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We argue that the diveretization of physica which has oceyred thanks to the
advent of quantum mechanics has replaced the continuum standards of time,
length and mass which brought physics to matarity by counting. The (arbitrery
in the sense of conventional dimensional analyais) standards have beed veplaced
by three dimensional constants: the limiting velocity ¢, the unit of action A, and
cither a reference mass (eg mp) or a coupling eonstant (eg G related to the mass -
scale by Ae/(25Gmi) = 1.7 X 30%%). Once these physical and experiential ref-
erence standards are sccepted, the conventional 2ppronch is to connect physics
to msthematics by means of dimensionless ratios. But these standards now rest
on counting rather than ratics, snd allow us to think'of a fowth dimension.
less maathematical concept, which is coonting integers. According to constrystive
mathemutics, counting has to be understood before engaging in the prechice of
matbematics in order to avoid redundancy. In its strict form constructive math-
ematics allows no compleled infinities, and must provide finite algorithms for the
computatiop of any acesptable concept. This finite requirement in constructive
mathemstics is ip keeping with the practice of physics when that praoctice is
restricted to bypotheses which are testable in a finite time. In this papsr we
sttempt to outline & program for piysics which will meet these rigid eriteris
while preserving, in so far as poesible, the successes that eonventional physics
has already schieved.
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1. INTRODUCTORY REMARKS

We contend that the advent of quantum mechanics and the replacement of
econtinuum standards of mass, length and time by standards based on counting
integers has set the stage for s discrete physics based on finite, constructive math-
ematics. Wa offer a constructive algotittm which, stacting from the empty string,
leads to A growing universe of unique bit strings generated by discrimination and
eomplementation. When neither operation generates novelty we iberease the bit
length of each string by adjoining a random bit at the growing end of the striag.
The only oxception to this is the case when both strings, tested by discrimine-
tion, {heir complements, and the result of the discrimination are already in the
upiverse, and in addition the string produced by discriminstion contains an equal
number of 0's aad 1's. These unique events are identified both with the unique
and indivisible quantum number nod momentum conserving cattering events of
quantum theory and with the events of particulate relativistic mechenics, once we
bave made clror the connection between our constriction and laboratory sprce
time. In this way we achieve the unification of quantum mechanics and special
relativity ot an appropriately fundamenta) level,

During the construrtion we test the strings for linesr independence and in
this way eonstruet sequentially 2, 3, 7, and 127 linearly independent vectors
which eon serve ny the basis vectors Tor a representalion of the four levels of
the esmbinatorial hierachy. Cnce the basis is complete we pllow the universe
le continue to grow until o)) 1he discriminate closures of the basis vectors are
present, completing the hicrarchy. This gives us the scale constants 3, 10, 137
and 2997 — 1 4137 = 17 x 10™, which are the cumnulative cardinals of the
sequentially completed leves,

Since the labeling capability of the combinalerial pierarchy scheme is now
exhausted we define the bit string length when this occurs as the label length
Ng. Since \bhe length of the strings continues to grow, we define the portion of
the string beyoud the firat N bits as the address. We group the striugs hereafter
into ensembles cach of which carry the same first Ny, bits, whick we call the igbef,



each member of the enzemble carrying o distinet address. It ia clear that ip this
way we generate, eventually, all possible 3Nz labels of length Ny, 2177 + 136 of
which can be turther identified with the lour levels of the combinatorial heirarchy.
Because the matrix mapping construction of the hierarchy leads naturally to the
restriction N = 256, we consider anly that case in this paper. Thereafter all
that can happen is that the number of members of each ensemble and the length
of their addresses continue to grow.

We now focus on an event aa proviouyly defined and a second event one of
whose labels is common with the first event, but oceuring aller the string length
of the addresses hes increased by & bits, We jnterpret the connection Leiween
the two cvents as a random walk of b steps, following a construction pioneered
by Stein. Ass:ming a finite step length this automatically insures that wa have
a limiting velocity between events. Interpreting our criterion for an event- that
the number of 0's in the address string for the intermediate state is equal to the
aumber of 1's- - as defining zero “veloeity” when the difference between these
two numbers is zeto, these two events define g “coordinate system”, We then
show that we can define coordinates for connected events in such o way that
the intervals between events and telative veloecities ean be ehosen in sueh o way
that we bave the same algebra and geometry as that deseribed by the usual
Poincaré transformations in 1+1 Minkowski space with restrictions imposed by
the fact thut our “time parameter™ b is finite nnd integral. We then show that the
construction can be extended to 3+1 Minkowski space, but no fuither because of
the limitation of the hierarchy to four levels, In this way we demonstrate that the
basic space for the deseription of events in our construction is 3-dimensional, We
note that interactions in this space can be anticipated to Liave chiral properties.

We introduce the concept of mass by sssuming that there is a correspondence
between the labels and & parameter for each label with the physical dimensions
of mass. We gelate this to the finite step lengths in the randomn walks, and to
the limiting veloeity - which is now given pbysieal dimensions and symbolized
by ¢- by introducing s second parameter with the physical dimeasions of action
symbolized by & and defining the step length in a cocrdinate system where the
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velwaty of the random walk is zere as the Compton wavelength lg = A/me Thas
allme u~ 1o define conserved relativistic energy ard momentum f{or free parts-
el Tomsure thes connection we make the coptact beiween our mathematieal
model and laboratory experience precse by tequiring that any 1wo events that
can lead to gpace-time separated firings of counters (or their unobserved equiva.
lort) eun~erve erctor 3momenium, We thus claim to have establshed a formal
coprespondence ta relativistic particle kinematics within the Iranwwork of vur

theory

We now construct coherenl ensvinbles of these lzbelrd sub-cnsembles speei-
fied by a wmgue 3-vector momedtu i and demonstrate thal these copstructions
exbibit a disctete version of deBroglie wave double slit interference. By identi-
fying our events with the physical happenings that lead 1o the firing of counters
in the laboratory, we can relate our model to the practice of high energy parti-
cle physics. We can then identify vur linnting velocity ¢ and our unit of oction
h with the laboratory definition of those physieal parameters. Picking some
teferenee particle, which we take to be the proton, we ean then show that r).
ativistie energy-tmumenlum conservation allows us to measure mass ration “F'he
diserete wterference phenomenon we derived thea allows us to identify the step
length of our random walk model io any arbiteary coordinate systom with the
physically defined deBroglie phase wave length and derive the basic Einstein-
defieaglie quantization condition £ = he/hpy  This immediately leads o the
deBroglie wavelength X = h/p and relates the qniversal constant h to our digital
model. We pow have the dimensional constants ¢, mp and h: this validates our
¢larm to have constructed a physical theory.

S0 Tar we have used only label conservation in the construction. Using the
first two bits of each label to refer to some vxperimentally definable (onserved
quantum niember such as charge or the parhicleaptiparticle dichutomy or helbsesty
for <y 12 fepmions, we construct & arantmin mechanical sealtering theary i

Mot ats space for three particls systems . Oue basie connter paradigm apphed



to the diserete cohwerent ensembles already introduced then leads us to the neces
sity of introducing prubability amplitedes whose squares give us classical proba-
bilities. We then recover free particle relatavistie wave mechanices a3 a continuum
apprensmalien. ‘Vhe fnite step length forces us to introduee complex nambers,
and explains for us the ubiquitons 0% in the “propagators™ of quantum mechani-
cal scattering theory. This leads ta the starting point of a “zero range scattering
theory™ which was initially derived within the conventional framework and is
heing vigorously pursued in that context. Ceanection to configuration space and
“wave” phenoraena then arises from Foutier tranafornation, as is customary for
S-matrix theories which start in momentum space and use seattering boundary
conditions.

Returning to the combinatorial hierarchy method lor conserving the informa-
tivn cantent of discriminate elosute and connecting it between levely, we find that
level 1 deseribies a two-component beuttino theory, level 2 gives us the quantum
mumbers ol quantum clectrodynamics for clectrons, positrons and gamma-rays,
ond the 'wo rombined give us the quantum pumbers for weak-electiomagnetic
unification in the leplonie seetor. Level 3 is then naturally interpreted in terms
of baryon number, charged and neutral baryons, and isospin, providing the quan-
tum aumbers tor SU/3. The scheme might also support at level 4 a quark-heavy
lepton-graviten interpretation, and the numerics suggest a connection to Harari's
“rishons”, but more work is ne 'ded before a cirice is made.

Indepeadent of the details of the quantum number assignment, we now claim
to be on firm ground in interpreting Parker-Rhudes’ successful caleulation off
the proton-eleciron mass ratio, as a ealeulation of the basic baryon-‘epton mass
ratio. Then the romparison with expenment is naturally 10 be made with the
oaly known stable {1o at least 10! years) massive baryon and lepton. Since
the baryon mass {recall that we are allowed one mass on dimeasional grounds)
15 only approximately the proton mass (iv the Rrst order mterpretation of the
combinatotial reswlt hr/[:’.u’(»‘m?jl = 282 4136 = 1.7 x 10™) the calenlation
of the cortections geeded to vbtain the absolute value of the proton mass {or,

equivalently the cimpirica) valite of () and the empirical value of the fine structare



constant remain & challenge for the theory. Onee the dynamics, which is being
explored in o more conventional context, allows us to compute unstable barvon
and bosop masses, this problem wili provide a crucial test for the theory. Since
we are allowed only one dimensional mass, there is no place in the theory for
differcnt gravitational and inertial masses. The problem of going from spin one
photuns and spin two gravitons o a continuum approzimation in classical fields
is basically the same as for any S-matrix theory which starts with a micreseopie
description based on quantum phenomens. Finally, some of the cosmological
implications of the construction are briefly discussed.
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2. BACKGROUND

Physics as formulated by Galileo in terms of length and time and completed
by Newton, in the dimensional sense of physics, by the additional concept of
mass used as its mathematical paradigm the continuum geometry of Euelid.
Galileo in practice used the Eudoxian theory of proportions and hence could
relate arbitrary laboratory standards of length and time to pure numbers, thus
connecting dimensionless (in the physies] sense) mathematics to the world of
experience. The completion of this connection by Newton used, according to
Mach’s analysis, mass ratios and the Third Law (momentum cobservation). So
far physics has pot found it necessary to introduce any dimensional siandards
other than length, time aud mass, or three iadependent combinations of these
units raised to integrsl or fractional powers. Hence classical physies is “seale
invariant” and the Euclidean mathematical paradigm (extended by the calculus)
appropriate.

The Drst break jp this picture was forced by Planck's and Einsteirn’s discovery
that encrgy is quantized, and by Einstein's discovery of the universal limiting
velocity, giving us the universal constants A and ¢. The empiriesl fact that electric
charge is quantized stilt does no% break the scale invariance since Ac/2xe? == 137
is a dimensionless number, but its universality cries out for explanation, at least
according to Einstein. In his biography, Pais? says

*“! conclude Lhis time capsule with & ecmment by Einctein on the meaning of
the occurance of dimensionless constants (such as the fine structure coastant or
the electron-praton mass ratio) in the laws of physics, & subject about which ke
knew nothing, we know nothing: ‘In a sensible theory there ure no [dimesnsionless)
numbers whose values are determinable only cmpirically. | ean, of course, nat
prove that...dimensioniess constants in tke laws of nature, which from a purely
logica) poinl of view can just as well have other values, should oot exist. To me
ia my “Gottvertrauen® |faith in God] this seems evident, but there may well be
few who bave the same opinion.'[E8)”

The additiona] fact that the proton and the electron (stable for at least 103



years). i well as demonstrablly compusite atoms nnd nuelei, bave unique muss
volues brezhs scale invariance in proctare, but current theory does not have suffi-
rient explanatory power to tell ws why Using the universal gravitational constant
and e proton mass we can form the dimenswonless combination Ae/2a0m:; =

13 X 1™ which again enies oul for explanation.

Meanwhile the arbitrary meter, second and kilogram have disappeared into
bistory and have bosp seplaced by 2 Sxed pumber of wave lengths emitted by a
thanaisotapee atomic souece which at one time approximately occupied the dis-
tanee hotween the seratches on the standatd meter, a fixed number of ascillations
of an atomic clock which at oye time approximated to what was then the stan-
dard sccond ond (eop) the number of a specified type of atoms which at one time
approximately balanced the standard kilogram; that is, ail our current standards
are based on counting integers. Yet current explanatory effurts based on quan-
tum ficld theory start from continuum mnthematics and, alter considerable trial
and error and experiment, altempt 1o “discover” th.. symmetries and non-linear
“interactions” which will lead 1o the obwerved discretenass. Qur contention is
that current physies is ripe for an explanatory theory which starts from finite
buinbers and allows no completed infinities; hence we posit that the appropriate
mathematical paradigm should be taken from finite constructive inathematics.

The key conceptual point here is that, in contrast tu contintum mathematics
which has to be connected o physics by ratios of physically measured quanti-
tits which can only be made suitable for mathematical analysis by taking oul
three arbitrary (historically speaking) units of MASS, LENGTIH and TIME, con-
structive mathematics deals direetly with integers, and bence is appropriste for
introducing dimensionless integral {or rational) quentum aumbers as a new type
of link between mathematics and physics, In other words, guantization shonld
be basie to the theory rather than denived. The problem is how to accomplish
thix.

2.1 Hwrowical BACKGROOND

This program has been pursued in various ways for 2 number of years, and
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is the product of several lines of development. Some have been brought togetuer
subsequent to the foundation of the Alternative Natural Philosophy Assoeiation
ip 1979. One sirand of this work, of which Whitchead and Fddington were
preenrsors, was the discussion of space {ime strueture from an algebraic poipt
of view, Lhe diwensions being vegarded as {we would soy now) a combinatorial
structure in fact isomorphic with the first leval of the hierarchy as now known.
This early work was published in a sequence of papers by Bastin and Kilmis-
ter abuut the Coneept of Order~—> Another step wos Bastin’s hierarehieal and
multipte feedback loop model in which the points in spaces were built up in &
hierarchical manner with the dimensional structure appearing at the simplest
stage. Gorden Pask constructed a hardware form. In 1961 Parker-Rhodes made
an algebraic formulation of the model in terms of binary variables, He invented
the matrix mapping representation of the level connection (sce Chapter 2) and
the use of matrices s the new vector operands. He discovered the breakdown of
tbe construciion at the fourth level {when the successively completed structures
are characterized by the integers 3,10, 137,21%7 — 1 4 187 = 1.7 % 10%) snd
Bastin noved the connection to the scale constants of physics. Amson, in dis-
cussion with Dastin, in 1965 isolated the crucial notion of diseriminate elosure,
and then Kilmister sbowed that discriminstion necessarily introduced an abelian
group structure in each lovel of the bierazeby. Part of this collaborative work by
Amson, Bastin, Kilmister ana Parker-Rhodea was publiahed iu 19684 .

Meanwhile Noyes was becoming increasingly dissatisfied with the failure of
hadronic theories using Yukawa type couplings to provide a quantitative avd con-
trolled description of the strong iateractions. 1t is stilt possible to maintain that
neither second quantized Geld theories nor S-matrix theory based on dispersion
telations and crossing bave met that challenge today. He proposed—9 a anitary
relativistic scattering theory lor three or more particles using as input only the
on shell or “zera rapge” scatterings of the pairs. This program turned out to
be difficult to articulate. By now the precise conditions under which the non-
relativistic theory is self-consistent have been found.’ The minimal relativistic
tbree particle equations bave been consistently developed by Lindesay® ; they

10
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go 1o the correct pon-relativistic limit in that they predict quantitatively the
Efimov effect (ie. 2 logarithmic accumulation of three patticle bound states) in
the appropriste kinematie region.? Under the assumption that there is v direct
particle-particle scatlering but that g particle and & quantum c¢an biad to form
s state of the same mass and quantum numbers 25 the particle, the three body
equations provide a covariant and ugitary description of particle-particle scatter-
ing generated by single quantum exchange.1® In contrast te the equations arising
{rom conventional approaches these equations go uniquely and unambignously to
the non-relativistic scattering generated by a local Yukawa potential at low en-
ergy; the precise conection to quantum beld theory is under inveatigation. This
work is relevant to the current paper because the theory we consiruct leads most
easily to this “z¢,0 range seatteriog theory”™ rather than to more conventional
quantum mechanical formalisms.

Connection between Noyes' approath apd the combinatorial hierarchy ap-
proach was first attempted some time ago. After becoming interested in the
hierarchy work in the early '70's, Noyes attempted to survey some of the reasons
why conventional approaches were felt by bim to be inadequate!! and presepted
the combinatoria} hierachv work at ope of the SLAC summer schools.’? Work
by Bastin and Amson was presented at the 1978 Tutzing Conlerence, and an at-
tempted integration of the combinstorial hierarchy work with Noyes® ideas about
scattering was presented by Noyes and Bustin at the 1078 Tutzing Conference;
neither report appeared io the Proceedings, for reasons best kpown o the edi-
tors. A reasonshly complete presentation of both the basic philesophical ideas
add the technical achievements at that stage was subsequently published'3 ; see
the introductory section of that paper for comparison with the Ur program of
ven Weizsacker and the spuce time code of Finkelstein. This was also Lhe first
oteasion on which an attempt was made Lo integrate into the mainstream work
the remarkable caleulation of the electron-proton mass ratio by Parker-Rhodes!?
given in his Theory of Indistinguishables. A general description of his theary is
given in Appendix L. Recent woitk by Kilinister on the foundations of the combi-
antorial hicrarchy is given in Appendix 11

11



What was missing at that time was any explicit way to proceed from the indi-
vidual concatenating processes (discriminations - see below) among bit strings, or
Sehnurs, and individual particulate seattering processes in space time. The con-
uection was supplied by the work of Steinl® developed initially from completely
independ.at considerations. Extensive discusdion of his wark at the 2ad and 3rd
annuzl meetings of the Altu:native Natura] Philosophy Association (1980, 1081)
revealed both that there were close connections between Stein’s thinking and
Parker-Rhodes “indistinguishables™™¥, and that Stein’s construction of space-
time and “patticles” from random walks might be what we were looking for.
Meanwhile Kilmister had realized that we were missing the initial constructive
steps needed 10 get the scheme off the ground, and attempted to supply these!®
by modifying 2 construction of the integera due to Conwsy'? . Noyes realized
that the scheme proposed by Kilmister for generating bit strings would keep on
going aftor the hierarchy scheme for preserving information was exhausted, and
bence would provide labeled ensembles of sirings which could be used for the
Stein construction. A new presentation of the basic progeam making use of this
insight was presented in April 1982 at the conference honoring Louis deBroglie's
90th birthday'® .

Discusaion of the ever growing bil string vniverse al the 4th annusl meetiog
of the Alternative Natural Philosophy Association and a refinement of Kilmis-
ter's treatment of gencration and discrimination'® | followed by intensive work
by Noyes, Bastin and Kilmister, allowed a complete overhaul of the paper for
the de Broglie Symposium Proceedings prior to the submission of that paper™
for publication. Other ideas presented at ANPA 4 have had considerable impact
on the preparation of this paper. The preseniation at ANPA 4 by Aerts of his
thesis result?! that the separability of classical physics is logically incompatible
with standard quantum mechanics, and in particular with the von Neumann pro-
juction postulate, reinforced the conviction of Bastin and several other members
of the Association that Boht's concept of the correspondence principle is invalid
and strengthened our caze for the necessity of revisioa at the fundamental tevel.

Bastin's views on romplementarity are represented 10 this paper by ao excerpt

12



from kis unpublished book The Combiuatorial Basis of the Physics of the Quan-
tem included as Appendix [Tl Manthey's contention® that concurrent commu-
gicating asynchronous digital systema pecessarily geperate randomness and tha
such systems aecessarily have a conservation lsw and sb uncertsinty born of
discreteness, exclusion, and asyachrony coupled with the fact that physical com-
puting systems have a Luilt in kmiting velocity, teinforced the conviction ihat
Stein's construction was the righl place to start in order to obtain the Lorentz
tracsfonnatioa, momeat um-vaergy corservation and the uncertaisty prineiple of
quantuy mechanics. Gefwert's discussion of constryctive mathematies ther and
subsequently made it clear that it would be fruitlul to make an attempt Lo sim-
glate the whole construction by a eusnputer program. A preliminary attempt to
do just this by Noyes and Manthey led directly to the ideas presented in this
paper.

We have been mmore complete *han usual in presenting this historieal back-
ground because no extapl puMication, other than s couple . paragraphs in the
introduction to Parker-Rhodes' baok!d, zovars the many strands of thought on
which the program relies. It 1z pow time to turn o the idess themselves.

2.2 BASIC IDEAS

Our basic postulate is that quautum events are unigus and indivisible, but for
reasons we wish to understand canpot be localized io the space-time of classical
physics. We choose the high energy particle physics labaratory as the paradigm
for the practice of physics. The basic data are the sequential firings of couanters
separiled by macroscopic spaee and time intarvals, Wa can use chis type of data
tr measyre mass ratios of particles reletive to some standared type of pavticte
using relativistic energy-momentom conservalivn. Giver space and time enough
we can refine the cocuracy of “hese measurements as much bs we like, st l2nst for
stedl? particles. This precise informatioa is readily described by the relativistic
kinematics ~f classical Lthecry.

By using tkis deseriptive framework we eas detive from laboratory uxperieace
statistical information about the probakility of the scatterings observ =2 via the

13



firings of the covnters, or “cross sections”. Conventional (and quantum) theories
predict cross s¢ ‘tions which exhibit interference phenomens reminissent of the
intensities in class.c«| wave theory, but which ean only be compuared with theoret-
ical predictions lrom quaatum mechanics in the sense of the law of large numbers
by the aceumulation of a sufficient number of events starting from what, so far
as we know, ore the same initial conditions. For elementary particle phencmena
what is missing compared to the classical situation is some independent means
of measuring the veal aniplitudes whose squares predict the crous seclions. The
quantum theory puts these amplitudes beyood reach in principle, and not just
in practice, by making them complex, but relative phases betwern amplitudes
remsio observable; it is only one vverall phase that is always beyond reach, and
a few more whea there are “superseivetion rules”,

Qur problern is to eonstruet & description or theory or “model” in which the
situation described in the last paragraph arises as a natural consequence of the
construction, and from which the experimental results suecesstully interpreted
by elementary particle theories can be shawn to follow. We assume, as is conven-
tional for theorists who take an S-matrix poiot of view, that once we have con-
structed relativistic ssattering ampiitudes whose absolute squares predict cross
sections, it is then possible Lo constract from them all of nog-relntivistic quantuam
mechanics, and the classical physies of partictes and Eelds, under appropriately
restricted circutnstances. This vontention will not be argued Further here.

We stast [rom very primitive Gnite matbematieal structures {which we be-
lieve, but do nat attempt to demonstrate bere, can be grounded in the construe
tive mathematics of Bishop™ and Martin-L5[?! , and provide a scll-generating
and self-orgrniziog slgorithm which leads to a universe of bit strings whose
beisnded size keeps on growing as Jobg A2 we wish. The information content of
this universe is partially organized into ensembles whose imitis) Lits or *“labels”
are a vepresentation ¢f the combinatoria) hieraychy. We provide as Appendix
IV & specific computer progya.n which will simulate this construeticn; a detniled
discussion of the program will be presented elsewbere?d .

Our computer algorithm makes use of two processes which create new strings
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citber by disc miustion defined for two ordered bit strings of length NV symnbe)-
ized by §; = (.. i Iy €10, 1] 88

DNS,-SJ' =(..Titzz; N (2.2.1)
atd complementation defined by
a8, ={...z; 4z 1, )N = DnSiIn (2.2.2)

where +o is addition, mod 2 or “exclusive or”, snd Iy is the anfinulf string
conteining N 1's. When neithes of tk-++ nperations suceeeds in generating a
string not slready contained in the vaiverse of bit strings we generate novelty
by increasing the string length of ali strings by appending a randum bit at the
growing end. There is one exception to this rule. When DONSS; = 8§ =
Dp=8,-S;, all five strings are alresdy in the voiverse, and the number of 0's
in 53 is equal to the number of I's we do naf {ucrease the string length but
simply continue. We call this happening an evenl. During the coostruction we
organize the strings intc the four levels of the combinatorial hierarchy #!3. Once
the hicrarchy is complete, we use the initial bits in the strings reflecting this
organization as labels for ensembles of bit strings, labeled by these inital bits,
atd uniquely specified within each epsemble by the (growing) remainder of the
bit siring which we call the address. This conatruction is described in detail in
Chapter 3.

I Chapter 4 we coostruct our discrete substitute for space-time “coor-
dinates™ by ideatifying explicitly chosen labeled subensembles counecting two
evenls for which the the bit length of the address differs, but containing a com-
mou Jabel, with Stein's random walks. We introduce our copneclion to physics
by assuming that when we bove two weli separated counters of finile volume
Axrdy.t: wilh e distance § between them greater than their spacial resolution
which Gre sequentially with a time foterval T greater than their Lime resolutioe
Al that they define a velocity v == S/T for some object which passed between
them. The conneetion to the bit string universe i3 made by assuining that the
label part of the string cnsemble defining o tandom walk of b steps is te be
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identified later with the quantum numbers of the object. The dimensianlesa ve-
locity of the object in ihe bit string universe is defined by v =< N1 - N0 >
JINY4 N0 =< N1—NU > /b Here N1is the number of I's and N? the num-
ber of 0's in the sddress strings of bit length b and <> is the average aver the
appropriate labeled ensemble. Cloarly 1 is bounded in absolute value by unity
providing us with a limiting velocity {or the connection between events. Hence
we connect this aspect of the bit string universe to the limiting velocity of apecial
relativity and leboratory experience by teking v = ve. This is done i such a
way that, we claim, the events bave the usual gcometrical and transformation
properties of 3+1 Minkowski space-time in an appropriate large number limit.
For us the fnite space-tiine volume of our counters makes speciai relativity into
aD approximate maeroscopic theory., Our counter volumes carpot be allowed
to shrink to points; we have prevented by our construciion and interpretation
any possibility of going to & microscopic continuum theory, and thus avoid the
infinities ¢f quantum field theory. Yet by the random walk paradigm and a sct
of specific algorithms we claim to show that this s:fiices to exiract a limiting
velocity and ihe usual observer-dependent coordinates of special relativity.

We now introduce dimensional ugits in the physical sense by identifying the
random walk step length with the Comptlon wave length in the coordinate sys-
temn in which two connected eventls have zero velocity and by postulating that
the corresponding mass parameter is associated witk one of our labels, which was
the critical step taken by Stein. However, our treatment departs from hie in that
our basic counter paradigm compells us to see this iength as Lorentz contracted
in moving coordinate systems whereas he used it as a basic dimensional param-
eler. Our approach ecables us to define relativistic energy and momentum lor
free particles correctly connected to the velocities we have alveady construeted.
Woe now cloim to have construeted a discrete version of classieal relativistic par-
ticle kinematics which goes to the conventiogal continuum theory in the A ~ 0
limit. We emphasize, as Stein did =lso, that this is oply a mathematical approx-
imation and nol a “correspondenve principle” limit in Bohe's sense. Our space
time is 8 space time of discrete events contected by random walks of (nite step
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length with veid, not space, “in between®. The events which we have now tied
abstraclly to coordinate systems related by the usual Poincaré transformations
are outr eandidates for the figite, unique, sod distinet bappenings that Jie at the
rore of spantum mechanics. Hence we will try to relate them to the processes
which in conventional theory are called elementary particle scatterings and which
are supposed 10 imsate the chain of happeniogs which, i the laboratory, are
assumed 10 lead 1o the firing of a counler.

In Chapter 5 we try to to get from this reasonably familiar eclativistic situ-
ation 1o quantum mechanics. We argue that our counier paradigm tequires us
to copstrucl ensembles of ensembles with defined coherence properties. If this is
dooe with care, we can then show that the underlying digital disercteness, which
we have heen careful to retain, sllows us to anticipate interference pheaamens,
such as that found in the the Acuble slit experiment, once we have succeeded
in making the cornection with our dimensionless (in the physical sense) mathe-
matical siructures and aboratory definitiuns of space, time and mass. We make
the connection by first identifying the limiting “ velocity™ jn the dimensionless
theary with ¢ and then assumiag that some lahel can be put into cotrespondence
with sume laboratory particle such as the proton. We then can use the zlread
established Lorentz invariance, which implies the relativistie kinematics of free
particles, Lo relate the mass ratios of the theory to actusl Jaboratory practice.
The intesference phenomenon mentioned ahove ean now be connected to mea-
surements of the deBroglie wavelength Afp. Having now shown how Lo connect
vur mathemetics to the dimensional constants ¢, mp, and b we can claim 1 > have
established a physicar theory. Iy examin..g vur counter paradigm in more Jetail
we then show that we can recover the conventional < ontinuum theory of deBroglie
WaVes a8 an gpprorimation,

Wr now concentral> on the first two bits in each label and show that these
can be inlerpreted as conscerved quantum numbors in such & way s to comstruct
the elementary scattering amplitudes which diive the momentum space integral

equutions for a three particle relativistic guantum mechanic:| scattering theory
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ideatical in mathematical structure to the z¢ro range scatlering theory 319 inj.
tially developed from s more conventional starting point. Since this scattering
theory ean be shown to be grnepalizeable to systems containing any nite pum-
ber of particles, we claim 1o have n.ade contact with the practice of elementary
patticle physics at ap sppropriate level. la an S-matrix theory, the conventional
approach is Lo connert Lhe theory to wave phenomena by Fourier transformation,
Whether this is a valid procedure is already s problem for S-matrix theorists, so
we do not diseuss it further in this paper; we rely on their competence as show-
ing that a large hody of practicing physicists are not too dissatisfied with thia
connection. We simply note that from their point of view, as for us, classical
continvum wave phenomena and “ficlds” are not fundamental, but are derived
consequences of elementary scatterings.

In Chagpter 6 we discuss bricfly s number of problems thal remaia (o be
solved before our theory can be expected Lo attract the interest of more than a
few practicing eleeatary parlicle physicists, At the level of quantum aumbers
we bave previvusly proposed '3 what looks like a promising interpretation in
terms of charge, baryen number, lepton aumber, and helicity; here it is revised to
bring it into closer contact with quantum oumbers know from elementary particle
experiments. This has the advantage of providing a rationalle for Parker-Rhodes
remarkable ¢olenlation® of the protonselectron mass ratio. This asgument is
briefly reviewed. But we are also struck by the coiacider:ce between the number
of basic particles {8) we encounter at level 3 of the hiernrchy and the basie
“rishons” prosposed by Harari®? . The more detailed artice'ation of the theory to
the point where we can make a choice would take us beyond the scope of this
paper, 80 is given ooly cursary attention. We close with a few remarks on the
casmoluiry implied by the coastruction.
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3. CONSTRUCTING A KT STRINS UNIVERSE

In this paper we cannot discusa many of the basic philosophical issues raised
by ovur program; some of them will be discnssed by Christoffer Gefwert in his
forthcoming thesis on construetivism™ . We leave it oper, here, whether it can be
conclusivelr shown that a bit string unjverse constitutes the necessuiy conditions
for explar atory closure consistent with the current practice of physics. “All"we
need take jrom zunstructive mathematics are the symbals @, 1, 42, = with their
ususl significance,i.e.

P40=0; 0431 =<0, 1420=1, 1491 =0

the “random™ operator R which gives us 0 or 1 with equal probability, and
ordered bit strings of the symhols 0 and i. We take the symbols 0,1, 44 to
stand for primitive recursive functions. Now the expressions sel out above can,
essentially be seen as programs which give the inforination needed for their own
evaluntion® . By this strategy we sim at chowing Lhe expressions above to be
self-explanatory vis-a-vis meaning; we do not have to embark on a reducticnist
strategy in order to justify the use of these expressions. From these symbols we
then proceed to construet a vniverse of strings of the existence symbois 0 and
1 starting from the empty string. We show ‘hat this universe is scll-organizing
in 8 manner that can be labeled by the combinatorial hierarchy. since the work
has not appearcd elsewhers, we include in Appendix II an earlier canstruction
due to Kilmister'® which starts from the empty set, nnd a refinement of this
approach by him!%; a third cut across this materiat is given in Appendix 11.3.
The canstruetion discussed here is due to joint work with Manthey, and draws
from ‘he backgroend provided hy Nilmister.

A1 GENERATINN OF THE STRINGS

Qur aigorithtn for creating a universe of bit strings starting from the empty
atring ha: been coded in Paacal by Manthny and is included here os Appendix
IV. Since il uses concurrent programming, whi': may not be familiar to muny
teaders of this paper, we will use here s less clegant approach prescoted wsiag
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sequentis! programmiug Bow charts apd definitions. A Jull discussion of the
copcurrent program will be presented elsewhere®. Nevertbeless, even in this
sequentisl program the easentinl aspent of concurrency - which Bastin™ maintains
is a fundamental pecesaity in our construction - is already contained, The reason
is that everything happens delwzen TITKs, and caruoi be ordered within that
restriction; but this is getting ahezd of our siory.

