
WSRC.TR-91.420

NRTSC
NUCLEAR REACTOR TECHNOIX)GY
AND SCIENTIFIC COMPUTATIONS

KEYWORDS: SCIENTIFIC COMPUTING
DATABASE MANAGEMENT
GRAPHICS TOOLS
JOSHUA,J70,JS0,J90 _.,

ASCENT _: .,,c..,:: •'.:'i! ('.i
UNIX

I_ ' _'_, _! • r '",
lh!; "'

RETENTION: PERMANENT

PROGRESS REPORT

ADVANCED SCIENTIFIC COMPUTING ENVIRONMENT TEAM

NEW SCIENTIFIC DATABASE MANAGEMENT TASK (LD

,, ProjectManager: J.P. Church

Work Done By: J.C. Roberts
R. N. Sims
A. O. Smetana
B. W. Westmoreland

ISSUED: JUNE, 1991

Dg'rivative Classifier Date

SRL SAVANNAH RIVER LABORATORY, AIKEN, SC 29808
WESTINGHOUSE SAVANNAH RIVER COMPANY
Prepared for the U. S. Department of Energy under

""'Ti Contract DE-AC09-88SR18035

, i...,.iS._._![_.I_"IO_'.,I OF 'I'H_E.; DOCUIvI_='.IqT !M UrqI__IVII"_"_)_

WSRC-TR--91-420

DE92 009653

o

DOCUMENT: WSRC-TR-91-420
4

TITLE: PROGRESS REPORT
ADVANCED SCIENTIFIC COMPUTING ENVIRONMENT TEAM

TASK: NEW SCIENTIFIC DATABASE MANAGEMENT

APPROVALS

M. R. BUCKNER, MANAGER DATE:
SCIENTIFIC COMPUTATIONS SECTION

/: : gEC_IEYER, MANAGER DATE:COMe_INaT_.C_NOT.OaYaRoue
B

m
',;_ISTRIBUYlC)I",t OF THIS DO [.-.'-:lqTI,,._UNLIMITED

it

EXECUTIVE SUMMARY ...1
1.0 INTRODUCTION...2

4 2.0 DISCUSSION..2

2.1 Overview...2

2.1.1 ASCENT Locus ...2
2.1.2 Trends of Computing Hardware and Software Technology3
2.1.3 Current State of SRS Scientific Computing...4
2.1.4 Site Computing Architecture Standards.... .5
2.1,5 Flexible Plan..5
2.1.6 Implementation..5

2.2 JOSHUA Development..6

2.2.1 J70 Concepts, Development,and Status...6
2.2.2 J70-->J80Conversion..8

2.2.2.1 J80 Syste,'ns Development ...8

2.2.2.1.1 Background...8
2.2.2.1.2 J80 Improvements on the IBM Mainframe...................8

2.2.2.1.2.1 Permissible Problem Size..................................8
, 2.2.2.1.2.2 Faster Execution Speed8

2.2.2.2 Code Conversion .9

, 2.2.2.2.1 GLASS Code..................i ...10
2.2.2.2.2 GRASS Code ...11
2.2.2.2.3 Criticality Codes ...11
2.2.2.2,4 JASON Code ..11
2.2.2.2.5 Transient Analysis Codes ..11
2.2.2.2.6 SHIELDCode...11
2.2.2.2.7 PORADCode..12

2.2.2.3 QA Procedures ..12
2.2.2.4 Training...12
2.2.2.5 Platform from which to move forward to new features12

2.2.3 J90 (Unix BasedJOSHUA for the 90's)..13

2.2.3.1 Programming Considerations ..13
2.2.3.1.1 Dataset Hierarchies and Name Trees13
2.2.3.1.2 Formatting of Records ...14
2.2.3.1.3 Module Execution ..14
2.2.3.1.4 File Manipulation ...14
2.2.3.1.5 Library Routines ...14
2.2.3.1.6 Command Language ..14

2.2.3.2 Exucution of Applications Programs IMPORT and
GLASS on J90 ..14

2.2.3.2.1 Precompiler Changes ...15

2.2.3.2.2 DataTyping...i.............15
2.2.3.3 Extension of J90 to Other Platforms and °

Performance Testing ..15
2.2.3.4 Status of J90 Development...16
2.2.3.5 Extension of J90 Features to J80 and

Future Directions...18

2.2.4 Future Development Plans for J90 Computing18
F,

2.3 Graphics Tools and Applications ...19

2.3.1 FaceMapTool...19

2.3.1.1 FaceMap Features ...19
2.3.1.2 FaceMap Tool Documentation ...20
2.3.1.3 X Window Platforms ...20

2.3.2 Applications ..20

2.3.2.1 Graphical User InterfaceBuilders..21
2.3.2.2 Reactor Monitonng System (RMS/ARMS)21
2.3.2.3 Facemap Movie For K Reactor Data ...22
2.3.2.4 Graphic Reactor FaceMap (FM)Function in J8022

2.3.2.4.1 FaceMap Panel ..23
2.3.2.4.3 Assembly Editor Panel..24

!

2.3.2.4.4 Preferences Panel ...25
2.3.2.4.5 Selector Panel..25
2.3.2.4.6 Coding of FM Prototype Completed26

2.3.2,5 Desktop GUI (Prototype Graphical Terminal System)
for J80,..27

2.4 Future Directions...28

WestinghouseSavannahRiver Company WSRC-TR-91-420
Savannah River Laboratory

I

PROGRESS REPORT

ADVANCED SCIENTIFIC COMPUTING ENVIRONMENT TEAM
NEW SCIENTIFIC DATABASE MANAGEMENT TASK

EXECUTIVE SUMMARY

OBJECTIVE

The missionof the ASCENT (Advanced Scientific Computing_.vironmenI) Team is
to continuallykeep pace with, evaluate, and select emergingcomputingtechnologies
to define and implement prototypicscientific computingenvironmentsthat maximize
the abilityof scientistsand engineersto manage scientificdata. These environments
are to be implementedin a mannerconsistentwiththe sitecomputingarchitectureand
standardsand NRTSC/SCS strategicplans for scientificcomputing,

The majortrends in computinghardwareand softwaretechnologyclearly indicatethat
, the future "computer" will be a network environment that comprises supercomputers,

raphics boxes, mainframes, clusters, workstations, terminals, and microcomputers
_.e., a full complement of clients and servers). This "network computer" will have an

, architecturally transparent operating system allowing the applications code to run on
any box(es) supplying the required computing resources (e.g., cycles, storage). The
environment will include a distributed database and database managing system(s)
that permits use of relational, hierarchical, object oriented, GIS, et al, databases.

To reach this goal requires a stepwise progression from the present assemblage of
monolithic applications codes running on disparate hardware platforms and operating
systems. The first steps include' (1)converting from the existing JOSHUA (JT0)
system to a new J80 system that compiles with modern language standards, (2)
development of a new J90 prototype to Drovide JOSHUA capabilities on Unix
platforms, (3) development of portable graphics tools to greatly facilitate preparation of
input and interpretation of output; and (4) extension of 'Jvv' concepts and capabilities
to distributed and/or parallel computing environments.

Step (1)is nearing completion. The new JS0 system has been implemented on the
VAXcluster and the unclassified and classified IBM mainframes. Users of the J70
system are being ported to J80 concurrent with satisfactory conversion of the
application codes. Step (2), the prototype of the J90 system, is complete. Execution of
that system has been successfully ported to Sun SPARCstations, IBM RS-6000
workstations, and the Cray XMP-EA running UNICOS®. The distributed database and

, computing features of J90 will be added to the J80 system when conversion from J70
is complete. Step (3)is well underway with major new graphics capabilities already
provided for reactor facemap applications. Work on Step (4) has just recently begun.

. The prototype J90 is being extended to provide for network (multiple CPU) distributed
and parallel execution of modules.

