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Radiation from high-power Q-switched lasers has been used
recently in semiconductor research to anneal the lattice
damage caused by ion implantation, diffuse surface-deposited
dopant films, recrystallize doped amorphous films deposited
on substrates, and remove precipitates present after conven-
tional high-temperature dopant diffusion- All of these pro-
cesses can be understood in terms of models based on
macroscopic diffusion equations for heat and mass transport,
cast in a finite-difference form to allow for the
temperature- and spatial-dependence of the thermal conduc-
tivity, absorption coefficient, reflectivity, and other quan-
tities. Results of calculations on silicon with the models
shad that the near-surface region of a sample can melt and
stay molten for times of the order of 100 nsec during which
dopant diffusion in the liquid state and nonequilibrium
segregation during ultrarapid recrystallization are suf-
ficient to explain the major features of the experimental
results. In this paper, brief descriptions of the physical
and mathematical models and some of the results obtained with
them will be given, with particular emphasis on segregation
effects.

I. INTRODUCTION

We restrict our attention here to the melting model of
pulsed laser annealing because we believe the experimental
evidence is overwhelmingly in favor of it. The reflectivity
change exhibited by semiconductors during intense laser irra-
diation has been studied since about 1964. In some of the
earlier papers, this reflectivity change was attributed to
the high density of photogenerated carriers, i.e., to an
electron-hole plasma. However, Blinov et al. (1) realized



already in 1967 that this explanation did not fit their data
on the absorption of long wavelength radiation during irra-
diation of Si and GaAs with a high-powered Q-switched ruby
laser. They concluded instead that the reflectivity change
was due to the melting of a thin surface layer. A crucial
question for the applicability of the melting model, at least
in the form used here, concerns the lifetime of electron-hole
pairs during intense laser irradiation and the transfer of
energy from the electronic system to the lattice. There is a
substantial body of literature on this topic and virtually
all of the experimental data indicate that the electron-hole
recombination time is between .01 nsec and 1 nsec. In fact,
Svantesson et al. (2) found that in silicon the pulse width
and shape of the recombination radiation in the region around
1.1 eV (band gap of silicon) tracked the excitation pulse
(̂  30 nsec) almost identically. From the decay charac-
teristics of the radiation, the authors concluded that the
extremely fast recombination was due to Auger processes. In
the earliest Soviet literature on laser annealing (3) it
was recognized that melting of the near-surface region might
explain the experimental results on dopant profile spreading.
However, the results were not always consistent and this led
some of the Soviet investigators (4) to assert that thermal
models alone could not explain their results. These early
experiments were done under conditions which were not ideal
and the dopant profiling was done almost exclusively by ano-
dic oxidation and stripping rather than by Rutherford
backscattering and SIMS (secondary ion mass spectroscopy)
techniques. Furthermore, no detailed numerical calculations
of temperature profiles, motion of the liquid-solid interface,
and dopant redistribution were carried out. In fact, the
calculations of Wang et al. (5) to explain experimental data
obtained at Oak Ridge were the first to show convincingly
that the near-surface region could melt and that dopant dif-
fusion in the molten state could explain the profile
spreading which is observed. Similar calculations carried
out independently by Baeri et al. (6) to explain their
experimental data also appeared at approximately the same
time and almost simultaneously experiments reported by Auston
et al. (7) on the reflectivity change during laser annealing
gave rather conclusive evidence that surface melting did
occur. Since these experiments and calculations numerous
other papers ha('e appeared which support the melting model.
Of course, it is possible inspite of the experimental evi-
dence to the contrary to maintain that melting does not
occur, that the reflectivity change is due solely to the very
high density of laser-excited free carriers, and that some
form of "radiation enhanced" diffusion is entirely respon-
sible for the long-range' diffusion of dopants. A theory



along such lines would have in the end to give almost iden-
tical results to the theory discussed here. Although it
seems unlikely to us that such a theory can be constructed,
it is certainly true that the effects of very high carrier
densities need to be considered in the development of the
melting model.