Our jnitiaf alporithm is disp'1yed in Figure 1 We see that ¥ v, SU) starts
fron. the empty siring, aad scts the number of strings in the universe, and the
length of the st:irgs equal to zero. The critical operator we peed for the con-
struction i ¢olled R. The $unction of this epersior is simply 1o pick rondomly
between the iwo bit symbols 0 and 1 with equal probability. We ere investigaling
the problem of just where the idea of randomoess enters constructive matheat-
ics and how such an operator is to be constructed. For vue moment we content
oursi'vzs, at least for Lhe purpose of computer simult .10, with the fact thot
pseudo-random number generators ate astandard pan of tomputer practice and
are also used in high energy porticle physica for “Mopte Carlo™ programs. The
specific random oumber generator used by Mouther in the progrem assumes that
s bit in 3 memory 2¢ll is Oipped between 1 and 0 on 5 Jdxed ‘ocal eycle timme, A
samnpling process, which is necessarily asynehronous {0 the bit flipping process
{necessarily 5o, lo be consistent with the deSnition of process), vherefore saraples
{reads} 1 or O with equa} probability. Asynehronieity con be obtained in practice
by driving the second eyele with {eg) o quariz oscillntor detened frow, the frse.
Whether this is the best way o achieve the result is ielevant so long as some
adequr _ random bit generator exists. The eritical question for us is rather, since

. progyam is mo¥e thow eupuaential, whether pseudorandomuoess can in prin-
siple be extended rapidly enough to meet the requircments of the program no
matler how large the finite 5. . of the universe bas beco.ae. We do not aticmpt
to discuss that probiem here.

Siner our aim is to copstruct ap ever growing uwnsvvise of distinet symbols
which is sell-generating, we need to have o way of cherking whether or not any
symbol we turs 4p wirendy i in this universe ar not. Kilmister has shown!6.19



bhow to do this starting from the empty sel and defining a “prediscrimination”
eperation which becomes equivalent to the diserimination operation used in ear.
lier discussions of the combinatorial hierarchy®13, aud already defined by Eq.
{2.2.1), We assume that copstractive mathematics can define for us what we
mean by the ordered strings coptaining V of the existence symbols 0,1 needed
in that definition. Clearly if the two sirings are identical this operation gives
us the null string Opy; otherwise - for ¥V > 2 ~ it must generate s string which
differs from either, The first time through the program we pick a bit at randam
and call it the first string U[I] in Y{N,SU). Since discrimination requires two
strings if i » .o produce novelty we keep picking a bit & random, checking by
discrimination whether it differs {from U{1] and when we succeed call it Uf2].
For the purposes of the computer simlation we order the elements of U by the
integers € [1,8U], the order being simply the order in which the new strings eze
generated. We will discuss shortly why this is anly a simulation of the situation
we actuglly envisage in which the order of the strings in the universe in the sense
required by the simulation is forever beyond the reach of experiment.

Now that we have two strings we are ready to start the main program. Our
first metbod of generating povelty in U is simply to pick two strings from U
at random and discriminate them. If we unluekily have picked the same string
twice, we try again. Il we pass this test, we still may have generated a string
already conteined in U as the result of earlier operations, sc we must tesl the
candidate against all the strings jn U If we pass this test, we adjoin it to U
and coatinue. It should be remarked that heee we are adopting Parker-Rhodes
concept of “identity”™ as used in The Theary of Indistinguishables!t with the
implication of uniquensss. He differentintes this coneept cleanly from the concept
of indistinguishability, or the existence of “twins”. Of twins one can can say that
there are two of them but that they cannot be labeled; heuce finite collections

of twins can be assigned a cardinal number but cannot be ordered — they are
“sorts™, not “spis”.

Our algorithm provides a simulation of his concept of identity,— necessarily
8 simnlation beeause "twins™ canpot be directly observed macroscopic objects



or constructed using stauderd methematical operations in a computer. Yet we
ran simulate the iden by requiring that the strings in ¥ can only be accessed at
random, We insure that they are distinct in that discrimination between any
two of them gives & non-null result, thus telling us that we have two of them,
yet they are “indistinguishable” in that we canoot tell which two we have. We
thus claim to have construeted a simulation of a collection of twins of cardinality
SU. OF course the compuler has to order the elements of ¥ by the integers in
order to function, and has to use bit strings ordeted along the string by integers
in order to carty out the discriminations. But we have arranged the program in
such a way that this information is not available to us.

Although we have now insured \hat our universe contains only distinet
strings, at any Sit length NV the opersiions defined solely by discrimination will
eventuglly stop generating new strings because all the possibilities bave been
achieved. Hence we peed » second operation to allow the upiverse to keep on
growing. We provide tiis simply by putting in s branch which is used any time
we have attempted to create a string already contained in Y. In our initial ver-
sion of the program what we did then was simply to increase the string lengih by
ardding a random bit to each string in Y. OF course this could happen before we
have created Y possible strings of the bit length we are working with, Hence the
universe we generate will have a rsndom structure that is not predictable from
the plgorithm. The requirement that all the other strings are also sugmented is
simply s way of keepiug the bit length of all strings in U the same. This might
scem to be in violation of the principle of relativity, since in & sense Lbis provides
8 “unjversal time". Actually such a time existy - tfie time since the “big bang™
- and can be measured lucally bty the temperatare of the background radiation,
which is currently 2.79K, We therefrre feel justified in allowing our simulation to
contain {his feature. The name wa 1 ive to this stting length increasing aperation
is “TICK".

The frst time we enter the main program, we know that the universe consists
of the two hits 0 a0d ! snd bence that we cannot ereate novelty by discriminetion,
50 wa epter the main program st TICK. From now on the program runs a3



indicated in the How chart, Fig 1. The basic new operator we need at this point
is one thot will pick a string from U at random, and is called “PICK". Since
the sttings in U are indexed by integers all this smounts to is a random nember
geaerator for an integer € [1, SU] which is obviously easy to construct in binary
notation using R. The explicit coding is given in Appendix IV, So now we pick
a string, pick another which we check by diserimination is ¢'Merent, and if the
result of the discrimination is novel we sdjoin it to U, (I~ for now the box
called CONSTRUCT LABELS... which in no wise impact » running of the
msin program.}

I our first attempt at computer simulation we thoug. .44 we had to do ot
this point, if we had failed to profice novelty, was simply to TICIK. Actually,
we found that this left out of the universe a process that could later be identified
with clementary scattering events, unless we put it in “by hand” at a later stage.
We did pot like this extreme form of “gbserver participstion™, and have come
up with a siinpler solution in terms of ap operation we required at a later siage
in any case. This operation is simply complementation, which we have already
defined in Eq. (2.2.2). So the zest of the program simply creates the complement
Jf oue or the other of the strings we picked initially on this pasa and adjoins it
to U if it is uot already present. This will have a lot of advantages later on, but
we do not waut to get too far ahead of our story. If the complement of the string
produced by discrimination is not already in Y, we adjoin é to ¥ and continue.
At this point, if we have still failed to genernte novelty, the careful reader will
tealize that we have achieved ¢ situation ip which

D515y = 83 = D515, (3.1.1)

Al this point, sipce novelty hns not been generated, the obvious thing to do is
to TICK. Some of the time this is indeed what will happer, but we have decided
to put a finsl branch in the main program at this point in the sequence. If the

pumber of 0's in 53 is equal to the number of 1's, we do not TICK; we simply
continue.

To understand why this choice was made, we must look ahead. We will ace
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later that [0 the label part of the string the presence of a 2 will correspand ta the
presence of a quantum pumber. In the particuler case when L; has (a) an even
number of tits and (b} an equal numher of @'s and 1's, —L,; will veceasasily have
1's where L; has zeros and visa versa. Hence, ance we have succeeded in sssigning
physical meaning to the ordered position of an entry iu a label string as relerring
to & specific quantum number, these quantum pumbers are paired as dichotomous
variables for the case considered. Thus we have a natural interpretation of L;
as deserimpg the quantum rumbers of a particle, and —L; as describing the
quantum numbers of the corresponding sntiparticle. Wkich is “particle® and
which is “antiparticle” will depend on an arbitrary choice, which ¢annot be given
precise meaning until the dynamics of the scheme have been articulated and given
physical interpretation. We will also find that when the address part of the string
{a) has an even number of bits and (b) has an equal number of 0's and 1's, this
will relate to the starting point for deiining zero pbysical “velocity”. Hence the
criterion we have specified for not going to TICK will correspond, eventuslly, 1o
two pariieles 5y, Sy encountering their iwe antiparticles -5y, =5, and nroducing
and int-rmediate state 53 with the quantum numbers of a particle-snti -article
pair and zero velocity.

For those familiar with Feynman diagrams we have just deserbed a basic
four-1eg diagram in the coordinate sysiem in which the total nicmentam is zero.
O.r intent is to construct all other scatleriog processes from this eategory of
elementary erenls, snd the “vertices™ created by diserimination or complemen-
tation. Since we do not allow a TICK, only the occuranee is specified in ik
sequential evolution of the uriverse. We have no way, without providing more
“backgronnd” information about the event, of specilying which partictes are
“incoming™ snd which are “outgoing”. Thus at this elementary level we are
guaranteed what we need for “time reversal invarianee” and quantum number
conservation. We also know from earlier work 13 that, once an external time se-
quence has been established, the usual Feynman rules eqaating o particle moving
“forward in ime" to an antiparticle moving “backward in time" with oppesite
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<harge, hedicity, and any other approgriate quantcm pumbers will follow. We fur-
ther anticipate thai our version of the CPT theorem will emerge in due course.
But all of this is yot to come.

We emphiasize that at this point in the copstruction we bave simply inserted
a simple rule that is readily understood at the bit string level. It provides us
with » well sperified definition of what we mesn by an event in the universe of
bit strings. That we can justily this term as corresponding to the unique and
ludivisible scutlering eveats of quantum mechanics and to the point seatterings
of viausical particulate special relativity witl constitute the main objective of this
paper. In facl we can, we belizve, with somo justification elaim that we are also
tolking about the individual colllsions between bard and impenetrable atomns
envisoged by Leucippus and Demoeritua,

Wa now have completed our coustruction of a growing universe of bit strings.
We trust you will grant that it [s a simple algorithm, which could be simulated
on & compuler in its early stages, Of course, since the program is more thao
exponential, any such simulation could nol eatch yp with the current state of
the universe by actual calculation, Thus we must tura to haw it can be used
for concoptnal, and necessarily parlisl, [nterpretation. Physicists will probably
be more comnfortable with what we are doing If they view it simply as a model
whose consequences can be supported or refuted by experiment. W suspect it
might prave to be more than that, but will not address that deep question in this
paper.

3.2 THE COMBINATORIAL HIERARCHY CONSTRUCTION

The eimple slgozitkm for generating tovelty presented in the last section cre-
ates a2 amazing amount of steuctere. To keep track of the information we invoke
the concept of diseriminate closure, whith leads to the combinatorial hierarchy
413, We deine » diseriminately thused subset {DCsS) as a single non-null string
or as that set of pon-oull strings which when auy poir are discriminated yield
'.’“’““"’ member of the set. If we start from linvarly independent strings 2, b, ¢, ..
(0. 048 8 0,54 o 0, c40 9 0,0454¢ 3% 0, ..) we can clearly form the DCsS's
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{a}, {8} {c}, {a,b,a-4+8), {b,c,b+c), (¢, 0,640}, (@, b, c,atd, b4, c4a,a4b4c}
and 30 vn. Here we have used + fot distrimination; since a+ 4 = @ the closure of
the subsets is transparent. From j linearly independent steings we caa cbvicusly
always form 27 — 1 DCsS's because this is the aumber of ways we can chooge §
distinct objects 1,2, .., 7 a¢ a time,

Starting from strings with twe bits (N=3) we can form 22—} = 3 DCs8's, for
example {{10)}, {{D1)}, {{1D),{01),(11)}. To preserve this information about dis-
criminate closure we map these three aeta by non-singular, Unearly indopendent
2x2 matrices which have the members of these sets as clgenvectors. Rearranged
a3 strings of four bits thess form s basis for 38— = 7 DCsS's. Mapping these by
x4 matzices we get 7 striags of 16 bits which form a basis for 37 —] mm 187 DCsS's,
We have now organized ike information content of 187 strings into 3 levels of
complexity, We can repeat the process onee more to obtain 9197 —1 ais 1.7 X 103
DCsS’s composed of sirings with 258 bits, but cannot go further because there
are only 236x256 linearly independent matrices available to map them, which is
many o few. Thuy when our generatitg and diseriminating operations have gone
on for o while the information carryitg eapacily of our information preserving
mapping scheme is exhausted. We have in this way generated the eritieal num.
bers 137 == he/2xe? and 1.7 X 10°8 = he/?tGmg and s hierarchical strueture
w: .. four levels of complexity,

The geaeration of this steacture and Hs termination cap be summarized by e
very simple algorithm. Each level  is genetated from a basis 8(J) contsining Bif)
linearly independent strings. From these we ean construct a set ¥{l)consisting of
H'i} = 2BU) _ § PCsS's, as we bove slready seen. If we bave svaiisble another
set M{f) which contains at least (i) linearly independent sirings, we can map
N{i) by H{l) of them and use this mapping ss the basis set B¢} 4 1) for the pext
level. The matrix method disevssed in the last paragraph gives » means by which
the "~ mapping can be explicitly constrncted and a entoll yole coming from the
maxunum number of Enearly independent sivinge available. However (he actual
termination of the ssquence of lovels does not depend oa the origin of the rule.



This slgebraic structure can be started by assuming a th “level” with H{)) = 2
and Af(0) = 2 and the iterative rules

B(ty = Hi - 1); H(y =280 —5; Meny = My —1)?

The iteration stops when M(! — 1) < H{{ — 1). We are also intercsted in the
pumber of stsings in play at each level which is Cll) = E}_IH( 7). the result is
given in Table L.

Although we bave constructed a uaiverse of bit strings with maany diserimina-
tions going on st random, it may not b3 immediately apparent that this already
jmplios the existence of the hierarchical structure just described. However, John
Amson3!  has shown that the whole of the hierarchby strueture can be derived
using only the general framewark of group theory without ever mentioning the
mapping matrices. Further, Kilmister has shown that il we use a minimel repre-
sentation for the hierarchy, then any other representation, and the corresponding
mapping matrices, can be constructed. Since this is pol intuitively obvious, we
give the details of this previously unpublished work, updated and simplified in
presentation for the purposes of this paper, as Appendix I.3. Consequently, so
far as ovgauizing information in U goes, we can use any seheme which generates
the carrect cnrdinal pumbers. A specific algorithm for deing this in conjunction
with aur initial algorithm is presented a4 a Sow chart in Figure 2.and explicit cod-
ing provided in Appendix IV. It differs from earlier constructions in that it relic.
only on linear independen2e and discriminate closure, and mokes no explicit use
of mapping matrices. Nevertheless, the original matrix mapping scheme turns
out to be important when we make explicit contact with quantum numbers later
on. We give this more general spproach here because we have not yet been nble
to settle ob 3 upigue quantum number interpretation drawn {rom first principles,

Onte we have solved that problem the coding for CONSTRUCT LABELS will
be given & more precise forin,

The case for using the mapping matrices is in fact considerably stronger than
the appeal to application would indicate. As Kilmister points out®® : “...(8) if you
don’t mske linear operators correspond to DCsS, then why should we consider
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DCsS in particular - any subset would do. {b)Withont the matrix character of
the correspondence, there is no resscn to stop at level 4. {¢jThe matrix trick is
the only one I know in which the coding of a DCsS by a single element at the
next level is intrinsic to the element « 1 mean, given the bigh element, you don't
need a code-book to determine what subset it is representing.”

3.3 THE LABEL-ADDRESS SOHEMA

The important concejtual poipt to grasp at this stage of the construction
is that the steps we now take to bring out the fact that the universe generated
by our main program is already organized in a hizrarchica) fashion, whether we
make use of that fact or not Hence the coding we now develop is introduced
for our convenieace and in no wise sffects the evolution of U. In this sense it
is like the observation process in classical physics which postulates a strurture
and makes use of that model to extract information from nature, or to set up
experiments o obiain information which we did not previously possess. Where
our scheme differs is that the mode af access, althaugh for computer simuiation
it makes use of the ordering of the strings in U, will oaly provide us in the end
with structural information that does pot allow us to actually determine that
integer scquence. Thus we preserve the indistinguishability characteristics of the
bit strings, and are debared from reifying them - a philosophical mistake which
is all toa often made by those who still think that classical physics déseribes the
“real worid”.

The way in which we achieve this i3 to leave the universal memory untouched
and to construct arrays of pointers which tell us what strings in U correspond to
a particular representation of the hierarchy, without either extracting the specific
indic 23 from 1be machine, of the strings themselves. Thus we will in fact ead up
with a apecific representation of the hicrarchy inside the machine, but we will
have no way at this stage in the construction of knowing which of th.: very large
number of possible representations of the bierarchy we have in fact 1 chieved,

The flow chart for our program is given in Figure 2, and the explicit coding
for it, with the modifieatiuns needed to achieve concuriency, is given in Appendix
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[V. Ax can bu seen from Figure !, we enter this box esch time we generate a ncvel
string ¥ cither by discrimination or complementation, snd only at that point in
the sequeace. The first time through we assign s nointer to that string calling it
BV[1,1] the first basis vector, m == 1 for level # = 1 of the hierarchy. The general
notation for a basis vector will be Vi, m], € {I,2,3,4] and m € [1,.., B{l]]. We
bave already seen that B{l] = 2, B[2] = 3,B|3] = 7, B[4] = 127, so this will
be built into the fogic. Since = ur basic algorithm guarantees that any string
adjoined to U s ynique, the next time we enter the box S will differ, and we can
assign a pointer to it indicating that it is BV[r1,2].

It might seom logical at this point to immediately compute the discriminate
closure of the first level, whose basis is now complste, But this would get us
into trouble luter on. All we have assigned is s poinfer, not an explicit string.
Eoch time we go through TICK, the string itself will acquire a new (random}
bit at the growing end. However, this will not affect the bits which make B]1, 1)
and B|1,2] distinet. Heoce they will always serve as basis vectors for level one,
whatever their lepgth. This is the basic point which has to be understood about
our construction. We construct the basis vectors first, and only after the bases

for all four levels are complete do we attempt to construct their discriminate
closures.

We have already seen that, given avy linearly ipdependent set of n striogs
of the same length, we can form 2" — 1 DCs8's. Here by linear independence
we menn that by forming &ll possible “sums” (i.e discriminations) of the strings
taken 2, 3, up to x at = titne, we pever produce the string conlaining n zeros.
Thus for cach level separately it would seem thut we meed .17 test any new
string S which comes into the box for linear independence within the level or
which we are working, and go on to the next level when the basis at that level
is complete, that is when we have B{l] lineariy independent strings. However,
although our program guarantees that any string which comes into the box is not
already in U, it by no means guarantees {bat it is Yinearly independent of the basis
vectors which have been nssigned at lower levels, Thus onr test must run over all
levels, whether completed o not. It is this test whith gives to our construction
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its hicrarehical character, this is our replacement for the matri4 mapping con-
struction discussed in the last section. The ceding is straightforwarid, as ean be
seen by leoking at Appendix IV, It termioates when we bave 243474 127=130
linearly independent strings, organized as we go along into the four levels of the
combinalorial hierarchy., We emphasize again that, even though the length of
the actual strings in U contiones to grow [every time we go through TICK) the
pointer designation of each stting we have assigned to the incomplete basis aryay
is unchanged. Further, the lincar independence already achieved, sinee it comes
from the initial bits along the string, is not destroyed by the random bita which
TICK keeps adding at the growing ends.

ALl ihis point in the program we must make another deciston. We obviously
could at this point simply compute all the discriminate ¢losures of this basis and
complete the hierarchy. Any that were nol already in U could then be adjoined
to it. Bul this would constitute an interventicun, or gliteh, in the mein program
for which we see no physical justification, sod in fact na necessity. What we
choose ta do is simply to test whether in fact all the 217 + 136 strings which
complete the discriminate closurces are already in if or not. f they are, the
hierarchy iy complete, and we go on to start forming Inbeled ensembles. If they
are not, we simply let I} conlinue to grow until this kappens. Thus, once the
basis array is complete we have to continue to perform this mammoth calculation
of the discriminate closures until our goal is achieved. The way the logic is sel
up we have to do this each time a new string enters the box, which is bad
from the peoint of view of computer efficiency. It would be better 1o sct s flag
each tirme we go through TICK and only perforn, the mammoth calculation on
the first pass through the box after that has happened. But concepiually this
makes two intervention points rather than one in the main program. In practice
this doesn't matter, except for efficiency, but we use the first alternative as
conceplually cleaner. Clearly neither choice affects the actual structure of U,
which is basically all we require until we have a firmer grasp on how specific
quantum numbers are generated,
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Once tbe bierarchy is complete, that is not only the complete set of busis
vectors but also al) thelr discriminate closures, are sll in U we are ready o
construct labeled ensembles. We kbow in advance that the bit string length N
at this poirt will be at Jeast 130, aince otherwise we could not have found that
pumber of linesrly independent strings. Jf the matrix mappisg codstruction bas
a lundomentn) signiicance, we would anticipate that the actual length will be
258, but we will not (nvestigate that question here. All we need do is to record
the actual bit length at this point in the sequence, which we eall Np. This will
be the length of our labels from now on. We now set up Isbeled ensembles for all
the strings in U(NV, SU}. Esch time we enter the box with some new string § We
examine the 8rst Ay bits. IT the Inbel slready ocours, we assign a pointer which
tells us that 8 ia the next element in the cnsemble with that label. If the label bas
not showed up yet, we make § the firat strlng in 2 new ensemble with that Iabel,
Eventually it Ls elear that we will end up with 22 labeled ensembles. Therenficr
the number of mermbers in each entemble, and the length of the addresses in each
ensemble B == N — N, will continue to grow. This is sutomatic, so we need not
record the value of SU at the point where the labeling scheme is exhausted. Just
when this oceurs, and the sise of the ensembles for cach label when it occurs, is
8o inleresting statistieal question, which may ultimately have significance with
regard to Lhe cosmology Implied by our conatruetion. We leave this aside as a
question for future research,

One intersating aspect of our construction is that, in contrast to the matrix
mapping construction, the fact that we stop at four levels has become arbitrary.
Clearly we could hsve let our routine ruo loug enough so that we could get the
F = 2% — 1 4 130 Unearly independent basis vestors needed to construct five
levels, and the 3F ~138_1 voctars which form their discriminate closares. Or conld
we? 1t may be that the procedure keeps throwing up sirings in such & way that
we gever got thete. If 50, we would have an alternative to the matrix mapping
copstruction stop rule. We leave this interesting question for future research, We
also could stap st fewer than four levels. Such simplified universes might form
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wsefcl modeb for sumple phyvical siteations, with small enough dimensionality
so that an actusl simulation might be attempted in practice.

We now claim to bave shown explicitly that our simulath. 3 of # costains the
combinatorial hiersrchy, snd that the hierarchy ean be extracted from it. Furtber
the extraction has been done is such & way that only the eardinals of the levels
are known. We eaneot kaow within a 1ovel which are the basis strings aad which
the diseriminate closures, only that there are exactly B{l) lnearly independent
basis strings in each lovel, and H|i] vectors in esch completed level. Consequently
the appropriste indistinguishability properties are preserved by our simulstion.
This should make it elear that the information expreased by the combinstorial
hierarchy is implicit in aur ariginal consteuction. Hauling it out to ook st is an
aid to our thinking, not a necessary part of the conatruction. lu the next chapter
we will not even need the expliclt pumber of ensombles avallable {although the
construction specifies them], only the fact thut there are four classes of labels.



4. CONSTRUCTING SPACE TIME and PARTICLES

Since we nim at o fundamental theory, the manner in which we “break in"
to the system Lo define subsystems and the (shifting) “observer-participator”
boundnry con be chosen only once and must be chosen with care. The paradigm
we adupt is drawn from the practice of high energy particle physics where the
usual fupdamental data are discrete firings of counters separated by distances and
time intervals defined in the laboratory. Qur strategy is to identify in U(V, SU;
events as Aready defined which we can relate conceptually to the coordinates
ol conventional theories and the intervals between such events in on arbiteaey
latoratory coordinaie system. As shown in Ch. 2, once U is large enough we
can find in U cnsembles of strings which have the same first N bits, which we
will call the it Jabel, followed by many different sequences of 0's and I'y ealled
addresaes. Sinee N has now been fixed by the point when ST/ reached (four
level) hicrarchy clusure with Ny bits in the labels, from now on we talk about
U(N,SL) with N = N; + B. We now consider two strings 5y, Sp with labels
Ly, L Tollowed by B bits and define an event, as before, as the case when

Dy 8y 8 = Sy = Dy=51—5 (4.0.1}

with &7, 5y, 7S], Sz already in ¥ and the diserivdination produces an 53 which
is bath already in U and has an equal number of 0's and 1's. For this d'scussion we
will also assume that either one of the four labels or one of the four addresses has
ap tven number of bits; which of the eight possible choices satisfies the condition
is obviously irrelevant, since the rest follow. We could insure this by requiring our
culoff criterion on “completion of the hierarchy” to occur only when Ny, is even,
but for the time being we are allowing only the minimal pumber of interventions
in the main program. The simplest way 1o insure that both addreases and labels
bave an ¢veu number of bits iy obviously to require Ny to be even. But we
find it more interesting to leave the even-odd character of Ny open uatil we are
compelled to do otherwise. For simplicity in what [ollows we require the “equal
oumber of zeros and ones” eriterion to apply only to B, that is io the address part
of the sring Independent of this restriction of the definition of event we have
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already seen that an event defines, in the simulation memory of the computer,
two integers B = N — N and B + 1 the absolute string address longths of the
uhiverse defween which the event in question oceurs. As we bave seen, all that
bappens is that all five strings 5}, So, S3, Sy, =Ss, which by definition of event
sre 3lready in U are untouched, and the program trics again Lo generate navelty;
in ather wards nothing happena.

This “pon-intervention” has a aumber of consequences which we might as
well Tace right now Oume is that the “same” event may occur more than ooce
in the simulation {i.e. before the next TICK}, without “anythiog happening”.
From our point of view this is good; it climinates the basic source of the ip-
finities which occur in relativistic quantum feld theories basically because the
uncertalaty principle generates infinite energy at each space-lime point. For us
the virtual processes which generate these infinitics occur in a Democritean votd
which is not part of space-time. They are fnitc and unique; repetitions of the
same process simply do not occur in the sense that they do not change cur basic
U. A secsad consequence is that there may be a number of “distant, simultane-
ous” events. This this can, of course, happen in any Galilean frame in special
relativity, What sppears to be disturbiog from the point of view of special rel-
alivity is that our unique sequential definition of B implies a unique time frame
which would seem to single out a special class of Galilean frames, and heace
violate “the principle of speris! relativity”. Here we believe that we are on frm
experimental ground, and need pot, to quote Phipps,3 attemp. to cover our

“. . nokeduess with a fog of blather abaut ‘mind,’ which could just as well
be the ‘God’ whose sensorium provided Newton with such convenient cover in
ciicumstances of like embasrassment.”

Whkat khas changed since the time of Newlon, and more particularly since
Einsteit is that, thanks to the 2.7°K background rodiation, we bave an ez-
perimentally well defined coordinate system which defines both *“zero velocity”
nnd an absolute universal time scale. This might have pleased Newton, since
it strengthens bis case .m0 the “bucket experiment” for an absolute space, Of
course, since the background radiation is now believed to be understood an the
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basis of general relativity and particle physics, the background radiation is oot
usually considered sn embarrassment for special relativity. But the absolute
space for rotations looks somewbat embasrassing for general relativity in the
tight of the conceptual background of Mo -h’s principle, which played a critical
role i Einstein's ereation of the general theory. His position on this point was®!

“Ag you know the general theory is a field theory defined by differential
equations, and any such theory must be supplied with boundary conditions. In
the early days it was believed that the only solutions of the field equations far
from gravitating matter were believed to be the fiat space of special relativity, or
an overall cosmological curvature, the uniqueness of these boundary conditions
was believed to meet this problem. Since the discovery (Godel, Taub) of solutions
of the field equations with non.vanishing curvature everywhere in the shsence of
gravitaling matter, this argument from uniqueness no longer applies. In a sense
this is a violation of Mach's principle. But now that we have come to believe
that space is po less real thar matter, Mach's principle has lost its force.”

Therefore we find it eminently satisfactery, and a real accomplishment of our
theory, that we get both an ahaolste time frame, an absolute coordinate system
for veloeities, {thanks to our construction of special relativity below) :nd an
absolute space for rotations as a direct consequence of our algorithm. Of course,
this puts us under the obligetion, eventually, to nrove that our coordinate system
has bo experimental consequences {other than those of the order of magnitude of
the background radiation) in conflict with current demonstrations of relativistic
invariance in the laboratory. We believe our construction accomplishes this, but
the reader will bave to judge this himsell. We anticipate that, if we can get the
particle physics right, the background radiation will emarge in due course, but to
discuss that question further bere would take us beyond the scepe of this paper.

4.1 TUE CONSITRUCTION OF SPACE TIME VIA A RANDOM WALK MODEL

The basic modei by which we go from the bit string universe to space-time
was pioneered by Irving Stein!®  Our current approach departs considerably
from his, and has been adopted portly in response to detailed private criticism
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by Michael Peskin and Elibu Lubkin; we are much indebted to these physicists
for the time and care they have taken in trying to understand an approach that
is o far removed {rom the conventional continuum physics.

Siein's basic idea was to consider a random walk with a finite number of steps
of finite length A/me. In the conlext we have already established, this can be
represented by an ensemble of bit strings which are subsegments of sn ensemble
of address strings with the same label starting between ubiversal address string
lensths B and B+1 and ending between address string lengths B+b and B+8+1,
where we consider only the last b bits ic each string, Between B and B+ 1 we
assume (see below] thal there was an even! involving label L; and any other label
L;, and at B+ 6 8 second event involving label L; agaiv and any other Iabel L.
At this point we have to lack ahead to the interpretation we will ultimately give
relating our construction to our version of Feynman diagrams. The only concept
we need here is that in a basie event the label -L; which will accur, by our
rules, as one of the legs of to cvent involving L; is Lthe anliparticle to Ly, We
further assume that, once we have provided sequential time {which canaot be
done between TICKs, but oply in relation to a sequence of TICKSs, ns we will
explain in more detail below) that all legx in the basic reference diagram are
saceming, and that sn incoming sntiparticle u, following Feyoman, equivalent to
an outgoing particle. Then L; is both incomiog and outgoing in both events, and
the ensemble of bit length & which connects the two events earries this lahe] label
between the two events; Ly will eventually become a set of conserved quantum
numbers.

We now start ta introduce our basie interpretive paradigm by assuming that
macrogcapic laboratory events occuring in fiile space-lime volumes AzAyAz Al
will take place only when an event also oceurs in the bit string universe. Consider
io particular two cnunters separated by a macroscopic spacial interval S larger
than their non-overlapping spacial resolutions which fire in sequence with a time
interval T which is again larger than their time resolutions. Assuming (which
can be checked experimentally, with enough effort) that the conserved quontum
oumbers which are refated to the firing of the two counters correspond to some
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particle with those quantum pumbers. we can then define the velocity of the
particle between the two events as v=38/T. Correspondingly, in Lhe bit string

universe we can define the “velocity™ connecting these two events by
v =< NL-N > ANV NO) =< N =N > 10 {4.1.1)

where N1 and N are the pumber of 1's and O's respectively in an address string
in the ensemble and <> 15 the ensemble average. We can now take the pext
step and assume that the ensemble represents a biased random walk of & steps

with a probability
p=< NYu. b) > fb=(1/2)(1 + ) (4.12)

of taking a step in the positive velocity direction defined by our two counters and
a probability
g=< N%u, b} > fb ={1/2){1 - v) {4.1.3)
of taking a step in the negative direction. The velocity of the peak is given by
Eq. (4.1.1) and is obviously bounded by
1< v < 4! {4.1.4)
while the standard deviation from the peak is

alv.b) = (bpg)' /2 = (b/4) /31 — 3112 (4.0.5)

These relationships are exhibited groplically in Figere 3. Thus the random
walk model, specifed by the two parameters b, v is equivalent to an ensemble of

bit strings of iength b, or to a binomial distribution specified by the same two
parameters.

Stein's starting point was that the standard deviation of such a biased ran-
dum walk, or binomial distribution, is algebraically suggestive of the Lorentz
contraction. He then went on 1o relate this stardard devintion o a space co-
ordinate and derive the Lorentz transformations. Since he did not provide an
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operalional paradigm like ours, many people found his derivation hard to follow,
let alone accept it. We believe that his basic idea was correct, but have adopted

the alternative being developed here as, hopefully, more convineing.