2

1.0 INTRODUCTION

The mission of the ASCENT (Advanced .8.cientificComputing Environmen]_) Team is
to continually keep pace with, evaluate, and select emerging computing technologies
to define and implement prototypic scientific computing environments that maximize
the ability of scientists and engineers to manage scientific data.

Two tenets guide the efforts of the ASCENT Team: (1) the purpose of computing is
insight, not numbers1, and (2) the purpose of accumulating knowledge is to use that
knowledge to think2. That is, we seek to facilitate understanding. To this end the
broad, long term, goal of the ASCENT Team is to provide a computing environment
that will let the scientist/engineer function at the higher level of abstraction that is his
actual area of technical expertise. The scientist/engineer should be able to solve
problems by interacting with conceptual representations drawn directly from the
scientific and engineering domains. In this environment the scientist/engineer (i.e., the
"problem solver") builds the problem model with reusable virtual objects having
associated attributes and behaviors, including any real or artificial constraints. The
problem solver could then test the model by perturbing it interactively and observing
quantitative (archived experimental measurements; simulated or computed data)
and/or qualitative (trends, approximations) responses. Such an environment would
greatly facilitate the solution and understanding of scientific and engineering
problems.

To provide this environment the Computing Technology Group of Scientific
Computations Section has assembled a dedicated ASCENT Team whose focus is to
i,ncorporate into the SRS computing environment the appropriate developments in
computational hardware and software that trail only slightly the leading edge of
technology and to do so in a manner consistent with the site computing architecture
and standards and NRTSC/SCS strategic plans for scientific computing.

2.0 DISCUSSION

2.1.1 ASCENT Locus

Basically, the ASCENT Team tries to recognize the trends of computing hardware and
software technology, understand the current state of SRS scientific computing, be
aware of the constraints imposed by emerging site computing architecture standards,
map out a flexible plan to move towards the desired computing environment, and
implement that plan.

The approach of the ASCENT Team to this task is to define and continually update a
five-year strategy that leads always in the direction of the goal. The Program Plan that

1 R.W. Hamming. "Numerical Methods for Scientists and Engineers", Chapter N+I, 2hd ed., McGraw-
Hill, Inc., New York, 1973.

2 This tenet, too, is not original with our team. Unfortunately, the specific reference is lost.

t

3

defines the first steps of this strategy has been recently published.3 The ASCENT
Team has very limited resources and therefore must be very selective in choosing itsD

tasks. Specifically, each direction explored must be both a step towards the five-year
strategy, and also provide an immediate application to serve as a test bed for the

, concept being pursued.

One view of where the scope of data management and the ASCENT team fits into the
scientific computing scheme at SRS might be represented by Figure 1. In this view the
center circle represents the hardware, network, and operating system, while the outer
circle bounds the environment of the end-user. The user needs to communicate with
stored data directly as well as through the use of applications codes. The area
allocated to data management, bounded by the heavy lines, represents the

responsibility of ASCENT. The interaction between the database and users and
applications is via some kind of Applications Programmer Interface (API).

i , i

ASCENT LOCUS

\

J
Figure 1. Interfaceof ASCENT Teamwith ScientificComputing at SRS

J

2.1.2 Trends of Computing Hardware and Software Technology

The major trend in computing hardware is vastly more cycles, speed, memory, storage,
etc. for much less money. Individual desktop workstations today have much more
power than mainframe computers of only a few years ago. Network technology (data
transfer rates, network system management, etc.) has advanced in parallel so that the

D

3 J0 P, Church, Advanced Scientific Computing Environment Group, New Scientific Database
Management Task Program Plan. WSRC-TR-91-70 (February, 1991),

4

future "computer" will be a network environment that comprises supercomputers,
graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers '
(i.e., a full complement of clients and servers).

b

To go along with these hardware developments the computing software technology
will provide an operating system that is architecturally transparent, thereby permitting
the applications code to run on any box that supplies the required computing power
(memory, cycles, whatever). The environment will include a distributed database, with
perhaps local caching, with a (perhaps multiple) database managing system that
permits use and manipulation of relational, hierarchical, object oriented, GIS, et al,
databases. Other software developments will include well specified guidelines for
modular software development that facilitate assembling complex problem models
from simpler components and software reuse.

Actually, some of these features are not merely trends towards the future, but instead
are already available in prototype, or even production (albeit early versions), form.

2.1.3 Current State of SRS Scientific Computing

The scientific computing environment at SRS is truly a 'mixed bag'. Most of the reactor
physics codes, and some of the thermalhydraulics codes, used to design charges for
SRS reactors are written to operate under the JOSHUA system.4 The JOSHUA
system is a shared database system with input and output via named data records and
was originally developed at SRS in the 197£_ for scientific code development. The
JOSHUA system consists of both an operating system for data management, job
execution, and terminal facilities, and a system of applications codes developed to use
these facilities in solving problems at SRS. For purposes of discussion, this system
will be referred to as J70.

Initially, the J70 computing environment was state-of-the-art, and presaged much of
the software technology subsequently developed years later by commercial vendors.
To obtain satisfactory performance many special assembly language programs were
developed for data management and FORTRAN input/output routines were extensively
modified. Although the applications codes still ate critical for analysis of heavy water
reactors, the system is not well suited to a modern computing environment. The codes
are not portable because they do not comply with modern language constraints, and
the operating system is dependent on a specific mainframe architecture and compiler.

Several years ago it was recognized that this situation could not continue indefinitely,
and a program was started to rewrite the system to comply with standard FORTRAN 77
language specifications. That compliance would provide portability across
architectures and provide a base system that would be fertile ground for prototyping
and/or incorporating modern technologies. Convel'gence to this newer system, called
J80, is underway and will be discussed below.

Many other codes, particularly those obtained from offsite or developed recently, are
not part of the JOSHUA system. These include compute intensive thermalhydraulics

4 H.C. Honeck. The JOSHUA System (U), DP-1380 (April, 1975),

5

codes, molecular modeling codes, seismic analysis codes, etc. Some, but not all,
* comply with FORTRAN 77 standards, some run on high-performance workstations,

some run on mainframes under non-JOSHUA operating systems, etc. These codes,
and codes now being planned, must be integrated into the advanced computing
environment along with the J80 codes discussed above, once the J70-to-J80
conversion is complete.

2.1.4 Site Computing Architecture Standards

Site computing architecture guidelines have recently been published s and migration
plans to move towards the proposed architecture are being drafted. The majo,r
features of the proposed architecture are: standards-based computing, data driven
systems, workstation orientation, automated applications development, relational
database technology, client/server technologies, emphasis on buy vs build for
applications, user-based data reporting tools, modularity and object oriented
programming, and site-wide coordinating organizations.

2.1.5 Flexible Plan

To reach our long term goal will require progressing from the present assemblage of
monolithic applications codes running on disparate hardware platforms and operating
systems. The initial steps of this progression must also acknowledge the progress to

, date in developing the 'new' Ja0 system to replace the J70 (JOSHUA) system.

As discussed above, the initial ASCENT Program Plan has been issued,s Initially,
there were four main parts defined for the project: (1) completing conversion from J70
to J80, and (2) development of a J90 prototype that operates on Unix platforms, (3)
development of portable graphics tools, and (4) extension of 'Jvv' concepts and
capabilities to include distributed and/or parallel computing and object oriented
environments. Part (1) of the project is nearing completion, Part (2) was completed,
Part (3) is well underway with significant new capabilities already provided to the
app!ications community, and Part (4)is in the initial stages of investigation.

A fifth part of the plan was to initiate training to implement and disseminate the above
tools and methods. That training has begun on a limited basis for J80 and graphics
applications. The more formal training originally planned will have to wait until the
trainees are less consumed by reactor startup activities.

2.1.6 Implementation

Implementing the proposed environment at SRS requires a critical mass of qualified
technical people who can devote the majority of their time to implementing (as
opposed to developing) the technology. (Implementation includes QA ::;ting of
prototypic and production environments.) That organization does not yet exist as a
separate entity at SRS, and the ASCENT Team is trying to provide that function

, temporarily.