II. HEAT TRANSFER CALCULATIONS

Heat Diffusion Equations

We consider a sample irradiated with a single pulse of a
Q-switched laser. The geometry of the sample and of the
annealing configuration is such that ideally the heat conduc-
tion problem is well represented by the one-dimensional dif-
fusion equation with a heat generation function determined by
the interaction of the las«r radiation and the sample. In
simplest form for a sample in which the materials parameters
are a constant, we can write the equation for the temperature
T(x,t) as

3T(x,t) _ n 92T(x,t) = p, t,
3u * 3x*

in which P(x,t) is the heat generation function. D^ is the
thermal diffusion coefficient which involves the thermal con-
ductivity, the specific heat and the density of the sample
material. In laser annealing, the temperature of the sample
is raised in a few nanoseconds to the melting point and even
through the vaporization point if the laser pulse is suf-
ficiently energetic. Both the thermal conductivity K, and
the specific heat of Si are highly temperature dependent (8).
Equation 1 cannot describe such a situation and a more
complex formulation of the problem based on finite differ-
ences is required. We found that a general purpose heat con-
duction computer program, HEATING5, (9) was easily adapted to
laser annealing studies. This program solves steady-state
and transient heat conduction problems in one, two, and three
dimensions for cartesian, cylindrical, or spherical coor-
dinates. The physical problem is approximated by a lattice
of nodes, each associated with a small volume. A set of
orthogonal planes defines the nodal system. Heat may flow
between adjacent nodes along paths parallel to each coor-
dinate axis. The system of equations describing the tem-
perature distribution is derived from a heat balance
condition at each node. For example, the finite-difference,
heat-balance equation for hode i lying in the bulk of the
sample is
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Here, Tn is the temperature at node m adjacent to node i at

time t_; ^K is the conductance between nodes i and m; C.. is

the heat capacitance of the material in the small volume

around node i, and P? is the heat generation rate in this

volume at time t . For a three-(one) dimensional problem,

one C, one P, and six (two) K's may be associated with each
internal node at a particular time, t . By choosing the

increments between lattice lines and time steps small enough,
the solution to t'ne system, of equations yields an accurate
approximation to the appropriate differential equation.
Space- and time-dependent heat generation and temperature-
dependent thermal properties are relatively easy to incor-
porate into finite difference calculations.

HEATING5 recognizes whether or not a node is undergoing a
phase change. If it is, the node's temperature is maintained
at the transition temperature until the net heat flow exceeds
the node's latent heat of phase change. After the phase
change, the node's temperature is again determined by the
conductive heat transfer equation. The ratio of the node's
heat energy above that required to just reach the transition
temperature to the latent heat required for the phase change
is called the transition ratio. The transition ratio can be
used to locate the position of the melt front which is so
important for laser annealing calculations.

Heat Generation Funation3 Reflectivity and Absorption
Coefficient

In pulsed laser annealing, the reflectivity and absorp-
tion coefficient of the material and the energy density and
pulse duration time of the laser pulse largely determine the
heat generation rate at each point in the sample. The func-
tion P(x,t) in Eq. 1 can be written as

P(x,t) = (1-R) F(x,t) , (3)

in which R is the reflectivity and F(x,t) can be a complex
function of x,t, temperature and other materials parameters
and physical phenomena. The reflectivity is also a complex
function of a number of parameters describing the near-



surface region of the material. In most of our calculations
on Si, we have allowed R to take on two values. One value
describes the reflectivity of the surface before the laser
pulse impinges on the sample and the other value gives the
reflectivity after the near-surface region melts.

There are many discussions in the literature of the
absorption mechanisms of intense laser radiation in solids.
For our purposes the paper by Grinberg et al. (10) on the
absorption of laser radiation and the creation of damage by
that absorption gives a good summary. Since this topic has
already been discussed at length by others (see for example
the paper by von Allmen in these Proceedings), we will not
dwell on it here. In addition to those effects which occur
even in perfect crystals, the ion-implantation process itself
alters the absorption process. In undoped, single-crystal
Si, the absorption coefficient k at a wavelength of
X = 0.694 urn (ruby laser) and at low light intensities is
approximately 3 x 10^ crrr^. Under the same conditions in
amorphous Si, k increases to a value of ^ 5 x 104 cm"1. In
ion-irnplanted Si, the lattice damage created by implantation
depends on the dopant, the implantation energy, and the dose.
In some cases, such as 100 keV implantation of arsenic, the
near-surface region is driven almost completely amorphous.
We may expect that for most implantation conditions and wave-
lengths of laser radiation the energy will be absorbed in
both the damaged and the undamaged regions of the crystal.
Finally, under intense laser irradiation it may happen that
carrier diffusion effects can sometimes become significant
(see the paper by E. Yoffa in these Proceedings; and these
can be included approximately in terms of an effective
absorption coefficient.