Once we have taken the basic interpretive step of identifying the two counter
firings in the laboratory with two labeled events in the bil string universe con-
nerted by a random walk of b steps, a great deal follows. As already noted, the
parameier v cah never exreed +1 or be less than -1, We can therefore make cur
first dimensional statement in a physical sense by claiming that our interpretive
postulate introduces a limiting velocity for any connection between two events
which is uniquely and unambiguously defined. Clearly we eap identify it with the
limiting velocity ¢ of laboratory experience which, tc our knowledge, has never
been exceeded in any laboratory context where the scquential firing of counters
was well understood.

QOur next problem is that if we consider aff the address strings labeled by Ly
in this segment of our evolviag universe, there is 0o reason to expect that the
ensemble average will have any particular value; in fact the randomness of our
coastruction would seem Lo guarsutee that the most prabable value is zero! Thus
we have to make it part of our interpretation that there are in U subensembies
of the appropriate character {o support our eventusl! dynamical interpretation in
terms of physical scattering events. That we can select from U such ensembles
for any value of & and b we care to choose is easy to establish. The algorithm
which does this is easy to construct; the coding is given at the .»nd of Appendix
IV. Thrs pur universe cerlainly contains binomia) distributions, or random walks.
Qur problem is to construct s dynamics that tells us when they can be interpreted
as physical scatlering events. We have a Iot to do before this is justified, so the
readsr is urged to be patient.

Accepting the Brst part of our basie interpretive paradigm, we are in much
the same position as the kinemstic theoty of special relativity which does not
specify the nature of events but treats them ss given. Then, since our postulate
specifies & limiting velocity and the possibility of “ligut signals”, i.e. the address

strings [y correspooding to +c and 0y corresponding to —¢, we can cstablish
g3 Iy g P g
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the Lorepte transformatiops in & conventional way in 1+1 Minkowski space; by
taking a5 empirical the theee dimensions of space these are then extended to the
full Poincaré transfortnations in 3+1 Minkowski space. This was the point of
view adopted io our preliminary report on this researeh? . But we believe it
{patructive to attempt to fellow ipstead, so far as we can, our version of the Stein
derivation.

Although our definition gives an absolute significance to B, as has been dis-
eusad shove, the current practice of physies for most puyposes relies on relative
rathor than absolute ecoordiostes. To construet these we consider three con.
necled svents, the first of which, symbolized by [32], occurs when ¥ has scquired
bit length By for the addresses, involves L; and L2, and happens at a spacial
ooordinale which for the momest we eall £3;. We identily this position macro-
scopically with the firing of & counter in the laboratory {or an equivalent basic
event in nature) as already discussed. The second event {23] involves labels Lo
and L3, occuring at & universal bit length Bas == Bja + ba, is assigned coordinate
€23 w )2 + &2, The third event {31) involves lebel Ly and again label L;, com-
pleting the copuection to the first event; its coordinates are By; = Boa + by and
&1 = €21+ §3. The geometrical situation this defines is illustrated in Figure
4. Clearly we have defined a “iriangle” with sides labeled by ~L;, ~Lp, ~La and
spacinl coordipate intervals

el -8ali=8u-{nifa=L1-fn=6+6 {4.1.8)

where we have to use quotes op triangle because the vertices ore volumes and not
polats. Similarly the bit length intervals between the three eventa are

by um Byy — Big; by = By; — Bogiby = Ba1 — Bla=by + by {4.17)

Our intuitive picture is to think of L, L3, L as labeling three “objects”™
thot 1n some sense encounter one another in three connected scatiering events.
Eventually we will suceeed in coustructing from these objects (which we will find
that we have to thiok of a8 labeled ensembles rather than as individual strings)
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ensembles which deseribe “free particles®, and will discaver that the labels far
the sides of the triangle ~L;j, -Lg, —Lg can be thought of either as “antiparticles
movieg backward in time” or as “partittes moving forward in time®, For the
moment it is less conterintuitive to take the second view, briefly introduced above
io connection with the Feyuman rutes, and define their velocities in the ysual way
by

v = §1fd1;ve = Eafbaiva = &3 /b {4.1.8)
This is all familiar enough, except for the fuzzinesa of our vertices.

We now return to our space time construetion, coacentrating for the moment
on the connection between the two events [12) and [31] labeled by ~L; (cf. Fig.4).
We assume that this copnection is to be represented by a random walk of by steps,
The problem is to construct an ensemble labeled by =I; with the appropriate
statistical properties to give us a random walk characterized by the parameter
vy = &1 /b1 that heretofore has only been defined geometrically, The point of
view we adopt is that the basic program has run long enough so that there are an
enormous number of strings in U all 1abeled by ~L; when the address langth is
Bia. Consequently when their address length bas increased by &) bits, there wiil
be an enormous number of addresses in the enserable containing by random bits
sdded by TICK at the end of each string. Therefore, even if 5y Is & amall Integer
we can, by applying PICK to this ensemble 8 sufficient number of times and
lopping off theso 1ast by bits, construct st easemble with the ensemble average

v =< N = N9 > /iy {4.1.0)

vith v} as close as we like to any preassigned value. A specifle algorithm for doing
this is given in Appendix IV. Iu this way we can astually sonstruct » random
walk, characterized by the parameters by, vy and labeled by =L,. Following Stein,
we will call this easemole ax objecl. As in our coastruetion of the hietnrchy, we
claim that this info; mation s already contained in #f whether we extract it or not.
Clearly our universe contsips sn enormous number of objests, each characterized
by essentially any velocity we wish to consider between -1 apd +1.
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A more eritizal question than the existence of objects, which we believe we
bave now demnnstrated, is whether in fact event [12] occured at string length flj4
while “tzme 15 stending still” between TICK's and event [31] in faet vecured when
the sining leagth had inereased by & bits to B3y, Since Bpa and [J3; are both
unknown and ynknowable at this stage in the construction, the question is nut
whether any one event has happened or will happen, since clearly this vappens
many.many lime: in the evolution of the universe. We can start our consideration
with soine event of the elass we are considering as s reference point, and then ask
whethier the second connected event will occur alter only by steps in the random
walk. Tu this we can only give & statisticnl answer as follows.

Returning to Figure 4, we see that slthough the most probable “position”
for fading a member of the ensemble is at vb, we have a 5450 probability of
finding it anywhere within a{e, 8) = (/411 =712 of the peak. Since our whale
analysis is predicated on the assumption that the event [31] did in fect oceur,
we take account of this statistic?  uncertainty by defining the spacial coordinate
interval b) between the two cvents by

§1 = viby = 3{vy, by) = (81/4)/%1 — o)/ (4.1.10;

Note ( tin this dofinition we have becn eareful to use the geometrically defined
porameter vy == §], v rather thap the par_meter v used in the preliminary dis-
evsston, This a crit.cal step, which we cleim follows from our statistical analysis
of the situation we are attempting both to describe snd to understand. With this
definition of velocity and position understood, we have a similar defining equa-
tion for the eonnection between spacial inlerval, aumber of steps and velocity
conn=~cting the remsaining events.

4.2 THE RELATIONSHIP BETWEEN DIFFERENT COORDINAT S SYSTEMS

Up to now we have relied on the fact that there is 8 unique coorr inate systom,
given by our construelive algorithm for Y, in which the velocity nasociated with
the infermediate string in each event is, by defisition, zero. By associating each
ul the theee cannertions between each of ihe three events we are considering with

theer pacial intervals £, three Gaite bit string keagths b;, and three velocities
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v, = £/, 1 € [1.2,3] and by invoking the random walk medsl sz our hasic

interpretive device we have succeeded in arriving at the the three basic relations
0 _ 0y 012 22 .
€ = o8l = /0% (1 = Y [4.2.1}

where we have added to Lthe notation the superseript *07 to remind us that
su far this relationship is justified only in g paiticalar (umiversal and defining)

coordinate system.

Our next crilival step is 1o relate the thiee eveats, and more signibeantly the
intervals between them, to deseniptions in different coordinate systems. Consider
first the description of the situation in which we wish to assign to object 1 a
zoro veloeity. This could hapoen to be the caze alteady for some class of three
connected events of the type events of the type we are considering. In that case
the spacial interval our rule requires us Lo assign o the connection between (12}
and [31] is o(0,8%) = (63)'/%.

Tha thoughtful reader may already have wondered why in cur basic definition
we took the position of the event ta be & stendard deviation beyond the pesk
of the distribution rather than on the near side. The apswer is that in the case
of zero velacity, this would specily a negative direction for the random walk
excursivn, which wcald not make sense when we are talking shout zero veloeity
with no teference sense for + or - direetivn. When we are through, only relative
and not ~bsolute direczion will survive for the small {in this case 3) event numbers
we ate now considering. The same wilt happen with titnc, lo spite of our unique
{complexity increasing) “time’s arrow” sequentisl charactsr for the bit string
uciverse &s a whole. But this is getting shead ol our story.

Having recogpized tkis implication for the constructions/delnitions already
established, we are pow in 2 position to explsin what we mean by coordinates
in a “coordinate system” in which object 1 is *at rest”. Referred to the basic
coordinales in which it took 8 steps, it will have wandered a distance

€ == al0,8) = (83/0"* = (&) - /1 - ()2 (422)

where we have made za obvious algebraic use of Eq. (4.2.1).
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Whether the non-conventional route by which we have obtained the Lorentz
contraction, and the first half of the Lorentz transformations in 1+1 Minkowski
space is in fact a “derivation”, as we are inclined to believe, or a *definition” is
s question which the reader will have to decide for himsell. In any ¢ase these
were the critical steps for what follows. We have included the derivation since it
follows in a “straightforward” {which as usual in the jargon means after many
recursive ilerations and much sgony) way from cur bit string universe. More
significantly, az was already foreseen by Steiu, the same random walk model will
allow us to get s new insight into the foundations of quantum mechanics. But
this is yel to come. What is important to realize at this point is that once we
have achieved the result, the precise statistical formula by whieh it was achieved
drops out; for instance, it would nol matter if we had used probable error rather
than standard deviation. What ia critieal is the proportionality between the
statistical uncertainty and [1 — v?]'/2. The general 1. itures of Stein's insight
are therefore, from our point of view, (a) that any random walk bas a built in
limiting velocity, which by some route is more or less guaranteed to end up in
special relativity, and (b) that the narrowing of the peak in & dsused random walk
as it approaches the limiting velocity has the same algebraic form as the Lorentz
contraction factor. Therefore we are convinced that these general features will

survive in any successful attempt to put constructive physics on a digital basis
whether or nat the readet Giads our pasticalar route convineing.

But we have more work 1o du before we can arrive at the Lorentz trapsforma-
tivns for the basic triangle which we wish 1o relate to laboratory coordinates. For
the quantitics already under consideration, we adopt the notation €l b}, u}. We
have sven that according to internal reference to the events [12] and [31] object 1
wanders by an amount £. But this wandering is not a laboratory phenomenon.
If we wish to take ohject 1 with zero laboratory velocity as the reference system,
and take event [12] as the origin of coordinates, then we must have that =0

and hence that v} == £] /bl = 0. But because of cur initial argument, we insist
that we can also take

€ =160 ~ eI/t - ]/ (42.3)
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which is consistent since it does insure that £} = 0 thanks to our initial assump-
tion that v = £}/8%.

This still Jeaves the quantity 4] in this new coordinate system undefined.
Here we must return to the fact that we are “bresking iu® to the system at
e stage where the universe has been evolving for a long time, and recognize
that whatever the actual content of the memory in the simulation, we have no
Lnmediate way in the laboratory to access the “universal time” B. We are allowed
to make use of the structural jnformation which comes icom the Fact tha' events
oceyr, and that in some coordinate system the intermediate states have zero
velocity. As we have seen, by invoking the random walk mode] this allows us
to construct the first balfl of the Lorentz transformation for spacial coordinates.
At this point we must recognize that our choice of the 1 bits as representing
steps in the + direction was arbitrary: we could just as well have chosea the 0
bits, since this would not slter our fundamenta) assumption of zero velocity for
the intermediate strings in the events. More thap that, since we cannot access
the bit string universe directly, our formalism must not ouly be indifferent to
the algebraic sign of velocities, but must not allow us at this stage to determnine
apything other than relative velocitics. We recognize this fact by asserting that
our description of the interval between the two events [12) and [31] has 1o be able
to be constructed starting from the coordinate system in which object 1 is at rest,
and constructing a random walk which will connect this system to the one in
which we started where object 1 had velocity v‘l‘. Since, a3 we have already seen,
the universe has a suTiciently large aumber of appropriotely labeled ensembles so
that we can construct a binomial distribution, or random walk, for any choice of
the parameters v, b we can clearly construct the enscmbles we need. Buot if we are
to delete any reference to the absolute universal coordinate system, the nugber
of steps b} must be defined in a pew way, as already noted. We choose Lo do this
by noting that the relation between the two coordinate sy. Jems now must have
the relative velocity —u? rather than +v‘1’, a familiar requirement. Conscquently,
we claim, that by applying the same apalysis us before, we can define b} by

€0 = (¢} + ole)/1 — WYHV? (4.2.4)
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This s the last critical stop we require for establishing the space-1ime kinematics
of special relativity as a consequence, or more modestly as consistent with, our bit
string, universe, sinee we now have the connection belween intervals and relative

velority  Furthoer, it now foliows algebraically that
o = (o] + 0 )/[1 - ()P (4.2.5)
and that

B} = (8 - eI~ (o)) /2 (42.6)

completing our derivation of the Lorentz transformation.

So ar it seems that we made little use of objects 2 and 3, but in fact they
provided the eritical zero veloecity intermediate states that got us off the ground.
Clearly we can now go on and derive the Lorentz transformations reflercing to

their velocities.

One further point deserves mention. Since, as already noted, the algebraic
sign of our velocities bas now only a relative significance, we have nol only lost
ray reference to “untversal time” but also 1o the the unique evaluliopary sonse
of time in the underlying mcdel. Hence, we can treat our “time paramelers” b as
negative or pusitive without affecting the formalism we have established. Relative
time sense can be established for events connected by macroscopic intervals, but
(as is appropriate in kinematic special relativity) the absolute time sense has
been lost. Thus, at this stage, we claim to have demonstrated “time reversal
invariance” for this piece of the formalism. At a later stage, when we have
developed quantsm mechanics, we will recover time irreversability, Our point of

36 js that the “time irreversability™ which loads 1o

view, with which Lee concurs,
the secotd law of thermodynamics is correctly identified with the irreversibiiity
of quantum mechanies, as we have discussed lang ago®. In this respect we are
eisentially on the same footing as conventional theories. Further, when we come
Lo camtialogy, the universal time sense is ready (1 band, without having Lo go to

general relativity. We believe this to be a strength of our approach.
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Since we have already insured that the trizngle connecting the thiee evepts
Jioses and our random walk derivation insures thatl no velocities can exceed
one, we trust that it is obvious we have now derived he full geometry of 1+1
Minkowski space in the limit of such a large number of steps that b can be treated
as a continuous variable. But the underlying integral character of the steps will

become critical lor us in the next section.

To proceed from the 1+1 Minkowski space which we have now construeted
to 241 and 3+1 space is straightforward. We first consider, as in Figure 5,
appropriate line intersections with velocities along the lines for which we :ap
construct appropriate velacily ensembles and make the rppropriate transforma-
tions for 2+1 space. It hardly seems necessary to spell out the algebra hiere.
The trapsformations we have nlready established suffice to define the invariant
intervals

af = (&) - (vib])? (4.27)

not only for j referring to any of the three particles or the coordinate system
0 with which we started but for any coordinate system in which object i has
any arbitrary velocity v bounded by +1 with respect to the coordinale system in
which abject § has zero velocity. The fact that we have defined our connected
events in such a way that the triangle (now in 241 space) closes allows us to prove
algebraieally that the coordinale perpendicular to the direction of the velority
transformation must be unaltered. Of course now the random walk ensembles
must be constr ieted in suceh a voay that the addresses for cach label contain ture
sabensembles referring to the vector velacity components, but the constructicn

is obviour and will not be spelled out here.

To go on to 3+1 space is equally straightforward, using the paradigin given
i Figure 6. Obviously we mu:l now vse three subensembles with the same label
to refer to the three vector components, but that is a detail. There is only one
subtlety, namely that we have to stop with 341 space! The reason is that s far
all the labels within a particular level sre indistiiguishables. Hence we are only

allowed four distinct lines at this stag- in the copstruction. When we go op in



the nevt seclion to assign parameters {in fact masses) which distinguish different
Iabels, we can go on to construct multidimensional configuration spaces. But our
basic space of description remains 3+1.

We note also that since our lines and intersections sre necessarily always
labeled, the space can immediately acquire chiral properties once we have any woy
of generating interactions. Again this should be obvious from Figure 8, where the
fact that the vertices carry dist’net labels required us to draw two figures rather
than one. In structural chemistty they would be referred o as stercorsomers. If,
as in classical chemistry, the basic interactions (electromagnetic) are non-chiral,
the energy levels of the two isomers are identicsl, and the chiral properties can
only show up in dynamical interactions where the maerascopic geometry defines
the chirality But if our hit strings lobels turn out to have chiral properties {(aud
they had better when we come to “weak interactions™) we see that the fact that
our space i delined in terms of labefed events rather than in terms of an achiral
Lackgrovnd will make “parily non-conservation”™ a natural consequence of the
cabstru:tion. We find it pleasant that this pessibility emerges so early in the
constriclion.

Ty» summarize what we cisim to have shown, we start from our basijc bit string
uLiserse, sabdivided into growing ensembles labeled by the levels of the combina-
torial bierarchy, and show that from these we can always construct subensemblos
corresponding to a random walk wit), a specified velocity bounded by = universal
limiting velority. By assuming that this random walk represents on objeet whose
caordinates are defined by th:ee appropriately chosen events, we then show (hat
this allows us to describe the relationship between the coordinates of the objects
eagaging in the events with specified relative veloeilies and derive the 1 orentz
transformations. Here we yse the contraction factor of the biased randocs vealks
and the fact that our definition of velneity necessarily implies a universal limit-
ing velocity. The iransformations are glgeb, aically identical to the usual Lorentz
transformation, except that the derivation requires the “time™ coordinates to be
integers. We then show that this suffices to construct the full geometry of 1+1,
2+1, and 3+1 Minkowski space, and that our hasic space of deseription muct.
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stop there. We leave it up to the reader ns to whether we have “derived” sroe
time from our bit string universe, or defined it startipg lrem that basis. What
we dou claim is tha! owr procedure iz sell-consistent, and provides an aderuate
basis for what Tollows,

4,3 CONSTRYC 10N OF MOMENTUM SPACE

Our next problem is to g0 from tho mathematical ecordinates we have sue-
ceeded in constructing to dimensional coordinates that can be used for the pus-
poses of physics. Since we have a upiversal limiting velocity, so far simply unity,
we obviously equate this o ¢, the limiting velocity of special relativity. Since
we have & random walk mcdel the obvicus way to make this dimensional is to
associate with each label some jnvariant step leagth &y. This will be justibed if
we ean connect the labels by some specified procedure to laboratoty cvents. For
that purpose it is more convenient to use the concept of mass 09 the identifier
of objects. We then ean introduce a second universal corstant A and congnect
this to step length by taking lo = A/me. Clearly we can identily this with the
step length in the coordinate system in which the objeet carrying this label, step
length, and now masg, is at rest. But chen the Logentz transformalion properties
we have already established require that in a coordinate system with velocity
v, the step length be Lorentz contracted, ie. that { = fg|l - v*]1/2. This in
ture allows as o define a second coordinate system dependent quantity £ =
me2 /|1 —v?| Y2, This is then rolated to the step length in any coordinat- system
by

! = he/E (4.3.1)

Thus, when we hove done a lot mare wozk, we will find that cur discrete step
iength is the basic Einstein-deBroglie quantization candition connecting energy
to phase wave length or (lor light) frequency.

Se far thiy step is purely delinitional nod only on dimensional grounds are we
justified in colling I “energy™, or for that motter calling m “mass”. However, if
we take the second step of defining g = m ¥ /|1 —~v2|Y/2, where U has the spacial
significance nlready established, these definitions and our Loruntz invariance yield
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immediately ¢Le invariant reiation
E2 — g2 = mPc (43.2)

We now have constructed the usual Lorestz invatiant coordinate deseription of
& momentum space for free particlus.

It is at this point that we “break in” to *he system of description by provid-
ing a basic delinition of 8 new process in U wbirh cap be associated with those
bappenings which initiate the chain of happenings that lead in the Jaboratory to
the firing of a counter. For this purpose we need to connect our mass parame-
ters U each other in such a way that they can be measured in the usual sense.
Mach reulized long age that Newton's Third Law, or momeatum conservation,
is the critical component in the observational definition of mass ratios. As he
showed, this allows us to deline these ratios relative to some standard reference
mass and that this works because empirically mass ratios so defined are {within
experimontal error) scalars and independent of the order in which they are mea-
sured. This remains true in speeial relativity if we take eore to use the definition
of momentum we have introduced above. Whal we need is a process in our bit
string universe that can be identified with 2 momentum conserving collision. The
feature of such a collision that we pick is that in 4 system in which the vector
sum momentum of the the two particles is initially zero, the intermediate state
formed by the collision has zcro velocity. Since we bave in effect a particular
coordinale system available to us from the construction (with cosmological in-
terpretations already mentioned) end our definition of event in that coordinate
system duvs bave zeroe velocity for the intermediote states S5 becanse the ad-
dresns part of string 53 hes ar equa) number of zeros and ones, we have already
accomplished this.

As a motter of fact, if we relurn to our hasic definition Eq. [4.0.1) and
refor Lo Fig. 4 we seem to have done too much. Each object which enters our
paradigiatic triangle leaves with jts velocity unaltered, il we assume, as w s done
above in guing from the specific situation to the general Lorentz transforn ations,
that we keep op vanstructing ensembles with the same velocity parameter _= the
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bit length b increases. We have “momentum conservation” all right, because our
events as deflined up to now do not lead to scatteting; they are simply “crossings”.
What we have at this point is simply the cotrect relativistic kinematics for a
system of “free particles”.

The situation can be rectified as follows. We eater the main program by
inserting a Hag which tells us what labels are involved in eveats follewing soma
particular TICK and before the next TICK occurs. We allow the universe to run
for b TICKS, ard then cntet the program again looking for any two labels (which
occured the first time in two different events}, and then keep looking for an event
in which either of theye two labels oceur. This may not happen before the next
TICK, in which case we keep on looking between each subsequent pair of TICKe
until it does, snd record the bit length b, counting from the TICK when the first
two events occured. We now can form a veetor velocily ensemble for each of the
two labels which meets the criterion

m By /1t — ()Y e mg B /)L = (w12 =0 (4.3.3)

Clearly this defines the initial logs for a momentuin conserving collivion. In
the same way we can [ollow the two labels after the collision and look for two
subsequent events, and construct ensembles for the tizal state legs which again
conserve momentum. Io this way we demonstrate that our universe does itideed
contain not only crossing eves 3, bul momentum conserving clementary seatter-
ing events. To caleuiate the probabilities for such seatterings will take a lot more
work. We content ourselfl i this chapter with baving, we believe, demonstrated
that our bit string uaiverse hos been shown to contain the usual kinematies of
conventional relativistic particle mechanics, in spite of its digital basis. Since
we already have the correct Loreniz transformation propertics for velocities -
a concept defined in both coordinate and momentum space- we trust it is now
obvious that our clementary scatteting events will conserve momentum in any
coordinate system, and have the needed praperties for connecting up to laborn.
tory scattering events. But we have to do a lot more work before this can be
made convincing.




We now claim that we have shown our basic random walk model to lead to the
usual relativistic kinematies of free particies and momentwin-energy conserving
“poiat” collisions — points in the sense that we c2n assume all magnitudes we
geed consider lasge compared to the inverse number of steps 1/b. In fact we now
have a Tormal way of taking that limil simply by letting our universal constent
h — 0. We emphasize that this approximation is just that ané nothing else. It
wxpl>ios for us why physics was able (o get s far using continvum models, but
it does nol mean that, even conceptually, our space time is the continuum space
time of special relativity, ©Ours is o space of discrole events with diserete rondom
walks in between, a point which has slso been emphasized by Stein. Hence we
do not bave a “correspondence principle” in Bobr's sense, In fact, we claim that,
conteary Lo his besic assumption, we bave shown that it is passible to construct
physics without assuming a continuum spece-time background. Parker-Rhodes
bas a different, but conceptually similar, way to achieve the same result.' In this
spproximation we can uge rods and clocks in the laboratory to connect up the
firing of counters to particulsr sources of particles, measure mass ratios, cross
scetions, and so ob. Thus at this point wa have the kinematie basis or a classical
relativistic partiele physics conpected to laboratory practice. This theory is, of
course “seale invariant” vecouse of our approximation that the step Jength is zero.
To go on o the quantum theory we must obviously retain the discrete aspect of
our bit string universe and not throw it eway in this fashion. We have done so
here anly to establish contaet with masreseopie experience. In the next chapter
wae will show that the underlying discreteness also has macrostopic consequences
in agrecment with experlence,
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5. CONSTRUCTING QUANTUM PARTICLES and SCATTERING THEORY

It we hal a way of “reaching into” the universe and identilying the precise
wmtegers between which av event ovcuss and then counting thesteps in the random
walk to the next event, the "objects” constructed in the Inst chapter could esrve as
our basic particulate description. But these events ocenr st the sub-microscopic
level which our hends and eyes can never reach. The closest way thst has been
fouad so far to approximate what we sre looking for is to construct a “counter™
of mecroscopic dimension Az and time resolution 4f which will “ire” when an
event of specified type (learned from experience, and theoretical analysis) occurs
somewhere within this space-time volume, The connter is consiructed so that the
initial event leads to & chain of eveats (usually some sort of ion sascade) which
magnifies the efflect of the initisl happening to the point where it can make &
macroscopic record - an audible click, a bit on magnetic tape, s developable
grain in 8 photographic emulsion,... Out problem ia to relste this macroscopic
resull Lo the underlying bit string universe.

The counter technology just deseribed is already enough to accomplish a
great deal. In the approximation in which the space-time volume of the counter
can be considered to be & “puint”, we bave already seen that we have the full
particle kinematies of special relstivity. By finding (eg. radiosctive) sources
of particles in nature, or constructing them using vacuum and eleciromagnetic
technology (aceelerators), we can give s laboratory definition of o souree of partl-
cles as anything which fires a counter, We can discover *abeorbere™ which when
interposed between sourec and counter kecp the counter from firing. Using these
we can conetruct s sequenice of slits or holes whick deflne a beam af particles.
Using counters in the besm, we can measure their velocity, ur velocity disteibu-
tion, and calculate the experimental uneertainty in these quantities arising trom
the finite sice and time resolution of the counters. Since this procedure has been
discussed elsewbere® , we refer the reader to that publication foe detsils, Given
collimated beams of pasticles, we can get up two in-two cut elastic scattering
experiments and measure mass ratioe pelative to ary particle chosen us s stan-
dard using relativistic energy-momentum conservation. From this we can go o



to study more ¢ mplicated situations in which novel types of particles are pro-
duced in the interaction.3® This suffices coneeptually for understanding much of
the erperimental practice of high energy particle physics. We see that this type
of measurement is essentially classical, once we have Jearned {rom Einstein that
particles can be created out of energy. That fact ilsell can be understood thanks
to Wick’s profound anslysis®® of Yukawa's meson theory,i? as an inescspable
semiquantitative consequence of the ¢coupling of relativity to quantum mechanics.
But this still does not suffice for us 1o construct a seattering theory for quantum
particles.

5.1 “IFueg PARTICLE™ BASIS STATES

Ruturning to the bit string universe, all we have so far is that when two coun-
ters separated by a macroscopic space and time interval larger than the volumes
and time resolutions of the counters have fired, some random walk coppecting
those twa volumes has occured. But we do oot know within those macroscopic
volumes where this random walk started and ended. To meet this problem, we
construcl ab ensemble of objects (which are themselves ensembles) all character-
ized by the same veclor velocity ¥ and the same label {or mass) chosen in such
a8 way that, afier k steps, each of length | = (h/mc)[] — (0/6)2]”2, the peak of
the random wall distribution will bave moved a distance { in the direction of ¥.
We take as our unit ~f time the time to take one step, ét = I/c. It is important
here to realize nat we are debarred from using any other definition. Our steps
are dig'tized, and we have no way ag yet of assigning meaniong to fractions of o
step. We do have s clear unuorstanding of what we mean by a sequenee of steps,
which justifies our use of them as speci{ying a “time sequence”, even though we
do not earry with that many of the customary concommitents of the concept
of “Lime”. Once *“time" is understood in this digital sense, the velocity of the
peak of each subensemble in this coberent ensemble has & velocity ¢/k. We call
this coheren! ensemble of ensembles a free particle of mase m, velocity ¥, and
momentum p==mi f[1 - (v}c)gllﬁ. We assume that the size of the counter Az
in this direction and in the plane perpendicular to this direction is so large that
we ean ignore end elfects; we return to these below.
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There is a second “velocity™ associated with this ensemble of ensembles,
pamely that with which something moves at each step always in the direction ©.
We call this vpy: clearly vy, = ke, and vogp = ¢2. Assuciated with each of the
two velociaes 5nd the label (or mass) there is a characteristic length

Nh =1 = he/E;X = Kl = h/p (5.1.1)

Our next step is v show that these cokerent ensembles of ensembles, which we
can clearly construct slgorithmically from cur bit string universe by extending
procedures already developed, bas experimental consequences that can be 2xem-
plified in the laboratory.

5.2 THE DOUBLE SLiT PARADIGM

We now consider cur coherent ensemble of ensembles specified by ¥ and m in-
cident on a “screen” perpendicular to © made of absorbers containing two holes
{or slits io the two dimensional approrimation in which the distances perpen-
dicular to the line between the holes and to ¥ are so large as not to produce
appreciable end affects) a distance d apart. This geometry is illustrated in Fig
ure 7. This is all well and good iu the laboratory where we bave establivhed the
meaning of absorbers. In the bit string universe the absorbers can be thought of
as containing so many events that their consequences are so dilfuse as not to affect
the progress of the experiment. Our coherent ensemble will pass through these
two holes dividiny into two subensembles without oosing its coherent properties.

This is our answer 1o the old guestion of “which slit” the “particle” goes
through. So loog as the coherence is not destroyed, it goes through both slits.
This is possible for as because our “particle” is a coherent ensemble of ensembles
of indistinguishables, and not a single entity. But if there is a counter in the slit
and a scattering occurs, the coberence is destroyed; in that case we know that the
particle went through that slit. More detailed analysis reveals that this class of
events will lead to a single slit iuterference pattera. Thus we are led to the same
conclusion as the wave theory when it is analyzed in this way®' even though we
bave used a digital basis.
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At some large distance D behind the screen we set np a eounter array in a
plane perpendicular to . We further assume that the source is a distance §
on the other side of ;he array, .nd 13 equipped vith a counter which fires when
the particle leaves the source. Calling the time interval between when source
and detector fire 7. the relocity between source and detector is v = (D + §)/T.
By mrking D and § large enough, and assuming that the source bas a velocity
sprcirum which includes -, we csn select in this way particles whose v is as
precisely known as wo like 7. This step is necessary to insure that all elements in
the coberent enserbl= we consider have the same v to requisite precision. Only
such pairs of events will provide data for the experiment.

It is imporiant to reslize that our precision is now no longer limited in prin.
ciple by the finite resolution AzAt of the counters. All we need to do is make
the experimental setup long enough. 1t is this fact that makes the concept of
velocity rather than space-time fundamental for a quantitative development of
seattering theory, as was reslized long ago by the S-matrix theorists. We have
also seer 1hat, once our bjt string universe conlains & large enough number af
labeled ensembles, we can also construct the appropriate binomial distributions
describing any value of velocity to arbitrary precision. So we are making contact
at the appropriate point. But the random walks still enter into the picture when
we now go o0 to find cut where we are most likely to have the detectors fire
in the counter array a3 o {unction of the distance x awsy from lhe center line.
Because of the coberence properties we have built in to our definition of “free
particle”, this will be most probable when the two path lengths to the detector
are an integral number of coherence lengihs ) apart, since this is the only place
where all the peaks of the distribution line up. At any other geometrical con-
figuration, some of the disttibutions will have lower probability amplitude, and
the accurance of the event will be less likely. Hence our bit string vniverse nnd
definition of free particle prediet that we will find maxima in the distribution in

z characterized by an integer n (counting away from the center line) which occur
8t positions z, given by(-f. Fig.7)

ax =x,4/D {5.1.2)
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We pow claim to have shown that our bit string universe contains something
related to “deBroglie wave interferenes”, and that by defining velotities and
counting meximea under appropriate citcumstances, we can measure A, which we
are now justified in identifying with Planck's constant. We have also derived the
deBroglie wave length and the relstivistic phase wave length he introduced (Eq.
5.1.1). Hence in the limit of negligible masq, we bave the basic Einstein-Planck
quantization condition £ = he/) as well. The fact that energy is quantized is
thus, for us, a direct conzequence of our digitized step length.