5 Savannah River Site Computing Architecture (U). WSRC-IM-91-18-1 (April 15, 1991).
6 J. P. Church. Advanced Scientific Computing Environment Group, New Scientific Database

Management Task Program Plan. WSRC-TR-91-70 (February, 1991).

6

i

The discussion below will provide further details on the progress to date on
implementing the Program Plan.

2.2 JOSHUA DeveloDmenl;

2.2.1 J70 Concepts, Development, and Status
i

The J!gSHUA system is called 'J70' in the ASCENT reports because this new name
helps clarify discussions of the migration from the original system to the newer
versions. The environment of the J70 system is shown in Figure 2. The main point is
that users, via terminals, and applications codes interact with (i.e., read from, and write

to) aid have a single view of the database.

JOSHUA (J70)
ii i iiiiii i

A SHARED DATA SYSTEM

!
i1|

APPLICATIONS
MODULE

APPLICATION, c
MODULE

Figure 2, Simplified View of J70 ComputingSystem

The computing system is tightly coupled: a single mainframe computer with users,
terminals, and applications codes ali accessing a common database. The database
consists of named data records existing in either User, Standard (STD), or Job data
sets. At execution the applications codes can select data from any of these data sets
by following a read hierarchy established by the user at the time the job is submitted.
The user can create, modify, or read these records via corresponding templates. If we
superimpose the J70 environment on the model of a computational system shown in
Figure 1 we get something like that shown in Figure 3. The data management for J70

J70 ENVIRON,MENT
RECORDS IN

END USER ENVIRONMENT ISOLATED

STORAGE
TEMPLATES

USER
PRESENTATION DMMUNICATION

AND BETWEEN
iNTERACTION

MODULES
COMPUTATIONAL UNITS

NEW PHYSICS

AAAA"*A_******

ASCENT Project ;

Figure 3. Superposition of 370 Computing Environment on ASCENT Model

, has the named data records in isolated disk storage. Followingthe terminologyof the
above modei, an example of interapplication communication is the ability in J70 of one
applications code module to execute another module. And, as indicated above, in J70

- the templates serve as a limited API (perhaps more properly called a UI; i.e., User
Interface) for user presentation of, and interaction with, the database.

J70 was state-of-the-art when it was developed, lt fulfilled it's scope for the 1970's;
and what it did, it did very weil. But, in fact, it no longer does some of the things it used
to do. As the operating system and compilers changed through the years, some of the
capabilities of J70 were not maintained. The development of J70 software stopped
years ago. A result is that features such as interactive graphics, which was promised
for 1975, were never developed. Finally, J70 is tied to an outdated compiler which the
planned replacement lnainframe will not support.

A project was initiated several years ago to convert the J70 system to one that
complies with modern language standards (FORTRAN 77) and, hence, is portable to
other platforms. Part (1) of the ASCENT Team program is to complete the task of
converting the applications codes and existing database from J70 to the new J80
system. This task is an integral part of the ongoing SRS effort to document the
verification and validation of, and to subsequently certify, ali existing critical reactor
physics software.

2.2,2 J70=>J80 Conversion

2.2.2,1 _/80Systems Develooment

2.2.2.1.1 Background

To reiterate some points made earlier, J80 offers the same basic functionality as J70.
J70 was based on FORTRAN IV, an IBM specific version of the FORTRAN 66
language, while J80 is compliant with FORTRAN 77 language standards. J70 runs
only on the IBM, while J80 runs on both the IBM mainframes and the VAX clusters.
J80 uses the operating system to do many of the things that required special data
management routines in J70, Hence, the need for specialized assembly language
coding was minimized in J80. Depending on how it is assessed, some 20-65% of the
J70 operating system was written in assembly language, while less than 1% of J80
coding is assembly language.

The JS0 system is getting its first significant usage by customers (Reactor Physics,
Reactor Technology, and NPR personnel) since its initial development. In general, the
system is performing well and has received favorable comment from the users. Most
problems that have occurred have been traced to causes unrelated to either th_ J80
system or the conversion of J70 codes to that system (see below regarding the GLASS
code). Initial documentation of the J80 system7 ,B is bging updated.

Responding to feedback from new users of the J80 system, numerous system changes
have been made to improve the user friendliness of the system and to add several
new features. A major enhancement was made to the J80 terminal system to include
the Reactor Map function which is necessary for creating the input records for
GRIMHX. This function is a text-based graphic equivalent to one now existing in J70.

2.2.2.1.2 J80 Improvements on the IBM Mainframe

2.2.2.1.2.1 ..Permissibl_prot_lem Size

The size of problems that can be run in JS0 was greatly increased by taking full
advantage of virtual memory features. Jobs can now be run on either the IBM or the
VAX using up to 2 gigabytes of memory. This _smuch larger than possible with J70.

2.2.2.1.2.2 Faster Exec_tlor7SD_Qd

One of the reasons for much of the assembly language coding in J70 was to obtain
satisfactory performance of I/O to disc access, Special steps had to be taken in J80 to
obtain comparable performance. In the initial version of JS0 for the IBM, the CPU time
used by an applications code was about the same as in J70, but the elapsed time
used by J80 was much greater than that used in J70. (No comparison of timings is
available for the VAX because J70 runs only on an IBM.) This increase in elapsed

7 W.H. Reed, et al.]'he JOSHUA User's Manual. DPSPM-GEN-36 (Sept., 1987),
8 J.T. McCort. The JOSHUA Programmers Manual, Draft (Aug., 1988). ,,

time was so onerous that conversion of users from J70 to J80 would have delayed
, critical reactor physics calculations required for reactor startup.

The first step to speeding up the IBM version was to replace the J80 dynamic
, allocation utility routines with IBM's VS FORTRAN supplied routines. This allowed the

use of multiple I/O buffers which improved the efficiency of J80 I/O processing. Also,
these changes made it possible to use the latest code analysis tools and thus
determine that the long running times for J80 were due to differences in the way direct
access I/O is handled between the two systems.

IBM FORTRAN requires direct access files to be formatted before they are used which
means writing the format pattern to every record in the file. Each J80 job has
associated with it two scratch data sets one for the system and one for the user.
Because each J80 data set consists of two direct access files (a tree file and a data
file), the two scratch data sets requsrefour files to be allocated and formatted. This is
very time consuming. The scratch data sets are inherently temporary, so they were
moved from disk to VIO (virtual I/O) The scratch data sets must still be allocated, but
the formatt;ng is now I/O to memory which is much faster than doing physical I/O to a
disk drive.

Aiso, standard FORTRAN direct access on the IBM requires the disk files to be fixed
length and unblocked. This means that for each record read or written to the file, a
physical I/O is made to the disk. If a job does a lot of I/O, then much of the time is spent

p simply waiting on the disk. Permanent data sets were moved to VSAM (virtual storage
access method) files which are effectiv__ ' blocked. This means that when one record
is read, a block of records are actually read off the disk. When the next record is read,

, the system checks to see if that record is already in memory1. If it is, the record is
returned to the program without having to do a physical I/O to di_k.

,,,,_

These changes, along with several other minor changes (SL_;t,has increasing the
number of buffers allocated to each file) have reduced the running time of J80 on the
IBM to be comparable to that for J70.9 With the improvement in computing timings,
there is no longer any reason to delay the conversion of codes and users from J70 to
J80.