Definition of Two Models

Two basic models have been used in most of our heat con-
duction calculations. In one model the absorption coef-
ficient is assumed to have some average, constant value
throughout the sample. Such a model is suggested by a) ion-
implantation of light ions such as boron in silicon where the
implanted region is not made completely amorphous and the
nature and extent of the damage is not very well defined;
b) multipulse annealing where it is known that after the
first laser pulse the damage in the implanted layer may be
completely removed; and c) laser-induced melting of undoped,
crystalline samples. Because of the absence of a well-
defined damage layer in these cases we refer to this as the
crystalline or c-model. In the second model a well-defined
amorphous layer is assumed to be present. This model is
expected to apply'to the implantation of heavy ions into



si l icon in certain energy ranges and to samples on which an
amorphous layer has been deposited by sputtering, e-beam
deposition, etc. In th is model the absorption coefficient
has one value in the damaged region and some other value in
the undamaged, crystal l ine region. We w i l l refer to th is
model as the amorphous or a-model.

The latent heat of fusion is less for amorphous s i l icon
than for single crystal si l icon and presumably the melting
points d i f fe r also. Reliable informatior about these quan-
t i t i e s in ion-implanted materials is no', available. There
are some indications that the latent heat of amorphous s i l i -
con may be roughly sixty-percent of the single crystal value
and this has led to speculation that th is would be an impor-
tant effect in laser annealing. Our models have provisions
for th is difference in latent heat and we w i l l give an
example of i t s effect below.

t

Some Results of Temperature Caloulations

The input data for these calculations consists of the
thermal conductivity K, specific heat c, density d, reflec-
tivity R, absorption coefficient k, latent heats of fusion
(crystalline Lc and amorphous La) and vaporization Lv,, the
corresponding temperatures Tc, Ta, and Tv at which the phase
changes occur, the pulse shape, duration T A, and energy den-
sity E^, and the parameters in the expressions for the
radiative and convective heat transfer from the front sur-
face. Most of these data are readily obtained from the
literature and will not be discussed here.

An example of one of the most important results of the
temperature calculations is given in Fig. 1. This figure is
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based on very early calculations which did not contain a
reflectivity switch on melting; it is used here for illustra-
tive purposes only. The top curve is a typical temperature
distribution obtained from Eq. 1 when melting is not allowed
and K and c are assumed to be constant with temperature. The
middle curve shows the effects of including the temperature
dependence of K and c. The calculations leading to the
lowest curve allowed for temperature-dependent K and c and
for melting. This figure shows the importance of allowing
for these effects in the calculations.

From a series of calculations such as those leading to
the lowest curve on Fig. 1 the melt-front position as a func-
tion of time can be obtained. Examples of such curves are
shown in Fig. 2 for a 25 nsec laser pulse of various
energies. Note that these calculations included a reflec-
tivity switch from Rs = 0.35 (solid) to Rm = 0.60 (molten) on
melting. The absorption coefficient is assumed to have an
average value of 3x10^ cm"* throughout the material. From
the curves on Fig. 2 it is found that the recrystcllization
velocity is of the order of 3-4 m/sec. Figures 1 and 2 pro-
vide the key to understanding the details of pulsed-laser
annealing. Much of our work has been directed toward
obtaining melt-front histories such as those contained in
Fig. 2 for a variety of assumptions about the thermal conduc-
tivity, absorption coefficient, reflectivity, pulse duration
time, etc. A more detailed account of this work will be
given in a later publication (11).

