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EXPERIMENTAL STUDIES OF TRANSITION RADIATION AND OPTICAL BREMSSTRAHLUNG*
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This report summarizes research on the optical emission from thin
films and bulk metals bombarded by 25-120 keV electrons carried out at
Oak Ridge National Laboratory. Details concerning the experimenta}
apparatus and theoretical calculations may be found in the references
listed in this paper. Measurements have been carried out on the depend-
ence of the emitted spectra on angle of observation, polarization, sample
thickness, surface roughness, surface contamination, and incident
electron energy.

The photon intensities from an electron entering a metal surface
from vacuum is given by Eq. (1) in Fig. 1, where © is the angle of obser-
vation from the foil normal, B is the electron velocity relative to light
in vacuum, and £ is the frequency dependent, complex dielectric comstant
of the metall. Note that according to Eq. (1), transition radiation (TR)
is expected at all frequencies. However, when the dielectric constant

takes on the values &£o=x0, and €; = 0, a resonance occurs in both the

transition radiation and the electron energy loss. In the case of a ﬁ
nearly-free-electron metal, as shown by the equations in Fig. 1, the i——
above condition implies that the phase velocity v of the electromagnetic

wave in the medium is infinite. This means that the whole medium responds -
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to the electromagnetic wave completely in phase (i.e., a collective
resonance). Therefore, the collective resonance, or plasma resorance
radiation at w = wp, is a special case of the more general transition
radiation.

The experimental apparatus used in these studies?® is shown in Fig. 2.
The angle of observation 8 could be varied continuously from 0° to 153°,
and the target chamber contained evaporation terminals such that fresh Al
and other metals could be vacuum-evaporated in-situ. The target chamber
was also surrounded by a liquid nitrogen shroud to provide a cleaner
environment than the diffusion-pumped vacuum system operating at ~1076
Torr would allow. For the vacuum UV spectral rezion the glan prism
polarizer was removed, and the photomultiplier tube (EM1 9256S) was
coated with sodium salicylate.

The optical emission from a 330 Z thick, self-supported gold foil
bombarded by 40-100 keV electrons® is shown in Fig. 3. The calculated
transition radiation spectra agree well both in shape and in absolute
intensity with the experimental (H -1 ) spectra for all electron energies.
Transition radiation is expected only in the h plane (defined by the
electron beam direction and angle of observation) since transition radia-
tion is like dipole radiation. The observed | component is due to
optical bremsstrahlung, and the expected inverse electron energy depend-
ence is seen in the data. The experimental | intensities are compared
in Fig. 4 with calculations of bremsstrahlung by Glucksteran, Hull, and
Breit? for isolated atoms. The energy dependence agrees well, although
the absolute intensities cannot be ccmpared due to the difference

expected between condensed mstter ! :--i:rad atoms.



The photen emission from a Ag film 713 X in thickness bombarded by
25 keV electrons? is show in Fig. 5. The spectra for Ag shows not only
the transition radiation continuum, but also a resonance feature (plasmcn
emission} at 3300 X. Again the agreement between transition radiation
theory and the experimental (i -1 ) spectra agree verv well.

Figures 6 and 7 show how the Ag spectrum changes as the angle c¢f
observation is varied from 3° to 87°, and the comparison between th=
forward (50°) and backward (130°) emission? is shown in Fig. 8. The
experimental spectra again agree well with the theoretical spectra. The
difference in intensity at the peak wavelength between theory and experi-
ment is due to the use of the optical constants of bulk Ag® instead of
vacuum evaporated Ag.®

Figure 9 shows that the agreement between theory and experiment
becomes very good when the proper optical constants (ORNL) are used ic
* 1 transition radiation calculations.’

The photon intensity at the peak wavelength (3300 X) is given as a
function of film thicggss for electron energies of 25, 40, and 60 keV’ in
Fig. 10. The oscillatory dependence of the yield arises from the con-
structive and destructive interference of the photons created when the
high-energy electron first enters and then exits the thin foil.

The vacuum ultraviolet photon emission at various observation angles
from an Al foil 320 K in thickness bombarded by 80 keV electrons (Fig. 11)

is compared with the transition radiation calculations (Fig. 12) using

the optical constants of Al reported by Hunter.®



The emission from a 220 K thick Mg foil bombarded by nearly normal
incidence 80 keV electrons!® for various observation angles 8 is show:
in Fig. 13. From these data, we may determine, using the equations giver
iQ Fig. 14, the plasmon energy Ep from the y intercept of the graph of
peak energy versus tan? 8, and the film thickness from the slope. From 2
graph of the resonance width at half maximum AA versus sin € tan 0, the
intrinsic lifetime can be obtained from the vy intercept, and’again,the
film thickness from the slope.

Similar data as illustrated here have been obtained for Be,l! (Cd.
Zn, In, Th,'2 and Ni.!3 The effects of surface contaminations an:

surface structure have also been studied.
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Figure 2'9' Spectra cf radiation emitted froc e 220 A thick Mg
f£11lc bocberded by nearly-normal 80 keV electrons for various observa-

tion apgles.



160

LT .
ol
SING XTANG —

0.4 — ¢
Qo . Ql 02
TAN®O

2 ;2
For NFE, £ e£,[1+ Wit funtg)
Ep= /0.43%.03 eV tvzas h

Resonance Width a)s .y + Rtsmbtanh
Ta Wp

MI rin$1C radiative

Ta -(I.M 2 0.11) x 10" sec ; t-ZII"

day .