2.2.2.2 Code Cortversion

As stated above, J70 consists of a data management system, or operating system, and
a set of applications codes that operate under that system. A key step to fully
implementing the J80 system is to convert to J80 format ali the J70 codes. The newer
language standards are more restrictive than those existing for the original
development. Furthermore, because of the complexity of the J70 codes and,
sometimes, ingenuity of the original J70 programmers, the task of conversion does not
lend itself to a rote type conversion. However, there are some guidelines lo, the most
obvious of which are as follows'

P

9 A.O. Smetana. Improvements to New JOSHUA (J80) on the IBM/MVS Operating System.
WSRC-TR-91-118 (March, 1991).

, lO j.H. Key. Conversion of Old JOSHUA to New JOSHUA. SCS-CTG-900032 (August 9, 1990).

j

, 10

1. Data Typing'
- Data typing must be separated from data initialization.
- Data types must be renamed (e.g., 'REAL*4' becomes 'REAL', °

'REAL'8' becomes 'DOUBLE PRECISION').
- Some data types must be changed (ali integers are 4 bytes, and

'INTEGER*2' is not allowed.

2. Character variables'

- Character variables must be declared as such (vice 'REAL' in J70)
- Character and numeric variables can't appear in the same

COMMON statement.

3. Equivalence statements must be checked for validity after data typing
and character variable changes

4. Calls to some system routines must be replaced to use new J80
routines.

5. Miscellaneous syntactical changes

The application of the above guidelines to convert the J70 codes is well underway.
However, progress in this area is being severely hampered by manpower restrictions
because most J70 code proprietors who would normally be doing the code conversion
are heavily involved in reactor restart activities. Specific progress is noted below for
some of the more important codes, lt should be noted that many of the tools used in
debugging the converted codes are finding errors in coding that exist in the original
J70 codes. Generally, these errors are remnarlts of code lines which are never
accessed, or data not initialized. But it is possible that some of the bugs may be more
serious. The net result is that the J80 versions represent the best available version of
each respective module. These latest versions have also been supplied to offsite
contractors involved in either verification and validation work for SRS or design work
for the New Production Reactor.

2.2.2.2.1 GLASS Code

Reactor Physics used the NJOY code (developed offsite) to produce a new MULTIGRP
library for use with GLASS. Use of the new library uncovered an error (now corrected)
in the CRISP module of GLASS, The error caused CRISP to create an incorrect
energy band structure which then caused an obvious fatal error in another part of the
GLASS execution. The error occurred only with the new library and had no effect for
the standard libraries in use at SRS

Ali modules of GLASS have been converted to J80 and checked out with the
exception of the Monte Carlo option. Checkout of the latter coding is awaiting
verification of the random number generator by the Criticality Methods and Analysis
Task Team (see Section 2.2.2.2.3). The CRISPE and FISTH moeules have been

I

installed on the IBM J80 system and are also being checked out. These moc_ulesare

i

11

executed by GLASS but only when GLASS is executed by the criticality module
o KOKO.

2.2.2.2.2 GRASS Code

The GRASS modules necessary for running the GRIMHX code have been debugged
and made available under the JS0 system. To make the GRASS modules conform to
the FORTRAN 77 standard, the dynamic memory allocation functions were replaced
with statically dimensioned arrays. This meant that every job, regardless of size,
would require as much memory as the largest job that would ever be run. This is
normally of no concern on virtual memory computers, but the IBM requires special
steps to gain access to memory beyond approximately 8 m3gabytes. The GRASS
modules (as well as the JS0 system - see above) were rebuilt to take advantage of this
extra memory. "l'his means that jobs can now be run that use up to two gigabytes of
memory available on the IBM as well as the VAX.

2.2.2.2.3 Criticality Codes

JS0 versions of criticality modules ANISN, KOKO, HRXN, POOHBAH, KENO, and
KENOCJ, are currently being checked out by the Criticality Methods and Analysis Task
Team. Suitability of the random number generators (used the Monte Carlo codes) on
various JS0 platforms is also being assessed. The remaining criticality modules
should soon be available under J80.

t

2.2.2.2.4 JASON Code

• The JASON code is converted and ready for initial testing by the code custodian in the
Reactor Physics Group. Installation of J80 ,.,nthe classified computer is underway and
will facilitate checkout of the converted code.

2.2.2.2.5 Transient Analysis Codes

The AA3 code was converted to the J80 system and initial testing of the converted
code is complete. Formal approval by the code proprietor is underway. The code has
been installed in the Software Configuration Managemem System and final testing of
this SCMS version is underway.

The modules necessary for running the module TRIMH2 were installed under J80.
These modules have undergone extensive debugging, and the code now appears to
be converted satisfactorily. Final te_ting is underway before installation in the SCMS.

2.2.2.2.6 SHIELD Code

Ali the SHIELD modules have been converted to J80, and encugh of them have been
installed under IBM J80 to enable one computation path through the SHIELD system.
A test problem that exercises that path was provided by the code proprietor and the

II

, 12

results are equivalent to those obtained with the J70 version. 11 Verification of the
remaining J80 SHIELD modules is underway.

0

2.2.2.2.7 PORAD Code

Assistance was provided Reactor Physics in converting the application code PORAD
from J70 to J80. With only a few hours of help from ASCENT, the Reactor Physics
code proprietor was able to convert the code within a few days. This is much less than
the originally estimated conversion time and offers the hope that conversion of other
codes by the code proprietors might also proceed much faster than earlier estimates
when they are able to consider tasks other than those directly related to reactor restart.

2.2.2.3 QA Procedure_i

QA documentation for the J70=>J80 conversion of applications codes was developed
and approved to define a procedure to obtain formal acceptance by the code
proprietors that the conversion is successful if the J80 results are within acceptable
agreement of the results obtained with the J70 codes.12 Code proprietors are, in
general, responsible for further certification of the code, and for ali associated QA
documentation.

2.2.2.4

Several training sessions for J80 were held for Reactor Physics, Reactor Safety
Research, New Production Reactor, and Reactor Technology personnel to facilitate the
transition from the J70 to the J80 system. A specific topic was to demonstrate how to
use J80 and run codes such as GLASS under J80. A videotape was made of the last i,

training session for later use by the resource center as initial instructional material for
users of J80.

A procedure was developed by CTM to provide a record of the daily usage (codes and
users) of J70. These data are being analyzed to determin6 the most important needs
for further JS0 training and J70-to-JS0 code conversion. Also, a Iogin message similar
to that used in J80 is being displayed for J70 users to inform them about impending
cutoff dates for usage of J70 codes. Such dates will be set after the J70.users of those
codes have been given appropriate J80 training and their J70 data sets have been
successfully exported to the J80 system.

As new graphics applications are added to J80 (see below) additional training will be
provided to facilitate their efficient use.

2.2.2.5 Platform from which to move forward to new featureL_

A key feature of the J80 product is that the compliance with modern language
standards provides a base on which to build a variety of new structures. The

11 Identical agreement may not be possible because of differences in systems libraries.
12 j, p. Church. Conversion of JOSHUA Applications Codes to J80. Computational Task Problem

Statement and Solution Proposal (PSSP) Identification, Approval and, Distribution Form.
Task 91-016-1, Revision 0 (February 22, 1991).

13'

portability of the standard language permits easy porting to other platforms. This, in
turn, opens new avenues to graphics applications, and generally allows the SRS

, scientific analyst to better take advantage of the power of emerging hardware and
software technologies. Two areas of development are the J90 system discussed next
in Section 2.2.3, and new graphics applications discussed in Section 2.3 below.

2.2.3 J90 (Unix Based JOSHUA for the 90's)

One way to greatly increase the computing capability at SRS is to move to a totally
distributed computing system (parts of a problem being run on different hardware,
accessing information from local and/or global databases), The first step in
developing such a system is to focus on an essentially hardware transparent system.
A result of this functionality is to be able to immediately take advantage of new
compute cycles as soon as they become available. No coding or data changes by
applications code users will be necessary.

A prototype of a new version of the JOSHUA scientific data management system was
completed. 13 This prototype, named Jg0, is targeted for the UNIX operating system
based famtiy of computing platforms that are expected to comprise our scientific
computing environment in the 1990's. The implementation uses UNiX-supplied
capabilities to replace the internal JS0 system operations. The emphasis is on
simplicity and standards such that JOSHUA implementation will not negate the
emerging power and usefulness of advanced computing technologies.