In Fig. 3, we show the effects of reducing the heat of
fusion in the amorphous layers, i.e., of taking La < Lc. The
basic model for these calculations had Rs = 0.35, Rm = 0.60,
Xa = 0.15ym (thickness of amorphous layer), ka = 5xlO

4 cm"1,
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FIGURE 2
An example of the
results of melt-front
profile calculations.
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and kc = 3xlO3 cm"1; ka and kc are the absorption coef-
f ic ients in the amorphous and crystal l ine regions respec-
t i ve l y . Curve a gives the melt-front history for a laser
pulse of EA = 1.4 J/cm2, TJJ, = 15 nsec, and La = Lc and curve
b is for the same conditions but with La = 0.6 Lc. Curves c
and d are for the same sequence of calculations but with
EA = 1.5 J/cm2 and TA = 60 nsec. Clearly, a substantial
reduction in the latent heat does not cause very large
changes in the melt-front histor ies, as has been suggested by
others. The reasons for this somewhat surprising result are
quite simple and are direct ly related to the role played by
the re f lec t i v i t y switch. I t should be understood that this
result applies only to the conditions discussed here. The
difference between La and Lc plays a much greater role in
annealing with CW lasers where recrystal l izat ion occurs by
solid-phase epitaxy.

Figure 4 i s our f inal example of the results of heat con-
duction calculations; i t shows the time the surface remains
molten as a function of incident laser energy. The experi-
mental data is from Auston et a l . (7) . The solid squares and
circles give the results of calculations using sets of param-
eters which d i f fe r only s l ight ly from one another. In fact ,
the differences are too sl ight to warrant discussion here.
The open circles and squares are calculations more appro-
priate to annealing with a ruby laser U = 0.694 ym) and are
based on an amorphous model with Xa = 0.15 ym and two d i f -
ferent values of ka. These and other calculations which we
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have made show that the surface melt duration depends
strongly on a number of conditions under which the laser
annealing is carried out. Experimental data on the duration
of surface melting is very useful as an aid in determining
some of the parameters in a given model but such data alone
cannot uniquely determine the model to the extent that the
melt-front profile, penetration, and velocities can be pre-
dicted. The fitting of experimental dopant profiles with a
model for diffusion in the liquid state ":s a great aid in the
overall development of the theory of pulsed laser annealing
and we now consider a number of aspects of the dopant dif-
fusion problem.

III. DOPANT DIFFUSION WITHOUT SEGREGATION

As we have shown above, during pulsed laser annealing the
near-surface region of an .ion-implanted sample melts. While
this region is molten, rapid diffusion of the dopant occurs
(5). In those cases where the melt front penetrates well
beyond the implanted dopant profile, rather good fits to the
experimental data can be obtained by assuming that the region
of the profile is instantaneously melted, stays molten for a
certain period of time, and then is instantaneously resoli-
dified. This "instantaneous approximation" (IA) fails when
the maximum melt-front penetration occurs within or just
beyond the implanted profile and improved approximations in
which the actual motion of the melt front is included must be
constructed. We have employed two types of approximations to
deal with this moving boundary value problem.

The first approximation is derived from the Green's func-
tion formulation of the one-dimensionsl, mass-diffusion
problem. In the IA, the profile after laser annealing is
given by

P (x , i

o t-

G(xt|xoto)Pi(xo,to) dx. (4)

v°
in which p-; and p are the implanted and f inal profi les
respectively and G(xt | xo to) is the Green's function for d i f -
fusion in a semi-inf inite sample. For assumed values of the
diffusion parameters, a f i t of p to the experimental prof i le
determines the time during which the implanted region
remained molten. This time should be consistent with that
obtained from the calculations of temperature and melt-front
motion such as those described in the preceding section.
Obviously, when the melt-front does not penetrate beyond the
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implanted pro f i le , a single time during which the entire pro-
f i l e is allowed to diffuse cannot be assigned in even an
approximately correct manner. A simple approximation which
gives surprisingly good results and yet remains within the
sp i r i t of Eq. 4 is obtained from the following procedure.
From plots of the melt-front location as a function of time
such as those given in Fig. 2, the time during which any
point in the sample remains molten can be determined.
Substituting these times into a suitably modified form of
Eq. 4 and carrying out the integration over x0 gives an
approximation to the diffused prof i le .