It is important to realize that our theory is still, in principle, “scale invari-
ant” because all we we have defined are mass ratios taken from experiment. If
there were in nature stable elementary particles with arbitrarily large masses, we
could with sufficient ingenuity find a way to measure arbitearily short distances.
In fact, all we know how to do is to give elementary particles like the electron and
proton very large: epergies. Bul when we try to use these as probes, what we end
up doing is to create more particles by the Wick-Yukaws mechanism, wbich §rus-
trates any direcl space-time description of the internal structure of “elementary
particles”. What is usually done is to assume that the second quantized theory
of the matter field, which uses Lagrangian densities defined {mathematically) in
terms of a coptinuum space-time, can meet this problem, But a3 was pointed out
:~ng ago by Bohr and Rosenfeld,*! the second quantization of the matter field
conned be given an operational definitiop, moking this whole conceptual frame-
work suspect. Current research by quantum field theorists attempts to meet the
problem by trying to calenlate the quantized mass values found in natvre from
the neniipearity of their fundamental theory, but we believe it is fair to say that
this program has not yet succeeded. We will see in the next chapter an slterna-
tive way to get one stable mass ratio, and the absolute mass seale of our theory,
from digital considerations. But before we do that it will be useful to show that
our theory can be extended from free particles to a quantum scaltering theory,
and appraximates free field theory in an appropriate continuum limit.

5.3 “PHOTONS"; WAVE MECHANICS

Now that we have seen that we can construct from our bit string uwnivesss
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basis states with the ipternal periodicities (but not yit the “continuum™ wave
strucinre) of the conventional relptivistie deBroglie theory for free particles and
asymptotic energy-momesnturn conservation, our pext problem s to find oar hew
the underlying statistical bit string structure leads to scattering. Although we
could proceed to construct our scattering theory directly in an algebraic fash-
jon,we choose to first set up the conventional wave theory limit in order to un-
derstand in a more familisr eontext the algebraic rules we invoke in momentum
space. To de this we must return to the bit string universe and explore in more
detail (he connection between lakel aad address which we have already buiit into
the theory,

For the nyrposes of our preliminary discussion it will suffice to use only the
simplest possible labels, those corresponding to Jevel 1 of the bierarchy. These,
as we have already seen, are (10), (01), and (11); they close under discriminaticn.
Up to now we have concentrated on two in-two ouc events, which occur between
TICKs, but il we return to the basic flow chart (Fig.1), we see that there are
two other types of pro.cus going on between TICKs, namely discrimination and
complemontation. Discrimination between two stripgs gives us a third string
which, if it is not already in the universe, is added to it. If that string is already
present, and the complement of either of the initial strings chosen by PICK is
not already present in the universe, that complemerted string is ndded to the
universe. If all five are present, we hove what has been called an event and again
the universe does not go TICK. T us, 50 far a3 the labels we are now considering

g0, there are gix cases illustrated in Figure 8. These occur between TICKs with
equal a priori probability,

If we now 1hipk of the label a3 referring 10 B dichotomo.us quantum pumber
such as charge, we can, for inztanes, think of the ensembles of ensembles labeled
by (10} a» a particle of positive charge, labeled by (01) as an andiparticie of
negative charge, and labeled by (11) as a quantum which exteraally will appear
to be neutral but internally contains the tharges of a partiele-antipartiele pair.
This interpretation i reminiscent of the Fermi-Yang model for the pion.2 For

the eveats, since in the universal coordinate system the intermediate state will,
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by definition, have zero velocity, and the complemented sirings reversed velocity,
these are a primitive version of four leg Feyniman dingrams with al) particles
incoming or all outgoing. But since the extereal time sense has to be esteblisbed
by linking these up to other events, as we have already seen in our construction
of “space-time”, we slso have the usual Feynman rule that an antiparticle moving
“backward in time” is equivalent to a particle moving “forward in time”. In the
conventional theory, thia is derived from the CPT theorem. Here we elaim to
derive this basie theorsm from our fundamental definition of event.

Of course there is a lot mare to the CPT theorem than this primitive example.
In particular, the reversal of velocity direction must not reverse the helicities
for spin 1/2 particles. If we treat a second dichotomous pair of bits in the
Jabe] as referring to the helicity state this will follow in due course, (¢f. below).
Furth« again as we can see from Lhe canstructions in the previous chapter, these
basic processes are momentum conserving. A little thought should convince the
reader that the complementation rules will also allow us to guarantes momentum
conservation at the vertices, and that in both cases this will continue to be true
in any coordinate system. Thuys we have the basic ingredients for 4 momentum
spave scattering theory. The remasiging problem is to construct a dynamical
theory by connecting up basic events ond vertices in such a way that we can
actually calculate scattering amplitudes for physically observable processes and
compare the predictions with experiment.

The simplest case we ¢an consider i one in which all the stops in the address
are taken in the same direction, that is the address strings are all 1's or all
0's. M is clear in this case that the randem walk has no dispersion and that
our ohjects [or particles) will all move with &e, a fact already noled by Stein.
Thanks o our identification of the step lentth { = hc/E we clearly have no
trouble in taking the zero mass limit, which is required for consistency with
our relativistic kinematics. Whether our tbeory will actualiy predict that the
Inbels associnted with such particles have precisely : «ro mass, is too early io the
cousiruction to speculate abowt. Fortunately our theory will not be iu conflict
with experient if the photon turns out*? to bave a mass mq ~ mee~ 1% or



if some o1 ol of the peutrinos have small finite masses, for which there is some
controversial experimens.l evidence. In that case, the present discussion refers to
sn spproximate (and convenient) model, and is not fondamental. We hope this
will become clearer x5 we go on.

For massless particles it will be simpleit to think of our dichotomous variable
as helieily and for the simple case at hand to assume that in dimensional units it
will have magnitude hf4x. To justify this aumerieal value will take a lot of work,
as will the demonstration that it is 8 psendovector (i.e. has the transformation
propertics of an angular momentum). For the moment all we require is the
dichotomous character. Then the label (10) with the address (1111...1) can be
thought of as a neutrino with positive helicity and (01} with the address (1111...1}
as referring to a neutrino with negative helicity. Then the reflection operation
which takes {1111..1) t> {£290...0) will indeed reverse the vector direciion without
reversing (.e helicity, showicT that our “helicity” is indeed a pseudovector. It
is important to realize that we can define pse: - ~vectors in this way Sefween
TICKs because our definition of the direction of velocity is defined directly in
terms of bit strings. However, to define time reversal we would require a sequence
involving at least three ticks, and to get time irreversability many more than that.
Onte this is understood the Feynmsn rules we heve already derived work in the
conventional way. We conclude that if we start with only one type of neutrino, the
antineutrino has opposite helicity and we get the usual two component theory
in which peutrino and antineutrino have oppasite chirality. Thus we do have
the chirnl properties we noted in the last ehapler as implicit in our method for
copstructing space-time.

As is well known, Beutrinos have no classical analog, so will not directly serve

our purpase of constructing the photon. In our notation the four possible two
component neutrino states are

vg, = (01){11iL...1): left handed neutrino,+¢
vy, = {10){0000...0): left handed neutrino,-c¢
&g = (10){1111...1): right handed anti-neutrinu,+c
pR = (01)(0000...0): right banded anti-peutrino,-c
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According to our Feynman rules the antiparticle to a left handed peuatrino
is right handed, and the neutrav’y of the neutrino does not allow us the otter
possibility in this notation, which we will see in the next ehapter will require us
to assign additional slots for the helivity quantum numbers of charged particles.
Or course our choice of the particle as left-handed is made to conform to the
usual conventions which deseribe parity non-conservation in beta-decay. As in
conventional theory, we cannot get the other variety by a Lorentz transformation,
since a particle traveling with light velocity cannot be brought to rest.

We now extend our discussion to level 2 of the hierarchy, but for the moment
need not use the full structure, which is discussed in the next chapter. What we
need i3 ¢wo dichotomous varisbles and the the helicity we have already introduced
extended to two spin 1/2 particles combined to make spin 1 states traveling with
light velocity. By an obvious extension of the notation already jntroduced, the
four photon stales are
75 = (1010)(1111...1): right handed photon, +¢
g = {1010}{0000...0): right handed photon, -¢
7 == (0101){1111...1): left banded photon, +¢
7z, = (0101)(0000...0):lett handed photep, -¢

Again these states cannot be brought to rest by a Lorentz transformation,
and the revessal of ‘he velocity does not change the helicity, so the spin is again
a pseudovector. The Feynman rules still apoly.

It is important to realize that we have to go to this level of label complex-
ity before we can construct a classical limit. Our two-compopent neutrinos are
the simplest particles the scheme allows, but are intrinsically chiral and hence
sou-classical. Qur“photons” have two internal states which provide us with a
pseudovector polarization of (in units we have yet to justify) spin k/2x, corre.
lated with the direction of propagation. For our current purpose it is only the
existence of this internal dichotomous degee of freedom and not the subsequent
interpretation which matters, a3 we now demonstrate.
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We pow bave developed chough interna) structure in our bit string universe
to explain, with appropriate ptenomenclogical inpul, the early nineteenth cen-
tury wave theory for polarized light. Siece our “photons™ sre composed of two
coherent - asembles of ensembles {particles) with different dichotomous guantem
numbers, all that peed be added to the construction of the cohe.ent ensembles
previously discuss.d is that when they ere combined coherently, B macroscopic
meaning ran be given Lo the internal spacipg within a step length between the
two enscmbles; this parameter is cal.ed the phase. By a sufficiently detailed
operativnal analysis {standard undergraduate physical optics, if taught from an
operational point of view) we elaim that, just as we were sble to understand the
“double slit experiment” and reduce it to messurements which car be refined,
macroscopically, to any desired practical accurecy, we can give operationsal (lab-
oratory) meaning to phase. In the undergraduate laboratory this amounts to
the usual optical bench experiments using polarimeters and quarter wave plates
and a monochromatic soures to ropstruct and analyze elliptically polarized light.
As in classical physical aptics, the overall phace of the system remains beyond
expetimeital reach.

Long before the nineteenth century development of the wave theory of light,
Newton had tried to understand the phepomencn of the rings in lerms of “fits
of transmission” end “fits of reflection”, and tried to understand what we now
call “polnrization” in terms of light particles being rectangular (“having sides™).
Thus his approach to optics was partienlate, digital, and contained two internal
states. One might say that we ase refurnipg to 3 Newtonian model in thet sense,
but must relate it to a continnuem model because of the subsequent development
of physics. Because of the succvss of the mechanistic interpretation of Newtonian
physics as applied to vibrating strings, sod later 1o elastic solids, it was natural
for ninetevnth contury physicists to think of periodic phenomena in terms of wave
mation. Ignoring for the moment the interual degree of freedom, what we have



constructed so far from our bit strings, in the zero mnass lmit where A = hfp=
he}E = Ay, is the cohierent amplitude { we will justify this term below)

N
Az, N = Y b(z+n) xcf) {5.3.1}
n==0
Since this tells us that, withio the moving region where the § — functions oecur,
Al + X, A} = Al2, L))+ 0{1/N) {6.3.2)

this sllows w8 to asyume in first order in that approximation that Afz, L) =~
al{z + et}/A]. We have seen that the parameters 2, { are macroscopi¢ally defined,
and have computled and related to experiment in a macroscopic context - rmeans
of measuring the microacopic parameter M in the laboratory by counting. L far
we have only & start on the Newtonian deseription.

In the nineteenth century context, it was natursl Lo interpret these discrete
phenomena in terms of & continuum theory using the periodic functions sin and
cos2r(zfA)£{t/T)| with T = )\ /¢, or more generally or more powerfully in terms
of the solutiens of the wave equation

(8/82)a(z, 1) = (1/c* Y9 /0H%alz, 1) (5.3.2)

which are a(z & cf). This left oper what these amplitudes referred to. In the
context Lhe easies! thing to do was to think of them as the some physieal dis.
placement in zn elastic salid. This led to a difficvlty, sinee it was obvious from
ihe experimental values of the wavelengih and the veloeity that what was mes-
sured must be a time average over many oscillations, and the time average of
these periodie Fanctions over many cycles approaches zero. But in the vibeating
string or elastic solid analogy, it was also known that the energy stored ir the
oscillations is positive, and proportional to the time average of the squase of Lhe
amplitude of oseillation. So pgoin it was nainral to assume that the inlensily of

the light as measured was proportional to the time sverage of the square of the
amplitude.
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The triumpb of this continuum model came when it was realized that the two
states al polarization of light could he modeled as two amplitudes transverse to
the direction of propsgation and at right angles to each other, and by choosing
the phase between them sppropriately could describe either lincar or circular
polarization, or any degree of elliptical polarization in between. Hence Hamilton
was able ta predict conical refraction and see it demonstrated i the {sboratory,
which settled the question of the adequacy of the wave theory of light for most
physicists. The critical experiment for the nineteenth century was based on the
fact that Newton's derivation of Snell’s law required the veloeity of light in a
medium with index of refraction n to be ne, while the wave theory required
¢/n. To explain the experimental result in terms of a particle theory would have
required cohierent ensembles of particles, and a detailed discussion of the coherent
scaitering from atomic centers, a3 n the theory we are now constructing. The
conclusive explanation of the lowee propagstion velocity in material media was
schieved by Rayleigh using the wave theory, with propagation velocity ¢ in the
space belween atoms. Thus jn the absence of experimental evidence {or the
particulate nature of light, the wave theory appeared to rest on 22 unshakable
foundation,

This long excursio: into nineteenth century physics has been taken for two
reasons: (a} first, to show that two internal discrete states, plus the assumption
of & continuum mode} {or coherent periodic phenomena gives the macroscopie-
microscopic connection we seek, and (b) second to explain the origin of the
amplitude squared rule for the interpretation of periodic phenomena. But from
our point of view, this modeling can just as well apply to ou bit string universe
provided only the discrete, periodic phenomens »» have copstructed and now
provided with an internal dichotrmans segree of Jeeedom allows us to introduce
& measurable phase between these two degrees of I eedom when they are are
assumed Lo be aversged over time in macroscopic ex--crimznio. As we have argyd
before, and will cantinue to argue, this success of classical {and later quantam)
field theory does nof allow us to extrapolate 4ais contipuum model down to
infinitesimal distance. What it does allow us to do is to claim that we have
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a right, whep sll count~ts in an experiment include a lazge number of steps,
{ = he/E measured in terms of laboratory standards of length and time, o
_pprozimale our bit atring results by the conventional continunm wave theory
model for relativistic deBroglie waves in terms of the real, complete set of haais
functions sin{2x{pz + El}/5) snd cos{2xipz + ERy/h).

[From here on we follow the convention of high coergy physies of taking
¢ = 1 = h/2x, which leaves the only phy.ical dimensiopal parameter as mass,
and dimensionsl analysis confined to establishing the mass of one reference par-
ticle, to which all dimensionless mass ratios of the mathemalical theorv are re-
ferred}.

In order to justify this statement we consider the boundary condition p.o-
vided by & courie of Gnite spacial resolution Az in the wave theory, and prove
thal the same result can be derived from our digital model (Eq. 5.3.1) to order
{1/N) where N is the number of steps we need to consider in our basis states.
Assume that the counter is centered at z and fires at ¢ = 0; since the finite
time resolution has been discussed elsewhere®’, and adds nothing conceptual to
the discussion, we will asume that it is so good that only the gpacial resolution
matters. Then to insure that our parlicle was somewhere in this regior at that
time, we must make up a wave packet with different momenta of amplitude f{p)
such that

t;: dpf(p}e”* = 6(z— Az) - 6z + Az) (5.3.3)
Therefore, by Fourier inversion
(jen) T 2?7 dpftpre® =T dpblp—sMt) (534
and hencs
T = (1f2r e A% — W A% = (i) up)sin(p Az) (5.3.5)

But if we cpply the same boundary condition to the basis states of Eq. {5.3.1)
eoting that n must now run between —N and +N, our boundary condition
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+ A
J dpip) EXn6(: 4 nh) = [z — Az) - B[z + Az) {5.3.6)
-

But the mathematical operation of Fourier inversion can just as well be applied
to this formula as to Eq. (5.3.3). Doing so, we recover Eq {5.3.5) plns correction
terms of order {1/.N), which proves our theorem. To extend our discussicn to
dellroglic eohercunce lengths for finite mass and hence to deBroglie waves we need
only represent the bit string ensemble by 8{z4+nh—cl/d 4} = 8{{pr +nk - Et)/4|
We therelore elaim to have derived wave mechanies o an apprezimalion to our
digita) model in a form {laboralory boundary conditions based on counters of
finite mucroscopice size) which will serve for most of the practical ~pplications
of scattering theory. Further, we can now derive the Heisenberg uncertainty
relalions for rontinuum variapies in the usual way. Thus we elaim to have proved
that we have constructed free particle quantum v ave mechanies ob a digital basis

as an approrimate theory.

While this paper was in the final stages of preparation, it was brought o cur
attention by I. Stein that W.H Lehr and J.L.Park {J.Math. Phys. 18, 1235 (1977))
have developed a random walk or stochastic model as the basis for a derivation
of the Kiein-Gardon equation, thus getting the continuum limit in another way
than our approach here. In their model they find that relativity requires them to
digitize their time with a unit 7 = 3K/mc?, so while not identical to Stein. it is
closely related. 1.C. van den Berg informs us that yet another derivation of the
Klein-Gardou equation from a stochastic basis has by N.C.Petroni and 1.P Vigier
ap, ed recenlly (Foundatians of Physica 18, 253 {1083)). "1 uis referen . con-
tains a number of references to related work. In both cases the “particle” takes
chaotic step~ with the veloeity of light, whereas, as we have seen above, in either
Stein's approach or ours the velocity in the random walks can have any value
bounded hy ¢. We have also recently encountered work in the imaging prob-
lem in radio astronoray which clearly indicates that when one is dealing with
information arriving throngh continuwm waves ansalyzed by classical techniques,

o8¢ cannot tell whether the original input was ic fact discrete or not. ln par-
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ticular, the sequence of §-functions which we have used sbove to relate our bit
strings to a wave theory is known as the shah function, named for a letter in
the Russian alphabet. The history of this imaging problem has been reviewed
in a "riheoming paper by R.N.Brecewell, which “will appear in the Proecedings
of the Cambridge Philosophical Society, and the function itself is discussed in
his book, The Fourier Transform and its Applications, New York, MeGraw-1il),
18965 Also relevant is a paper by Bracewell on the discrete Hartiey transform
which has been sulimitied to the Journal of the Optieal Society. This i3 of partic-
ulaz interrst becauss it shows how the complex Fourier transform con be readily
represented by two real functions that avoid the ¢ ambiguity in a way that
provides dislict computational advantages. This malerial makes it clear that the
semi-quantitative approach used nbove to make the passage from the bit strings
to a wave theory using the counter paradigm, which we believe is adequate for
the purposes of this paper, can be given precise mathematical fc. mulation in
& well understood context. It is important to recognize that, although we get
conventional scattering theory (see below) in this way, our digits] basis cannot
be thrown away. We will see in the mext chapter that it allows us to calculate
tbe proton-electron mass ralio in .greement with experiment, a result not yet
achieved by the contic-ium theory. But we bave s lot more work to do before
this calculation can be justified.

Even more important thao the justification of this eontinuum approximation
in wave theory by recourse to well understood Iaboratory practice, is the real-
ization that we must take the squ.res of amplitudes, approprialely averaged, in
order to make contact with our laboratory paradigin taken from physical aptics.
Hence we claim to have justified our earlier contention that the basic entities
derived from our bit string upiverse are properly called probability amplitudes
and not probabilities. We teserve the term probability for a number p € [0, 1}
where the value can be apy rational fraction in that interval, or an approxima-
tion to some irrational or transcendental number in that interval, established
by some well defined finite algorithm. They obey the usugl] rules of classical
statistics and are to be interpreted in terms of conventionz! frequency theory



and the “Jaw of Iarge pumbers™. Ip sn appropriate cortext all their moments
and correlations can be defined in & conventional way. Ope of the purposes of
our “operational anslysis of the double slit experiment"37 was to prove that the
counting stalistics of such an experiment, using deBroglie waves and counters
ip both slits, obey these classical rules. OF course the probability amplitudes of
conventional quantum theory, or our own version of it, do not. This is the basic
prablem for statisticians, like Patrick Suppes, who try to understand quantum
mechanics in terms of classical statistics. They are quite prepared tr accept a
degree of nonlocality which horrifies many practicing physicists, but dnd it hard
to accept probabilistic coneepts which do nol allow sll moments of a distribution
to be defined, and “correlations” incompatible with the properties of probibilites
bounded by 0 and 1.

As already discussed, s digital theory of light was not considered a viable op-
tion in the nineteenth century, in epile of Newton's ezrly atart in that ditection
aod his continuing authority. The wave theory of light could be well modeled in
terms of an “emplitude” taken by analogy from experience with elastic sclids.
‘This model got strong support [rom the conbection Maxwell was able to forge
between the phenomenolegical theory and the “obviously continuous” electro-
maguetic waves that Hertz succeeded in generating in the laboratory. Einstein
got rid of the mechanical aether which served as vuch a useful and fruitful prop to
the nineteenth century imagination, but clung to the continvum concept (again
fruitfully). Yet bis own work in 1805 destroyed, by his interpretation of the pho-
toelectric effect, that conlinuvm basis and brought the theory back to events that
are discrete and localized, such as developable grains in a photographic emulsion.
Careful experiments| work proved that the concentration of energy required to
produce these laboratory phenomean could not be necounted for by the contin-

uum theoty, except in an average sense. i We hope that our approach reduces
the mystery connected with this fact.

Of course that was the beginning of the stary, not the end. For us, that
comes with the Bohr-Rosenfeld analysis'! already cited. Their analysis of the
measurcability of the electtomagoetic field makes use of complicated, clussieal
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apparatus within one wavelength of the radiatine being atudied {eg. a low [re-
quency radio wave). Yet, assuming that the material apparatus is restricted by
the Heisenberg uncertainty principle, they succeeded (after two years of effort45
1) in showijng that the ysual commutation relations, more economically desived
by second quantization, follow from a detailed operationnl analysis. Since we
have already proved that we also get the uncestainty relations in the appropri-
ate context, we can accept their analysis for the electromagnetic field. BUT, as
already emphasized, they point out that the the apalysis is only possible when
there are only two dimensional constants (A and c}, and cannot be extended to
the “second quantized matter feld® with m a fixed parameter; that theosy is no
longer scale invariant.

Now that we have free particlc wave functions and the “amplitude squared”
rule in contact with experiment in terms of our model, it might seem that we are
through. At first sight one might quarrel with our extension [rom the electro-
magnetic case to matter waves, but as already noted, our thenry goes through
just a8 well for finite mass as for the particular limiting case we have invoked.
To seltle any unesse on this score, consider the scattering of a spin 1/2 parti-
cle from & spin zero target with s p-wave resopance. For the j = 1/2 state,
this divides an unpolarized beam into two beams in s manner that is pracisely
{mathematically speaking) analogous to s nicol prism. Further, if the particle
has s magpetic moment, a permanent magnet with a gap containing constant
magnetic field of appropriste length and strength will change transverse polar-
izalion to longitudinal polarization, which is precisely analagous to the action
of a quarter wave plate, So the whole optical hench type of experiment with
icol prisms and quarter wave plates { and a digital detector for the photons) can
be repeated for spin 1/2 particles. In any case, it would be insppropriate in a
fundamental theory for us to introduce more tlan one paradigm for connecting
the bit etrings to the probability of registering counts in the laboratory,

What does not follow so easily is the use of compler rather than real (&)
amplitudes in quantum mechanics. Of coyrse it is convenient, as in electrical
epgineering to use eXiP=B) v, ve fupctions and calculate intensities by taking
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the absoiute square. But there s no necessity for doing this for one particle
problems in quantum mechanics. ln fact Bobm and Vigier bave shows that
it is quite possible to reproduce all the results of non-relativistic enc parfirle
quantusn mechanis+ with a teal, classical *hidden variable™ theory,- although
many physicists Gnd their theory bizarre, and physically snmotivated. So we now
turs (o two particle seattering problems for our attempt to meet this problem.

54 SCATTERING THRARY

Since we pow have stoudard relativistic pasticle wave mechanics for free
particles, it would seem that we could now develop scattering theory in a con-
venlional wny, [his true up lo a point, but there is a eritical conceptual differ-
unce. We have no Hamiltonian, so we eaunof caleulate scattering amplitudes as
the matrix elements of such an operator betwesn sppropriste scattering states.
"hbis problem wos mm some time ago® by cunstructing s “Democritean scat-
tering \heory” starting from free particle wave functions and arriving at the
wandard Goldberger-Watson wave function” for N4 particles in and Ny par-
ticles out. ‘The essential point is that the seattering amplitude then becomes a
kinematic quantity deseribing any eanceivable experiment of this type, including
those which do oot conserve flux. T'hen we are under the obligation of supplying
dynamicai equations for this smplitude which guaraniee flux conservation, or in
technienl terms are unilary,

We consider firat the clastic scatiering of two partitles in the usual geometry
sbown in Figure §.  Since the technical problem of using “wave packets” is
adequntely discuseed in standard text~’?, we will ignore this complication and
use the free particle basis with p, .cisely known initial end final moments, a9 is
custamz. . The initial stato starting from two particles with momeata ¥; and
energios ¢; = (k¥ + mF1V/ is then simply ¢VF21+Eafa-ut-al) Noge that we
are using ao on shell or single time . udel consistent with our bit string universe.
It we now define

R=E|+z‘g; E==q-l-ez



F={maky —my Ea)/(mmy +my)
a2 =g+ m P 4 it + m) = %) + alg®)

Y =(m? +mafal/imy + moh =¥y =7y

the initiat state wave funclion hecoines
¥ = ei(ﬂ‘-i’—El)eiﬁ.i = Iei’(k-f-—m}w}uu) (5.4.1)

One advantage of this step is that only the first [zetor refors (o the laboratory
coordinate system, and is easily transfarmed ta auy frame, hence the remaining
wave function has a Lorentz invariant significance, Further, in this zero momen-
tum frame {where, as we have already seen it is most convenient to discuss our

bit striug universe) there is mo explicit reference to time;, we have “siationary
state™ wave functions.

So fr,; our wave function assumes only the incident state. Both for simplicity
and oecause we will develop an amplitude of this ty pe from our bit string model in
the prxt section, we will assume that the seattering is spherically symmetrical in

the zero momentum coordinate system. Then the elastic scattering wave function
will be

Val2) = 1) 4 T(gP)eite e (6.42)

in the asymptotic region where the e~unters are located. Flux is conserved pro-
vided that

T(¢}) - T"(¢) = 2ip{g®) | T(g%) |* (4.4.3)

where p is the appropriate density of states in momentum space. The probability
of scattering, or cross section, is o{¢?) = 4x | T(¢™) |°, snd can be directly
compared with counts in detectors. Thus our descriptsve job is completr. The
task of the theary is clearly to calculate T(¢%).
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The unitarit condition clearly requires T to be a complex number, and leads
to well known experimental consequeaces - in particular wave interference terms
between the ynscattered and ‘he scattered wave function in appropriste angular
.cgions. We could therefore fall back on this as the reason why we are required to
use complex amplitudes in our theory, just as we justified the amplitude squared
rule by comparison with experiment. But we claim there is 8 more fundamenta)
reason connected with our bit string universe. If we make up wave packets in
time such that for Isrge times io the past li.e. in the region of the collimators
which define the beams) only the first term in the wave function is present. As
was pointed ont by Lippmann and Schwinger®® an easy way to accomplish this
within the formalisw. is to put into the time-energy factor e—*E* myltiplying the
scattering part of the wave function the replacement E — E +ig where np is a
small positive quantity, and the limit 7 — 0% is implied. Then at large negstive
times this tetm is exponentially damped. In momentum space this leads to the
wave funclion

¥(@, 3 = dgV)8%G -~ 7) - TWH/[e(g? - lgD)—i0F]  (5.4.4)

where ¢(g%) = (g2 + mZ)}}/2 is the proper factor for a free pasticle (no? Geld) state
to guarantee Lorentz invariant normalization, and siace we will use i« below we
have assumed m; = m = mg,

In the conventional theory the states with ¢/? 32 4% the ¢ states are called
“virtual” and jo the momentum space integral equations for the scattering am-
plitude are summed over. The factor 3/} — ¢ —i0*] then guarantees asymptotic
energy-momentum conservation. Clearly we have to perform a similar sum over
all possibile bit strings when we describe the same situation in the bit string
upiverse; we have now learped that this s the proper weighting factor in the con-
tinuym limit. The question is whether we can justify it in our own basie terms.
The limit is casy, since we have the same asymptotic requirement. But we are
sumiming over discrete, rather than continuous energies, thanks to the fact that
our minimmum step is & = {/c and the quantization condition E = he/l. In fact
we see Lhai the minimum energy step 6E = /61 and hence thal for a spread
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in energy SE and time &1 we have that 6ESt > h. We empbasize that this is
no! the Heigenberg uncertainty principle, which we nave already seen comes in a
canventional way from limitations on measurement due to Guite eounter size, It
is due to the fact that nothing happens between TICKs; we must take at least
one step in & random walk for anything to happen. This fact will be important
for us later when we see how aue theory svoids the self energies of quantum
field theory. It is certainly natural for us in the bit string universe to sssume
that the weighting factor a3 we move away from the asymptotic conservations
stepwise by B! = E + néE should be proportional to 1/}E' — E]. But then,
since n=0 can occur ip the sum we would produce an infinity, violating cur ba-
sic¢ Bnite assumptions, Therefore we argue that the best way to avoid this is to
use instead 1/|{E' — E — ¢6E) which indeed goes to the proper limit (f6E = i0)
in the continuum momentum space theory. We bope at n dater date Lo replace
this plausibility argument by a calculation, but will not hold up this paper for
that refinement. If this argument is aceepted, we have now made the connection
between conventional seatiering theory and our construction, and can proceed
to N particle scattering theory along the lines previously developed.

5.5 A MINIMAL UNITARY (RELATIVISTIC) SCATTERING THEORY

So far what we have done i3 to worx yp from the bit string universe to rela-
tivistic free particle wave functions, and in the last section to remind the render
that if we have unitary two particle amplitudes, no maticr how obtained, we can
from them coostruet a refativistic and unitary N-particle seattering theory using
tefativistic Faddeev-Yakubovsky equations. Qur next step is to show that our
construction provides ua with the elementary driving terms from which this the-
ory can be constructed. Returning to Fig. 8b we see that the bit string universe
provides us with three basic evepts, so we start with these.

Since the fntermediate state has zero velocity by definition and some mass
which we will call g the most probable value for its energy will be g4, The
prescription used in seattering theory for the probability amplitude due to this
intermedinte state is to say thal the energy as a function of the final momentum
¢ is proportional to 1/[¢(¢'} — 2 — i0*), which when integroted over all pusitive
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values of (y')2 w.]l give a delta function that insures enetgy conservation {¢{g?} —
:[(,{)21. The simple prescription used here is independent of the direction of 3,
su all directions of scattericg are equally probable, and the seattering i spher-
ically symmetric, The coefficient of this amplitude must be chosen such that
the mumber of outgoing partices is equal to the pumber of incoming particles,
which is summarized by saying that the amplitude is “unitary”. lo the jargon
ol relativistie quanium scotiering theory such an amplitude would be the sim-
plest version of an *s channel resonanes”. The é0% prescription is required so
that the singularily ¢ = p only oceurs in the specification of the integral, sud is
needed Lo wpecify which braneh of the square root singularity in ¢ to take io that
integration,

The situation we are now consideriog ia an extension of the simple events pic-
tured in Figure 8 to those possibilities in which the intermediate particle {of mass
a) veenrs not just between two TICKs but engages in all randem walks which,
when summed, il lead to the energy-momontum conterving elastic scattering
selocted by our initial and final boundary conditions. Since we have olready seen
that our verlices conserve momentum, if the final particles have momenta £y and
Fy (from which tbe asymptotie final aelection picks out k == 7' and ks = —7),
the intermediate particle will have onergy ¢, = [(7:'1 + Eg)"’ + n’]”"'. For the
simple cases where the event is elementary (occurs between twn TICKs with no
interven’ -z random walk) the vector sum of Lhe final momenta, like that of the
initial momenta, is zero and ¢y == y; clearly this will also be true for any other
case in which this vector sum vanishes. The prablem is b w Lo weight these cases
relative to those when the energy differs from g - the “off shell” states in the
language of scattering theoty.