The goal is to run any J80 application, without changing the present IBM and VAX
source code and without moving and/or changing the existing JOSHUA data base, on

" any UNIX OS based platform having direct LAN connection and support for common
network application protocols. Aspects of performance, robustness, reliability, and
security are deferred for later production versions of J90 that may be developed.

The J90 system is also a point of demarcation from normal JOSHUA concepts and
opens the way, eventually, for a smooth transition to an environment in which a
network of heterogeneous platforms provides the compute cycles and a distributed
database is_accessible from any node on the network.

2.2.3.1 Brogramming Considerati(_n_

Six major programming constructs are addressed: (1) dataset hierarchies and name
trees, (2) formatting of records, (3) module execution, (4) file manipulation, (5) library
routines, and (6)command language.

2.2.3.1.1 Dataset Hierarchies and Name Trees

The UNIX file system for management of JOSHUA named records was used. The
concept of a dataset hierarchy, a basic component of J80, is a subset of the function
provided by UNIX file systems exlended with "viewpathing" such as Sun's Translucent

13 R, N, Sims. Jg0, A Prototypic Unix-BasedJOSHUA System, WSRC-TR-91-421 (in progress),

File System (TFS) or AT&T's 3-D File System. Eduardo Krell of AT&T Bell
Laboratories, an author of the 3-D File System, has been contacted regarding source
code licensing for possible future enhancement/extension of Jg0 and related systems.

2.2.3.1.2 Formatting of Records

Sun's XDR (eXternal Data Representation), the source code for which is publicly
available, was used for encoding and decoding of JOSHUA's binary data records as
portable UNIX files.

2.2.3.1.3 Module Execution=

The J90.1 implementation uses a simple UNIX execution model which restricts
execution to a single CPU; i.e., the single machine where the JOSHUA monitor is
started.

2.2.3.1.4 File Manipulation

The file utility package distributed by the Free Software Foundation was changed to
provide a good library of file manipulation utilities for copying, m¢'ving, renaming, etc.
Of special interest is the capability of these utilities to provide backup by means of file
versioning.

2.2.3.1.5 Library Routines

A set of librar_ routines was obtained to provide a "database" of capabilities much like
that of Unix's termcap facility. This allows the generic handling of relatively static but
externally specified information such as the association of dataset names with
directory names.

!

2.2.3.1.6 Command Language

An embeddable command language processor was obtained. This will be used t':_
provide what used to be thought of as the JOSHUA input stream where dataset/record
manipulation and execution could be specified in a COMMAND, PARAMETER(S), S;,_E
syntax.

2.2.3.2 Execution of Aooli_ations Programs IMPORT and GLASS on J90

The first application to be ported was the IMPORT code, which was then used to
transfer datasets from the VAX under JS0 to a SUN workstation under J90. AI} of STD
(a major JOSHUA dataset) that is necessary to run GLASS was "imported". The
source code for J80-supported GLASS modules was moved to a SUN workstation,
precompiled, and compiled. The compiled pieces, i.e., individual subroutine object
files, were linked to build GLASS executables (modules) and the system was then
used to thoroughly test the core of J90 provided functions and to gauge the level of
performance that can be achieved with the J90 methodology.

15'

The results duplicated that obtained with J80/VAX/VMS within machine precision.
Some specific considerations about the precompiler and data typing are noted below.

2,2:3.2.1 Precompiler Changes

., Command-line parsirig and file handling of the J80 precompiler were changed for J90
to make the precompller more convenient to use in the UNIX environment. (The raw
precompiler assumes a very crude environment for its execution, and the changes
made to the J90 version are similar to changes made to the raw precompiler in the
J80-VMS version for the same purpose.) These changes had no effect on the
precompiler-generated FORTRAN code

One other change to the precompller (the only one that changes the FORTRAN output)
changes the MAIN FORTRAN program into a SUBROUTINE. Jg0 has a standard main
program that encapsulates what is commonly regarded as the FORTRAN module, i.e.,
the applications code. In J90 the FORTRAN entry to the module is always named
SUBROUTINE JSYAJS (external symbols prefixed by 'JS' are reserved for exclusive
use by the J80 or J90 systems.) This naming is in acknowledgement of "yet another
JOSHUA system".

2.2.3,2.2 Data Typing

Moving the current J80 GLASS to J90 uncovered a problem that, temporarily at least,
affects the ability to run applications without changing the J80 source code.

i

In the latest version of J80 GLASS, INTEGER and REAL data are equivalenced for use
by MANAGE (a set of subroutines used by each GLASS module to manage the in-core

• representation of the data array and to manage the I/O for the LIDS records). The
coding for MANAGE had to be changed because J90 requires separate handling of
differing data types. Although some GLASS modules read/write LIDS blocks oirectly
and the same equivalences may appear outside of MANAGE, problems other than
those identified in MANAGE were ignored.

A sample GLASS problem has been run successfully with J90. Because significant
code restructuring would be required in GLASS to remove data type "lies"
(equivalencing integer and real variables), the "NO_XDR" option in J90 was used to
run the present GLASS without changing any source code. This option tells J90 to not
encode/decode the data in a portable binary format.

2.2.3.3 Extension of J90 to Other Platforms and Performance Testna

The J90 system, which was developed on a Sun SPARCstation running SunOS, was
then ported to an IBM RS-6000 workstation running AIX and to the Cray XMP-EA
running UNICOS®. For ali these ports, the GLASS code was successfully run with the
source code essentially unchanged from its current J80 IBM and VAX coding, lt
should be noted that data portability doesn't always mean encoding/decoding or
translation. The Sun and IBM RS-6000 platforms have a relatively standard and

' common (to many workstations) representation of binary data, i.e., char's, int's, and

J

16

float's. This permitted using a copy of the Sun's binary database directly on the IBM
RS-6000 without exporting/importing any data.

The test problem was a simple bt-sep pattern comprising a control cluster with a
Mark 5E. Most of the problem time is spent in CRISP, CREEP, and TRAMP, with
TRAMP getting around 80% of the CPU time. Ali platforms produced essentially
identical results. The J80 times are shown below for reference for execution on the
SLLAB2 node of our VAXcluster, i.e., a VAX 8810 running VMS, and on the IBM
mainframe, i.e., an IBM 3090 running MVS,

.T..imj_g_esultsin MIN'SEC*
Version,

Platform Jvv CPU .ELY..ELT.E..M

Sun SPARC2 (local) J90 6:06 :55 10:44
Sun SPARC2 (remote) Je0 6:03 :27 9:05
IBM RS-6000/530 J90 4:07 :08 4'50
Cray J90 6:25 :10 9:30
VAX 8810 J80 17:23 24:33
IBM 3090 (MVS) JS0 2:36 9:54

* Seetextfordiscussionregardingcaveatsforthesetimingresults

Runs on the Sun and IBM workstations were for completely free machines; l.e., there
were essentially no competing processes. The Cray appeared to be getting some 60-
70% of the machine (an early morning run and probably quite atypical of normal
daytime elapsed times). The system conditions in which the VAX problem was run are
unknown.

Ali of the executions except for "Sun SPARC2 (remote)" were for configurations in
which the JOSHUA records (and module binaries) resided on local disks of the
machine. For "Sun SPARC2 (ren_ote)",only the paging space resided on the machine
on which the problem ran. Everything in the remote case was "mounted" on the
executing machine from a remoie SPARC2 using NFS (network file system). The
times suggest that performance of distributed file systems for support of these
computations may be quite good, and that such remote operation incurs no penalty.

The Sun and IBM workstation runs were with full optimization. Available current and
valid information on how to properly interface C and FORTRAN, what libraries to use,
etc., was barely enough to make the Cray port run. Also, the J90 routines on the
CRAY have some optimization and/or configuration error and are currently running
there with no optimization.