Because the approximations on which the above-described
procedure is based are d i f f i c u l t to j us t i f y and may not
always apply, we have used another model based on a f i n i t e -
difference formulation of the mass-diffusion equation

9p(x,t) _ 8_
9t " 9X

ap(x,t) (5)

with appropriate boundary conditions. The diffusivity D can
be a function of x and t and this flexibility is used to
change from values characteristic of the liquid (D^) to those
characteristic of the solid (Ds) at the moving liquid-solid
interface. The sample is imagined to be oriented perpen-
dicular to the x axis with its front face at x=0 and its o
thickness divided into cells with Ax of the order of 100 A
or smaller. As the melt front penetrates the sample and
moves through a cell, the value of D in the cell changes from
Ds to D^. The material in all cells to the left of the melt
front is molten and diffusion occurs \iery rapidly within it.
When the melt front reaches its maximum penetration and
begins to recede back to the surface, solidification occurs
and the value of D in each cell is changed accordingly. The
interface segregation coefficient k̂  determines the fraction
of the dopant which is incorporated into the solid. The
dopant rejected into the liquid at the interface combines
with the implanted dopant in the molten zone to give p(x,t)
of Eq. 5. The numerical methods used in the dopant diffusion
problem are similar to though not as complex as those used in
HEATINGS. Brief discussions of the details of dopant dif-
fusion calculations can be found in several other papers in
these Proceedings and we will not pursue this topic further
here.

Figure 5 shows the results of dopant profile calculations
on As-imp!anted Si using the approximate Green's function
method described above. The experimental profiles were
measured by ion backscattering and with the possible excep-
tions of a \/ery few points, the calculated curves fall within
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FIGURE 5
Experimental and
calculated dopant
profiles in As-
implantsd, laser-
annealed silicon.

in the deposited
concentrations
shown by the
for As in Si was

the estimated error limits of the experiments. Dopant pro-
files obtained when As-doped amorphous layers of Si are
deposited on Si substrates and then recrystallized by laser-
induced melting are shown in Fig. 6. The experimental pro-
files in this case were determined by anodic oxidation and
stripping. The starting profiles cannot be measured by this
technique because most of the As is not electrically active
when the deposited layer is still amorphous. However, the
deposition is such that the As concentration
layer should be nearly uniform. The uniform
required to give the calculated profiles are
dashed lines in the figure. The value of DA
taken from Kodera (12).

The dopant profiles in Figs. 5 and 6 were calculated with
k-j = 1 whereas the compilation of Trumbore (13) gives a value
of 0.3 for the equilibrium interface segregation coefficient
of As in Si. He now turn to a consideration of this discre-
pancy.

IV. NONEQUILIBRIUM SEGREGATION

In one of the earliest papers on laser annealing of ion-
implanted Si, Khaibullin et al. (3) reported that the con-
centration of dopants after annealing could exceed conven-
tional solubility limits. They recognized that this
indicated that nonequilibrium thermodynamic processes occur
during laser annealing. As we have seen in Section II, cal-
culations have shown that the near-surface regions of the
samples melt and recrystallize in times of the order of 100
nsec and that the velocity v of the liquid-solid interface
during recrystallization is of the order of 4 m/sec.
Nonequilibrium segregation effects during rapid recrystalli-
zation have been discussed in the literature on crystal
growth (14) but, until the discovery of the laser-annealing
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phenomenon, the melt-front velocities attainable under well-
controlled experimental conditions were too small to test
various proposed models, most of which can now be shown to be
inadequate or incomplete. In this Section, a simple phenome-
nological model which does account for the observed segrega-
tion effects is presented (15).

The interface segregation coefficient k-j for the dopant
is defined as the fraction of the dopant present in the
liquid at the interface that is incorporated into the solid.
If equilibrium values k° were followed in the laser annealing
process, then large concentration spikes at the surface would
be observed for most dopants implanted in Si. Such surface
spikes have not been observed for B, As and P (16,17) and
satisfactory fits to the profiles can only be obtained with
values of k-j nearly equal to unity (see for example Figs. 5
and 6). The fact that equilibrium solubility limits can be
exceeded in systems such as these, which have retrograde
solubility, can be taken as further evidence for none-
quilibrium growth processes (3,14,18,19).