As we have seen jn Sec. 5.1, the time unit for the random walk 1hat the
intermediate state of mass ¢ eo  ges in betwenn the two vertices in an extended
vrent {ie. one that leads (o, mprotic energy-moomedtum conservation when
e 'lmibilities are summed) iv 4! a= /f¢ and hence the minimum epergy by
which thee inmtermediate energies of these random walks can differ from each
other. called S iy given by Eq(5.1.1) 28 6E = h/f. We emphasize that this
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is mol the “uncertainty principle” but simply the digitization of energy in 2
passicular circumstance srising from our diserete time steps. Any extended event
will therefore have an “off shell® energy ¢,n) == p + ndE with n € [0,1,..., N),
where as we have seen, if the universe hies been ticking long enongh, NV ean be
1s large as we like. As we go to more and more steps in the intermediate states,
we will have a harder and harder time finding in the finite segment of Y referring
to our particular scaltering experiment to find strings which will mateh up to
our energy-momentum conserving boundary conditions, so it is clear that the
weighting factor should fall off as we go farthor and Iarther “off shell*. The
simplest choice would seem o be proportional to 1/[e{n)]. But this will oot do,
because it is infinite when n == 0 which violates our absolutely basic requirement
that the theory give only finite resilts, Since we cannot introduce fractions
of a step, and as we have seen must include the n w= 0 case, the solution we
adopt is to use instead 1/[ep{n) — p — £6E]. Noturally, this choice of a small
imaginary parl to remove the singular.ty is motivoted by our dosire Lo reproduce
conventional quantum scattering theory in the continuum limit, and we cannot at
this stage claim that this introduction of imaginaty amplitudes is foreed on us by
the construction we have been Jolluwing. But we do ballove it is a siraightlorward

postulate copsistent with what hos gone before, and hope some day to give n more
convineing argument.

Once this argumeat is accepted, and for conveuience (because we have not yet
gone to the work of reducing the whole theory to digital operations) we take the
continaum limit. we still have the question of how to relate ¢, to the !aboratory
variables in terms of which the scattering prablem is actually formulates. Thiz
we do by simply equating it to the epergy correaponding to the external particles
when they are off shell, 2[(¢')% + m?| = {#")}/%, (where, for simplicity we bave
taker both incoming - or outgeing - masses m to bave the same magritude) and
by adding these scattering processes to the iuitlal state (Eq.{5.3 1)) obtain the
basic momentum space wsre function for two particle scatteriag

vild. ¥ = dg"n 5 - )= Cla, WBILF +mY 2 s—i0*]  (5.39)
The function G which actually determines the strength of the seait~iag has uot
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yet been determived by our srgument. It is restricted by the requirement that
the overall normalization of the wave function be the seme 83 i Do scattering
accured, and is (he technical way in which the “snitarity™ or “flux conservation™
property of the theory is met. But this is familiar to scaltering theorists, and of
no conceptual importance for us at the moment.

This starting point for the minimal vpitarity seattering theory (MUST) was
ahown by James Liude:sa.yB to lead to s chosistent, unitary relativistic three
particle scattering theory including three particle bound states, elastic and re-
arrangement collisions and breakup. In the sppropriste non-relativistie kine-
matic region this theory leads quantitatively®? to the logarithmic sccumulation
of three particle bound states first found by Efimovi® . In Efimov's treatment
the logarithmic accumulation aceurs when [a{/R approoches infinity where a is
the two particle scattering length and R is the fAnite range of forces. That th.s
effect should emerge in a relativistic treatment which has only one [ree param-
eter {u/m) is somewhnt stariling, particularly in what can reasenably be called
8 “zero range theory”. Yet the lack of scale invariance in the relativistic theory
provides the “range” parameter A/me, which allows the quantitative results of
the two calculstions to be compared. This is the more remarkable in that the
integral vquatinns which provide the dynatnics of the two theories are different
in detail, and the way in which a finite result is obtained (except in the singular
limit) is mathematically quite dilferent; in partieular one cannot go from one
equation ta the ather by taking & “correspondence ligit™. This is fortunate,
2ince the occurance of an arbitrary parameter R in a fundamnental theory would
be for us more than ius’, an embarrassment.

The next critical step was taken by Noyes and Lindesay!® who realized that
this basic m.del could be brought into cioser contact with elementary particle
theory by assusming that the parameter p ie uot arbitrary but cooneels a “par-
tiele™ mass m to b quantum mass g o 8 specific way. In particular, if the
quantum and particle “bind” Hinematicslly to make n “bound state” with the
same mass (m + mg ~+ p = m) sbd qusntum numbers as the“particle” the two
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parlicle driving term leads, vis the relativistic Faddeev equations, to single quan-
tum exchange (cf. Figure 10a). In technical terms, an s-channel bound astate
leads by this mechani-m to the eosrect lowest order t-chianuel exchange, and the
amplitede is unitarized in a covariant manner by the integral equations. Further,
this covariant theery (which is simple enough pot to require approximation for
accurale pumerical solution) goes i the noa-relativistie approximation to the
usual equaticns for scattering by & Yukawa “potential”. Thus we have derived
from our bit string universe a first approximation usable in puclear physics, and
in the small quantum mass regime an accurate approximation to Rutherford scat-
tering snd the Bohr bydrogen atom. By adding the postulate that two quanto
can “bind” kinematically to a particle to form a state with the same mass and
quantum pumbers as the particle we can also describe quantum-particle scatter-
ing 0 the two particle sector of & three particle theory with the correct lowest
order driving terms {(cf. Figure 10b).

The extension of this approach to the lour particle sector via relativistic
Faddeev-Yokubovsky equa‘iors is beyond the scope of this paper. Since the
theory can be developed from relstivistic free particle deBroglie wave functions
without fwvoking the digital basis, it is being pursued vigorously in that con-
texi. In particular, the conpection between this relativistic quantum mechanies
of finile particle number and quantum field theory (where the “kinematieally
bound” staies of the finite thenry and the enrresponding “time inverse® vertices
are represcnted by creation au:. destruction operatora - with resulting infinities
that have to be “renormalized”) is being explored®™® . So we will not diseuss
this development further here. For the purposes of this paper, what is impor-
tant is that we have made effective, and we elaim mathematically and physically
rigorous, contact between our bit string universe and current active research in
alementary particle physics.

It is importent to reslize at this point what v+ hove, and bave not, claimed

to accomplish so far. We claim that we bave a definite elgoritbmic structure
whick =ap be connected by unambiguons rules io the practice of bigh enerzy
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partiele physies, with the usuaf wave interference pkenomena, including a prac-
tical ooproximation that is (so far as we can sce} unlikely to get us into trouble
with known experimental information. We have, in common with quaatem field
theory, two universal dimensional coustants A and ¢ wit - the same practical con-
soquences, What we do nof have is a third dimensional constant of the dimensiony
of maxs, or energy, ot a coupling constant not expressable in terms of A and ¢,
This is, of course, also tiive of cotiventional theoties. The current [rontier of
rescarch in this arsa consists of attempts to use the phenomenclogical symmetry
schems and the non-linearities of quantum field theory to yield a single coupling
consinnt producing 8 “grand unifiestion” from which the particle masses can be
computed. This hope rests on an anslogy to the quantum mechanics of the solid
stote where many connected modes ez produce spontaneous symmetry breaking
and a ground state (with a gap) lower than the non-interacting free mode basis.
SLill more ambitious schemes {eg “supergravily”) would take this single coupling
constanl to be deriveable from Newton's gravitational constant &, and to get all
masses and coupling constants which are observed as deductive consequences of
onw or unpther symmetty scheme.

In apirit the current attempts a% ynification are in one sense not very different
from ours, and have the historical advantage of having reduced an enormous
smount of very complicoted experimental data to understandable form along
tbe way. But our basi¢ approathk reguires us to view the attempts to generate
ordor oul of non-lineatitios {which were initinlly infinitics) in the contiouum as
8 mistake, or at least a8 & very complicated way to get ot something that might
prove 1o be much simpler, Since we nre sliowed one mass on dimensional grounds,
and since the only stable buryon (or quasistable with a lifetime greater than 103!
years) tbe proton - and the epergetic scale for many high energy phenomenal
Gav) that, superficially at least, Jo nor involve protons are approximately the
sumn (1 Gov A= mpcg). wt try the simpler alternative of taking Lbe baryon mass as
our basie third dimensional unit. In the next section we will try to coaviace you
that this gets us pretiy far, and provides some justification for the constructive
mathumatieal work which bas been developed in this paper, and earlier.



8. STABILIZATION OF PARTICLES

We have now seen that our construction gives a complete phenomenalogical
theory for relativistic N-parlicle scattering if we supply the masses and coupling
constants from cxperiment. We look care in our ariginal ¢onstruction to shew
that the label-address schema was sufficient to construct the approximate theo-
ries of relativistic particle mechanics and relativistic quantum scattering theory
withoul specifying the content of the labels. We thought this important because
it shows how to carry through a reconstruction of quastum mechanics on & dig-
ital basis independent of the combinatorial hierarchy which gave it birth. Hence
we can hope for acceptance of that aspect of the work without getting into the
Einstein-Eddiugton program of understand how and why it might be possible to
compute the masses pndi Timensionless constants of physies from first principles,
While some physicists can see the point to getting rid of the continuum, which
after all is never observable in physical practice, the idea that things which are
clearly physical entities might also have a digital basis tends to stick In their
craw.

But one motivation for taking the approach seriously came from the remark-
able zoincidence between the cardinals of the hierarehy and the scale constants of
physics, and was stroogly reinforced by Parker-Rhodes’ suceess ip computiog the
proton-electron mass ratio in agreement with experiment. It is time ta face this
problem head on and attempt {o show in this echapter that, given the digital basis
for quantum mechanics we have now Grmly established, it is possible to obtain
significant physica out of the combinatorial hierarchy labeling scheme itscll. This
is the objective of this chapter. The work is incomplete, sinee we havo yet to get
a scheme for quasks, larks (i.e. leptoquarks), heavy leptons and all that which
is competitive with the grand unification schemes on which so much of eurrent
elementary particle theory and experiment is focused. But we belie. = we have
gone far enough to show that we have exciting possibilities which, hopeiully, wilt
engage the imagination of theotisis who come to our work with fresh eyss.
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8.1 DICHOTOMOUS QUANTUM NUMBERS GIVEN BY THE HIERARCHY

Iz our previous discussion of the hierarchy we showed that the mapping
matrix scheme copnecting Jevels 1 and 2 starting from the basis (10), (01) is
easy Lo construct. The explicit mspping matrices which have the three DCsS
formed from this basis, rearranged as strings, are ¢ —= (1110}, = (1101),¢c =
(1100). From these we can form the 23 — 1 = 7 DCsS's {a}, {6}, {c}, {a,b,0 +
b}, {b,e,b + ¢}, {c,¢,c + a} (a,b,e,a+b,b+c,c+ 0,6 +b+c} Recalling that
(with + far discrirnination) 2 +a = 0, we see that all seven sets are rlosed ypder
discrimination.

Even at this level, there is an ambiguity in physical interpretation which has
to date resiied definitive solution. Instead of tuking the obvious basis given
above, we cculd have replaced (10) ur (01) by (11); we cannot use sll three
because, sines ¢ 10)4+{01)+{11)={00), only two of the possible basis strings are
lipearly independent. Then the mapping would give us ¢ = (0011) in the first
case or b = (0011) in the second. These two allernatives are not distinct, since
the rule by which we reasrange the mapping matrices as strings {so long as
it preserves the cyclic order) s still arbitrary; further they both lead to the
same maximal DCsS: {(0001),(0010),(0011), (1100}, (L101), (F110},(1111)}. But
they produce an sliernative choice, not only in one of the basis veotors, as al-
ready indicated, but also in terms of two of the three DCsS with three mem-
bers, i.e. belween {(1110),(1101),(0011)}, {(1101),{1100),(00D1)} in one case,
and {(1110),(0011),{1101)}, {(1100), (0011}, (1111)} in the other.

Nevertheless it is possible to reduce the ambiguity and obtain significant
clues to pbysical interpretation. The simplest place to start is with the first
representation. The three basis strings are of the farm (11yz), which guarantee
thot the seven strings in the maximal DCsS are al) of the form (wwyz). In
contrast, the eight remaining possible non-pull atripgs are of the form {wxyz}
with w 5 2. Thus the only 4 X 4 matrix which hgs Lhese geven as eigenveciors
and pone of the eight is the one illustrated as A in Figure 11. Thus tbe simplest
approach to the problem is to leave the first two rows untouched. So far a3 we
too ste, the remaining six mapping matrices are unique up to one ambiguity, and
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are illustrated in Figure 11. This ambiguity is unimpottant, since it corresponds
gimply to a relabeling of the rule which takes us from a 4 X 4 matrix to u 2tying
with 18 bits. That our choice of representation does indeed give us seven linearly
independent strings, and hence a basia for level 3, is also illustrated in Figure
11. The simplest structural feature that emerges i that we can use no less than
10 slots to mect the problem, and that 25 alre dy argued the remaining six slots
must be pull. Thus, using, strings of length 16 we tan yepresent the firet three
levels of the hierarchy by using the first two bits for leval 1, the next four for leve)
2, and the tast JO for leve! 3. This will be used below for physieal interpretation,

Construction of the mapping matrices using the alteraative basis is s little
more cumbersome, and we have yet to approach ' e uniqueness achiaved in the
last paragraph for the first basis. That such a representation can be achieved
by using the methods explained in Appendix Ie iu clear, but the deiails are still
under investigation. We have gove far enough to have some confidence that the
2+4+10 = 16 representation for the firat three levels has a basic significance. But
the reader is warned that the scheme we foow bulow for physical interpretation
is tentative, and may bave to be revised whep the theory is lurther articulated,

In chapter 5 we showed that the two slot notation for level 1 supports an in-
terpretation in terms of the starting point for a two tomponent neutrino theory.
We now go on to interpret the four slots provides for us at level 2 as referiug
to the helicity states of electrons and positrons accordipg to the schema given
in Table II. We see that we uow have the correct quantum oumber content and
counections for lowest order QED, and can go on to a full lowest order dynam-
ics once we supply the appropriate momentum factors and interpretation. We
believe it possible to develop from this starting point and the minimal unitary
seattering theory® 10 (extended to Faddeev-Yakubovsky equations?) a Bnite par-
ticle number version of QED; results #ill be presonted elsewhere™. Further, by
combiniug levels 1 and 2 we have the basic six fermions (v, PR ,ez,ez,eﬁ.em
for Weinberg's® weak-electromsagnetic unification in tk.e leptonic sector, as well
as the basie lowest order diagrams once we invoke the minimal unitary scatiering
theory; our explanation of mass differs from his, as mentioned sbove.
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The full quantvm sumber scheme which relates this construction to the labels
in the bit string universe is stil] under investigation®. Our tentalive scheme for
the first three lovels, making use of the mapping matrices is given in Table L.
We ser that at level | we have two component neutrino theory in which, when
we ndd the address label corresponding to zero mass, has ¥p = (10...0)16(111..1)
establishing our helicity convention. At the combined levels 1 and 2 we bave
the two helicity states of the pholon, coupling to clectrons and positrons by
the extension of Figure 2, W W, 29 as vector bosons, and the longitudinal or
coulomb photon. At this point the particles and quanta are still massless; reversal
of velarity [i.e (111...1) — {000...0)] does not change the direction of spin, proving
that it is indeed & pseudovector. At level 3 we find the baryons of strangeness
0 and +1 as the obvious interpretation, and the proper number of and quantum
numbers for the wsual pseudoscalar [because they are bound states of fermion-
antifermion pairs) and vector quanta. We might seem to have a problem with
the appearsnce of two longitudinal or coulomb photons. However if one takes
the Whevler-Feynman point of view that all quants ore ultimately absorbed, the
unitarity condition in the minimal upitaty scattering theory fixes the mass in
terms of the coupling constant, or visa versa, 1.V Lindessy, A Markevich and
G.Pastrana®® find that in the weak coupling limit for €2 2= i/137 the mass of
the phutoy my = m.e~'37 which is not in conflict with any known experiments
as has already beon noted?®. Then the two 5§, = 0 photons are simply the
vector and sealar photons in a four-componeat theory, and the problem is solved.
With some care, and free use of the minimal unitary scattering theory?’ =19, it is
possible to show that all the usual Feynmnn dingram rules apply, and hence that
aur theory is 'FT invariant at level 3. At level 4 we wili aave 16 X 16 quantum
oumbers. The problem of getling quark quastumn pumbrrs, beavy leptons, or, 8s

lovks promising from the numerics, rizhons will be studied atter level 3 is under
control.

8.2 TIIS MASS RATIO SCALE aND THE UNIT OF MASS

Independent of tae details of this scheme, we see from the Lasic randomuess
of our construction that at level 3 the exchange of a “coulomb photon” will oc-
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cur with probability 1/137 compared to sll other alternatives, This allows e to
calculate the eleciron mass as the expeetation value of its coulomb epergy in a
coordinate gystem at rest by a statistical average mee? =< ez/r > using e? =
he/2n % 137. The caleulation itself was originally made by Parker-Rhodes! start-
ing from a very different construction of space time and the combinatorial result;
we provide here a modification of out previous discussion of this calculation!d.
Taking as our basie mass the baryon mass mpg {because of the connection to
U'.. gravitational constant G) and noting that the heaviest system ta which the
coulomb photon system couples directly is a baryor-antibaryon pair, the minimal
distance we can consider in a system starting from rest is half a baryon Compton
wavelength. We therefore scale r by r = (h/2mpgcly, 1 € ¥ < oo. The charge
in the lepton must separate by more thar r into two lumps which by charge
copservation we can write in lerms of a dimensionless parameter z os ez and
e{1 — z), where x is a statistical variable reflocting the fact that we have bath
charged and peutral leptons and baryons. Hence

< e¥fr >={(hef2r % 137) < 2(1 ~2) > (2mp/h} < 1y >=m;e® (6.2.1)

and .

mg/oy = 13Tr/ < z(l—2) >< Wy > (6.2.2)

Since we havi now establicksd our space as pecessarily three-dimensional, the
discrete steps in y must each be weighted by (1/y) with three degrees of freedom;
bence

o0 o [+ ~3
<1fy>= {{tlly)‘dyly'lll{(l/y)"dylyzl =4/$ (6.2.3)

Since the charge must both separate and come together with a probability pro-
portional to z(1 — z) at each vertex, the weighting factor is z%(1 — 2)2. For one
degree of freedom this would give

<2{l-z)>= |{" B1- zf"dzmi 241 — z)°ds] = 3/14 (6.2.4)



Ounce the charge has separsted into two lumps each with ch-vge squared propor-
tional (o 22 of {1 — 2)2 respectively, we can then wrile a recursion relation!3.14

Knm [i{:a( 1= o) + K121 ~ 2)")ds] Ili (1 — 2Y2dz) (8.2.5)
sud henean

Kn == 3/14 + (3/T)K -y = (3/10Z702/7) (6.2.8)

Therefors, invoking again the three degrees of freedom, we must take < z(1 -
2) >== K3 snd we cbtain the Parker-Rhodes result

mg/m; = 137r/|(8/14}{1 + (2/7) + (2/T)}(4/5)] = 1838.151407...  (8.2.7)

Sluce the electrnu snd proton are stable for at least 107 years we identily this
ratio with mp/me in agreement with experiment, thus setting the basic mass
ratio scale for the theory. Whether this mass ratio remains unchanged and we
cod calculate the muases of unalable baryons and bosons from our dynamica!
thoory is under ipvestigation®o,

As already noted, the sbsolute unit of mass in the theory must be spprox-
imately the proton mass because of our identification of 2177 + 136 with the
inverse gravitationa! coupling constagt. Sinece the calculation given above is s
mass ratio, its sucress s independent of the absolute value of this unit. The cor-
rectlons which take us from a :r single dimensional mass parameter mg to the
emplrical value for the proles mass, given G (or equivalently to the empirical
vriuc for G, glven mp) and to the empirical value of the fine siruciure constant
will have to come from lovel four of the theory, where we muat slso find a place
for the equivalent of quarks and heavy leptons. Since we will then have 256 quan-
tum sumbers to play with, this will be challenging but not obviously impossible.
Otber problems, such s bullding up the clectramaguetic field from aur photons
and the gravitational field from gravitons (we ean obviously make the latter - so
Ior as quantum pumbers go - from leptons ca spin 2 helicity states) is similar to
that of any theory which starts fyom the weak conpling limit.



The reader immersed in special relativity may be troubled by the ticking
universe, which provides a universal Lizhe, nnd the fact that our zero velocity
eriterion whick defiues the basic mamentum-conserving eveats (v == N1-N0 o
0) would seem to single out a particular coordinate system. We have beea lod
to the construttion which places scatterings delween TICKs bucauze we cannot
allow our events to bave a cootinuum limit in points; else we would get back
to the sgony of infinite energy at each point, which it has taken ao much hard
technicsl work for quantum Eeld thecry to deal wilk., Our “virtual® procemses
occur ia the “void” es finite Buctustions whith ceanet be directly accossed by
experiment. Wa claim this is a strength rather than & weakness, As to the apecial
coordinate system, we claim to have shown that we cap still define macroscople
velocitics v to arbitrary precision, and derive (or, secording 1o some like Michael
Peskin, define) the Lorentz transiormation, thus recovering epacial relativity as
a macrotenpse spproximation. As to the special coordinate system we claim that
empirically there is such a coordinate system which defines v == 0 by the 3.7°K
background radiation. This is o more &% embarrassment for us than for apecial
telativity; the fact that it occurs so naturally ip our theory we agaln count ss »
strength rather than s weakness. Clearly we siill have to show that wa can get
the pacticle physics right, and thep go on to show that the big bang emerges from
our initial generntion operations. This is a problem for future research. Wa are
encouraged by the fact that we have only one type of mass in the theory, and in
that senge have no place Jor a diference betwecn gravitational and inertin) mass,
Further, if we do indeed succeed in gettiog spin 2 gravitons lo the weak coupling
limit, we can hope to recover gravitational theory from that starting polnt, &
problem already discussed by Weinberg®S . As to the big bang itself, scattering
events labzled by the full level 4 quanium pumber acheme can anly start when
the 256 bit hierarchy scbeme :'oses off sod we have 27% — 1 conserved lahels
in Y. If we can get aur microplysics right, this is & reasonable estimate for the
baryon number and lepton pumber of the universe.

Our fina! point is that by focusing on velocfly rather then space and time
a3 basic we belleve we have the correet fundamental starting point for unifyiog



mactoecopic quasi-continuous measurement with a digital model, a poiat of view
already stressed by S-matrix theorists. Further, our ticking universe allows us to
fuse the special relativistie concept of esent with the unique and indivisible events
of guantum mechanics. Whatever else survives from this attempt to construct
a digital model for the universe. we are convinced that this is the correet place
ta connect relativity with quantum mechanics in a fundamental way. We close

by remarking that the costmological implications of the model are not in conflict
with experience.
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7. SUMMARY and CONCLUSIONS

In this paper we have argued that the three dimensionsl constants which
connect physics 1o mathemaltics are now, experimentally, defined by counting
intezers, and hence that a digitai model for physics is more appropriste than
the conventionsl continuum models. We pro ide a simple algorithm which leads
to a growing universe of bit strings which contains unique happenings which we
call events. To relate these to laboratory experience we assume that when two
spacdally separated counters fre i an ordered and distinel sequence, there were
two events in the bi. ~tring universe connected by a random walk representab’-
by a labeled ensemble of bit strings. From this basic interpretive paradigm we
conclude that our connections between events have a himiting velocity which we
identify with the laboratory limiting veloeity ¢. From this we claim that the

kinematies of special relativily follows as an approzimale smacroscopic theory.

By postulsting that our labels can be put into correspondence with masses
measured by mass ratios to a standard mass, we identify our random walk step
length with the Compton wave length and define energy by E = hke/l. Then
our spacial kinematics allow us to define relativistic vector momentum and a
second length hfp. We postulate, compatible with our bit string construction,
that events which lead to the firing of connters conserve energy and momentum
mxeroscopically. By constructing coherent epsembles of ensembles we find we
can identify h/p with the deBrogile wave length in the double slit paradigm and
hence mensure the unit of action in our theory as Planck's constant. Further, we
show that our basic counter paradigm then allows us to construct the deBroglie
wave theory for [ree particles as 8 contiouum approzimalion. From these free
particle states we then can ¢ astruct a quantum scatteriag theory using relativis-
tic Faddeev-Yakubovsky equatious. The driving terms in these equations can be
related to our bit string comstructic. -ompleting the link between our theory
and the practice of elementary particle physics at the  tenomenclogical 1evel.



At this point we ¢laim to have provided a consistent and rigorous basis for the
reconstroction of quantum mechanics on a digita) basis. Like quantum mechan-
ics, this theory sa far contains two universal constaots f and ¢, sume arbiteary
pasticulate reference mass such as mp or # o “nd dimensionless mass ratios and
dimcnsional or dii  asionless coupling consti.ats whivh have to be taken from ex-
periment. In conventional theorics this basis is used to construct quantum Geld
thearies and from them to att»mpt Lo identify yaifying symmetries which reduce
the number of empirics) parameters. But chese theories currently are bouad up
with continuum modeis and infinities which have to be mauipulated away. We
find this repugnant 1n a fundamental theory, and take another route to attack
the commoz problem.

We explore in detail the iabel structure provided by the combinstorisl hierar-
chy mapping matrices and make tentative identifications which ot least have the
quantum pumbers for weak-electromagoetic unifieation and the lowest hardonic
states deseribed by SU3 when the fest three levels are combined. This work is
still in its infancy, and will not become convincing until the minimal unitary acat-
tering throry has led to more detailed resulla, But we, at least, Gind the degree oif
ubification we bave achieved exciting, and hope others may as well. Independent
of the details of the scheme, we claim ta bave now put the Parker-Rhodes calcu-
lation of the proton-electron mass ratio on & firm basis thus praviding the mass
ratio seale for our theory, The provious identification of the terminal cardinal
of the hierarchy with the gravitational coupling constant in terms of the proton
m-ss then eompletes the dimensional content of Lhe scheme. Ob dimensional
grou.ds we then have no place for a difference between gravitationa! mass and
inerttsi mass; in that sense the “equivalence prineipie” is already built into our
scheme and is .ot a separate postulate. Getting spin I photons and spin 2 gravi-
tons from the weak coupling limit is & task we anticipate will be completed in
the foresceable future. The construction of general relativity as a gravitational
theorv ~~auld then be on essentislly the same footing 83 any attempt which starts
from the se:ne weak coupling limit. The cosmological implications of the theory
do not, at this stoge, give us any conceptual or experiential difficulty, and provide



us with s preliminary estimate of the mass of the universe which is of the right
order of magnitude. The critical task in that respeet is obviously to first get the
elementary particle physics right. The basic idea with which we wish to leave
the reader is that by invoking a ticking universe in which everything happens
delween ticks, we avoid the infinities of the contiouum thecries and believe we

have unified relativity and quantum mechanics at an appropriately fundamental
level.

This paper has benefitted greatly during the course of its preparation by
comments and criticism from John Amsge Ted Bastin, Clive Kilmister, Michael
Peskin, A -F.Parker-lRhodes, Irving Stein and J.C.van den Berg, but in no sense
presents a consensus of this diverse group.
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m terms of electrons, posityons and gamma rays
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Appendix LTHE INCHOATIVE HYPOTEZ XIS
An Introduction to The Theory of Indistinguishables
by
A F. Parker-Rhodes M.A. PhD.

|A version of this paper was presented at the second annnal meeting of the
Alternative Notural Philosopby Associntion, King's College, Cambridge, 1081.)

From time to time the suggestion has been put forward that the pa .doxes,
puzzles, and contradictions, which still plague theoretical physics despite its im-
pressive record of successen, might perhaps be cleared up, if we had knowledge
of a level of being anterior to the physical, which might furnish the raw material,
so to say, out of which the known furniture of the universe, in purticular the
subatomic particles, could be seen as belag made. Such suggestions have all, so
far, come to nothing, for various reasons. The great difficulty in implementing
the idea is that the contents of this new level, if it is to have any explanatory
power, ayert be abseut from our present world picture. Knowledge about it must
therefore be gained, if at ull, by nsing means of knowing which are themselves
unknown.

This difficaity would disappear, If we could use another well-tried strategy of
the scientific method, namely to postulale the existence of some enlity, suitably
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described so that inferences ¢ould be drawn from its assumed exwitence, which
could be tested against known or necessible phenomensa. But if this entity is to
be 8 new hypo-physical plane, it must be defined in such a way that its own
nop-observability is a plausible inference from the definition, and at the same
time so that other more constructive inferences about what is observed might
follow. I claim that such a definition can be found, by a principled search, and
Jeads directly, by way of some difficult and at times surprising mathematics, to
a tennble theory.

1 do not claim however that the theory was discovered in any such principled
manper. Having no grasp of the difficulties iovolved, nor any foresight of the
length of time required to fill in the numerzous gaps, it came about by serendip-
ity, as do mast successful and unsuccessful theories. But an autobiographieal
account of a mathematical theory, even a well-written one, is not the right thing
if understanding it to be attained. I shall therefore proceed as if | were expound-
ing a welt-known system to intelligent students, exeept that most of the real
mathematical bones of the theory, to which I offer here only an introduction,
will be filleted put.

L1 Unorderables

There is a well-knowr theorem in Set Theory, that any Set of n members,
finite or infinite, can be sinply-ordered. This is surprising, on two counts, That
it skould be provable from the axioms cotmanly used implies that orderability
is tacitly concealed among them and might teed to be extirpated; and that it
might not be true is an affront to common sense f the kind that might well have
found it its own place in & revised set of axiomy. Cominon sense tells us that any

two things, or concepts, can be arbitrarity labelled rs first and second. Common
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sense, however, refers Lo the world of experience, and il we are to venture into
a realmn where observations (aud a fertiors common sense) cannot guide us, such

ideas as this might be wrong.

My first step is then to admit unorderable things into my basic axioms. If the
hypo-physical plane were to eonsist ¢f such, our not having noticed it hivherto
would be superficially accountable {at least), and the first major difficulty .
dofining what we are talking sbout would be avercome {there are plenty moret}.
This means however that we abandon Set Theory; and since so much of normal
mathematics is based on Set Theory (or supposed to be}, we shall be unable to
get much help from the existise literature i constructing a mathematical system
to describe the Inchoative Plane, But if not Sets, then what? It is of course well
koown that oot all ¢lasses are Sets, and, assuming that we nre dealing with a
plurality, »: something with aspects of plurality anyway, we shall at least have
classes. When we come to setting out an axiom system, differing from that of
Set Theory as adumbrated, I shall call any class to which the new axioms apply
a Sort, and the whole system will then be Sort Theory. (1 capitalize “Sort” to
distinguish it from other sorts of sorls, and “Set”, too, to set it apar: form the
set of calloquial “sets”.

Fi /m this point of view, the main peculiarity of finite Sets (which cap be
considered as a special clasa of Sorts) is that their cardinals and ordinals are
always numerically equal. A Sort, on the other hand, ¢sn have any orainal not
greater than its cardinal. If all the members of a Sort are mutually unorderable,
they all occupy the same position in any « rdering, which we call the first place,

30 that the ordinal is 1. If every pair is orderable, then the ordinal it n. These



are classed “perfect” and “ordinable” Sorts reapectively; im the general case of o
“mixed” Sort S webhavel <0 S < n, ¢S=1n.

L2 Triparitous Mathematica

Suppose now that we have a class containing two entities. If these are identical
the cardinal of the class, and therefore its ordinal is 1. Wete we then misteken
in saying that the class contained two entities?That would be too harsh; it might
well ve the natural way of reporting expetiences we peed to discuss, even though
we know, &= in a fairy-tale, that we carnot really experience them. If however
our two entities were not really identical, but still unorderable, the class will
have the cardinal 2, and the ordinal 1; it is a perfect Sort. There is no “mistake™
thoye; but we have met up with ftwin eatities. These don't exist in the real world,
but of course we are assuming that they do so in the Inchoative Plane. And,
of course, we might meet with eatities which are not even twins, but orderable,
and in that case, back in the everyday at last, we shall have a class with both
cerdinal and ordinal equal to 2. But we still shan'i know whether to call it a Set

or 8 Sort, until we know what else is Likely to turn up.

We have therefore, when dealing with situations such as faat described above,
to reckon with three “parity-relations” smong entities; they mny be either iden-
tica), or twins, or distinct. In normal mathematics we have only two: equal
or uncqual; 1 shall call auch a theory “biparitous”, as opposed tn “triparitous”
mathematics, where we have three parity~rclations. Strictly, of course, we are
not three but six, for whereas not-equal is the same as ynequal (and vice versa),
not-idantical means cither twins or dis’ act, and likewise all the negations are
disjuunctions of the other two. [n both system=, cases may arise where we do not

know what parity-relation obtains between two things, but this is course does

'L
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not count as an additiona} parity-relation.