2.2.3.4 Status of J90 Development

J90 provides easy sharing of JOSHUA data among networked platforms, direct access
of binary JOSHUA data from platforms of diverse architectures, and opens the

0 17' 0

JOSHUA data management mechanism so that ali programs and utilities other than
specificJOSHUA-codedones can easilyaccessJOSHUA data.

J90 is operable as a batch-llke system on the Sun, RS-6000, and Cray XMP-EA
platforms and has been demonstratedsuccessfullyin execution of a typical GLASS

, problem unchanged from its current IBM and VAX coding. Terminal facilities are not
available for thisJ90.1 version(see Section2.3.2.3 for discussionaboutthe graphics
desktopunderdevelopmentfor bo_hJ80 andJ90). The applicationcode, IMPORT, will
importto the J90 environmentany IBM or VAX exportedJOSHUA dataset,

Ali goalsof the J90 effort were achieved. The moresignificantare:

• Eliminationof almost ali internalJOSHUA systemoperationsin favor
of nativeoperatingsym;temsuppliedservices

• Easy sharingof JOSHUA data amongnetworkedplatforms

• Direct access of binary JOSHUA data from platforms of diverse
architectures

• Openingof the JOSHUA data management mechanismsuch that ali
programsand utilities other than specific JOSHUA-coded ones can
easilyaccess JOSHUA data.

Documentation of the J90 development is underway14. The reader is reminded,
however, that the present version of Jg0 is a prototype rather than a production

' system, lt would take a major effort to turn this prototypic development into a robust
production environment, and it would be premature to do so. For example, only one
test problem for GLASS has been run on J90. Although this test problem is typical and
representative of a significant usage of the code, it does not exercise ali possible paths
through the GLASS module. Thus, no claims are asserted about complete validation
and verification of the J90 system for the GLASS module.

Further, it appears that it may take a significant effort (~ 1 man-year) to rewrite the
JOSHUA applications codes to ensure that ali modules would be truthful about data
typing (see Section 2.2.3.2.2). This, too, would be inappropriate because there is a
separate program underway to develop improved replacements for many existing
JOSHUA applications codes.

Additional development of the J90 system will continue as appropriate to test various
concepts (see Section 2.2.4). As this development proceeds, and as new applications
codes and methods are being developed, many of the benefits of the J90 program can
be incorporated into the J80 system. The J80 system is already a production system
with extensive testing and usage and already has an existing text-based terminal
system. Thus, when the J70-to-J80 conversion is completed, J80 will be extended to
include the file-sharing and distributed computing features developed for J90 as
discussed next.

14 R.N. Sims, opoctt.

' 18

2.2.3.5 Extension of J90 Features to J80 and Future Direcfiort_

As stated above, many of the benefits of the J90 developments can be incorporated
into J80. For example, coding from J90 can be included in J80 to permit using a single
copy of a distributed database for templated records and to enable a limited
implementation of a distributed computing system. This Implementation would require
no changes in the applications codes If the data typing in templated records is truthful.

A limitation of this extended JS0 system would be that a sequence of modules that
share data as untemplated records, e.g. the LIDS records, would have to run on a
single architecture (albeit any one of the CRAY, VAX, or IBM platforms). To obtain full
implementation of a distributed computing environment would require the same data
typing "truths" in J80 as J90, and hence require the, same recoding effort of the
JOSHUA applications codes as discussed above for J90.

This change from the program plan will result in more rapid introduction of some of the
J90 advantages into the SRS scientific computing environment. J80 is already a
robust production environment, and the extensions proposed would not demand the
same effort to bring to production status as would a complete J90 system.

Also, note that the extended JS0 would run on the CRAY, VAX, and IBM systems with
their respective operating systems, while J90 would require a UNIX operating system
on each machine. (implementation of the Jg0 concepts is not as readily achieved in
J80 on the IBM as on the VAX. However, the J90-UNIX system on th,,::IBM mainframe
may not be an efficient environment. That remains to be determined.). This extension
of J80 will begin after the conversion from J70 to J80 is complete.

2.2.4 Future Development Plans for J90 Computing

Although J90 will not presently be implemented as a production system, further
development will continue to test various concepts of an advanced scientific
computing environment. For example, the present version of J90 is limited to
executing on a single CPU. The next phase for development of J90 will produce a
more generalized prototype for network (multiple CPU) distributed and parallel
execution of modules. As J90 is extended to include these features, it will of necessity
become more robust, just as occurred due to porting it from the Sun to the RS-6000,
and Cray XMP-EA. That extension required revaewingall, and re-doing some, of the
coding used for the initial development of the Sun Implementation. Just getting J90 to
run on the three separate platforms resulted in a much more robust product.

As development progresses, attention will also be paid to improving the error handling
(i.e., messages, codes, etc.) presently implemented in J80.

Some of the most exciting extensions to J90 can also be implemented into J80. These
are the graphical interfaces discussed in the next section.

r
19

2.3 ._.ghics Tools and AoDIications

' The ASCENT Team is developing a core set of graphics tools to be used in the
scientific computing arena at SRS, These tools are intended to make applicatlon
development easier, human interfaces more intuitive, and application codes more

" portable by separating the calculations from their Input and output, The graphics tools
are being developed using industry standards such as the C Language, X Window
System, X Toolkit, MotifTMGraphic Tool Kit, and Unix, Each tool is intended to be the
standard graphical user interface for the site and to provide the capability for
applications output to be viewed from anywhere onsite,

Development of the first tool, a reactor facemap tool, is complete as discussed next in
Section 2.3.1. This tool was then used in the subsequent development of two
applications' the RMS/ARMS (Reaclor Monitoring System, and Its successor, the
Advanced Reactor Monitoring System), and the FM function for both J80 and Jg0,
These applications are discussed in Secl_on2,3.2.

2,3.1 FaceMap Tool

The first graphic tool completed, FaceMap, displays a reactor facemap is, 16. Coding
for the FaceMap tool and a first draft of an Applications Programmers Interface (API) for
that tool have been completed, Also, a patent disclosure has been filed for the
FaceMap tool. The FaceMap tool has been evaluated by SRL-Human Factors
including tests with certified Senior Reactor Operators to identify so-called 'human
engineering discrepancies',

, The prototype was developed using the MotifTMGraphic Tool Kit, but the production
version of the tool was written as a widget based on the Xtoolkit Intrinsics. This
facilitated packaging the tool as a separate reusable entity that is distinct from the
application. The resulting tool is independent of Motif_ and, thus, is more portable,

2.3.1,1 FaceMao Features

The FaceMap tool provides 'pointer tracking' and 'enter notify' capabilities.

'Pointer tracking' places a crosshair on the facemap at the center of the hex that the
mouse pointer is in. The crosshair runs the length and width of the facemap, This
makes it easier to determine which x,y location the pointer is in. Pointer tracking also
highlights the particular hex by drawing a line around the outside of the hex.

'Enter notify' notifies the application when the mouse pointer moves to a new hex
position. An example of a use of this feature would be an application which displays
the online computer number corresponding to the position of the pointer.

15 j, c, Roberts, "InteractiveGraphicalReactorFacemapTool. PatentDisclosureNo.SRS-91-230
'_ (May23, 1991),

16 j. C, Roberts,ReactorFaceMapTool:A ModernGraphicsToolfor DisplayingReactorData. (Tobe
presentedat the1991WestinghouseComputerSymposium,Pittsburgh,Pa,,October21-22,1991),

' 20

The tool can outline portions of the reactor facemap (positions, clusters, gangs, sectors
and systems), display the facemap In grayscale as well as color, and produce
PostScript output for printing the facemap. (To print a facemap in color without
PostScript output formerly took about an hour. The ability to print in PostScript has
reduced this time to five minutes, Also, using PostScript instead of printing via screen
dump has greatly improved the readability of printed text,) The facemap will also print
on an inexpensive black-&-whlte PostScript printer and will simulate grayscale.