Recently White et al. (19) used RBS to measure the pro-
files of Ga, In and Bi in ion-implanted, laser-annealed Si.
The results, together with earlier data on Sb and As were
analyzed using a model of dopant diffusion which included
segregation effects and utilized melt-front information from

r I i
ARSENIC DOPED Si ON OOOJSi

O 1OOO A f - {.55 J/cm2.M.F.-3363A j
A 2000 I f - 1 . 7 8 J/cm2,M.F.-5828A }

CALCULATED

FIGURE 6. Experimental
and calculated dopant pro-
files after laser-indueed 0
reerystallization of 1000 A
and 2000 % layers of As-
doped amorphous Si depo-
sited on Si. In this
figure E gives the incident
laser energy density and
M.F. the calculated mxximum
melt-front penetration.
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calculations such as those in Section II; from fits of the
measured profiles, values of ki were extracted. The results
of White et al. and of refs. 5; 16, and 17 provide data on
the segregation behavior of B, P, As, Sb, Ga, In and Bi in Si
during laser annealing. Values of k° and k-j are shown in
Table I. The most striking feature of these data is the very
large differences between k° and k. when k? is small.

The model to be described now is based on the assumption
that for v >> 0 new layers of atoms may be added to the solid
so quickly that dopant atoms in the interface region have a
reduced probability of escape from the solid being formed.
Conceptually the model is related to what Baker and Cahn (14)
have referred to as "solute trapping".

The rate equations for the incorporation of host h and
dopant d atoms into the solid are (20)

L

where Cj and Cj are the concentrations of j-type atoms in the
liquid and solid, and KT and Kr are the forward (liquids-
solid) and reverse rateJconstants in m/sec. Since the
crystal grows at a rate equal to the melt front velocity,
addition of the individual rate equations gives

• R
Rd ° Kdcd>

with

Ch + Cd = Ch

J°It will be assumed that K£ = KJ = Kh° = K J ° , where KJ° is the
forward rate constant under equilibrium growth conditions
(v=0); this is not a crucial assumption but it simplifies the
analysis. With this assumption, Eq. (6) for R§ = vC§ and

Table I. Results of ealeulation of k. and comparison to
experiment. In the fourth column, con.=1,75 m/sec.

Dopant

B
p
As
Sb
Ga
In
Bi
Al

G.S
0.35
0.3
0.023
0.008
0.0004
0.0007
0.0020

h
(exp)

1.00
1.00
1.00
0.7
0.2
0.15
0.4
-

h
v =con*o
0.98
0.90
0.88
0.68
0.61
0:45
0.48
0.53

h
Vo=Di/xo

0.99
0.95
0.97
0.88
0.31
0.15
0.39
0.52

a
eV

-0.032
-0.152
-0.175
-0.547
-0.700
-1.134
-1.053
-0.901

2 . 5
1.4

26
14

400
1000

55
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Eq. (7) yield

Under most conditions of laser annealing C^ is not more than
a few percent and therefore to the accuracy needed here
(1-C§) = 1 - The interface segregation coefficient for the
dopant, k. = C§/cL", can then be expressed as

We assume that the rate constant K^ is of the usual form

Kd = Ad exp(-l£/RT) , . (11)

in which Uj is the barrier height for escape of dopant atoms
from the solid at the interface; similar forms are assumed
for Kn and K^. Furthermore, U^ is assumed to be velocity
dependent and written as

U d ( v ) = Ud° + A U d ( v ) '
where u£° is the equilibrium value. Now AU]J nay be a compli-
cated function of v, but it must approach zero as v -*- 0 and a
constant value as v becomes large. The simplt form

AUJ(V) = A U ™ ( 1 - exp(-v/v0)) (13)

satisfies these conditions; h\i^a is the asymptotic value of
ALJC as v becomes very large and v is a parameter discussed
below.