Triparitous mathematics {as Iar as ) am copcerned) uses the vame system of
inference s classical, in which a proposition is either true or false {or undezidable)
but never both ab once and slways (il decided) one or the uther. To admit a
third parity-relation is not to be confused with accepting a third truth-value (a3

in intuitionist mathematics where nol-not-P does not entail P).

The imaginary entites among which the “twin” relation of unorderability
holds are ealled “indistinguishables®, or “ibs” for short. It is important, in enter-
ing on an unfamiliar field, not to cut corners; that is why I use separate terms for
the relation of twinship and the things that exhibit it. The abs’.act relation, aad
the associnted notations, exiat in the mathematical sense, once they are located
in a consistent thetry, and no questions need be asked so long as we are doing
pure mathematics. But in a theory that is to be applied, we must at some point
pass over to thinking what the mathematics means, and in our case we ssy that
“ a and b are twins” means that there are two indistinguishables, denoted by the

symbols a.b, or ¢hot n,b are ibs,

It is part of the bypothesis which I am examining th-t such a remark is
allowed as sensidle in relation to the Inchoative Plane. In the world commonly
thought of s “real”, there are of course no ibs. They exist, if at oll, in o non-
ordinary reality, and we speak of them (as in a fairy-tale} as if they evist in
the same sense that ordinary objectt do, hoping that in the end wa shall come
to conclusions which can be compared with sctusi experience. I fact, things do
turn out thus, and so we shal) be lempied perhaps to say that the iby are real after
all, even “more real” thaun electrons and protons. this would be nonsense. Reality

is a different matier in each plane, and it would tend to clarity of thought to
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recoguine this more clearly than has been custamary hitherto. Some philosophers
have lung been pointing out that it makes a good deal of possibly unexpected
sense af aur sepse-data to assume that there exists a physical world outside of
us; in a similarly instrumentalist spirit, [ claim that what we have to assume this
pbysical world is like makes, here and there, more sense il we assume that there
exists an inchoative world, of which the physical world, in part at least, is the
obscrved expression. | don't need to claim that the Earth “rezlly” moved round
the sun (even today a geocentric view would make only a negligible dent in the

costaclogical prineiple).
1.3 Indistinguishables or Unorderable. ¥

The oaly virtue of thus going beyond our familiar concepts is the promise of
more simplicity than physical theories are currently coming up with. In fact, a
lot follows from the root idea that at the “boltom” o1 vi~ objective world there
exists an in° ..~ rlass of uporderable enlities. Byt to prove it .ze have to reduce
this idea « praper mathematical form, and there are many steps before we can
even begin Lo look - ossible empirical consequences; it is therelore important
to keep in mind this iritial simplicity of the concept, which it will be all too casy

to lose sight of.

The firat difficulty is that the preperty of “unorderability™, easy though it is
to grasp in the imagination, does nut lead by i2«ell to the more diffieult but more
productive idea of “relative identity”. The ios separately encountered cannot
be distinguisiied from one 1b; the decision between identity and twinship can be
made ouly belween members of ore class defined in the relevant context. We
cannotl get away with sayiog thal separated ibs cannot be identical if they are

observed stmultancously, even if we allow ourselves, as we have not done, to speak
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of “abservation” at all; for simultaneity presupposes time, and time, os & property
of the physical world, is one of the things we hope Lo explain, and certainly cannot
be used in Lke beginning without corrupting the whole argument. [n fact, the
nearest we can get to the ides of simultaneous observation is that it defines a

clase of things so observed — which is where we started from.

I turds out eventually that, starting from relative identity, we can prove
that ibs are yoorderable, as a theorem, but not vice versa. So we have to incor-
porate relative identity into our axioms, and immediately encounter another gad
much bigger difficulty. For as soon as we make the parity-relation of twinship
dependent on class membership, the notation in whick our theory is expressed be-
cames context-dependent; for the classes must be defined in the relevant contexl,
which means they are liable to change as the atgument proceeds. Normal math-
ematical notation is contexi-free, subject to conventionally acerpted exceptions
such as sin?@ == {=in §)2 7 sinsin § 7 (sin~18)~%, which are already awkward
enough. It follows that we shall not be doing “normal™ mathematics, but some-

thing requiring unusual care and vigilan :e il proper standards of rigout are to be

maintajned.

Furthermore, we have «aid little enough, in saying that the notation is
caontext-dependent. The ral  ©f dependence have to be discovered and precisely
formulated. This can be done thanks latgely to work which has already been
donc io mathematical linguistics, which enables us to work out, step by step, the
effeet of the third parity-relation on the meaning of various possible formulae.
What we find t kes the form of a substifution rale to be applied to indistinguish-
ables, corresponding to the rules allowing “Iree” interchange between equals and

po interchange between unequsls; the new rule is of corrse more complex, sud
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refers to the syntax of the formulae. But it is definite and ¢lear, and leads to an
“axiom-schema” replacing the much simpler (and usually unstated) one of nor-
mal mothema* s. The price is paid when we come o scan all our formulae to see
whether they mean what we take them to mean in the light of this substitution-
rule; the only compensation is that it is usually (but not always) passible to
express what one wants to in the new formalism. When this cannat be done, it
means you are trying Lo express nonzense. It seems that this mathematics can
only be interpreted in formalistic terms — which is more or less what one might

expeet in treating of entities so elusive as our ibs.
[.4 Peculiarities of Sort Theory

In many ways Sort Theory works out differently from Set Theory. One
pecuijarity is for example that the members of s Sort are always Sorts; there is
po analogue of members of Sets which are not themselves Sets. In consequence
of this, structures in the Inchoative are not kierarchical in the way of having
membets which have members . . . till eventually we reach a bottom level. In place
of this kind of thing however we do have functioiial hiernrchies, the arguments of
a “higher” function being themselves functions on “lower™ arguments, and here

we do cventually reach bottom with arguments which are not functions.

There are may odd things about Sort mappings. Any mapping from a Sart
onto a perfecl Surt gives identical images for all ils arguments, namely a free
choice among all the elements of the perfeet Sort. But in reverse it is otherwise;
each clement of a perfect may be mapped onto a distinet element of an ordinable
Sort. But of course in neither case can we have an inverse mapping. One effect of
these lapses iote triviality is that the number of different functions whick can be

defined over a perfect Sort is very fimited. A Tunction of two arguments can have
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at most three different vslues, according to what arguments are chosen; it must
moreover be commutative and associative, The latter restrictions apply however
many arguments are inveolved, and outweigh the slowly inereasing number of
values which might appeer; there is in fact only one three-argument function
(oot reducible to combinations of others), and that exists only for the perfect
Sort of cardinal 4, Nc (irreducible) functions of more than three arguments exist

at all

The only non-trivial functions of one argument are called, with a little license,
“endomorphisma”, Lecause they carry one element of a perfec! Sort into another.
But there are only two possible results, the argument unchanged, and & free choice
among the lot. It follows that two endomorphisms which have the same invariant
subdomain are identical, and it can be shown that those with different invariant
subdomains are twins; the Sort of endomorphisms over a givea perfect Sort is

therefore itsell a perfect Sert.

There 15 however one kind of funciion, of a rulher trivial kind, which gives
a little extra variety, which I call “multiplets”. A multiplet is an ordered or un-
ordered cisss of multiplets, cr an unordered class of members of c.ne perfect Sort.
The simplest example is a pair; a more complex one is an ordered quadruplet
ol a pair, 8 singleton, another pair, and a triplet, where the first two and the
second two &re naturally unordered and the whole has cardina) 4, ordinal 3. All
paire taken from a perfect Sort are wutually twin, and form the “pair-Sort”; the

poir-Sort of a Sort of n twins has eardinal An = n{r + 1)/2.

There are no functions definable over any perlect Sort which are not reducible
to some formula contaiaing funetions of one two or three arguments and multi-

plets. Over mixed Sorts of course may more functions can be constructed, but
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sinee any mixed Sort ean be oxpressed a5 an ordinable Sort of perfect, or smaller
mixed, Sorta, afl they yield i2 reducible ta a8 mixture of familiar functions over
Sety and those over whatever petfect Sorts are fnvolved.

A particular prablem is pesed by ordinable Sarts, which contain po twins.
They are Sorts jpsofar as they are sssoclated with ather Sorts which .e not
necasatily ordinable; but in the absence of these they are indistinguishuble from
Sects. 1L iy important, for the expasition of the theory, pot to zalf them Sets,
provided we ramember that for every ordinable Sort there is an isomorphic Sei
with the same extent (to use the Set-theoretic term). This is ¢alled the equivalent
Set of the Sort, Mixed Sorts also have cquivalent Sets, whose members are Sorts,
but it is not ususlly necesnary to romember this, so that Set theory has in this
caso a very limited application,

1.5 Halional Sorls

The definition of Sorts has been so lramed, that ony elass which is directly
gubject (v empirical observation, and 8o for evidential value in the scientific
method, must be & Set. It cannot be g Sart, but it may be the equivalent Set
of an ordinsble Sort {which hides an exception to the rule under a transparent
verbal cammouflage). Thus if we are given s Sort § which is not ordinable, the
proposition that “5 exists” is empirically undecidable,

Now suppose that we can consiruct, from the members of $ and functions
definable over S, & Set 57 {that is Lo say, & cluss ell of whose mermbers ate either
identica) ur distinet), in whieh each clement of 5 has a representative (that is, a
mapping exists from § 1o ') such Lhet the twinship or distinetion between any
pair of elements of S can be determined from their representatives; and in which
eath funetion of S is represented by some function defined over S' such that the
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value derived from given representatives in 5 is the representative of the value
given by the correaponding members of 5 under the function of S represented.
Then we eall §' [with the requited functions) an “autogenous represontation™
of 5. In such a ¢ase, we can iegitimately infer, from the proposition “S exists”
alone that “5* exists®, and since 5* is 8 sel, it is possibile for there to be cmpirical
evidence for S, It such evidence is fortheoming, we are then justified in ssyiog
that this evidence would be explained by the existence of S, since that iz a
sufficient condition for the existeace of §' also,

Clearly, individus! instances of this will not be strongly evidential, though the
more cases we find, and the fewer failures, the better the matter will stand. Much
depends on how nieny Borts turn cut nol to hove autogenous rapresentations, For
if §' were nol autogenous, we eanno! infer § from 5'; additiona! sssumptions
will be required beside the mere existence of 5, so that the existenco of § Is no
longer a sufficient condition for that of ', and as it is certainly not & necessary

eondition there is no valid case for S al all,

Any Sort for which one or more autogenous representitions can be con-
structed is called 3 “rational”® Sort, or RS; the above argument shows that there

could be positive empirical evidence explainable by s rational Sort, but rot for
any non-rational Sort,

Now thanks to the relative poverty of functions and/or mappings among
Sorts, it is possible without too much trouble to discover whether or not any given
perfect Sort is rationsl, and i some enses Vo corstruct mimed Sons which ave
so. Mixed Sorls in general can be copsidered s unions of perfect Sorls, snd are
rational il and oaly if all the latter are; all ardinable Sozts are « f cousse trivielly
rationsl by virtne of their equivalent Seis of autogencus representationa. We
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can thus expect 8 definitive answer to the question, “Which Sorts are rational?”
The answer is, bardly asy. Perfect Sorts with 0, 1, 2, or 3 members are RS's,
alio o mixed Sort with 2R¢ membess, and mixed Sorts including any of these
togetber wilh the Sorts of endomorphisms ap {0 2 certain level, leaving no gaps
in the series; all other Scorts are RS's only if they sre constructed as unions,
intersvetions, direct products, ete,, from amopg these basic RS's, and so offer no
additional Information to that deriving from the Jatter alope.

1t may be of interest to explain the nature of failures to Snd autogenous
representations, by considering the perfect Sort of 4 members. This turns out to
bave a function of thres arguments which has no . epresentstion, and a symmetry
condition nmoag its mombers which is not satisfied by any representation. The
latter failure Is reproduced for all larger perfect Sorts. In the case of Sorts of
endomorphisms, the only available representations are in terms of structures
analogous to matrices, the numbers of which that are available can be shown to
be inyufllelent if we continue the serles long enough.

1.6 The Inchoalive Hypothesis

At the beginning of Section 1.5 1 proposed that the Inchoative Plane might be
characterized as ap inBnite closs of unordarable entities. Even when sharpened up
by the replacement of “utiorderable” by “indistinguishable®, which can be defined
(mathematically) by the theory of Sorts this seatns rather o bare statement. We

¢a0 now however use it in & genuinely testable hypothesis, which can be stated
thus:

). There is an infiaite class of indistinguishable propertyless entities, call the
Inchoative Plane;

2. There is a physical entity manifesting the structure of each biparitous
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representation of every rational Sort of indistinguishubles in the Inchoative,
Plane;

3. There are not other physical entities than these, or such as ave analysable
in terms of these.

I eall this the “Inchoative Hypothesis® in its “strong form”; a weaker form,
which alone I claim to give evidence for, is obtained by deleting the clause (3).
Even the strong form does not make the Physieal Plana reducible to the Inchoa-
tive, be~ause the entities it contains may not bo (indeed are not) deterministts in
their behaviour. I it were true, however, unlikely though that is, it would go a
long way towards validating on apriorist philosophy of physics. This is a strong
motive for oot taking it seriously, though it probably canne. be disproved on

present knowledge without dispreving (2) also; but I shall mention & few proba-

ble counter-examples to (3) in Section L14.

Clause (1) is a mainiy metaphysical support for clavse (2); but not wholly so,
The term “propertyless” is jvserted for the following logical resson: had 1 said
“indistingnishable black entities” this would imply that some more black enti-
ties, necessarily not in the Inchoative because they would not be indistinguishable
from the black ones, exist; therefors ciause (3) could not also be true. The term
“infinite” is also probably consequential for the lnterprotation, If “metaphysical”
means “without testable consequences” (a4 it often does in seientific discourse),
then the epithet eannot strictly be applied to (1); neither is {1) incapable of ana~
Iyticai fosmalation, being embedied as we assume iz the axioms of Sor¢ Theory.

Nevertheless, it is clause (2) which bas to rue the gauntlet of comparison
wilh the known physical world. It comes through, if not scatheless, with no fatal
wounds (as presently diagnosed). That it does so is, at first glanee, very san.ds-
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ing, and makes it Jificult not to take the Inchuoative -1 a seriows hypothesis. 1
shall luok into the strategy of testing it in the pext section, byt meanwhile two

points in clause {2} need some comment.

First, the expression “physical entity”, oceurring in & context where none
of the emumoen limitations can be presepposed, has a highly inclusive sense.
Microphysical evonts, space, the uncertainty-principle, prolons, gravitation, sre
among Lhe kinds of things comprehended under this term. Second, note that the
tertn “autogenous” is not used of the “representations™ mentioaed; it is of course
assumed in the definition of a rational Sort, tut if a Sort is known in this way to
be ratiunal, there is no logical reason for discounting other r~oresentations whieh
satisly the mapping relation as candidales for empiricai  .erpretation. These
non-zutogenous representations | call “secondary”.

L7 A Fatlera of Familizs

I bave mentioned that, for any perfect Sort, there is another perfect Sort
whose members are the endomorphisms en the first; and 80 on of course without
limit. In the case of a rational Sort, it can be shown that il an sutogencus
represcatation can he found f{or the Sort or endomorphisms over it the wnion
of these two Surts is rational. The means for construcling representations are
however limited, and as soon as we reach the point where none can be found, the
sequence of rational Sorts terminates. This relation of endomorphism generates

Sets of R5's which [ have called “families®.

Al the R8s turn out to belong in vne or another of six such families; two of
these nre intimately jnlerrelated and are best treated as one, and one is trivinl.
The families contain different numbers of RS’s, which form the palindromic series

} 60 8 oo 1. The fitst consisted of the empty Sort alone. The second has the
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singular Sort D1g and s initial member, and contains un ordinable Sort of every
suecewling cardinal 0. The & refers to the combined families D2 and D3, which
contaiu the perfect Sorts ¥ and D3¢ with two and three members, which have
respeclively five and one descendants, with cardinals 3, 5, 10, 137, and 17,037
{approx.} in D2, and 10 caly in 3. The second infinite family stems from the
injtizl Doog and the final 1 contains the all-inclusive infinite Sort representing
the Inchoative Plane as a whole, which does not call for any specific physical
interpretation except presumably the Universe. The presence of this totality-

term is an upusual and welcome feature of the theory.

The second infinite family is sensitive in an interesting way to the mathemat-
ical philosophy with which we approach it. If, with the striet intuitionists, we
will have no truck with “completed infinities” the initial Sorl Doog exists and is
rational but sll the rest and the “total® RS are identical with the firat, If we ac-
cept completed infinities in the Soris themselves, as being appropristely beyond
the reach of the mind, but reject them in constructing autogenous represents-
tions on the grounds that these have s practical role, then the family is indeed
infinite, but all have the same cardinality; this is a close analogue of D1. Finslly,
the most indulgent view about infinities allows the Sorts in Doo to run through
all the Carnepian infinities Ry. The “total” RS exists (non-identically) only for
the last two philosophies, the sccond making it equal to cardinality to the RS's of
Doo, the third giving it an exteot beyond any cardinality. The second allows us
(o see the family Doo as a picture of strictly objective chservations; the first does
not allow for any representation of observation as conscious, while the third can
accommeodate an infinity of subjective states as well: which neatly explains what

sort of people prefer each .ew ~f infinity, but tells us nothing about physies.
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I8 Secondary Representations

It might be fesred that the introduction of secondary representations of RS's,
combined with the strategy of allowing a separate interpretation to each repre-
sentation, wonld widen the field beyond the possibility of definitive testing. It
is true that the possibility of finding a secondary representation previounsly over-
looked cannot be ruled out, bit Lo entail 8 new interpretation it would have o
be non-reducible to any previous one, which seems unlikely. All we need to say
about this is that the total system is slightly more open-ended than it may at
Brst seern. In fact, there are only two eases where accondary representations are

kaown.

The families DO and D1, being inkerently ordinable Sorts, have none [or
no primary ones, if you prefer). D2 does have collectively & secondary repre-
sentation (which bowever omits the RS D2 with five members), namely the
combinatorial hierarchy of Bastin, Noyes and Kilmister. This can be axioma-
tized within the biparitous mathematics of the system, and is thus capable of
interpretation in directly physical terms, wherens primary representations can
only be interpreted as classes of indistinguishables which have to be correlated
with physically observable predicates to become fully empirical. D3 also has a
secondary representation, but this is contained within that of D2. Doog bias a

secondary representation by mon-terminating simply-ordered sequences of digits

{virtually = real number < 1).

Among secondary representations, the combinatorial hirrarchy ocenpies a
unique place, since its biparitous character makes it much more straightforwardly
interpretable than its primary rival. I nevertheless do pot count the results from

that quarler as directly relevant o the success of my Lypothesis, since they are
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logically incapable of providieg evidence for it.

1.9 Varietiea of Interpretation

For primary representations we have 1o seek interpretations which are faithful
to the logical structure of tha Sorts involved. In the case of ordinable Sorts, like
those in family D1, we logk for an ordered elass of distinet things; in general
however our interpretation must be first as some system of indistinguishables,
to which distinct, often numerical, predicates -+~ be assigaed in the course of

“abserving” them.

The principal types are “sggregates”, “thresholds™, and “liberties®. An ag-
gregate is & fixed usually sinall number of indistinguishables, usually thought of
in physics a3 a kind of object but more naturally as so many slats where apecific
quantities of charge, mass, spin, and so on ¢an be entered. This writing-in of
specific quantities is precisely analogous to the writing-in of specific values for
the components of a vectar, whether they are apatio-temporal coordinates or say
sngular measures deflning the orientstion of the spin axis. In each case we are
predicating somethirg observable of something in itsell unobservable, but suscep-
tible of inferpretalion as having the appropriate role. The temptation to think of
the coordinates ns & “kind of object” arises when their values are dimensionally
congruent with those predicated of actual objects, which are then seen as the
sum of a set of smaler copstituent parts. Henee the description of baryons, ete.,

as being made up of quarks.

Bu., it may be objected, isn't there evidence that they are evidence of discrete
centres of gcatlering within the proton, for example?! If what is an apggregate is
deemed ry object, the location of that objeet is not precisely defined, and if

attempls are made lo fix its position various reaults within ra experimentally-
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deternmned range will be oblaised. If one can sctually “see™ the object the
uncertainty may be ascribed (o “vibration” (as with atoms in 3 crystal lattice)
composed of vector cumponents; if this deseription is insppropriate, what one
does ahgerve will be whatever is understood as appropriate, Call them vector

compunrents, call them quarks what's in a name?

The «ccond main type of interpretation of rational Sorts is as “thresholds™.
When 2 number of particles all haviog Lthe same descriptors (quantum numbers)
are assembled within so small a space that the spalial location vectors po longer
serve to distinguish them, they become truly indistinguishable, and ought then
to be observable only in the pumbers allowed for RS's. In fact, experimental
difficuities make it inipossible to assemble in this wey more than twe of at most
tnree similar particles, so a direct test is {28 usual) not feasible. But it is possible
1o calculate what would happen if one conld collect larger numbers; what we
find is thal in every case there is a threshold number, at which the sggrepate
becomos unstable. For example, an sssembly of (about) 171937 nucleons within
the Compton radius of one of them produces the smallest pussible black hole; and
137 clectron-pasitron pairs so packed initiates s chain-reaction of pair-production
and so would “explode”. These thresholds correspond to the cardipals of RS's,

as the thoeury says they should,

Last o} my throe main types of interpretation 1 have colled “liberties™, mean-
ing by this that the indistinguishables involved in them are most easily recognised
39 the degrees of freedom of some system. Of this Xind are the three dimensions
of space, the ten degrees of freedom specifyiag the flavour and colour of & quark
(theee for colour, and still only seven d.I. among the knowe quantum pumbers).

This last is one of the fow cases where & mixed RS shows its compesition from

113


http://spati.il
http://iniii.stinguiHli.ible
http://tli.il

two perfect Soris of eardinals {ihree and seven respectively) in the interpretation
assigned to if. Mot afl intorpretations belong Lo these three types. howsver, ns [
shall now explain.

L.10 Space and Time

Whereas in the striclly hiparitous theory of the combinatonal hierarchy it is
possible to discern a definite order of apypcarance of the various structures, no
such ordering can be postulated for the theory of indistinguishables. The total
repertory of RS's coexist with no time-like ordering, at most within families
i= there an order of dependence which might be significant {and which in the
family D2 is in fact the scme as the “order” of the combinatarial hicrarchy).
Thus, while the latier theory must start without sny space-time framework the
Theory of Indistingnishables hins one from the first quite independently of the

interpretation of the finite families, based on the families D1 and Doo.

The members of the simply.ordered deaumerably-infinite family D1 are the
only items in our theory which are all ordinable Sorts, and therefare may directly
represent something empirically obsetved. It is commoaly acknowledged that
all the empirical data of microphysics comes form the observation of “particle
wrleractions” or events, we need therefore have po besitation in saying that family
D\ correspond Lo the totality of eveats (in this sense of the term).

This “totality of events™ constitutes a discrete “space” in the topological
sehse, and it is possible tn show that 1o specify any event we need 10 give it a
position in an infinite suecession haviny a first term, and for any « ch position
can give it a position in up ta three independent twin orderings, each of which
ia finite but unbounded; snd that thiv is the sum total of the information of

this kinc which is available. Any event therefore can be specified by s sel of
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four coordinntes, one of which relfers to a structure of a different kind from the
other three; any method of specification not reducible to this form is either in
general inadequste, or redundant. The space-time structure of the world is thus
determined o priori, and only the methods by which we can investigate it, and

the manner of its subjective Apprehension, remain to be considered.

That for everydsy putposes space, as thus defined, seems to be “continuous”,
follows merely from the [act that the discrete events, whose disposition it de-
seribes, are far too amall and ¢lose together to be discerned as discrete by our
organs of perception. Physicists however have become accustomed to considering
situations where only a few events are ' elevant, often indeed only one of them.
And io this last case at least it is clear that the notion of space as given by the
sbove theory simply has nothing to say. At least two events are needed to provide
any standard of measurement; and to provide an event with s position defined
as required, at least four other events, making fSve in all, must be taken inte
account. Very small regions are thus not catered for by the npparatus provided

by family DI,

Empty space, if that's what we are taliing about, is nothing much to worry
about; but the “space” surroundivg one event is ~cmmonly thought of as con-
taining verious fields which can be deseribed, we often think, only by reference
to a ¢oordinate system. These coordinates are in fact derived by iinaginging the
familiar spatial strueture interpolated into regions as emall as we care to con-
sider. If the pature of space is as | have described, this must be nonsense, and
its results must be wrong. As is now well known, they are; quantum theory is
provided as a remedy, and for many purposes it works wonderfully weil, but few

would be prepored to explain why it works, except in special cases.
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1.11 Disardinate Space

Where the space based on D1 fails, we turn to its palindromic complement
Doo, where we find in Doog an RS which has like D1 a secondary represcatation,
already briefly mentioned. This representation has the structure of an infinite
Boolean laltice; poiats are seperated pot by apatial intervals, as London is from
Cambridge, vt more like the separation of East from North, by rotations. Every
point has an infinite number of neighbours. Moreover, almost all the members of
Doog are twins (Doog is “almost nerfect™), so that any mapping onto this Sort is
(at most) completely unspecifier; for this reasoa, 1 call the space which we infer
from it the “disordinate space”. If it is right to assume that this is the kind of
space which takes over when the discrete space of D1 is no longer applicable, then
the basic trouble with working in conventional infinitely-divisible space is that
its points are really mapped onto disordinate space, so that literally anything

¢an be any where,

The result is not totat chaos. There are few problems that statistics cannot
be applied to, and this isa't one of them. “Disordinate sta‘islics” is in principle
simple enough, and though its results are sometimes bizsrre, that is only o be
expected. In sclected cases, the technique seems to work well.

Disordinate space has infi ic. connectivity; it is in faet a realization of a
concept which has recently come into prominence in quantum physics, that of
“wormholes”, according to which the connectivity of space at very small distances
increases without limit, But my diserdinate space offers no such gradualism.
Connectivity s infinite ulbeit in general tempered by a finite probability which

offers at least a qualitatively similae smoothing of the transition,

This raises the question, what is the connectivity of ordinary large-senle
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space? It sppears that Lhis is ot a question which it is customasy to ask, per-
haps because it ¢snnot (yet?) be decided by observation. Now the geometrically
simplest way of sonstructing space from the events of D1 gives us a bypertoroidal
space, whereas cosmologists seern always to gssume (so tacitly as to suggest it
is not an aseumptiun) that the universe is byperspherical (or parshy perboloids.y.
There are enough data supporting the inherently more obvious assumption of hy-
parinraida] space to persuade me in general to assume that it is true. 1t moy be
long before the matter can be settled by observation, bul theoretical consistency

will probably given the answer much sconer.

1.12 Pariseles ar Aggregates

I is o bastc poiot of my theory that indistinguishables as syeb can never be
cbserved. Yet there are many things which sre repeatedly observed (or so they
say) which oppesr to be — apart from accidents of position or momentum —
strictly indistioguishables. Electroos with ldentical spins, or example. Strictly
speaking, it is only the strong form of the Inchoative Hypothesis which entails any
consequences from such observations — but if the so-called elementary particles
are to be themselves counted among the exceptions, we shall have explained
very little. Furthermore, it is gonerally sccepted that some of these particles are
indeed aggregates of unobservable entities, as the theory predicts. If hadrons,
why mot leptons?

Because, up 10 now, there bas been no evidence of any kind of compasitencss
for leptons, and so no motivation for still further conceptual complications. One
might add thas if quarks are essantislly involved in the strong interactions {as
ste the forelimbs of birds in Bight} Iben perticles which don's participate in that
force (Aightlexs veriebrates) shouldn't have them. All the same, as many an
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smnatenr numerclogist must have discovered, it i3 easy enough to invent = wet of
leplo~quarks which will “fit™ the knawn leptons in the same manner that elassical
quarks “explain” the various hadrons. My theory suggests that it may be more
profitable to draw inferences from assuming such a structure than to look far
direct evidenc: of their existence, which we have ug eight to sxpect anyway.

The theory mskes a plain prediction: that, given that there is no essential
episiemological dilierenee between leptons and hadtons {which has never been
suggested) then the former are aggregates of Eve “parlons” of which at avy one
time three are lepto-quarks {“larks"). These correlate like quarks with the RS
D27 with 3+ 2 = 5 members. As to the partition of the varlous supposedly
quontized attributes among these pr  ony, the requiremnents of the theory entalt
that only identical or random dense values can be considered far the partons 14
situle.g. not —1/3,2/3, 2/8), and that identical values woulu have to b» constant
and so imply in implausible measure of suif-identity for indistinguishables, aa well
88 contradicling the hypothesized quastity of propertylessnesa, So we end up with
a random and perpetually shifting partition of charge (and spin?) subject to all
adding up to the electronic charge (or zero for neutrinos) and a second constralnt
of the same nature — because D2} is o mixed Sorl of ordinal 2 — loaving us
with a system of three degrees of frecdom.

Any such partition of the electronic charge will elearly endow the particle
with ao intrinsic elee‘restatic potential, and hence with at Jeast ibe corresponding
mass. The madel described enables us, with the help of the aforementioned
*disordinste statistics”, (o calenlaie the resuliing mass, It comes to

m = 0.23440233 o /d

where o is the fine-structure constant, K is i Janck'’s constant divided by 2w, and 4
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is an assumed minimum distance of approach between the partons (that it is finite
is requived by the theory, and of course a 2ero value leads to infinite potential).
If we identiy this d as the Compion radius of the proton (this being the heaviest
stable particle snd so giving them smallest d), and @ as /137 following on the
tdentification of the RS D23 with the electromagnetic field, and give K its accepted
empirical value, m comes out equal to m, &3 near as the known errors in K and
d sllow.

There i nothing here to call in question the assumed parton-structure of
the electrotr, except that the valtue of o assumed is nof the empirical value of
the Anwstructure conatant, The latter Is defined within the framewark of a
quite dilfcrent model of the system, and an sttempt to quantify the effects of
ihia differcnce in the models snables us to sccount for most of the discrepancy.
QOverall, Lhis kind of reaults gives a little support to the model on which it is

based, but is by no mesns conclusive in that regard.

113 Furlher Reaulls

A number of other conclusions end predictions can be derived in the course
of developing the Interpretation of the theory. Most of these are relatively of
little weight, and some work against the correctness of the hypothusis. Of a kind
too general to carry much weight are for example prediction of conservation laws
applyizg under specified conditions to energy, angular momentum, and linear
momentum; and of the irreversability of mass action, Diffieult to assess is the
conclusion that, if the conaectivity of space is hypertoraidal, there is no reason to
expect conservation of chirglity, which however would eharacterize hyperspherical
connectivity; all one can say is that since (a few) cases of asymmetsical chirality

are known, this favours the hypertoroidal theory.
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More interestingly, we can predict the existence of an upper limit to the veloc-
ity with whicn a particle may travel, from $be minimal topological requirements
fir " = distinciness of time from space; which is by o means original, except for
the fact that this distinctwess is itsell predicted by the theory. Much the same
ai2tns altaches to the prediction of & fnite limit to the nccuracy of simultaneons
complementary measuremen’ . {Fieisenberg’s prineiplo).

There is a long but streightforward argument which sets an ypper limit on
the number of distinguishable particles of & given kind who might (ideally) bs
“abserved™. This leads, in the case of nucloons, to an estimate of the mean
density of matter jn the universe many times in excess of current asironomical
cstimates, but close to the value which, according to relativity theory, would
make the overall curvature of space zero, This, if not merely a colticidencs —
and the uncertainies in the numerical values concerned forbid us to dismiss this
possibility — seems to show something, but 1t ls hard to know procisely what.
With the same proviso (not aimost stultilying) we can derive a tolerable estimate

of the gravitational constant &.

It can fairly be claimed that the density of matter is the one apparently
counter-lactusl result the theory has yet come up with; ane ~ view of the un-
certainties commonly expressed by astronomers when discussing thoir cvideace,
even this may not be so bad as it may seem. S, {o the eod, the weak form of tk-
Inchoative Hypuothesis emerges slighily battered, but surviving. Nothisy how-
ever ¢an be snid in favour of the stzong form, which malatains thei everythirg
should be in some sense explained cither directly or indirecily. The followiag
things for example remain untouched: massen and Vifoumen of the unstable par-
ticles (though Kari Euquist bhrs had some success with the masses of hyperons);
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disappoinlingly, perhaps, this theory has nothing original io contribute to the de-
scription of the two-slit experiment, only s translation of the “prebability-wave”
account. There are of course many other gaps of o like kind which it would be

tedious to list.