2.3.1.2 _aceMao Tool Documentation

Documentation of the FaceMap tool is underway. This includes QA documentation,
programmer's manual, user's manual, and an applications programmer's interface
manual. The initial QA documentation (PSSP17)has been approved, and a draft of the
Programmer's Manual is undergoing review. The Programmer's Manual consists of
four chapters, The first chapter is an Overview of the X Window System and discusses
everything from the X Window System architecture to building an X Windows
application. The second chapter is an _ntroduction to the X Toolkit, on which the
FaceMap is based. The third chapter describes in detail what a widget (graphical
object) is and how to use them in the X Toolkit. The fourth chapter documents each
widget in the SRS Widget Set, Currently the only widget in this set is the FaceMap.
Other widgets are planned and will be documented as separate sections to this
chapter.

2.3.1.3 X Window Platforms

We continue to acquire, install, and test software and hardware which runs the X
Window System. Presently, the FaceMap tool runs on DEC RISC, HP 700, and Sun
SPARC workstations running their individual versions of Unix; VAX systems operating
with VMS; and a Mac Ilci with A/UX (the Mac X Window System must also be
installed). FaceMap can be displayed on any box (including Mac's and PC's) having
X server software.

2.3.2 Applications

ASCENT's charter is to develop production versions of a full range of graphical tools
that can be integrated into applications codes by the respective code proprietors,
developers, and analysts. But such integration requires new skills for most code
proprietors. To facilitate this process, and to provide additional testing of the tools,
ASCENT plans to implement each tool into at least one application of immediate
interest to SRS. New applications that use the FaceMap tool are discussed below in
Sections 2.3.2.2 - 2.3.2.4.

As part of the process of developing applications, graphical user interfaces (GUI's)
need to be created. Software for facilitating this process is called a 'GUI builder'.

k

17 j. C. Roberts, Computational Task Problem Statement and Solution Proposal (PSSP) Identification,
Approval, and Distribution Form. Task Title: Reactor FaceMap Tool; Task Number 90-054-1;
Revision 1 (October 30, 1991). *

Such software is commercially available and is being evaluated as part of the
' ASCENT graphics task as described next.

2.3.2.1 GraDhical U_er Interface Builders
d

A graphical user interface (GUI) builder is extremely useful software that facilitates
construction of applications codes using graphic widget sets. GUI builders are being
evaluated for use at SRS with the focus on enabling the use of the graphics tools
being developed here. The GUI builders include ExoCODE®, XBUILD from Siemens
Information Systems, Quest UIM/X from Quest Systems, and Builder Xcessory from
Integrated Computer Solutions, The latter was used to design the interface for the new
Joshua FM function discussed below (Section 2.3.2.3). Documentation of the
evaluation is underway to describe the perceived strengths and weaknesses of the
GUI builders and to recommend the best one(s) for use at SRS.18

2.3.2.2 Reactor Monitoring System (RMS/ARMS_

The Reactor Monitoring System (RMS) facilitates monitoring and interpreting reactor
operation by providing for collection, storage, and retrieval of reactor operating data.19
This system will be replaced by the Advanced Reactor Monitoring System (ARMS)
now being developed by the ASCENT Team and the Reactor Physics Methods
Development Team. ARMS will have new hardware and software to provide
increased computational capabilities using a commercially available relationalJ
database that complies with proposed site computer architecture standards. When
completed, ARMS will provide scientists, engineers, and managers with near real.,tir_e

, reactor operating data for monitoring current operations and predicting future
operating conditions. Also, the ARMS QA documentation will comply with the present
site requirements.20 ,21

The display of the RMS data is presently done with text-based tables without any
query capability. The FaceMap RMS application prototype provides a full graphic
display of a facemap of temperatures, flows, powers, or any other dimension of the
reactor assemblies. The RMS application cocle uses an early version of FaceMap that
was not a distinct tool, i.e., in this prototype the FaceMap coding and RMS application
coding packages are not cleanly separated from each other. This was consistent with
the initial intent of prototyping the development The production code for the ARMS
application will be rewritten to use the latest version of the FaceMap tool. This latest
version is a reusable coding package distinct from the applications codes using this
tool.

18 j, C. Roberts. An Evaluation of Four X Interface Builders, WSRC-TR-91-471 (in progress).
19 A. O, Smetana, Reactor Monitoring System User's Manual - VAX Version. DPST-86-621

,_ (August 18, 1986).
, 2o Nuclear Reactor Technology and Scientific Computations Department Quality Assurance Manual (U).

1Q.34 (January 1, 1991)
21 A, A. Zagrodnlk, QA Procedures for the Nuclear Reactor Technology and Scientific Computations

" Program Management Team, DPSTM-88-700-9 (August, 1988),

22

2.3,2.3 Eacemao Movie For K Reactor Dat_

Another application using the FaceMap was built to analyze data obtained from tests
of 'K' reactor. This also served as a tutorial for Reactor Engineering personnel who sat
in on the development. (This was part of the training task implemented todisseminate
to the SRS scientific personnel the ASCENT developments as described in the
Program Plan.) The application was a simple movie generator which read input
snapshots of K Reactor test data and displayed it at a rate of 2 frames per second, lt is
currently being enhanced by Reactor Engineering to display date and time and to
have a color scale to display the values that correspond to particular colors.

2.3.2.4 Graohic Reactor FaceMao (FM)Function in J80

The latest FaceMap tool application under development is intended to replace the r _
present text-based JOSHUA RM function. The RM function creates an image of a '_
reactor facemap during charge design. That image is then processed to point to
desired data records to describe a specific reactor charge for physics codes
calculations. The present JS0 RM function provides the same capability as the original
J70 function, lt is based on a text-based pseudo-graphic that is difficult to use,
imposes unnecessary constraints on the user, and is prone to user error.

A new graphics function, named FM, is being developed to replace the RM function.
The new FM function will be usable in either the J80 or J90 environment. Although the
RM function will continue to be available in J80, it is expected that user productivity
obtained with the new FM function will be so greatly increased, that the RM function
will be obsolete less than 24 hours after implementation of FM. The goal is to enable a
user to set up a charge design much more rapidly, by a factor of 10-20 for simple ,.
problems and as much as 100 times faster for very complicated problems, than now
possible. Early tests show that goal is achievable.

The new function permits multiple axial-level reactor maps, creation of assembly types
through an assembly editor, mapping between 2-character mnemonic label and
corresponding GLASS record, cutting and pasting between axial levels, and cutting
and pasting of positions, clusters, sectors, systems and gangs.

The new FM function has five panels controlled by the user:

1. FaceMap Panel to display the facemap and status information.
2. Assembly Palette Panel to display a list of the current assemblies that can be

put into positions on the facemap

3. Assembly Editor Panel to create assemblies by specifying a name, type,
mnemonic, coler, and GLASS record.

4. Preferences Panel to specify if boundaries (gang,sector, or system) are to be
shown; if hexes are to be outlined; if assemblies are to be labeled (OLC,
mnemonic, or type); if the pointer is to be to tracked with crosshairs and hex
highlighting; etc. 4,

5. Selector Panel to identify specific groupings of reactor positions.

23

These panels are discussed more fully below.

' 2.3.2.4.1 FaceMap Panel

The FaceMap Panel, shown in Figure 4, is the main working area for the FM function.41

lt is used to display the current _harge, select positions and it contains the application
menus. Shown in Figure 4 is a fictitious example charge with the options menu
activated. When a user presses the mouse button on a particular position, that
position becomes selected. A selected position will have a white outline around it.
Once the position is selected the user may place an assembly into that position or
perform an Editing function such as Cut, Copy and Paste.