Krd = F Kj°exp(-AUj(v)/RT) (14)

with F = ^ / J

Since both CJj and Cd are small, C^ - Cn, and from Eq. (6)
v = Kn - Kh because of the simplifying assumption that

^ ° ^ate constants have been estimated to be of theh h
order of 100 m/sec (21). Assuming this value to be approxi-
mately valid for Si, K[J must be 96 m/sec to obtain v = 4
m/sec. The maximum value k-j can have for the systems of
interest here is 1 and, with the previous assumptions that
Kd°= Kh» this occurs when K^ = K[J. Hence, in Eq. (10) the
term K^0- K^ compared to Kj can be neglected. With the
definition k° = (cj/cjj)^ = K J ° / K J ° , Eq. (10) becomes
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= (k?/F)exp(AUj(v)/RT) (15)

From the requirements that k-j
becomes large, it is found that F = 1,

k° as v 0 and k-j -> 1 as v

= - RT In k°

and hence

i = k° exp((- RT In k°)(l-exp(-v/vQ))/RT)

(16)

(17)

Column 4 of Table I shows the results when a single value
of v0 is used in Eq. (7). Clearly, the model can account for

the extraordinarily large differences observed between k-j and
k-j. There is no reason v0 should be the same for all dopants
and experimentation suggested that the diffusion coefficient
in the liquid D^5 was a relevant parameter. Putting v0 =
DA/x0 and x0 = 225 A gave the results in column 5. Values
of D were taken from Kodera (12) and varied within his
stated error ranges to give the fits to k̂  (exp) in Table I.
Only for Sb and Ga are there appreciable differences between
the experimental and calculated values. Approximately 10%
and 40% respectively of these dopants were lost during
annealing and this made a unique fit to the experimental pro-
files difficult. Thus, the overall fit i<= remarkably good.
With Eq. (17), k-j was calculated as a function of v and the
results are given in Fig. 7.

- !

FIGURE 7. Dependence
of k. on mett-front velocity.

50 ICO ISO 200 250 300 ISO 400 450
», MELT-FRONT VELOCITY (cm/>«)
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The equation

v - Kj (AHh/RT<j) AT • AT =" <Tm " T> (18)

can be derived (see e.g. Thurmond, ref. 20) from Eq. 6.
and TM are the heat of fusion and the melting temperature
respectively of the host. AT, the tanperature drop across
the interface which drives the melt front can not be discon-
tinuous and must have a distance ax associated with it. From
the calculations of heat transport such as those in Section
11 that determined v, (3T/3x) at the melt front can also be
determined and for the conditions of the present experiments,
it is = 107 °K/cm. Using v = 4 m/sec, Kn =100 m/sec, AHn =
12 kcal/mole and TM = 1683°K, it is found that AT * 20°K and
Ax = 200 A. This calculation suggests an obvious interpreta-
tion of x0 in v0 = D^/x0, i.e., it can be equated with Ax and
referred to as the width of the interface region. In the
interface region, dopant diffusion is characterized by a dif-
fusion coefficient D-j whjch is of the order of DA. The
undercooling or supercooling given by AT does not depend on
the dopant concentration; it is a property of pure Si. In
addition, at high doping concentrations in the interface
region, constitutional supercooling can be expected and may
lead to the formation of cellular structures which have been
observed in some cases during laser annealing.

Column 6 in Table I gives values of Au£a. When these
"trapping energies" are compared to the activation energy
Ea for diffusion in the solid (22) it is found that M™ is a
rather small fraction of Ea for the dopants listed in Table
I. Thus, it is suggested that the bonding between the dopant
and host atoms is easily great enough to account for the
trapping. The situation is quite different for dopants such
as Cu and Fe. Values of k° (ref. 13) are 4xlO~4 and
8x10^ respectively and the corresponding values of Ea are ̂ 1
eV and 0.87 eV whereas, from Eq. (16), AUj[a for Cu is -1.13
eV and for Fe it is -1.70 eV. The bonding properties of Fe
and Cu in Si are not sufficient to provide the necessary
trapping energy. . ,
. From the relationship C^ = 1 - Cn and the expression for

Cn in an ideal dilute solution (e.g., Thurmond p. 149, ref.
20), the equation

C? = k. - exp(-AHhAT/RTfj)) (19)

can be obtained.
I and AT = 20°K, j
maximum equilibrium solubi l i ty

With the values of
j was calculated. The ratio of

in column 5 of Table
qj to the

extracted from ref. 13
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are given in the last column. These ratios are in quite
satisfactory agreement with the experimental values given in
ref. 19 and in the paper by C. W. White, S. R. Wilson, and
B. R. Appleton in these Proceedings.
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