I has 2 deliberately not claimed any support from the combinatorial hierarchy
work, since this is conceptually independent, even though logically compatible
with the inchoative Hypothesis. There are many reasans for hoping that some of
the gaps lcft by the latter may eveatually be Slled by the former; if this happens,
we shall approach a little pearer to the essentially implausible “strong form” of
the hypothesis.

1.14 Philosophical Implications

The Theory of Indistingnishables has no immediately evident practical con-
sequences. The most it might do is to lead eventually to s simpler and perhaps
more comprehensible presentation of existing physical theories, whose quantita-
live yesults, and in many cases the routes by which they are arrived at, wil)
remain as they are or nearly so. But it may have an effect on the way we look
at the world about us, through two factors of which cne is uew and the other

revived from long ago.

The new factor is the concept of “planis”. Two of these are generally rec-
ognized in one form or anather, the physical and the organic. The reductionist
view, that all organic phenomena should be ultimately explainable in physico-
chemicnal terms, would in eflect abolish the distinction between these, but is
becoming ever less tenable. Some would elaim the “humen plane™ as a third, at
least partially within the purview of science. | however wish ta add one at the

other end. If my theory is accepted, there is an Inchoative Plane, of which many
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the physical plane are logical consequences. Il the strong form of the hypothesis
were Lo be established, this would partially reduce the phyaical to the inchastive,
and so threaten the distinetivn between these planes. This 1 do not expect ta

happen.

From this point of view, the virtne of the present work lies in the extreme
simplicity of the Inchoative as described by my theory. Because of this, whatever
it can explain is explsined in a very strong sense. If sound, therefure, it represents
a real advance in our understanding of the nature of the world, however much
remsins unexplained. It would mean that the physical plage is part trapspaient,
and in part determined by strictly physical principles for which we must contioue
ta seek physical explanations as we have always done, In this search however it
will suzely belp, if we cap go some way towards eliminating certain things from
the latter category, as being inevitable according to the kind of principles I have

been dealing with here.

But the notion of different planes i3 not the only charaecteristic of the theory
of indistinguishables. Precisely becanse of the great simplicity of the initial
assum' rs, it takes a rather large stride in the direction of a-priorism; and this
willb selcome in many quarters, 1t is not, in strict logic, an a-priori theory;
it mokes a few non-tautologous assumptions [potably of the existence aof the
inchoative), from which it draws conclusions which are experimentally falsifiable
~ and perhaps will be falsified. I belicve a strictly a-priorist theory is logically
impossible. But a radical dimminution in the number of presuppositions required
has much the same psychological effect, in that it suggests that the world ia at
battom unexpectedly simple. Thrt is far from the impression given by quaatum

theory today, and for many may be a welcome change, so far as it goes.
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But it cappot but eall in question 8 Jot of things in which a huge investment
of dedication, and tnoney, has been sunk, perhaps ia vain. There will be many
deaths before such a conclusion can be admitted. It ws still too early to attempt
to pame such lines of resesych, and 1 shall not try; but whoever acecepts the
new theory must expect to have some destructive as well as (I hope) constructive

effects.

There is one more point to make. It is still part of the conventional wisdom
that pbysical seicnce will never come to an end. This of course is true, obviously
8o, applied to the Ipvestigation of the effects of physical principtes in all their
manifold iateractions, The reduction of chemistry to physies has hardly begun,
20d might have great consequences if it were to be more nearly achieved. But
it is equally obvious that in certain directions my theory implies that we have
already reached » goa-physical bedrock. In effect the Inchoative Plane is a no-go
for physicists. It £lls, much more literally and plausibly, the rote which Pridijof
Capra tried to aseribe to sub-atomic physies in his book “The Tz2o0 of Physics™
~ {be rule of being directly accessible to tha mystics. If it does exist, it iz a

termioue. How much of the present muddie could thst explaia?

1.15 Summary

The foregoing remarks are, of course, in themselves only a summary of the
Tbeory of Indistinguishables. Further to condense the matter is perhaps to seek
&R excossive shrinkage. The gist of the matter is that, if we assume the existence
of an Inchoative Plane (in what sense of “existence” it may not be profitable
to enquire) sufficiently described by the unusus! mathematical system of Sezt
Theory, we come up with the curious theorem that only a limited range of

structures posseas those properties necessary for them to have explanatory power
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in respect of empirical observations. TE. bypothesis, that all and only these,
among the infinite contents of the Inchoative PLane, are teflected in the knawn
physieal world, meets with mauy successes, a few doubtful ones, and no failures
that cannot be, at least for the noace, outfaced. Some spectacular quantitative
computations have some yelevanee to the queation. I claim that it is reasonable to
conclude that if there were indeed such an Inchoative Plane, a fair scatter of basie
physical principles would find therein & common explanation; and some might
think the theory worth attention on the grounds of its uaususlly wide compass
alone. For ali that, there is plenty of work still for real physicists to do, and the
changes are that their work will tend both to expand the scope and erode certain
aspects of the theory, If my work gains any attention, it wilt long be controversial,
and in due course superseded. If it has any utility in the meaptime, it will be
to bring into question seme of the mets-acientific attitudes and presuppositions

which underlie the present chaotic slate of fundamental physical theory.
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Appeadix [LTHE COMBINATORIAL HIERARCHY
by
Clive W. Kilmister
1.1 Browerian Foundationa for the Hierarchy
[A version of this paper was presented st the second annuval mecting of the
Alternative Natura) Pbilosophy Asscciation, King's College, Cambridge, 1980.|
The particular algebraic mode) for which the results of this paper have been
found is developed from one described by Bastin, ef.al. in Rel, 13 of the main
text. It is based on three discrete processes and an equivalence relation. A typical
functioning of Lhe system consists of diserele steps, in each of which ope step
al one of the three processes takes place. Which process is involved may be
determined by outside consideralions or by the state of the machine at the time
{just as, in a Turing machine, the next act is determined by the contents of the
square being scauned and by the state of the machine). It is important for the
particular kind of model we have in mind, however, to realise that the model is
naot Lo bhe thought of as being given in a complete form at the beginning of the
investigation but cather as developing in & recursive fashion as the investigation
proceeds. A detailed consequence of this is that it is impossible to take the

equivalence relation as given in the ususl way, and a recursive way of specifyiog
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it has to be found.

"The constitueny parts are:-

{i} = genernling process <7 which yields new clements to adjoin to a sel § of
previously constructed eterments, The arteal form of G is not of much importance
later, but one suitable form which we bave employed is that given, in a completely
different context, by GConway (Ref. 17 of the main text). A single operation of ¢
is then of the form:

If L R are disjoint subsets of $, adjeoin {LIR} to 8.

The great advaplage of this form of & is that it is completely recursive in
the strong sense that no stasting point is needed. The first ¢lement generated
has to be {#]8}, where § denotes the empty set; this element plays a special role
and will be denoted by 0. The two possible next ones are {0}@} and {8]0}, and
50 Q0.

{ii) We now introduce an equivalence relation, D, on S; the equivalence elasses
under D will be called locoiions and any membor of 8 location A  written a €
A) will serve as an gddress lor A.[Note that the word oddress is used bhere in »
different sense thay in the main text.] The relation D s specified recursively as
tollows: Let § = {0,3},ag, ...,d;}, be the set of elements already in play (either
23 g direct result of processes of G or irom other operatiors (o be deseribed
below) and A new element b be generated by G. Define by some recursive meags
a function [ of two variables, called a discrimination funetion, so that, if Z is a

particular subset of all posssible values of f then the condition

Dry e fz, vl € Z
defines a relation which is an equivalence relation. (To put it more directly, f
discriminates betweep pairs (x,y) which are equivalent and those which are not,
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because its value for an equivalent pair is never the same as for a aon-equivalent
pair.) The requirement that D should be sn equivalence relation imposes obvicus
restraints on f, Sufficient {but not necessary} conditions to insure that these
resiraiats are satisfed sre

Jz.2)€ Z forall 1,

Sz, )= f{y,z) for all z,y, (11.1.1)

ff(z) g, 2)) = flz,2) for sll 2, 9, 2.

For simplicity in what follows we assume all of these to hold. If b never turns
out to be equivalent to any of the existing members of §, it is assigned to a new
loeation,

(i1} ln the course of determining the lozation of b, a number of values f{a;, b)
will have boen determined and (by (IL.1.1)) two of these will be equivalent only if
the corresponding o, 's are equivalent. Accordingly for eack existing address A;
we generate a new address F(A;, B) and for each of these we introduace a minimal
address rule of the form:

Number the addresses 0,1,2,..., where @ is the address of element 0. Then

F(A, B) = the least address (in the usual order) different from all F{A, B)
and sli #{A', B) where A is different from A and B is different trom B.

Buccessive values of F' can now be found recursively, and it is easy to verify

that F satisfies the restrictioas
FiA,A) =0, F|A,B) = FIB,A), F(A, F(B,C)) = FIF(A, B),C).  (I1.1.9)

Values for F for small values are given in Table AlL1(a).
The form of the identitics (I1.1.2) suggest 2 change in natation, writing

FlAD) = A+ B W sdopt this in what follows and refer to this pracess,
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between addresses, as diserimination. W iy now straightlorward, if a little te-
dious, to establish the result:

Theorem 1. Let § be g closed discrimination syatem. (The table shows how
closed systems arise if we stop at 1,3,7, ...} Then [S|= 2" for aome intepral n and
there 1» an tsomorphiom belween (5, +) ond{Va, 4), where V,, is the n.dimensional
veetor space over the field Zp wnth lwo elements, the 4 in the second bracket
denoting the usual vector space eddition. {Conway (1076)).

(iv) So far the construction of the model has stressed the process aapuct, but
not the self-organizing one, which involves a hierarchy with interaction between
levels. This is introduced by an economy precess, in which certain special sats of
locations can be given a single address, without disturbing the discrimination in
the minimal addressing process. Suppose that T is any set of non-null addresues,
and define the discriminale closure of T, T* say, recursively as follows:

(8} TC T,

(b} If B, C are any two different members of T*, then B4+ C € T,

{MNote that this form of definition makes a closed diseriminntion system S
bave the form § = (0} T, for some T*.)

Consider now a mapping ¢ of & closed discrimination system, 8, into itself,

which preserves the discrimination:
0:85 — 8. ¢(A+ B)= ¢(A) + ¢(B).

Then, from theorem 1, there is an evident representation of ¢ »s an 1 X n mptrix
over Z3, and since such matrices coastitute s vector space of dimension n?, the
set of all such ¢ corresponds to a new closed diserimination system, $2 say.

{N.B. The vector-space picture suggests that ¢ is an element of a different Ingical
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type from the addresses A, B, but this is just ap Jlusion produced by the special
represenialiod,} We may vse Lhis lor the economy process ss follows:

Lot T* be aoy d.o. {diseriminately closed) subset. Then it caz be proved that
there vXists onhe mapping ¢ with the propesty that

HA = A~ AET".
I also ¢ is chosen (as it ean be) so that
HA) =0+ A=0,

(¢ vousingular), we may use the new address ¢ o reprasent the old set of ad-
dresses T, 80 that the information contained in T* is represented in & more
economicsl way st a higher level.

Il, moreover, we choosa the ¢'s for different d.c. suboets to be independent
{thkat is, so that spy k such themselves generate s d.c.aubset of 9% — | members,
and no fewer), these ¢'s will serve v allow the whole process to be repeatod, so
that we have a bierarchical structure as required sbove,

l.el us ¢all & generation of such a heirarchy complele wher it so happens
that the .reation and diserimination operations have been carried out in such an
order as (o maximize the information-carny ing of the structure. The complete
bierarchy serves to define bounds on the amount of inlormation that e »e dealt
with. We can then prove

Theorem 2. There i a unigue complete hievarchy with more thon two levelsit
bus successively completed lenehs of 3, 10,137, Y0 =)-+137 22 1.7 X 10P® clements,
deyond which further cxlension in impossible.

The proof of this result is lengthy and at present clumsy. Instead of deseribing
it, I prefer to indicate how the construction can procesd at lower levels. Tt will
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be convenient L have an abbteviated notation for vectors and oporators. Write,
for any veclor v, b = & + j + ... + k, where the only rows occupied by 1's are
the ¢th 5 . (M we are ip & kow dimeoeion o that none of 7.7, ... excred 9,
we can simply write ij...k.) An operator can then be written ay an assemblage
of column vettors, and this allows caleulations to be catried vur quickly, since
.q.7 =p, (p,9, 712 = ¢. To begin the construction choose two basis vectors
in two dimepsions, 1 a0d 2. Then we have to find operators with the invariant
spaces:

{a) {1}, and this ©s evidently the operator (1,12).

{b) {2}, and this is (12, 2).

{c) {1,2,12}, and tuis the unit matrix {1,2).

It should be noted that there is no choice at this atage. These operators
may be rewritten at the next level as vectors 134, 124, 14, For some purposes
it is necessary io keep them in this form but for the mere existence theorem
it is possible to simplify by taking these ns & new basis 1,2,3. There are now
7 invariant subspiices, and [t is poesible to find 7 corresponding operutors, in
a number of ways, which are linearly independent. For example, in the three-
dimensionsl subspace, the operator {1,3,83) bas unique eigenvertor 1, sod 50,
interchanging the st and second directioas (3,2, 13) has 2, and (12,7,3) bas 3.
In wach the same way the threv (13, 2,3),(1, 23,3),(1, 2, 13) serve for .+ three
element spaces, and (1,2,3), the wnit . - “trix for all 7 vectors, K is not hard
to verify that these are all linearly isdependent. It is harder to establish the
existence of the 127 operators at the next level, but several diMlerent versions of
this bave gow been earried cul. The termigation of the process arises because
the dimensiopslity of the spaces does not increase fast enough to accommodate



the number of linearly independent veetors, as is demonstrated in Table ATL1{b).

We need to understand something of the “geograpby” of the higher levels.
Some of this informstion is really about the structure of the finite group Gifn,2)
where n = 258 {or perhaps 16). Such a project will evidently require compu-
tation, but it is important first to determine what should be computed. The
“model” cases of GL{3, 2} and GL{4, 2} wil) be presented at ANPA 83. A certain
amount of assistance comes from the fact that, if n > 2,GL{n,2) is simple and
therefore has been an object of study by simple group theorists, but to & large

extent the information they derive is not sufficiently specific for our purposes.

The number of elements of GL{n, 2) is ex. "y seen ta be (2° — 1)(2" - 2)(2" —
22)(2n — 2°~1). It is easier to express it as n* - 2(n —1)° - 2%n — 2)*.. =
ar(n=1)/24(n") where +* = 27 ~ 1,¢(r*) = £*(r — 1)*...2°1°. Thus GL{3,2) has
order 8-7-3- = 168. Its structur.: was further anylysed by Steinberg (& .Steinberg
{1851}, Canadian Jour. of Math. 3, 225.} and he divided it into classes contsiniog
1, 21, 42, 568, 24, 24 elements. If we compare these figures to some due Lo Amson
{private communication), who finds one member with 7 eigenvectors, 21 with 3,
B8 with 1 and 48 which unfix every *.ctor, there ia obviously some connection.
in fact Amson's 98 with one eigenvectar split inta twa subclasses, one of 42 mem-
bers which permute the remaining 6 vectors 1 & 2-cycle and a 4-cyele, and one
with 56 which produce two 3-cycles. This points to the need o find all possible
eombinations of cycle-lengths, ané this is a project o3 which some members |of
ANPA| did same calculacions (up to the n=18 case) some years ago. The division
of the unfixers is more obvions. If A is an unfixer, then for sny vector v, Av is
neither v nor zero; Hence alse (A + Iw is neither 0 nor v, and so {A + 1) is an

unfixer. Though it is possible to carry the analysis of GI{3,2) much further, it
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shouid he noted that the order of GL{4,2) i3 2D160, so that slready (at the first
stage where the results would be of interest to the study of the hierarchy) the
numbers are beginning to become uamanageable.

However, matters are not quite so bad; in the first place, it is pot actually the
whole group with which we are concerned. We have to deal wilh a construction
which considers just these nop-singular operators for which nope of the vectors
not in & preferred subspace can be eigenvectors. This lowers the numher of
operators to be considered by only a trivial amount (for example, when n=4
from 20160 to !8818) but the new set of operators is no longer a subgroup, and
this sugizests that the group theoretic analyais cannot give the fine detsil needed.
This work is continving.

Appendix II.2. On Generation & Diacrimination

|This paper was presented at the fourth annual meeting of the Alternative
Naturzl Philosophy Association, King's College, Cambridge, 1982.]

The algebraic model is based on ti:ree discrete processes, and a typical func-
tioning of the model consists of « ‘screte steps in each of which onc step of one
of the three processes Lakes place. Which process is involved may be determined
by:-

(i) outside cunsiderations

(ii) internal ones, e.g. state of the system ot the time, or the. constraint ¢hat
the third process cannot be carried out in th early stages.

What is important here is the requiremen* that the model is not given in &
complete form at the beginning but develops as wie investigation proceeds.

The first proeess is 4 generating operslion G which adjoins zlemeats to the

(finite) set S of clements which have already wrisen. [l do mot koow that the
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details of Conway's {L{R) construction are important, but G should have in
eommnp with Conway’s construction the ability to start wich nothing. Since the
only “ncthing” which J hrow of as {recly available is the null set, Lhis suggests
that & must be 30 ye sort of construction in terms of sets.]

The seeond process is needed to check whether efements gencrated are really
Bew onts o2 not, A Jormalist way of putting this weuld be to ssy that there
was on equivalence relation D, and the question, when z is produced, is whether
Dzy holds for uny y in S. We cannot use this way of putting it because, botk
io th. specification of D and in checking Dzy for sy y it § we are supposing S
completely given, contrary both to the ariginal requirement sud to the fact that
& is growing with the development of the model. None the less this formalist
approach gives two {nsights: Bratly that some form of memory is eysential. I shall
assume Lhat ] coo call elements of § but ogly st random. Secondly it suggests
o recursive specification, instead of D, of 2 function f: S X S — T (here T is
some set, which [ncludes 8) wilh the property that there is & fixed subset Z of
§ and fzy € Z Il and only if z apd y are the same element,

Since f {5 our recurslve substitute for D, we must require

(ilfez€ Z

(ii)frzEZ = fzyEZ

(ill) fzy€ Zand fyz € Z land oy il frz € Z

Any such recursive [ will be called & prediserimination. Two prediscrimina-
tions f,] will be called equivaleot, f = 7, if fzy € 2 if and ouly if Jzy€ 2
where f: § X § = T and 2 is some subsst of 5. (Of caurse it is not ruled out
that Tm Tand Z2=2)

Thearem 1. Every f is equivalent 1o some ¢ for which
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(i) gz==0

(i} g2y = g2y

(iii)gz(gyz) = glgzy)z

{where 0 is written for the uvique elemept of 3 one clement 2Z)
Proof

(2} Define f = 0if z = y, = fzy otherwise,

Evidently 7 = f: and fzz = 0.

(b) Suppose the elements of § Lo have heen numbered by any recursive pros

cess;, and define

Fry= mi“ﬂ W|?W)

{where 0 is counted as the lenst element and the others 1,2,3,.. are regorded as
ordered in the usual way). Essily F == f and

Fzz=0;Fey=Fyz
(¢) [Conway's trick] Define
gy = the least element z such tho! F a{g2y) v& 0,F 2(gz D) 54 0,

for all 2 < 2,5 < - Than, easily, g = F == J, and, since gzy == 0 if and oaly

il = and y are the same element, g satisfies

grr =10
gry = gy
p=0ondgp: =0 grz =10
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It remains to prove that

oz{gyz) = glgzy)z.

It is simplest to verify this by explicit construction &3 in Conwsy's book. From
the definition gh0 == 0, g01 = 1§, so g11 cannot be 1 but can be 0: gll =0. g02
cannot be L or ¢ but cax be 2. Then g1? carnat be 2,1,0 so must be called 3.
Next g22 = 0 and so on.

The requirements on g are exactly those of a diserimination function. It is
straightforward {if a little tedious) to prove

Theorem 2. If 5 is a closed syrtem then |S|= 2%for integral n and there is

an isomorphism

(S| g) = (an +2)

where Vy, 1 the vectar space of n dimensions over Zs.

The third process is an economy process for labeling sets of elements with
a single element.|[Here lollows the usual eigenvalue eonstruction given above in
All1]

The theee pracesses are carried out is various orders and in this way generate
8 hierarchical structure. Call this hierarchy complete [perhaps some other word
e.g. maximal would be betler] when it 5. happens that creation, discrimination
& economy proresses have been carried out in such an order as to maximize the
structure. A ¢omplete hierarchy then serves to define bounds on the amouat of
information that can be dealt with. Then

Theorem 8. There is a unigue complete hierarchy with more than two levels
having successfully completed levels of 3,10, 137, 2127 — ) 4 136 elernents, beyond

whieh further extension is fmposseble.
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However, after the complete hierarchy has arisen (so that the third process
can no longer intervene) the generation process and discrimination can still pro-
ceed. Ore can picture this best in the vector apace pictu. . The elements of the
vector space have a 258 - bit segment ~ which further sirings are affixed. We
can call the 256- bit segment the label and the remainder the address.

Appendix 1.3 HIERARCHY CONSTRUCTION (second version)

{This is a new version for work done shout three years ago rewritten for this
paper 10 April 1983]

By a hiererehiy is meant a collection of fevels related as follows:

a) The elements at one level are a basis of a vector space V' /Zs, a subspace
of Vi/Zs.

b) The elements at the next (higher) level are non-singular linear operators:
Vu — Vi [again, of course /Z7).

c) Each element A at the higher leve] corresponds to a subset S of the elements
at the lower level by the correspondence: the proper eigenvectors of A are exactly
the linear subspace generated by S, (NOTE: Proper eigenvector means Au = u.)

d) The operators {A} are then vectors in V2. [n order to repeat the opera-
tion, they must be chosen linearly independent at the bigher level.

Evidently if there are r elements at one level, the next one must contain
2" — 1 = r* (say) clements.

Theorem {. (The Parker-Rhodes theotem) There is onfy one candidate for a

hierarchy with more than two siages (8 levels) and that has succeasive numbers

of elements.

2,2* =3,3" =77 =127, 127"

138



Proef: 1 he prool is easy, since impossibility results from the fact that the
operatoss have n” elements and 27 jucreases 100 fast. In the case given above
{Table I.1(b)), bowever, it may be poszible to And a candidate, though at the
tast stage the operators cannot be linearly independent, so the constraction ter-
minates. The point of this paper is to show that it is indeed possible.

Notation. Write for the vector haviog § in its k® place and zero elsewhere
simply k. For k+{, /Za,write kI, For an n X # operstor form an ordered set of
veetors (its eolumns) in the torm {A), A2, ..., An). Then

(A1, Ag, oy An)i = A;

At the 8rsi level of the hierarchy assume that the two vectors chosen ini-
tially are 1,2, (The other choices, Invalving 12, give very similar algebra.) The
upere s with given invarisnt subspaces aze then, uniquely

Subapace  Operator

{1} (1,12)
{2} (12,2)

{1,2,12}  (1,2)

Veriting the operators as vectors in 4 dimensions they are 134,124,14 respee-
tively. One can perform a basis transformation to turn these into 1,2,3. Before
we go ot 1o finds the appropriate 7 operators, it is useful to look at the remaining
won-singuiar operators at the first Jeve), These are, in turn:

{2.1) with proper cigenvecior 12 and

(2,12), (12,1) which unfx everr vector,

So there are, st this level, exactly two unfixera.
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As a gext exercise, consider the 3 vectors 1,2,2 in & Hiree-dimensivna) space.
We discuss in some detail bow to constrect operators having the appropriate
eigenvectors, 8s the same methods will be needed again.

(a) Firstly, for all three vectors {1,2,3}, only the ideatity operator {1,2,3)
will serve.

{b} For the subspace generated by {2, 3}, which we denate by 2(2,3} we use
the Noyes trick of getting the operator (13,2,3).

(¢) For the subspace {3}, we use o direet sur representation, and an unfixer
on the 1.2 columns, so, far example (12,1,3).

Consider now the operation of interchange two basis vectors, say 2 and 3.
This is a linear oprration, L, on veetors; in fact [ == (1,3,2). But if, say, Au = v,
then Lo = (LAL"!}Ly, so that the result f such & chunge of basis is to make A
become LAL™!. Now L=! = L, so it A = (A, Ag, Aa) we have

A' = LAL™! = LAL = (1,3,9)(A}, Ag, A5){1,3,2) =

= (1,3,2)(A;, A3, Az),

and to evaluate this product notice that il & column contains a 2, it becomes
a 3, and viso versa. So A' = (A},A3, Ag) where bars denote the operation of
interchanging 2 and 3. We can sow use¢ these to tabulate the seven operators in

the following way:
Subspare Operalor
ALL 123
p(2,3) (1323) 8

L3y 12 (1139
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D(L2) 13 (1213)6

{3} (12,1,8) ¢

{1} 1«3 @(agy

{2} 2+3 (1321)¢ The seven cperators so {ound arve, ju fact, finemly
independent, This can be seen in the following way (for whivh ! sm indebted to
Dr. Mary Warner):

A basis for 3 X 3 matrices *« obviously provided by (L,A,B), (2,C,D), BEF),
(0.1,G), (0.2H), (0.3K), (00,1), (0,0,2), (0,0,3). One simply works systematieally
to put the given set in this form.

a=(1,2,3)" Firmt step:

(+ o = (2,12,0)°

B4+a=1(3,0,0" Seond step:

q+a m=(0,3,0)

5+4+a=(001)"

n+o=(0,232 n+y=(022)

B+¢m(0,0,13) S+4¢+6+a=(0,03)°

The finol starred elements are obvlously 7 of the basis mentioned and so are
linearly independent.

The above argument [s for the set of veetors {1,2,3} in three dimensions.
The hierarchy consteyction has them in four dimensions. However it is casy
to derive 8 correspondiog solution. Let Afi = 1,...,7) be the seven operators
starred, and adjoin .ne more column. Then the operators

Ar=(Ap)i=1,...,7)

will be linearly independent, and have the same eigenvectors,
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This bas establisi.>A, then, the first two stages of the bierarchy construction.
The next step is the core of vhe proof. 1t s equivaleat to proving:

Theorem £. Given any 7 lincerly independent weclors in 240, there exint 197
lincarly independent 16 X 106 matrices /25 sueh thet

{n) eachk is non-singular,

(b) coch corvesponds o a umigue linsor spoce generoted by o subsel of the
7 wectors by the proper cigenveetor correspondence. In order to prove this we
first make & basie trensformation so that the seven vectors ore respectively
1,2,3,4,5,8.7. The proof relies on two slmplor theorems:-

Theorem 3.

{a} There ezist {many sets of } 187 non-aingular operators 2] = 2], one for
cack aubset of {1,2,3...,7} in the proper cigenveetor eorreapondence.

(t) Theae 187 operators can ba chossn to span 2] % 2].

Theorein 4. For n> 8, unfizers .pas 7§ % 22

The use of the theorems 1o prove '".eorem 2 is as followas:

From theorem 3(b)we can select 49 linearly independent oparaters, say A(( -
1,2,...,49). Denote the remaining operators by By(f ms 1,3, ..., 78). By Theorem
4, for n = @, there are 81 linearly independent unfixers on 2§ X 2§. Choose any
79 of them, ik = 1,%,...,79), Sinco 7+9 == 16 one can construct operators of
the direct sum form: (A, 418),(B;, 9;)(¢ = 1,2, ...,40,j = 1,2, ..., 78} which are
127 in number colrespobding corvectly and are linearly independent. This proves
Theorem 2.

It remains to prove the subsidiary results, Theorems 3 and 4. We begin with
Theorem 4, that unfixers span (if n 2> 2, since, if n w= 3, there are only two

unfixers).


file:///eorem

1o n dimensions an obvicus unfixer ir A = (2,3, 4, ..., 0, U) where (from non-
singularity)U’ cannot belong to D(2,3,4,...n) and so must be 1 or v, where
vE€ P23, 4, .., n), But {7 = [ will not serve since 123,..n s then an eigenvector,
so /== 1v.

5o long as n > 3, two unfixers are (2,3,...,0,17) and (2,3,...,13) and their sum
is (00,...0,23). Interchanging 1 and 2 will similarly prodace (0,9,...,0.13) and
adding resolts will give (0.,0,...,0,12).

Now perform the sutomorphism E{jJL=1, where b = £~} = (12,2,8,...,n).
Ther

(12,2,3,...0)(0,0,...,0,12)(1%,2,3,...n)= (12,2 3,...,0){0.0,..,0,12)=(0,9,...,0,1).

Since this can be produced, we can, by interchanging 1 sud £, 1 2ad 3,.....,
1 and {p-1), produce in tura {0,0,...,0.2), (0,0....,0,3),...,(0,0,...0,n-1). In order to
produce {0,0,...,0,0) begin with the two unfixers (2,3,..,0,12) and (2,3,...,8,1n)
with sam (0,0,...,0,2a} which, by adding (0,0,..0,2) gives {0,0,...,0,0).

Since there is evidently nothing apecisl about the last columa, it is clens that
unfixers may be found to give a 1 in any place at all, i.e. ynfixers span.

Now to orave Theorem 3 one uses the same pracedure in 2] X 2] as has
been used above tn 2§ X 2. It is, iv fact, sufficient to consider the cases:

Figenveclora Operalor

ALL (1,2,...1

0(2,3,4,5,6,7) (17,2, ..., JT (The Noyes trick),

0(3,4,5.6,7) (12,1,3,...,7) (unfixer in (2]},

P(4,5,6,7) (2,3,13,4,...,7} (unfixer in 31),

When all pussible interchanges between 1,2....,7 are performed so as to list
the 6,5,4 dimensional subspaces and their operators, ¢he aumber listed will be
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1+74214-35=04. Applying tbe Warner technique, it will be found that these B4

operators include 49 linearly independeni ones. This completes th~ r ool
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Table ALLL
(s} Values for F (ound recursively.

(b) Dimensionality of the spaces va. no. of lineat:, independent vectors.

A= ] 1 23 4 586 7T 809

2 F(A B)

Bm= 0 0 1 2 3 45 86789
1 1 0 8 2 6 47 &
2 2 3 0 1 6 7 4 5 1011
3 3 2 1 07 6 5 4 1110
4 4 § 6 7 01 2 3 1213
8 5 4 746 1 0 3 2 1312
] 6 7 4 b 2 3 0 1 1415
7 7 6 b 4 3 2 1 0 16 14
8 8 9 10 11 12 12 54 15 0 )
'] .E 8 T 10 R J2 16104 1 0

b) veetors and dimer .ons

Ne. vectors: 2 3 T 121 2197

Dimension: 2 4 16 256 85538

(terminstes: dimensionality of the spaces falls bshind no. linesrly independent vectors )
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Appendix IELCOMPLEMENTARITY AND ALL THAT
by
Ted Bastin

[This is Chapter 3 from Ted Bastin’s unpublished book The Combinolorial
Basis of the Physics of the Quantum)

Bobr is credited with the remark that “truth and clarity are complementary”
and Peierls to whom I am indebted for the quotation, adds that Bobr leaned
heavily to the side of truth. Attempts at clarity about observation, in the sense
of a brief and dfinite statement within the intellectual structure that we eall
the quantum theory, tend to rus into the difficulties that have occupled us at
some length already. For example we find the kind of clarity that the physicist
is used to expect admirably provided in the statements on the subject by Dirae
that were extensively used in the arguments of Li.c last chapter. Howovor, the
more satisfying the clarity, the more we find the difficulties thrown into sharper
relief, and we may sel our desired succinctness and clarity only at the expense
of our being prepared to live with an underlying muddle. From this point of
view the surprise felt by many physicists at the prolixity of Bohe's discussions
of complementarity is micplaced; it is, to say the least, a moot point whether
or not Bohr should be taken lo task for failing to be clear in his presontation
of a muddle. I any case [ shall be presenting the very different judgment that
Bohr difiered from bis contemporaries in the mainstresm of quantum physics in
being nol prepared to temporize with an incomplete understanding of the basie
quastum principles, and that the difficulties being os inveterate as | claim, the

endlessness of Bohr's seareh wos an jpevitable consequence.