Figure 4. FaceMap Panel for the JOSHUA FM Function

r

24

2.3.2.4.2 Assembly Palette Panel

The Assembly Palette Panel is shown in Figure 5. The Assembly Palette contains a
menu of assemblies that already exist, i.e., have already been created and for which
complete JOSHUA data records exist in the read-path hierarchy. The user selects
assemblies from this list by clicking (with the mouse) on an assembly name in the
Palette. The response to this select procedure depends on the state,of the application.
If positions in the reactor map were previously selected, then the assembly type from
the Palette will be placed in each of those reactor facemap positions. If no facemap
positions were selected, then the assembly from the Palette will be loaded into the
AssemblyEditor.

Figure 5. Assembly Palette Panel for JOSHUA FM Function

2.3.2.4.3 Assembly Editor Panel

The Assembly Editor Panel, shown in Figure 6, is used to define (i.e., create and edit)
assemblies,

._,_ _r'_'.4_'J_',',,_-:,'--:.".',._,.'.:_:'.:_.-,',.,_ . _; _ :. - - --- _ --
,_.:j,.-,,,_ _t_:_::.:.-_"._,:',"::.::, :r -' : "-_:_::: _:'-'__ '-
,_._-_, ,_, , --..::........... ..._.........

,. ,_ ,..._ _ . .,, ._,. ,.,._,_ .., ,_._._._., .

' ,. _ _l_- Ii,, ,-_-._ . , ._ .:_...,,._,:..,:_,_._.....

i

Figure 6. Assembly Editor Panel for JOSHUA FM Function

25

, An assembly definition consists of a name, type, mnemonic and color. The name
identifiesthe desired GLASS recordof cell averaged crosssectiondata. The type and
mnemonicare used only for compatibilitywith the currentset of codes and make the

, FM function backwards compatible with existing RM-created records. The color
permits the charge designer to graphically differentiate between assembly types.
When the user creates an assembly type and presses the apply button, the assembly
is placed in the Assembly Palette.

2.3.2.4.4 Preferences Panel

The Preferences Panel, shown in Figure 7, is used to set the application display to the
users choice.

-_ ,_...." . -.-.7z._,._-.'_,_._._" _,_ _ .. at-.-
• _ _._',..,;,,._.... , . ._.

_L___'_!___:_":_:':'.:'_ '_':',-:_',;,.._,_s`,mWI]F_'_T`.._

,.:?c_,=.

Figure 7. Preferences Panel for JOSHUA FM Function.

Sector, system, gang and cluster boundaries may be toggled and, when 'on', will be
displayed on the FaceMap Panel as white lines. The positions of the FaceMap can be
displayed with OL3#, mnemonic, type or no label. Pointer tracking, a crosshair that
follows the mouse and spans the length and width of the FaceMap Panel, can be
toggled. A black outline can be placed on the positions of the FaceMap Panel to help
differentiate two similar colored adjacent positions.

2.3.2.4.5 Selector Panel

The Selector Panel, shown in Figure 8, is used to specify symmetry options and
identify specific groupings and type of reactor positions. This panel consists of four
small facemaps, each of which represents a specific grouping of reactor positions;
namely, gangs, sectors, systems, clusters. The user selects a grouping by pressing
the mouse button while the pointer is inside a particular grouping. To copy sector #1
to sector #3, the user 'selects' sector #1 and chooses copy from the Edit menu on the
FaceMap display. Then the user selects sector #3 and chooses paste from the same

,_ Edit menu. Extended selections can be made by holding down the shift key while
pressing the mouse button.

Figure 8. Selector Panel for JOSHUA FM Function

The selector also has two sets of toggle buttons which affect symmetry (e.g., 60o, 120o,
180o, 360o) and position type. The symmetry option changes the way selecting works.

' With 600 symmetry a selection is replicated in each sector. The position type toggles
affect which type of positions (assemblies, control rods, safety rod assemblies) are
being referenced with the selector panel. For example, if gang 2 and the Control Rod
toggle were selected then the positions referenced would be ali the control rod
positions in gang 2.

2.3.2.4.6 Coding of FM Prototype Completed

The completed prototype of the J80/J90 FM function has been evaluated by the
Reactor Physics Analysis Task Team. To facilitate the evaluation a test Mac was
equipped with the appropriate software and Ethernet connection to run the new X
based FM. lt was obvious from the initial installation that a few features of the new FM
were just too slow on the Mac. (The development platform is a Sun SPARCstation 2.)

This was remedied using a caching scheme to speed up the FaceMap tool. This and
other optimizations have improved the performance of the FaceMap tool, and
consequently the FM application, to be faster on the Mac than the unoptimized version

27

on the Sun SPARCstatlon 2. The Reactor Physics Group, which is expected to be the
major user of the FM application, is providing additional feedback that will be used to
enhance the usability and utility of the production version.

J

2,3.2.5 Desktoo GUI (PrototyD@Graohical Terminal System) for J80

A prototype graphical terminal system is under development which gives users a
Mac-like interface to the JS0 system. This code is being developed from an
application previously written In X Windows for the Unix file system. JOSHUA
subtrees are represented as folders and data records are represented as documents
similar to the Mac. Folders and files can be opened by double clicktng them. The
current functionality of the system is the List Subtree (LI) command shown in Figure 9,
and the List Brothers (LB) command shown in Figure 10.

File Options Viev goto: temp

I prograc_ing ! ..

LIDS .FARKSE .PIIP700 .ABSR

enacs LIDS ._E .][qlP700 . CARD

J ' LIDS .I_,RKBIE.PIIP700 .CHI

, 1 z, ,.Tns
.m ii H

Figure9. ListSubtreeCommand

File Optimns Vieu goto: tem_

imo[il copgl
Figure10.ListBrothersCommand

'_ Other J80 functions to be included are copy, rename, delete. Other features planned
include multiple listing formats such as those in Mac's System 7, double clicking to

, display either a record (DD) or an existing FaceMap file (RM), different icons for
different record types, drag-and-drop metaphor to manipulate files, and more.

28

2.4 Future Directions
Y

The increased computing power available with the latest workstations requires
seriously considering their capability as an alternate resource for supercomputlng
cycles. In particular, for those problems that lend themselves to distributed or parallel
computing methods, the use of a group of workstations offers the possibility of
relatively low-cost, high-performance computing capability. While perhaps applicable
only to certain groups of problems, it appears that those groups form a major part of
the computational workload at SRS.

There are various software environments purported to enable implementation of
parallel computing. (Parallel computing may be considered as an exacting subset of
distributed computing concepts, and the remaining discussion will focus on the
former.) Among these are' Linda, a parallel-programming language that uses simple
C-language statements that provide for ali process spawning, data sharing, and
synchronization; PVM (Parallel Virtual Machine), a software package developed at
Oak Ridge National Laboratory to use a heterogeneous network of parallel and serial
computers as a single computational resource; Express, by ParaSoft Corporation, a
set of tools and utilities designed for parallel processing. These software systems, and
others, will be studied for suitability to SRS applications codes and problems.

At the same time, ASCENT plans to form strategic alliances with existing National
Science Foundation and Department of Energy centers for supercomputing research L

and development. The benefit of these alliances will be to facilitate rapid incorporation
of the latest cost-effective technology into the SRS scientific computing environment.

L

An initial target for testing these methods is the GLASS code, a transport code for unit
cells used to develop fewgroup cross-sections for use in reactor diffusion codes. The
intriguing goal is to develop a parallel algorithm for using GLASS for each cell, or
group of supercells, and implement a transport theory solution for the reactor charge.

An important part of achieving success in this endeavor will be the necessity to
maintain a secure network capable of providing access to ali users, and providing
mass storage systems and distributed file sys*,emsthat make mass storage capacity
available to any cpu that needs it..

Consistent with ASCENT's charter, the Team w_llcontinue to focus on the following
three interconnected data management tasks:

a. I/O data management or symbol manipulation, which comprises the
interface between the user and the I/O data base.

b. Computational data management, which comprises the interface
between the numerical!y intensive part of the computer code and the
corresponding computational, or 'internal', data base.

t
c. Interface, or flow of data, between the I/O data base and the

computational data base.

