may be required to 
form a single “loop.” From the standpoint of the theory 
of chaos, we must interpret such orbits as chaotic with ex- 
ceedingly small KS entropy. That is, the tangled orbits 
are almost but not quite regular. They appear, at least 
superficially, as one-dimensional objects. A great many it- 
erates would be needed before the fractional parts could 
be determined with any accuracy. 
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‘The situation may be even more complicated. There is home 
suggestion that one of these ia actually two resonant orbits very close 
together, but thin was not resolved. 