In this chapter I shall be concerned with one question: does Bobr's comple-
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mentarity princigle vuable us to deduce the differences between guantum physics
and elassieal physics that appear - 3o particular - in the unceriainty principle. 1
shall conclude that they do not. It will also follow that - Bohr's profound critique
not having issued in an explanation - no understanding of these differences exists

at preseat,

The dc ctrine called “complementarity” is one of the principles which guide
the treatmnent of observation in mainstream quantum theory. There, it vsually
refers civher to the r'vtionship of the particle picture and the wave-picture, or
t0 o more technically articulated relationship that exists between certain pairs
of dynamical variables that appear in Lhe specification and solution of a single
dypamical problem. Tn both cases there is an idea of exclusivity in the application
of Lwy apalytical techniques or concepts st o given time, even though hoth are
required for the full understanding of the problem. I shall eriticize the use that is
made of the idea uf complernentarily in maiystream quantum theory severely, and
it therefure matiers what form of presentation of it one takes a representative,
One could scarcely hope for a more Inaight!ul brief account of it as an element in
that corpus of thinking and knowledge than the following | om Born {“Atomie
Physies”, Blackie, Iitrd Ed. 1044, p. 144).

“The true philosopbical import of the statistical interpretation ... consists in
the recugnition that the wave picture and the corpuscle picture are not mutually
exclusive but are two complementary ways of considering the same process -
& process whose necessibility to intuitive apprehension is never complete, bul
always suhjert to certein limitations given by the princin': of uncertainty. ...
The oncertainty relations, which we have obtained simply by contrasting with

obe ancvther (he deseriptions of a process jo the language of waves and in that
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of corpuscles, may also be rigorously deduced feom the formalism of quantum
mechanics - as inexaet * equalities, indeed: for instance botween the coordinate

¢ and momentum P we have Lhe relativn
Q5P > hfar ,

if 6Q and 6P are defined as root squares ...."

In this accoun?, Born 15 vnusually definite among expesitors in making the
Heisenberg uncertainty relation depend upon the complementarity of the wave
and particle pictures (“corpuscle™ picture, as Born c¢alls {t]. However sven he
leaves the deduclive situation ambiguous, he suggests that the strong expectation
that the complementarity principle gives us th~* thare must arise s uncerisinty
relation, will then be happily confirmed by the mote rigaroua tresiment. Of
course this would be fine if the more rigorous treatment included s rnore rigorous
formulation of the wave/particle duality, but the sctual situation is that the
treatment of that topic that eppears in the above quotation is all the justification
of it that he provides, As s result, his readers ave loft chasing roucd zad round,
and never sure at what point they are meant to break into the srgument. The
evident — though perbaps pever copscicusly expressed - invitation is that one
should build up support for the quantum-mechanical approach as a whole by
deriving a little fr 3 each of an array of principles of which the complementarity
of the wave- and particle- pictures is one.

We might argue that this is what bappens in classical meehanies. There,
if we ask for o definition of mass, we are referred to statements which presop-
pose that we slready know what force and accelesation meen; and vice verss.
And 50 on round and round in ewrcles. The closure ¢f the system of definitions
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works, moreover. Everyone who is trained in pbysics knows exactly how to ap-
ply the clasical theory and what constitutes & proper argument withiu it. The
mirsculrs-sceming quality of the coherence is what I tried to draw attention to
in chapter | by my introduction of the term “theory-language”. In the classical
case we indeed bave s closure of the definition system that justifies us in starting
feom any of magy equivalent points in our deductive treatment of any problem.
Moreover, as happens with s language, every piece legitimately contributes to
the meaningfulpess of the whole. The vital point, in the case of the classical
theory-language however, is that the principles that would be invoked in justi-
{ying ovwv one piece would be consistent with those for al) the rest, whereas in
the case of the quantum theory, this consistency is just what is being called in

question.

Iu any case, Bobr did not regard the complementarity principle as being at the
same level as the technical constructions of the quantum theory. He regarded
it single-mindedly as an autonomous principle which required no justification
backwards from the success of the quantum theory, On the contrary it was this

principle which should carry the weight of the quantumetheoretical vision of the

world.

To pu-sue this programme, Bobr's first effort bag to be to pravide a conceptual
framework within which the complementarity of pairs of dynamical quantities
was natural and prev.cable; subsequently he has to show that the rest of quantum
physics conld reasonsbly be seen in this setting, 1t was this second effort that
made bis writings so voluminots, and so involved as to give him his reputation
for obscurity. It is, as a matter of the general way theories evolve, likely, and

in my own opinion demonstrably the case, that the difficulties of exposition that
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Bohr found, and the way in which he found his arguments getting ever more
complex, indicated that he had not assembled the essential ingredients for the
solviion of the task he had set himaelf. Whether or aot Lhis ia tyue, thete is no
one writing on the foundational aspecta of the quantum theaty at the present
time who will accept, or even attempl to argue the case for the correctaess of
the ec~~epinal framework supplicd by Dokt in the detailed context of the mutyal
exclusiuz of the pairs of dynamical vatiables,

The position of von Weizsaecker on complementarity will be discussed in
c! apter 1. It is worth putting on record an apinion expressed Ly Heisenberg
a few months before his death. Askedl)! what be now felt abuut complemen-
tarity, and whether in particular he would support the possibility of there being
simultaneously incompatible dynamical variables, as a matter of general princi
ple, Heiseberg said that ke thought that science does indeed throw up situations
of this sort from time to time where thete seems to be a conflict of principles
operating in such a way as to close investigation. He said he thought that such
situations were an augury of major simplifications at the most profound tevel
about to emerge, but as yet only to be guessed at. Heisenberg was not to be
drawn by the further question whether this point of view did not strike at the
heart of the Copenhagen philosophy, and drew the conservation to an end by

remarking that it must be time for lunch,

in spite of this absence of currency for the complementarity ides as a piece
of organized thinking at the technieal (ns distinet from the general philosophical)
level it continues to be presented as an element of the mainstream position on

quantum theory. H ore enqguires about the relationsbhip beiweep canonically

l']Conversntion with the author.
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related dynamical quantities, as the accepted way of reaching an unde *standing
of the guantum-mechanical doctrine on observation, one is lizely to find oneself
refeired to Bohr's discussion of the general concept of complementarity. It is
for aJl 1 would as though that discussion ¢ould give the technical form of the
dual relations the validity of a sort of counter which could be played at will in
some soft of game in complete disregard of the circumstances under which the

exclusion preseribed by the principle would be expected to manifest itself.

It i~ not impossible to obtain a short statement by Bobr himsell of the com-
plementarity coneept in its general forni. The following appears in an essay by
Bohr entitled “Natural Philosophy and Human Cultures® (Address at the Inter-
national Congress of Anthropological and Ethnological Sciences in Copenlingen,
delivered at a meeting in Kronberg Castle, Elsinore, August 1033, This essay
appeared in Nature, 148,268, (1030), and was reprinted in Bohr's book Atfomie
Physics and Human Knowledge, Wiley, 1957.)

“Information regarding the behavior of an atomic objeet obtained under deti.
pite experitnental conditions may, however, sceording to a terminology often used
in atomic physics, be adequately characterized as ecomplemenie. ¥ to any infor-
mation about the same ohject abtained by some ather expetimental arrangement
excluding the fulfillment of the Grst coaditions, Although such kinds of infor-
maltiun cannotl be combined into a single piclure by means of ordinary concepts,
they represent indeed equally essentially aspects of any knowledge of the object

in quention which can be obtained in this domain.”

This defini.ion makes use of several principles which Bohr considered estab-
lished in enrrent theory, or which he considered he had himself established, and

which can be though about separately. Firstly there is the statement about the
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obtaining of information by an experimental arrangement. This refers to Bohe's
position that the unils into which it was alone legitimate to analyze knowl
edge about the world of quantum objects was the whole experimental procedure
together with whatever logical relationships are pecessary to demarcate the ar-
rangement that we have in mind off from the rest of the physical surroundings

of the experiment.

This positiop sounds arbitrary uniil we see it against the special operational
circumnstances of the quantum objects. It is part of what we mean by the term
“particle™ in the classical way of thinking that there should automatically be a
possibility of defining other particles in the neighbourbood of the first without
making any special thecretical provision for their intrusion. If we could not as-
sume this without question we should not be able to use the dynamical variables
with their usual mesning. New in the quantum domain this assumption is con-
sistently and ns 3 matter of lupdamental principle invahid. II we wish to refer
to a new particle then we must specify s new, and usually much more complex,
thcoretical background capable of describing the combined system. Fer Bohbr,
the right way to express this specifically quantum view was Lo stress the unity of
observed entity and observing system, and indeed to insist that neither should
be ascribed seality independently. That it is a correct understanding of Bohr
to interpret bis assimilation of the atomic object (I use Bohr's phrase} itself, to
the circumstances of its measurement is further borne out by his giving eentral
importance to what be called the “quantum postulate”. This, he says {Atlomic
Theory cnd lhe Deseriplion of Nalure, Cambridge, 1034, p. 52) atiributes to
any atomic process an essential discontinuity or rather individuality, completely

foreign Lo the classical theoties, and symbolized by Planck’s quantum of action.”
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One sees from tks quotation that Bohr saw the very discreteness or particutarity
of ihe quantum particle as something to be imagined in quite a different way
from the way we imagine a classieal particle (and the matter of the existence of
a background of relaied particles would certainly be an kmportant part of the
imaginalive spparatus Lhat Bobr w-uid require us to rencuncel. To sel & right
view of the atomic object we had to freserve a lively consciousness of the unity

of ok ‘ect-system and experimental milieu,

Bohr’s insistence on the quantum postulate was needed as a protection againsi
the sort of crudity in thinking about quantum particles which retsins elements of
the “atoins are bits of matter cut up small” variety. The combinatorial principles
to be developed in this book are easily misinterpreted as putting the theory into
the class of statistical theories which use particles whose discreteness is of the
clussical kind, a.d it will |2 useful to bear in mind how important it was to Bohr
to avuid this misconcepti~. This part of his doctrive is absolutely integral to

our way of thinking.!?]

The second of the principles which contribute i, Bobr's idea of complemen-
tarity concerns the inevitability of the classical description using the classical
dynamical concepts as the only possible way of talking ahout the physica! world
in any of its aspects, aud in perticular in the quantum aspect. This principle is
obviously connected with the first; howevee they are not equivalent. The second
g¢ - auch further than first in the way that it asserts that change from the clas-

sical language is for ever ruled oul. Bohr was insistent on this strong prohibition.

12 chapler | we discussed bow far the elassical concept of the particle could
be laid at Newlon's door aad how far he was careful not to commit himseil
in this way., A later discussion in chapter 11 of the ideas of Bohr on what be
calied the “mechanistic concept of the particle” is also relevant.
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Any suggestion that one should be open to the possiblity of change in the way
we imagine the physical world at the “asie tevel of the intuition of spatial events,
seemed to him entirely fanciful. To the eriticism that such self-assurance could
bardly be reconciled with a modest awareness of the infinite corrigibility of sci-
ence, Bohr would simply be incredulous. He evidently thought that snyone who
made proposals of the sort that he was brushing aside had failed to copsider the
vastness of the task they were proposing, or indeed lo set its real nature clearly
into focus, On Bohr's side one does have certainly ‘o recognized that most of
the s0f disant exercises in the invention of original conceptual {rameworks for
physical thinking which are intended to handle the unfamiliarity of the quantum
world, do Iall back for their very expression at a very early singe on the familiar

imaginative pictures that they were meant to replace.

The conclusive failure of attempts like L} .se lend colour to the working physi-
cist's belief that the familiar approach is simply commonsense about the reality
of the world. Bohe's position, however, was poles removed fromn that of the
naive realist, In his positivistic attitude to the language of physics Bohr was,
in 5 way, being explicit sbout *he dominance of what I have ealled the ¢lassical
theory-language. He was rejecting the view that the dominant Janguage was an
expression of common sense about the reality of the world for, of course, sophis-
tication about the part played by language in affecting what we say we observe
is at the opposite pole from simple realism. Yet to a great cxtent the effect of bis
argument was to make him an ally of those who never quesiioned the inevitability

of the classieal language beeause it never occurred to them to do so.

Among the quaotum physicists there is a further class of those who have

given thought to the pussiblity of profound conceptual change, aud who perhaps
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wonld webome i p principle but who cannol see any likelihood of ils coming
sbout Jtohr was oot in this class either, for he sade a very positive virtue of

the geeeseity of the classieal language.

A pondd Jeal has been written about ibe influence of idealist ways of thinking
that may have made Bolr fee that be was on the right track in insisting on the
elassrcal Lubguage ax a necessary fortn of thought, or at least as a precondition for
all thisking 1hat could be Jabelled “physics™, In particular, Bobr may have sven
an analogy between the part played by the classical ianguage and the spnthefic a
priors place of spree 2nd time in the Kantian philesophy. Hlowever philosophical
tenats which do not play a part direetly in scientific argument are beyond the
stope of my diseussion. Reference may be made on this, and similar points to it

Quantusm Physits and the Philosophirs] trsditinn by Aage Petersen (MIT, 1966).

The lasl component that we always Gind In Bohr's statements of the com-
plementarity principle, such as the one quoted above, is that of fncompatibility.
We alroady have the upity of the aperatinns and language that go 1o make up a
measuremen'; we have the restriction og the scope of that language to that which
is curcent in the elassical understanding of the world; now we are to undetstand
that there will typically be more thaa one such description reguired to present
the wwntinks of any given quantal situation, and that these will consistently so
apprar thal the provisivo of one wilt prevent the provision of the rest. As e
tersen puts il:

“. 1he experimental arrongements that d-fin : elementary physical concepts
are the same in quantum as in classieal physies. For example, in both cases, the

eoncept of punition refers te a coordinete system of 7igid rulers and the momen-

tum concept sefery (o g system of freely moving test-bodies. In elassical physics,
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these instruments can be used joinily to provide inlormastion about the object.
In the quantum domain, however, the two types of instrument are mutually ex-
clusive; one may use cither a position instrument or 2 momenturn instrurnent,
but one cannot use both instruments together to study the objeet.” (Petersen,
Asge, Quantem Physics and the Philasaphical Tradilion, MUY, 1066},

Why not? It is very difficult even (o imagine what it would be like to argue
in favour of Pelersen's assertion, let alone actoally to produce the argument.
(Let me agejo remind the reader that my purpose is not to o gue that it is
impossible to postulate an exelusivity; it is only to show that there can by no
case internal o the physical argument in favour of it.) What sort of thing
could it be that would prevent one kind of instrument being used because of
the presence of the other? Or would the argument be that it was the succeasiul
operation of the one instrument that must inhibit the operation of the other? In
the latter case, what would the mechanism of the interaction betweon the two
be? It is obvious that if ome restricts onesel! to classical argument then there
is oo reason why one should pot, for example, construet measuring techniques
whi-h measure momentum and position and other dynamical variables as well
in indefinitely complex relationship. Indeed it is actorious that, far from it
being the case that simple dynamical variables forco themselves on the attention
of the experimenier, his ingenuily is nlways stretched by the need to provide
experimental techniques that exhibit those conceptuslly simple properties of a2

sysiem that theory dem~nds.

Commentators usually continue the argument at thia point by appeal to the
uncertainty principle. Thus they may argue as follows: “Suppuse we measutc
position. Then if we measure momentum this uust by the use of scattering with
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some sort of “test-particle™; however we don't have test-patticles which are small
compared with the particle being observed {as we always do classically). Hence
the mamentom measurement mwet disturh the pasition, and this is so merely as
& fact about measurement.” o fact we cannot petinit recontse to this argument.
The finiteness of test~ and all other- particles i supposed to be a consequence
of whatever quantized theory wa come up with, and to use it in the srgument
about the most fundamental step in estsblishing discrelencss is to beg the whole
question we gre trying to answer. One i Inclined to ssy that if one is allowed to
smaume be uncertainty priociple then one has already got quantum theory, and
bas no nced of romplementarity, Such a clsim may be too strong {though Noyes
has argued that one may build s quantum theory upon an operations] basis of
counts of particles in detectors with so sssumption of sd irreducible statistical
Buetuation in the counts that bas the uncertalnty relation as a special case, [see
main text and references therein|). The correct relationship in Bohr's eyes was
probobly more that the complementarity philosophy was needed Lo make the
uncerlainty priaciple & comprehensible sssumption. The fact would remain, in
that case, that the former bad to stand in its own right,

Bobr's position on the incompatibility of simultageous descriptions is rem-
inisevat of an argument that 1 bave already mointained to be the best way of
summarizing the diference betwesn the quantum and the clossical views of mea-
sureinent. A quantum measurement does not presuppose the potential existence
‘of & background of related experimental results ip the wav that classical measure-
meat does. Even for such a simple case as the measurement of two momenta of a
particles al contiguous points in space st high energies, we require a quite differ-
et experimental arrangement from what is seeded for the single measnrement,
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#-d one that is yyually of a different order of complexily. There is a complexity
» the experimemal step-up that provides the informatioa aheut the apatial rela-
tionships of the separate components of the complex measurement, and o assert
this seems Lo cotne near {0 saying, ss Bohs does, that different ways of massuring
inmly that different things are measured. Indeed it would only be a small step
to suggeat that the whole quentom theoretics) concept of mensprement could be
built round an application of this ides io (ke central concepta of momentum and

spatial position. Then one would have, in all essentials, the unceriainnty principle.

There seems uothing wrong with this way of looking st the complementarity
principle; the error is to tey to make il follow from the eloasieul concept of
obscrvation. Rohr had stressed that his quaotum postulate was something quite
new on the horizou of physics, and it is ironical that it was also his embargo on
attempts to transcend the elassical deseription of of experlments that made him
locate the characteristics of that postulrte in o place which eould ot have th~

right kind of room [or them.

In the disrwssion of the Einstein-Podolky-Rosen paradox in the previous
chayter the center point of principle in the controversy was shown to be over
the proper requirements that scientific enquiry iu its moe! general aspeet ought
to impose on measurement. The “nlWity principle” that was et up by the
exitics of maimstresn quantum theory was an oltempt to separate the resalt of &
measurement from say essenlial dependenee on the techniques that are involved
1: making it, and in that way Lo ensure that the vesulls of measurements have an
objectivity of the familiar sort. It was as though this kind of objectivity has been
presupposed by everyone so implicitly that no one had noticed that the quantum



theory had dane away with it. at any rate that is one way of pulling the crities’
case,

However it was nat to be the rrities who were generally held to have wou
the day. for Bohr's arguments were geaerally assumed 1o have answered the
opposition, however carefully or casually they were, considered. Summarizing
the outeome, Yammer (The Coneeplual Development of Quanturn Meehanics,

MecGraw-1ill, 1866, p. 382) has this to say:

“The challopge was scon atnswered, at least from the viewpoint of the com-
plementarity interpretation of the theory, by Bohr's insistence on the cssential
ipfluence of the | ro-edure of measurement on the conditions enderlying the very
definition of physicel quantities, considering Lhese conditions as ao inherent of-
ement of any phenomenon to which physical reality can be attributed. Bohr
pointed out that a mechanical system, even though having censed to interact
dynamically with any other s¥stem, does not coptribute an independent set of
‘real” attributes. Boht's rejection of the possibility of associating quantities with
physical systems in a possessive manner, which rejection invalidated the episte-
mological premise of the paradox, was clearly out an expression of the fact thal,
within the [ramework of the Bobr-Heisenberg interpretation, quantum mechanics
is ultimately a physies of processes and not of properties, a physies of interactions

and not of atiributes, even out of primary quantities of matter.

“From this point of view quantum mechanics may rightfully be regarded as
falling in line with the general development of theoretical physics.”

This passage puts the coatrast between the opposing views jn such a way
s to make very clear the importance of the issue 2s a turning point in phys:cs,

but arguments of this kind which point out the desirability of change cannot
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be said to have Jus. ded the turn (if, indeed, the turn was to be as irrevocable
as the victors at that time supposed). For wiat was al issue was whether the
“essentin] influence of the procedure of measurement”™ could really be shown to
replace the reality condition of Finstein and to put something in s place which
should be as satisfving as the old, though in the new [ramework. According
to the discussion of Lhis chapter Bolr lias not supplied this demonstration, and

therefore the challenge of Einstein. Podolsky and Rosen had not been met.
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Appeadix IV. PROGRAM UNIVERSE
A Constructive Bit-String Model of the Early Universe

by
Michael I. Manthey

const dJoomsday —= false;
type onebit == (U,1};
Uptr: [1..Usize];  {index of 3 string in U.)
ensemble « record
tast: [1.s]; {index of cuirent last element of E.}
E :array|l..#] of Uptr;
end;
slring == record
bits: acray[1..#] of caehit;
tey : hoalran
end;
semaphore = {availbusy}; {used to guarantee mutual exclusion
on updates to U}

var U: array[1..¢] of atring;
Usize: intcger;  {initially rero = po strings in universe}
Umnutex: semaphore; {initially = avail}
{level 1 il 1t 413
12(3) 4.6 (7..100 11..17 {18.137) 138..255 (256..27127-1)

basis .2. [ .3. | 7 | d2 |
size ] H ] i

| [orneened strings in closures.........o...

Levels: array(1. §] of {indices inta U}
tecord  {basis slata}

LG, {1.4,11,128}

Cur,

uB {2.6,18,265)
R |

end; {nb:closure slots from [i][UB-+ 1}li+ 1][LB-1]}
Late Is: record
Iast: [3..9]; {index of current last element of L.}
L :arrayli. v of “eosemble
end;
empty: <tring;  {ap emnty string, i.e. one whose Jength s rera.}

slength: tcrord {current leagth of strings 1n U)
sem: scmaphare;
len: integer
end,

Cit: onebit;  [one random Lil.. sce funclivn Random below)
CurLvl: 1.4 {the level cuzrently beiag *'constructed”)
DasesComplete, {all four basis vector sets formed yet?}

HierarchyCamplete {all four bases and closures fozmed yett}
:boalean;
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-------- Synchronlzation -------c----- }

pracedure wait(var ssemaphore); {poll s until it's avail}
var 1; sciaphuore,
begin {presvmes mutual exclusion en procedure swap, which
is farmally undefined {universar primitive) and
which inlerchanges the values of two variables.}

t==buny;
ewpeat swap(s,t) until t=avail;

end; {wait)

procedure signal(var s:semaphore);  {signal that s is available again}
begir

sw pls,avail)
end; {signal}

foveana- Rtan .om 1/0 Geaeratlon ---+--+-~ -]

procedure RandomBit; {Actual tandom bit geseration...a function of)
var ij: integer; {the strings in U. An independent process. }

begin
repeat  {Qip Bit forever)

Bit == 1; {important whee U is small}

for i:==l to slength lcn do {set Bit as a fen of U}
for j:=1 to Usize do
Dit := {Rit + U[i][j]}) mod :

Bit ;o= 1), {important when U is smali}

until doomsday
cnd; {RandomBilL}

IThe randomncss of the value returned by functien Randem below
depends on the fact that procedere RandomBit ruus as an independent
wynchronous process Lo everylhing, constantly scanning U's strings
aned updating the value of Bit appropriately. This occurs even as
U is locked during discrimination and pre-scattering catculations.}

function Randoni:oncbit; {Called whenever » random bil is needed.}
begin

RRandom = Dit
end; [Random}
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Monaging the Unlverse - -« - - -}

function Generate string,  {generates the first two strings in U.}
var g stong,
begin
if Usize =0 then Generate —Rondom
rlse {Usize can only be 1}
hegin
repeat g, = Random w Gl g< >
Ceperate .= g
end
end; {Genrrate}

procedute LorkUniverse;
begin
whit{slength.scm);
wart{Urautex)
end;

procedure Unlockt'niverse;
begin
signal{Umutex);
sigoal{slength acm}
end;

procedure Tick; {inerements the vniversal etring fength by one bit.
This is donc under mytual exclosion, so U grows, but na one
ever soes it, and all bit strings are {for all practical
purposes] ulways of equal length.}

var tinteger;
begin
LeckUniverse; {stop the world while we change it}

slengih len (=< gleagth len + 1;

if Usizer=0 then
begin
Ul1] := Generate;
Usize:=Usize+ 1
end
else {increase the length of every string in U by 1 bit.}
for i =1 40 Usize de Uli][slength ten] 1= Random:

if BasesCouplete and pot Hicrarehy Complete then
begin
for i:=={ 1o Usize do
it U[i| not in Labels then {U[i} not yet {n a clasure}
begin
fur j:==1 to 1 do
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if net ClosureFFull{j) then
begin
if Levels(j].closure=nil thea
Levelfjj.closure := genclasure(j};
it Ufi] in Levels{j].c'osute then PutClosure(i,j)
eud; {j-loopn)
end; {i-loop
il AllCTosuresFull then
begin
Hierarchy Camplete := true;
IN ;= slength len
ead
else DiscardIncompleteClosures
end;

UnlockUniverse; {let the world breathe again)

end; {Tick}
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{<=ev=---- Bit-Plcking Routines - - -« - ---}

fonction ones{s:string)integer; {counk ¥ of onen in s}
var .; integer;
begin
er=0;
for =1 to slength Jen do
ifobitsfijml tken e =+ 1;
ones o ¢
cad; {fcn oues}

tunction zeroes(y:str.uglinteger; {vounts f of zercea in 8}
begin

ze70en 1ws slongth.lee - ones(s)
end; {fen Teroes)

function complement{s:string)atring: { compliement s
var iipteger;

for itesl % tlength.len do eomplement.bits]i]:=(s.bits]i]+ 1) mod 2;
complement len (um slength
end;

function discrimn(s,t:string):string; {exclesite-or of s s0d ¢}
begin
for iz= ] to slength.len do
it afi] = t[i| then discrim|[i] 1= 0
e discrim]i] := 1;
end; {fen diserim}

frevreatnaeaaann camaeicaaaanaan .

functiop Pick:string {picks a string ai random frem U}
v27 iindex: integer; {index will be random in 1..Usize}
begin
index ;e G;
repeat
Tor Le=0 Lo ceiling{lg{Usize)) do index o= 2¢index + Random
until iodex in [1..Usize]:

Pick ;== Ulindea] {assign random string to Pick)

end; {fauction Pick}
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f----=ne-n- Hieparchy Construztlon-=«-=-==--}

function InUfs:string)boolean; {troe if e ip U ele false}
var i,§: integer; found: boolean;

begin
for i := 1 to Usire 4o {search all of U}
begin
found = trus;

Tacj:=1to .?:lensl.h.l:u do tound := found and (s]j]==Ulillj]s
if found theo goto 1;
end;

1: InU := found
end; {procedure InU}

function LindepL(S:tting, (ki1 4])booless;
ftroe if S is linearly indepandent of the strings i tevel vl
only.}
begin
~mucho recursive— geaerates nb)= B{1)/{L[B)-b]1}
discriminations with 8.
end; {fen LindepL)

wunction Lindep(S:string; Ivl:[1..4]):boclean;
{true if § is linearly independent of all levels L ¢o Wyl
NB: Assumes {corzectly) that it {s pot called if there is
nareom in basis{ivl]...because of the valye of Curlrl.)

begin
Lindep = (alse; {defaull value}
it W< then Lindep 1ow true {base case)
#lse Jcheck previous levels, then current Jevel)
# Lindep{S,lvi-1) then Lindep := LindepL{S,1¥+))
end; {fcn Lindep)

procedure PuiBasis{Si: Uptr); {inserts U[Si] ioto bashs of CarLvl}
{if the current level is full, increments CusLivl.}
‘begin

index = Levels[Curl.vl}.Car; (fud out wh.ate we are}
new{L-abelsfindex]); {make an #v.semble)
Labels[index]*.E[1] := §i; {polnt 1st easemble clement to its string}
+ abelafindex]" last ;= Labels|index] “last+ [ {point to next open
#lot [0 evsembila}
Levels[CurLvl|.Cuz := Levele{Curlvl].Cur + 1;
if Levels{CurLivl).Cur > Levels]Curl¥l|UP then CurLivlm=Curlvi+ |;
{Current basts is complete..start basis of mext tevel (n hicrarchy}
if Curl.v1>-4 thes BusesComplete = troe

end; {procedurc PutBgain}



procedure PutCheure{Si, Uptr, Iv1.[1..4]);
{inserts UJS)| into the dosure of Iv1}

begin

———-—similar 1o the above———

eud [pul('lmu[p}

procedure Latel{ s, Uptel, {categorize UjSH in terms of the hicrarchy}
brgio
il not BasesCamplet~ *Len {try to put S into Labels array}
begin
il Lindep(s, Curl.vl) then PutBasis|Si)

cnd
clse
begin
if Lsite<2"N theo {there are Jewer than 27N labels currently.}
begin
Far all § in U such that S net in any basis or closure YET
do
for all jvis in Levels do
if S in ciosurc{basis(lvl)) then put 5 iuto that closure
if <1l clusures are full then define N else scrub all
incomplete closutes; Iot Tick g., put any remaibing etrings
in U igtu ensemblea.
end;

add § to ens{S) {ens=given 5, returzs ptr 1o 5's ensemble}
1'ad

cod, {procedure Lakel}
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f---ereem The Life of n Blt String- - ------. }

procedure stringevolution{var bistring; me:Uptr);
{every string {except emply) becomes a scparate incarnation of this
procedure, i.e. a separate, independent asynchronous process. }

var d,mstring; {leca) working variables)
horue: boolean; {true =2 [ am a member of 2 basis, closure, ar

#hsemble.}
begin
tepeat
il Usize==0 then  {we need two strings to get started}
begin

Tick; {go fram no strings in U to one.}

] ;== Pick; {#e become this frst string ie.
the original cmpty-process becomes
the U[1] process herewith.}

m ;== Generate; {gencrate a second string}

Usize = Usize + 1;  {Universe now has two strings}
U2 := m;
spawn stringevelution(U[2]); {give U2} Life.}
end
cise {universs is already rolling, so just scatter w/somecne}
begio
Label[me);
if HierarchyComplete and not home Lhen
{Pierre - is this the right place for Lhis insertion?}
begin {insert}
=1
while not home and i< =LabelsJast do
begin
=1
while not home aad j<=Labels|i] L *.last do
with Labels[i] L do
begin
home := Si=E|j|;
Pt 1
end;
if not home
and LabelPart(Labels]i]. 1, *_E[1]=Labellart(S) then
begio {I belung i this ensemble}
PutEnsemble(Si, Labels[il.L "}
home := true
end
end;
if not bome then
Legin
Labels.last ;= Labels.last + I;
pew(Lahels L[Labels.last];
with Labels L{Labels.last]" do
begin
El1] :== 8i;
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Tast 1= 2
ead
end
end {insert}
UnlockUniverse {spawn unlocks what spawner locked...
sxira Unluck okay...}
LockUniverse;
m == Pick;
2= diserim{l,m);
if d<< >»2crostring then
begin
¢ ;== peroatring; {“flag” S for later}
if not Inty{d) then 5i=d

else
it aot [oU{complement(l)] then s:=complement{l)
elee i not InU{campleme=nt{m)) then s;:=complement({m)
¢lse it ones(d) < 3rreroes(d) then Tick;
{else we have an elementary eeatiering event.}
if £ > 1eroatring then {put s into U (novelty)}
begin
Uzize := Usize+ I
UfUsize] :== =
spawn stringevolution(U]Usize]Usize); [give S tife)
{hirrarchy construction inseried bere}
end
etce UnlockUniverse
epd
end
until doomsday {etrings aever die}
end; {stting evolution.}

begin § Universe starts here——eom———}
{Initialization}

BasesComplete 1= [alse;

Curlv] .= 1;

Hierarchy Complele ;== false;

Leveln a5uy...
{end of initializati~2)

spown RandomBit;  (start random number generator golng)
DigDang: stringevolution{emplyset);

end. (Universe (wa = ver gel hete) }
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Cevsiruction of 8 Random Walk Ensemble £{v,b)

(U(N + B +b, SU) exists}

{PICK {L,b) := From the ensemble in ¥ labele ) by L pick at random one string and
delete sl but the last b bits, For this string v = (N1 — N%)/8}

Begin
E(1} := PICK (L,b}
inp*.& values p, 6

Yay == V(1)
vg = ul)
SE =1
k =2
While jv—wpj > o
Begin
if v < vap then
repeat Bk} := PiCK (L,b)
until (&) < v
else
repeat Ejk) := PICK {L,b)
until o{k) > p
¢ = £l E(k)
vp i=vg + o{k)
SE . =8E¢1
Vou = vp/SE
End

End
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FIGURE CAPTIONS

Definition: and Gow chart for constructing a growing universe Y(IV, 5U/)
coptaining 577 distinet bit strings each containing N bits.

Basic b w chart for constructing the four Jevels of the combinatorial
hierarcl s and using them to ¢mostruct ensembles of labeled addresses.
The random walk paradigm.

The paradigm for constructing space time from three events.
Paradigmatic configurations for the comstruction of 241 Minkowski
space.

The geometric paradigm for constructing 341 space.

‘The double slit paradigm.

The six basic processes in U for lahels of bit leagth 2.

The basic elastic scattering paradigm,

Driving terms for the integral equations of the MUST theery:
(a) p rticle-particle scattering via single quantum exchange: and
{b) quantum-particle scattering vis single particle exchange.

Mapping maltrices for the Je ¢} 2 to level 3 conrecticn.
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(a) Particle-particle and particle-antiparticle
scattering in the MUST theory.
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